xref: /aosp_15_r20/external/libaom/av1/encoder/nonrd_opt.c (revision 77c1e3ccc04c968bd2bc212e87364f250e820521)
1 /*
2  * Copyright (c) 2023, Alliance for Open Media. All rights reserved.
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #include "config/aom_dsp_rtcd.h"
13 #include "config/av1_rtcd.h"
14 
15 #include "av1/common/reconinter.h"
16 
17 #include "av1/encoder/encodemv.h"
18 #include "av1/encoder/nonrd_opt.h"
19 #include "av1/encoder/rdopt.h"
20 
21 static const SCAN_ORDER av1_fast_idtx_scan_order_16x16 = {
22   av1_fast_idtx_scan_16x16, av1_fast_idtx_iscan_16x16
23 };
24 
25 #define DECLARE_BLOCK_YRD_BUFFERS()                      \
26   DECLARE_ALIGNED(64, tran_low_t, dqcoeff_buf[16 * 16]); \
27   DECLARE_ALIGNED(64, tran_low_t, qcoeff_buf[16 * 16]);  \
28   DECLARE_ALIGNED(64, tran_low_t, coeff_buf[16 * 16]);   \
29   uint16_t eob[1];
30 
31 #define DECLARE_BLOCK_YRD_VARS()                                          \
32   /* When is_tx_8x8_dual_applicable is true, we compute the txfm for the  \
33    * entire bsize and write macroblock_plane::coeff. So low_coeff is kept \
34    * as a non-const so we can reassign it to macroblock_plane::coeff. */  \
35   int16_t *low_coeff = (int16_t *)coeff_buf;                              \
36   int16_t *const low_qcoeff = (int16_t *)qcoeff_buf;                      \
37   int16_t *const low_dqcoeff = (int16_t *)dqcoeff_buf;                    \
38   const int diff_stride = bw;
39 
40 #define DECLARE_LOOP_VARS_BLOCK_YRD() \
41   const int16_t *src_diff = &p->src_diff[(r * diff_stride + c) << 2];
42 
update_yrd_loop_vars(MACROBLOCK * x,int * skippable,int step,int ncoeffs,int16_t * const low_coeff,int16_t * const low_qcoeff,int16_t * const low_dqcoeff,RD_STATS * this_rdc,int * eob_cost,int tx_blk_id)43 static AOM_FORCE_INLINE void update_yrd_loop_vars(
44     MACROBLOCK *x, int *skippable, int step, int ncoeffs,
45     int16_t *const low_coeff, int16_t *const low_qcoeff,
46     int16_t *const low_dqcoeff, RD_STATS *this_rdc, int *eob_cost,
47     int tx_blk_id) {
48   const int is_txfm_skip = (ncoeffs == 0);
49   *skippable &= is_txfm_skip;
50   x->txfm_search_info.blk_skip[tx_blk_id] = is_txfm_skip;
51   *eob_cost += get_msb(ncoeffs + 1);
52   if (ncoeffs == 1)
53     this_rdc->rate += (int)abs(low_qcoeff[0]);
54   else if (ncoeffs > 1)
55     this_rdc->rate += aom_satd_lp(low_qcoeff, step << 4);
56 
57   this_rdc->dist += av1_block_error_lp(low_coeff, low_dqcoeff, step << 4) >> 2;
58 }
59 
aom_process_hadamard_lp_8x16(MACROBLOCK * x,int max_blocks_high,int max_blocks_wide,int num_4x4_w,int step,int block_step)60 static inline void aom_process_hadamard_lp_8x16(MACROBLOCK *x,
61                                                 int max_blocks_high,
62                                                 int max_blocks_wide,
63                                                 int num_4x4_w, int step,
64                                                 int block_step) {
65   struct macroblock_plane *const p = &x->plane[AOM_PLANE_Y];
66   const int bw = 4 * num_4x4_w;
67   const int num_4x4 = AOMMIN(num_4x4_w, max_blocks_wide);
68   int block = 0;
69 
70   for (int r = 0; r < max_blocks_high; r += block_step) {
71     for (int c = 0; c < num_4x4; c += 2 * block_step) {
72       const int16_t *src_diff = &p->src_diff[(r * bw + c) << 2];
73       int16_t *low_coeff = (int16_t *)p->coeff + BLOCK_OFFSET(block);
74       aom_hadamard_lp_8x8_dual(src_diff, (ptrdiff_t)bw, low_coeff);
75       block += 2 * step;
76     }
77   }
78 }
79 
80 #if CONFIG_AV1_HIGHBITDEPTH
81 #define DECLARE_BLOCK_YRD_HBD_VARS()     \
82   tran_low_t *const coeff = coeff_buf;   \
83   tran_low_t *const qcoeff = qcoeff_buf; \
84   tran_low_t *const dqcoeff = dqcoeff_buf;
85 
update_yrd_loop_vars_hbd(MACROBLOCK * x,int * skippable,int step,int ncoeffs,tran_low_t * const coeff,tran_low_t * const qcoeff,tran_low_t * const dqcoeff,RD_STATS * this_rdc,int * eob_cost,int tx_blk_id)86 static AOM_FORCE_INLINE void update_yrd_loop_vars_hbd(
87     MACROBLOCK *x, int *skippable, int step, int ncoeffs,
88     tran_low_t *const coeff, tran_low_t *const qcoeff,
89     tran_low_t *const dqcoeff, RD_STATS *this_rdc, int *eob_cost,
90     int tx_blk_id) {
91   const MACROBLOCKD *xd = &x->e_mbd;
92   const int is_txfm_skip = (ncoeffs == 0);
93   *skippable &= is_txfm_skip;
94   x->txfm_search_info.blk_skip[tx_blk_id] = is_txfm_skip;
95   *eob_cost += get_msb(ncoeffs + 1);
96 
97   int64_t dummy;
98   if (ncoeffs == 1)
99     this_rdc->rate += (int)abs(qcoeff[0]);
100   else if (ncoeffs > 1)
101     this_rdc->rate += aom_satd(qcoeff, step << 4);
102   this_rdc->dist +=
103       av1_highbd_block_error(coeff, dqcoeff, step << 4, &dummy, xd->bd) >> 2;
104 }
105 #endif
106 
107 /*!\brief Calculates RD Cost using Hadamard transform.
108  *
109  * \ingroup nonrd_mode_search
110  * \callgraph
111  * \callergraph
112  * Calculates RD Cost using Hadamard transform. For low bit depth this function
113  * uses low-precision set of functions (16-bit) and 32 bit for high bit depth
114  * \param[in]    x              Pointer to structure holding all the data for
115                                 the current macroblock
116  * \param[in]    this_rdc       Pointer to calculated RD Cost
117  * \param[in]    skippable      Pointer to a flag indicating possible tx skip
118  * \param[in]    bsize          Current block size
119  * \param[in]    tx_size        Transform size
120  * \param[in]    is_inter_mode  Flag to indicate inter mode
121  *
122  * \remark Nothing is returned. Instead, calculated RD cost is placed to
123  * \c this_rdc. \c skippable flag is set if there is no non-zero quantized
124  * coefficients for Hadamard transform
125  */
av1_block_yrd(MACROBLOCK * x,RD_STATS * this_rdc,int * skippable,BLOCK_SIZE bsize,TX_SIZE tx_size)126 void av1_block_yrd(MACROBLOCK *x, RD_STATS *this_rdc, int *skippable,
127                    BLOCK_SIZE bsize, TX_SIZE tx_size) {
128   MACROBLOCKD *xd = &x->e_mbd;
129   const struct macroblockd_plane *pd = &xd->plane[AOM_PLANE_Y];
130   struct macroblock_plane *const p = &x->plane[AOM_PLANE_Y];
131   assert(bsize < BLOCK_SIZES_ALL);
132   const int num_4x4_w = mi_size_wide[bsize];
133   const int num_4x4_h = mi_size_high[bsize];
134   const int step = 1 << (tx_size << 1);
135   const int block_step = (1 << tx_size);
136   const int row_step = step * num_4x4_w >> tx_size;
137   int block = 0;
138   const int max_blocks_wide =
139       num_4x4_w + (xd->mb_to_right_edge >= 0 ? 0 : xd->mb_to_right_edge >> 5);
140   const int max_blocks_high =
141       num_4x4_h + (xd->mb_to_bottom_edge >= 0 ? 0 : xd->mb_to_bottom_edge >> 5);
142   int eob_cost = 0;
143   const int bw = 4 * num_4x4_w;
144   const int bh = 4 * num_4x4_h;
145   const int use_hbd = is_cur_buf_hbd(xd);
146   int num_blk_skip_w = num_4x4_w;
147 
148 #if CONFIG_AV1_HIGHBITDEPTH
149   if (use_hbd) {
150     aom_highbd_subtract_block(bh, bw, p->src_diff, bw, p->src.buf,
151                               p->src.stride, pd->dst.buf, pd->dst.stride);
152   } else {
153     aom_subtract_block(bh, bw, p->src_diff, bw, p->src.buf, p->src.stride,
154                        pd->dst.buf, pd->dst.stride);
155   }
156 #else
157   aom_subtract_block(bh, bw, p->src_diff, bw, p->src.buf, p->src.stride,
158                      pd->dst.buf, pd->dst.stride);
159 #endif
160 
161   // Keep the intermediate value on the stack here. Writing directly to
162   // skippable causes speed regression due to load-and-store issues in
163   // update_yrd_loop_vars.
164   int temp_skippable = 1;
165   this_rdc->dist = 0;
166   this_rdc->rate = 0;
167   // For block sizes 8x16 or above, Hadamard txfm of two adjacent 8x8 blocks
168   // can be done per function call. Hence the call of Hadamard txfm is
169   // abstracted here for the specified cases.
170   int is_tx_8x8_dual_applicable =
171       (tx_size == TX_8X8 && block_size_wide[bsize] >= 16 &&
172        block_size_high[bsize] >= 8);
173 
174 #if CONFIG_AV1_HIGHBITDEPTH
175   // As of now, dual implementation of hadamard txfm is available for low
176   // bitdepth.
177   if (use_hbd) is_tx_8x8_dual_applicable = 0;
178 #endif
179 
180   if (is_tx_8x8_dual_applicable) {
181     aom_process_hadamard_lp_8x16(x, max_blocks_high, max_blocks_wide, num_4x4_w,
182                                  step, block_step);
183   }
184 
185   const SCAN_ORDER *const scan_order = &av1_scan_orders[tx_size][DCT_DCT];
186   DECLARE_BLOCK_YRD_BUFFERS()
187   DECLARE_BLOCK_YRD_VARS()
188 #if CONFIG_AV1_HIGHBITDEPTH
189   DECLARE_BLOCK_YRD_HBD_VARS()
190 #else
191   (void)use_hbd;
192 #endif
193 
194   // Keep track of the row and column of the blocks we use so that we know
195   // if we are in the unrestricted motion border.
196   for (int r = 0; r < max_blocks_high; r += block_step) {
197     for (int c = 0, s = 0; c < max_blocks_wide; c += block_step, s += step) {
198       DECLARE_LOOP_VARS_BLOCK_YRD()
199 
200       switch (tx_size) {
201 #if CONFIG_AV1_HIGHBITDEPTH
202         case TX_16X16:
203           if (use_hbd) {
204             aom_hadamard_16x16(src_diff, diff_stride, coeff);
205             av1_quantize_fp(coeff, 16 * 16, p->zbin_QTX, p->round_fp_QTX,
206                             p->quant_fp_QTX, p->quant_shift_QTX, qcoeff,
207                             dqcoeff, p->dequant_QTX, eob,
208                             // default_scan_fp_16x16_transpose and
209                             // av1_default_iscan_fp_16x16_transpose have to be
210                             // used together.
211                             default_scan_fp_16x16_transpose,
212                             av1_default_iscan_fp_16x16_transpose);
213           } else {
214             aom_hadamard_lp_16x16(src_diff, diff_stride, low_coeff);
215             av1_quantize_lp(low_coeff, 16 * 16, p->round_fp_QTX,
216                             p->quant_fp_QTX, low_qcoeff, low_dqcoeff,
217                             p->dequant_QTX, eob,
218                             // default_scan_lp_16x16_transpose and
219                             // av1_default_iscan_lp_16x16_transpose have to be
220                             // used together.
221                             default_scan_lp_16x16_transpose,
222                             av1_default_iscan_lp_16x16_transpose);
223           }
224           break;
225         case TX_8X8:
226           if (use_hbd) {
227             aom_hadamard_8x8(src_diff, diff_stride, coeff);
228             av1_quantize_fp(
229                 coeff, 8 * 8, p->zbin_QTX, p->round_fp_QTX, p->quant_fp_QTX,
230                 p->quant_shift_QTX, qcoeff, dqcoeff, p->dequant_QTX, eob,
231                 default_scan_8x8_transpose, av1_default_iscan_8x8_transpose);
232           } else {
233             if (is_tx_8x8_dual_applicable) {
234               // The coeffs are pre-computed for the whole block, so re-assign
235               // low_coeff to the appropriate location.
236               const int block_offset = BLOCK_OFFSET(block + s);
237               low_coeff = (int16_t *)p->coeff + block_offset;
238             } else {
239               aom_hadamard_lp_8x8(src_diff, diff_stride, low_coeff);
240             }
241             av1_quantize_lp(
242                 low_coeff, 8 * 8, p->round_fp_QTX, p->quant_fp_QTX, low_qcoeff,
243                 low_dqcoeff, p->dequant_QTX, eob,
244                 // default_scan_8x8_transpose and
245                 // av1_default_iscan_8x8_transpose have to be used together.
246                 default_scan_8x8_transpose, av1_default_iscan_8x8_transpose);
247           }
248           break;
249         default:
250           assert(tx_size == TX_4X4);
251           // In tx_size=4x4 case, aom_fdct4x4 and aom_fdct4x4_lp generate
252           // normal coefficients order, so we don't need to change the scan
253           // order here.
254           if (use_hbd) {
255             aom_fdct4x4(src_diff, coeff, diff_stride);
256             av1_quantize_fp(coeff, 4 * 4, p->zbin_QTX, p->round_fp_QTX,
257                             p->quant_fp_QTX, p->quant_shift_QTX, qcoeff,
258                             dqcoeff, p->dequant_QTX, eob, scan_order->scan,
259                             scan_order->iscan);
260           } else {
261             aom_fdct4x4_lp(src_diff, low_coeff, diff_stride);
262             av1_quantize_lp(low_coeff, 4 * 4, p->round_fp_QTX, p->quant_fp_QTX,
263                             low_qcoeff, low_dqcoeff, p->dequant_QTX, eob,
264                             scan_order->scan, scan_order->iscan);
265           }
266           break;
267 #else
268         case TX_16X16:
269           aom_hadamard_lp_16x16(src_diff, diff_stride, low_coeff);
270           av1_quantize_lp(low_coeff, 16 * 16, p->round_fp_QTX, p->quant_fp_QTX,
271                           low_qcoeff, low_dqcoeff, p->dequant_QTX, eob,
272                           default_scan_lp_16x16_transpose,
273                           av1_default_iscan_lp_16x16_transpose);
274           break;
275         case TX_8X8:
276           if (is_tx_8x8_dual_applicable) {
277             // The coeffs are pre-computed for the whole block, so re-assign
278             // low_coeff to the appropriate location.
279             const int block_offset = BLOCK_OFFSET(block + s);
280             low_coeff = (int16_t *)p->coeff + block_offset;
281           } else {
282             aom_hadamard_lp_8x8(src_diff, diff_stride, low_coeff);
283           }
284           av1_quantize_lp(low_coeff, 8 * 8, p->round_fp_QTX, p->quant_fp_QTX,
285                           low_qcoeff, low_dqcoeff, p->dequant_QTX, eob,
286                           default_scan_8x8_transpose,
287                           av1_default_iscan_8x8_transpose);
288           break;
289         default:
290           aom_fdct4x4_lp(src_diff, low_coeff, diff_stride);
291           av1_quantize_lp(low_coeff, 4 * 4, p->round_fp_QTX, p->quant_fp_QTX,
292                           low_qcoeff, low_dqcoeff, p->dequant_QTX, eob,
293                           scan_order->scan, scan_order->iscan);
294           break;
295 #endif
296       }
297       assert(*eob <= 1024);
298 #if CONFIG_AV1_HIGHBITDEPTH
299       if (use_hbd)
300         update_yrd_loop_vars_hbd(x, &temp_skippable, step, *eob, coeff, qcoeff,
301                                  dqcoeff, this_rdc, &eob_cost,
302                                  r * num_blk_skip_w + c);
303       else
304 #endif
305         update_yrd_loop_vars(x, &temp_skippable, step, *eob, low_coeff,
306                              low_qcoeff, low_dqcoeff, this_rdc, &eob_cost,
307                              r * num_blk_skip_w + c);
308     }
309     block += row_step;
310   }
311 
312   this_rdc->skip_txfm = *skippable = temp_skippable;
313   if (this_rdc->sse < INT64_MAX) {
314     this_rdc->sse = (this_rdc->sse << 6) >> 2;
315     if (temp_skippable) {
316       this_rdc->dist = 0;
317       this_rdc->dist = this_rdc->sse;
318       return;
319     }
320   }
321 
322   // If skippable is set, rate gets clobbered later.
323   this_rdc->rate <<= (2 + AV1_PROB_COST_SHIFT);
324   this_rdc->rate += (eob_cost << AV1_PROB_COST_SHIFT);
325 }
326 
327 // Explicitly enumerate the cases so the compiler can generate SIMD for the
328 // function. According to the disassembler, gcc generates SSE codes for each of
329 // the possible block sizes. The hottest case is tx_width 16, which takes up
330 // about 8% of the self cycle of av1_nonrd_pick_inter_mode_sb. Since
331 // av1_nonrd_pick_inter_mode_sb takes up about 3% of total encoding time, the
332 // potential room of improvement for writing AVX2 optimization is only 3% * 8% =
333 // 0.24% of total encoding time.
scale_square_buf_vals(int16_t * dst,int tx_width,const int16_t * src,int src_stride)334 static inline void scale_square_buf_vals(int16_t *dst, int tx_width,
335                                          const int16_t *src, int src_stride) {
336 #define DO_SCALING                                                   \
337   do {                                                               \
338     for (int idy = 0; idy < tx_width; ++idy) {                       \
339       for (int idx = 0; idx < tx_width; ++idx) {                     \
340         dst[idy * tx_width + idx] = src[idy * src_stride + idx] * 8; \
341       }                                                              \
342     }                                                                \
343   } while (0)
344 
345   if (tx_width == 4) {
346     DO_SCALING;
347   } else if (tx_width == 8) {
348     DO_SCALING;
349   } else if (tx_width == 16) {
350     DO_SCALING;
351   } else {
352     assert(0);
353   }
354 
355 #undef DO_SCALING
356 }
357 
358 /*!\brief Calculates RD Cost when the block uses Identity transform.
359  * Note that this function is only for low bit depth encoding, since it
360  * is called in real-time mode for now, which sets high bit depth to 0:
361  * -DCONFIG_AV1_HIGHBITDEPTH=0
362  *
363  * \ingroup nonrd_mode_search
364  * \callgraph
365  * \callergraph
366  * Calculates RD Cost. For low bit depth this function
367  * uses low-precision set of functions (16-bit) and 32 bit for high bit depth
368  * \param[in]    x              Pointer to structure holding all the data for
369                                 the current macroblock
370  * \param[in]    pred_buf       Pointer to the prediction buffer
371  * \param[in]    pred_stride    Stride for the prediction buffer
372  * \param[in]    this_rdc       Pointer to calculated RD Cost
373  * \param[in]    skippable      Pointer to a flag indicating possible tx skip
374  * \param[in]    bsize          Current block size
375  * \param[in]    tx_size        Transform size
376  *
377  * \remark Nothing is returned. Instead, calculated RD cost is placed to
378  * \c this_rdc. \c skippable flag is set if all coefficients are zero.
379  */
av1_block_yrd_idtx(MACROBLOCK * x,const uint8_t * const pred_buf,int pred_stride,RD_STATS * this_rdc,int * skippable,BLOCK_SIZE bsize,TX_SIZE tx_size)380 void av1_block_yrd_idtx(MACROBLOCK *x, const uint8_t *const pred_buf,
381                         int pred_stride, RD_STATS *this_rdc, int *skippable,
382                         BLOCK_SIZE bsize, TX_SIZE tx_size) {
383   MACROBLOCKD *xd = &x->e_mbd;
384   struct macroblock_plane *const p = &x->plane[AOM_PLANE_Y];
385   assert(bsize < BLOCK_SIZES_ALL);
386   const int num_4x4_w = mi_size_wide[bsize];
387   const int num_4x4_h = mi_size_high[bsize];
388   const int step = 1 << (tx_size << 1);
389   const int block_step = (1 << tx_size);
390   const int max_blocks_wide =
391       num_4x4_w + (xd->mb_to_right_edge >= 0 ? 0 : xd->mb_to_right_edge >> 5);
392   const int max_blocks_high =
393       num_4x4_h + (xd->mb_to_bottom_edge >= 0 ? 0 : xd->mb_to_bottom_edge >> 5);
394   int eob_cost = 0;
395   const int bw = 4 * num_4x4_w;
396   const int bh = 4 * num_4x4_h;
397   const int num_blk_skip_w = num_4x4_w;
398   // Keep the intermediate value on the stack here. Writing directly to
399   // skippable causes speed regression due to load-and-store issues in
400   // update_yrd_loop_vars.
401   int temp_skippable = 1;
402   int tx_wd = 0;
403   const SCAN_ORDER *scan_order = NULL;
404   switch (tx_size) {
405     case TX_64X64:
406       assert(0);  // Not implemented
407       break;
408     case TX_32X32:
409       assert(0);  // Not used
410       break;
411     case TX_16X16:
412       scan_order = &av1_fast_idtx_scan_order_16x16;
413       tx_wd = 16;
414       break;
415     case TX_8X8:
416       scan_order = &av1_fast_idtx_scan_order_8x8;
417       tx_wd = 8;
418       break;
419     default:
420       assert(tx_size == TX_4X4);
421       scan_order = &av1_fast_idtx_scan_order_4x4;
422       tx_wd = 4;
423       break;
424   }
425   assert(scan_order != NULL);
426 
427   this_rdc->dist = 0;
428   this_rdc->rate = 0;
429   aom_subtract_block(bh, bw, p->src_diff, bw, p->src.buf, p->src.stride,
430                      pred_buf, pred_stride);
431   // Keep track of the row and column of the blocks we use so that we know
432   // if we are in the unrestricted motion border.
433   DECLARE_BLOCK_YRD_BUFFERS()
434   DECLARE_BLOCK_YRD_VARS()
435   for (int r = 0; r < max_blocks_high; r += block_step) {
436     for (int c = 0, s = 0; c < max_blocks_wide; c += block_step, s += step) {
437       DECLARE_LOOP_VARS_BLOCK_YRD()
438       scale_square_buf_vals(low_coeff, tx_wd, src_diff, diff_stride);
439       av1_quantize_lp(low_coeff, tx_wd * tx_wd, p->round_fp_QTX,
440                       p->quant_fp_QTX, low_qcoeff, low_dqcoeff, p->dequant_QTX,
441                       eob, scan_order->scan, scan_order->iscan);
442       assert(*eob <= 1024);
443       update_yrd_loop_vars(x, &temp_skippable, step, *eob, low_coeff,
444                            low_qcoeff, low_dqcoeff, this_rdc, &eob_cost,
445                            r * num_blk_skip_w + c);
446     }
447   }
448   this_rdc->skip_txfm = *skippable = temp_skippable;
449   if (this_rdc->sse < INT64_MAX) {
450     this_rdc->sse = (this_rdc->sse << 6) >> 2;
451     if (temp_skippable) {
452       this_rdc->dist = 0;
453       this_rdc->dist = this_rdc->sse;
454       return;
455     }
456   }
457   // If skippable is set, rate gets clobbered later.
458   this_rdc->rate <<= (2 + AV1_PROB_COST_SHIFT);
459   this_rdc->rate += (eob_cost << AV1_PROB_COST_SHIFT);
460 }
461 
av1_model_rd_for_sb_uv(AV1_COMP * cpi,BLOCK_SIZE plane_bsize,MACROBLOCK * x,MACROBLOCKD * xd,RD_STATS * this_rdc,int start_plane,int stop_plane)462 int64_t av1_model_rd_for_sb_uv(AV1_COMP *cpi, BLOCK_SIZE plane_bsize,
463                                MACROBLOCK *x, MACROBLOCKD *xd,
464                                RD_STATS *this_rdc, int start_plane,
465                                int stop_plane) {
466   // Note our transform coeffs are 8 times an orthogonal transform.
467   // Hence quantizer step is also 8 times. To get effective quantizer
468   // we need to divide by 8 before sending to modeling function.
469   unsigned int sse;
470   int rate;
471   int64_t dist;
472   int plane;
473   int64_t tot_sse = 0;
474 
475   this_rdc->rate = 0;
476   this_rdc->dist = 0;
477   this_rdc->skip_txfm = 0;
478 
479   for (plane = start_plane; plane <= stop_plane; ++plane) {
480     struct macroblock_plane *const p = &x->plane[plane];
481     struct macroblockd_plane *const pd = &xd->plane[plane];
482     const uint32_t dc_quant = p->dequant_QTX[0];
483     const uint32_t ac_quant = p->dequant_QTX[1];
484     const BLOCK_SIZE bs = plane_bsize;
485     unsigned int var;
486     if (!x->color_sensitivity[COLOR_SENS_IDX(plane)]) continue;
487 
488     var = cpi->ppi->fn_ptr[bs].vf(p->src.buf, p->src.stride, pd->dst.buf,
489                                   pd->dst.stride, &sse);
490     assert(sse >= var);
491     tot_sse += sse;
492 
493     av1_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bs],
494                                  dc_quant >> 3, &rate, &dist);
495 
496     this_rdc->rate += rate >> 1;
497     this_rdc->dist += dist << 3;
498 
499     av1_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bs], ac_quant >> 3,
500                                  &rate, &dist);
501 
502     this_rdc->rate += rate;
503     this_rdc->dist += dist << 4;
504   }
505 
506   if (this_rdc->rate == 0) {
507     this_rdc->skip_txfm = 1;
508   }
509 
510   if (RDCOST(x->rdmult, this_rdc->rate, this_rdc->dist) >=
511       RDCOST(x->rdmult, 0, tot_sse << 4)) {
512     this_rdc->rate = 0;
513     this_rdc->dist = tot_sse << 4;
514     this_rdc->skip_txfm = 1;
515   }
516 
517   return tot_sse;
518 }
519 
compute_intra_yprediction(const AV1_COMMON * cm,PREDICTION_MODE mode,BLOCK_SIZE bsize,MACROBLOCK * x,MACROBLOCKD * xd)520 static void compute_intra_yprediction(const AV1_COMMON *cm,
521                                       PREDICTION_MODE mode, BLOCK_SIZE bsize,
522                                       MACROBLOCK *x, MACROBLOCKD *xd) {
523   const SequenceHeader *seq_params = cm->seq_params;
524   struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_Y];
525   struct macroblock_plane *const p = &x->plane[AOM_PLANE_Y];
526   uint8_t *const src_buf_base = p->src.buf;
527   uint8_t *const dst_buf_base = pd->dst.buf;
528   const int src_stride = p->src.stride;
529   const int dst_stride = pd->dst.stride;
530   int plane = 0;
531   int row, col;
532   // block and transform sizes, in number of 4x4 blocks log 2 ("*_b")
533   // 4x4=0, 8x8=2, 16x16=4, 32x32=6, 64x64=8
534   // transform size varies per plane, look it up in a common way.
535   const TX_SIZE tx_size = max_txsize_lookup[bsize];
536   const BLOCK_SIZE plane_bsize =
537       get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y);
538   // If mb_to_right_edge is < 0 we are in a situation in which
539   // the current block size extends into the UMV and we won't
540   // visit the sub blocks that are wholly within the UMV.
541   const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
542   const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
543   // Keep track of the row and column of the blocks we use so that we know
544   // if we are in the unrestricted motion border.
545   for (row = 0; row < max_blocks_high; row += (1 << tx_size)) {
546     // Skip visiting the sub blocks that are wholly within the UMV.
547     for (col = 0; col < max_blocks_wide; col += (1 << tx_size)) {
548       p->src.buf = &src_buf_base[4 * (row * (int64_t)src_stride + col)];
549       pd->dst.buf = &dst_buf_base[4 * (row * (int64_t)dst_stride + col)];
550       av1_predict_intra_block(
551           xd, seq_params->sb_size, seq_params->enable_intra_edge_filter,
552           block_size_wide[bsize], block_size_high[bsize], tx_size, mode, 0, 0,
553           FILTER_INTRA_MODES, pd->dst.buf, dst_stride, pd->dst.buf, dst_stride,
554           0, 0, plane);
555     }
556   }
557   p->src.buf = src_buf_base;
558   pd->dst.buf = dst_buf_base;
559 }
560 
561 // Checks whether Intra mode needs to be pruned based on
562 // 'intra_y_mode_bsize_mask_nrd' and 'prune_hv_pred_modes_using_blksad'
563 // speed features.
is_prune_intra_mode(AV1_COMP * cpi,int mode_index,int force_intra_check,BLOCK_SIZE bsize,uint8_t segment_id,SOURCE_SAD source_sad_nonrd,uint8_t color_sensitivity[MAX_MB_PLANE-1])564 static inline bool is_prune_intra_mode(
565     AV1_COMP *cpi, int mode_index, int force_intra_check, BLOCK_SIZE bsize,
566     uint8_t segment_id, SOURCE_SAD source_sad_nonrd,
567     uint8_t color_sensitivity[MAX_MB_PLANE - 1]) {
568   const PREDICTION_MODE this_mode = intra_mode_list[mode_index];
569   if (mode_index > 2 || force_intra_check == 0) {
570     if (!((1 << this_mode) & cpi->sf.rt_sf.intra_y_mode_bsize_mask_nrd[bsize]))
571       return true;
572 
573     if (this_mode == DC_PRED) return false;
574 
575     if (!cpi->sf.rt_sf.prune_hv_pred_modes_using_src_sad) return false;
576 
577     const bool has_color_sensitivity =
578         color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_U)] &&
579         color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_V)];
580     if (has_color_sensitivity &&
581         (cpi->rc.frame_source_sad > 1.1 * cpi->rc.avg_source_sad ||
582          cyclic_refresh_segment_id_boosted(segment_id) ||
583          source_sad_nonrd > kMedSad))
584       return false;
585 
586     return true;
587   }
588   return false;
589 }
590 
591 /*!\brief Estimation of RD cost of an intra mode for Non-RD optimized case.
592  *
593  * \ingroup nonrd_mode_search
594  * \callgraph
595  * \callergraph
596  * Calculates RD Cost for an intra mode for a single TX block using Hadamard
597  * transform.
598  * \param[in]    plane          Color plane
599  * \param[in]    block          Index of a TX block in a prediction block
600  * \param[in]    row            Row of a current TX block
601  * \param[in]    col            Column of a current TX block
602  * \param[in]    plane_bsize    Block size of a current prediction block
603  * \param[in]    tx_size        Transform size
604  * \param[in]    arg            Pointer to a structure that holds parameters
605  *                              for intra mode search
606  *
607  * \remark Nothing is returned. Instead, best mode and RD Cost of the best mode
608  * are set in \c args->rdc and \c args->mode
609  */
av1_estimate_block_intra(int plane,int block,int row,int col,BLOCK_SIZE plane_bsize,TX_SIZE tx_size,void * arg)610 void av1_estimate_block_intra(int plane, int block, int row, int col,
611                               BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
612                               void *arg) {
613   struct estimate_block_intra_args *const args = arg;
614   AV1_COMP *const cpi = args->cpi;
615   AV1_COMMON *const cm = &cpi->common;
616   MACROBLOCK *const x = args->x;
617   MACROBLOCKD *const xd = &x->e_mbd;
618   struct macroblock_plane *const p = &x->plane[plane];
619   struct macroblockd_plane *const pd = &xd->plane[plane];
620   const BLOCK_SIZE bsize_tx = txsize_to_bsize[tx_size];
621   uint8_t *const src_buf_base = p->src.buf;
622   uint8_t *const dst_buf_base = pd->dst.buf;
623   const int64_t src_stride = p->src.stride;
624   const int64_t dst_stride = pd->dst.stride;
625 
626   (void)block;
627 
628   av1_predict_intra_block_facade(cm, xd, plane, col, row, tx_size);
629 
630   if (args->prune_mode_based_on_sad) {
631     unsigned int this_sad = cpi->ppi->fn_ptr[plane_bsize].sdf(
632         p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride);
633     const unsigned int sad_threshold =
634         args->best_sad != UINT_MAX ? args->best_sad + (args->best_sad >> 4)
635                                    : UINT_MAX;
636     // Skip the evaluation of current mode if its SAD is more than a threshold.
637     if (this_sad > sad_threshold) {
638       // For the current mode, set rate and distortion to maximum possible
639       // values and return.
640       // Note: args->rdc->rate is checked in av1_nonrd_pick_intra_mode() to skip
641       // the evaluation of the current mode.
642       args->rdc->rate = INT_MAX;
643       args->rdc->dist = INT64_MAX;
644       return;
645     }
646     if (this_sad < args->best_sad) {
647       args->best_sad = this_sad;
648     }
649   }
650 
651   RD_STATS this_rdc;
652   av1_invalid_rd_stats(&this_rdc);
653 
654   p->src.buf = &src_buf_base[4 * (row * src_stride + col)];
655   pd->dst.buf = &dst_buf_base[4 * (row * dst_stride + col)];
656 
657   if (plane == 0) {
658     av1_block_yrd(x, &this_rdc, &args->skippable, bsize_tx,
659                   AOMMIN(tx_size, TX_16X16));
660   } else {
661     av1_model_rd_for_sb_uv(cpi, bsize_tx, x, xd, &this_rdc, plane, plane);
662   }
663 
664   p->src.buf = src_buf_base;
665   pd->dst.buf = dst_buf_base;
666   assert(args->rdc->rate != INT_MAX && args->rdc->dist != INT64_MAX);
667   args->rdc->rate += this_rdc.rate;
668   args->rdc->dist += this_rdc.dist;
669 }
670 
671 /*!\brief Estimates best intra mode for inter mode search
672  *
673  * \ingroup nonrd_mode_search
674  * \callgraph
675  * \callergraph
676  *
677  * Using heuristics based on best inter mode, block size, and other decides
678  * whether to check intra modes. If so, estimates and selects best intra mode
679  * from the reduced set of intra modes (max 4 intra modes checked)
680  *
681  * \param[in]    cpi                      Top-level encoder structure
682  * \param[in]    x                        Pointer to structure holding all the
683  *                                        data for the current macroblock
684  * \param[in]    bsize                    Current block size
685  * \param[in]    best_early_term          Flag, indicating that TX for the
686  *                                        best inter mode was skipped
687  * \param[in]    ref_cost_intra           Cost of signalling intra mode
688  * \param[in]    reuse_prediction         Flag, indicating prediction re-use
689  * \param[in]    orig_dst                 Original destination buffer
690  * \param[in]    tmp_buffers              Pointer to a temporary buffers for
691  *                                        prediction re-use
692  * \param[out]   this_mode_pred           Pointer to store prediction buffer
693  *                                        for prediction re-use
694  * \param[in]    best_rdc                 Pointer to RD cost for the best
695  *                                        selected intra mode
696  * \param[in]    best_pickmode            Pointer to a structure containing
697  *                                        best mode picked so far
698  * \param[in]    ctx                      Pointer to structure holding coding
699  *                                        contexts and modes for the block
700  *
701  * \remark Nothing is returned. Instead, calculated RD cost is placed to
702  * \c best_rdc and best selected mode is placed to \c best_pickmode
703  *
704  */
av1_estimate_intra_mode(AV1_COMP * cpi,MACROBLOCK * x,BLOCK_SIZE bsize,int best_early_term,unsigned int ref_cost_intra,int reuse_prediction,struct buf_2d * orig_dst,PRED_BUFFER * tmp_buffers,PRED_BUFFER ** this_mode_pred,RD_STATS * best_rdc,BEST_PICKMODE * best_pickmode,PICK_MODE_CONTEXT * ctx)705 void av1_estimate_intra_mode(AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize,
706                              int best_early_term, unsigned int ref_cost_intra,
707                              int reuse_prediction, struct buf_2d *orig_dst,
708                              PRED_BUFFER *tmp_buffers,
709                              PRED_BUFFER **this_mode_pred, RD_STATS *best_rdc,
710                              BEST_PICKMODE *best_pickmode,
711                              PICK_MODE_CONTEXT *ctx) {
712   AV1_COMMON *const cm = &cpi->common;
713   MACROBLOCKD *const xd = &x->e_mbd;
714   MB_MODE_INFO *const mi = xd->mi[0];
715   const TxfmSearchParams *txfm_params = &x->txfm_search_params;
716   const unsigned char segment_id = mi->segment_id;
717   const int *const rd_threshes = cpi->rd.threshes[segment_id][bsize];
718   const int *const rd_thresh_freq_fact = x->thresh_freq_fact[bsize];
719   const bool is_screen_content =
720       cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN;
721   struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_Y];
722   const REAL_TIME_SPEED_FEATURES *const rt_sf = &cpi->sf.rt_sf;
723 
724   const CommonQuantParams *quant_params = &cm->quant_params;
725 
726   RD_STATS this_rdc;
727 
728   int intra_cost_penalty = av1_get_intra_cost_penalty(
729       quant_params->base_qindex, quant_params->y_dc_delta_q,
730       cm->seq_params->bit_depth);
731   int64_t inter_mode_thresh =
732       RDCOST(x->rdmult, ref_cost_intra + intra_cost_penalty, 0);
733   int perform_intra_pred = rt_sf->check_intra_pred_nonrd;
734   int force_intra_check = 0;
735   // For spatial enhancement layer: turn off intra prediction if the
736   // previous spatial layer as golden ref is not chosen as best reference.
737   // only do this for temporal enhancement layer and on non-key frames.
738   if (cpi->svc.spatial_layer_id > 0 &&
739       best_pickmode->best_ref_frame != GOLDEN_FRAME &&
740       cpi->svc.temporal_layer_id > 0 &&
741       !cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame)
742     perform_intra_pred = 0;
743 
744   int do_early_exit_rdthresh = 1;
745 
746   uint32_t spatial_var_thresh = 50;
747   int motion_thresh = 32;
748   // Adjust thresholds to make intra mode likely tested if the other
749   // references (golden, alt) are skipped/not checked. For now always
750   // adjust for svc mode.
751   if (cpi->ppi->use_svc || (rt_sf->use_nonrd_altref_frame == 0 &&
752                             rt_sf->nonrd_prune_ref_frame_search > 0)) {
753     spatial_var_thresh = 150;
754     motion_thresh = 0;
755   }
756 
757   // Some adjustments to checking intra mode based on source variance.
758   if (x->source_variance < spatial_var_thresh) {
759     // If the best inter mode is large motion or non-LAST ref reduce intra cost
760     // penalty, so intra mode is more likely tested.
761     if (best_rdc->rdcost != INT64_MAX &&
762         (best_pickmode->best_ref_frame != LAST_FRAME ||
763          abs(mi->mv[0].as_mv.row) >= motion_thresh ||
764          abs(mi->mv[0].as_mv.col) >= motion_thresh)) {
765       intra_cost_penalty = intra_cost_penalty >> 2;
766       inter_mode_thresh =
767           RDCOST(x->rdmult, ref_cost_intra + intra_cost_penalty, 0);
768       do_early_exit_rdthresh = 0;
769     }
770     if ((x->source_variance < AOMMAX(50, (spatial_var_thresh >> 1)) &&
771          x->content_state_sb.source_sad_nonrd >= kHighSad) ||
772         (is_screen_content && x->source_variance < 50 &&
773          ((bsize >= BLOCK_32X32 &&
774            x->content_state_sb.source_sad_nonrd != kZeroSad) ||
775           x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_U)] == 1 ||
776           x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_V)] == 1)))
777       force_intra_check = 1;
778     // For big blocks worth checking intra (since only DC will be checked),
779     // even if best_early_term is set.
780     if (bsize >= BLOCK_32X32) best_early_term = 0;
781   } else if (rt_sf->source_metrics_sb_nonrd &&
782              x->content_state_sb.source_sad_nonrd <= kLowSad) {
783     perform_intra_pred = 0;
784   }
785 
786   if (best_rdc->skip_txfm && best_pickmode->best_mode_initial_skip_flag) {
787     if (rt_sf->skip_intra_pred == 1 && best_pickmode->best_mode != NEWMV)
788       perform_intra_pred = 0;
789     else if (rt_sf->skip_intra_pred == 2)
790       perform_intra_pred = 0;
791   }
792 
793   if (!(best_rdc->rdcost == INT64_MAX || force_intra_check ||
794         (perform_intra_pred && !best_early_term &&
795          bsize <= cpi->sf.part_sf.max_intra_bsize))) {
796     return;
797   }
798 
799   // Early exit based on RD cost calculated using known rate. When
800   // is_screen_content is true, more bias is given to intra modes. Hence,
801   // considered conservative threshold in early exit for the same.
802   const int64_t known_rd = is_screen_content
803                                ? CALC_BIASED_RDCOST(inter_mode_thresh)
804                                : inter_mode_thresh;
805   if (known_rd > best_rdc->rdcost) return;
806 
807   struct estimate_block_intra_args args;
808   init_estimate_block_intra_args(&args, cpi, x);
809   TX_SIZE intra_tx_size = AOMMIN(
810       AOMMIN(max_txsize_lookup[bsize],
811              tx_mode_to_biggest_tx_size[txfm_params->tx_mode_search_type]),
812       TX_16X16);
813   if (is_screen_content && cpi->rc.high_source_sad &&
814       x->source_variance > spatial_var_thresh && bsize <= BLOCK_16X16)
815     intra_tx_size = TX_4X4;
816 
817   PRED_BUFFER *const best_pred = best_pickmode->best_pred;
818   if (reuse_prediction && best_pred != NULL) {
819     const int bh = block_size_high[bsize];
820     const int bw = block_size_wide[bsize];
821     if (best_pred->data == orig_dst->buf) {
822       *this_mode_pred = &tmp_buffers[get_pred_buffer(tmp_buffers, 3)];
823       aom_convolve_copy(best_pred->data, best_pred->stride,
824                         (*this_mode_pred)->data, (*this_mode_pred)->stride, bw,
825                         bh);
826       best_pickmode->best_pred = *this_mode_pred;
827     }
828   }
829   pd->dst = *orig_dst;
830 
831   for (int midx = 0; midx < RTC_INTRA_MODES; ++midx) {
832     const PREDICTION_MODE this_mode = intra_mode_list[midx];
833     const THR_MODES mode_index = mode_idx[INTRA_FRAME][mode_offset(this_mode)];
834     const int64_t mode_rd_thresh = rd_threshes[mode_index];
835 
836     if (is_prune_intra_mode(cpi, midx, force_intra_check, bsize, segment_id,
837                             x->content_state_sb.source_sad_nonrd,
838                             x->color_sensitivity))
839       continue;
840 
841     if (is_screen_content && rt_sf->source_metrics_sb_nonrd) {
842       // For spatially flat blocks with zero motion only check
843       // DC mode.
844       if (x->content_state_sb.source_sad_nonrd == kZeroSad &&
845           x->source_variance == 0 && this_mode != DC_PRED)
846         continue;
847       // Only test Intra for big blocks if spatial_variance is small.
848       else if (bsize > BLOCK_32X32 && x->source_variance > 50)
849         continue;
850     }
851 
852     if (rd_less_than_thresh(best_rdc->rdcost, mode_rd_thresh,
853                             rd_thresh_freq_fact[mode_index]) &&
854         (do_early_exit_rdthresh || this_mode == SMOOTH_PRED)) {
855       continue;
856     }
857     const BLOCK_SIZE uv_bsize =
858         get_plane_block_size(bsize, xd->plane[AOM_PLANE_U].subsampling_x,
859                              xd->plane[AOM_PLANE_U].subsampling_y);
860 
861     mi->mode = this_mode;
862     mi->ref_frame[0] = INTRA_FRAME;
863     mi->ref_frame[1] = NONE_FRAME;
864 
865     av1_invalid_rd_stats(&this_rdc);
866     args.mode = this_mode;
867     args.skippable = 1;
868     args.rdc = &this_rdc;
869     mi->tx_size = intra_tx_size;
870     compute_intra_yprediction(cm, this_mode, bsize, x, xd);
871     // Look into selecting tx_size here, based on prediction residual.
872     av1_block_yrd(x, &this_rdc, &args.skippable, bsize, mi->tx_size);
873     // TODO(kyslov@) Need to account for skippable
874     if (x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_U)]) {
875       av1_foreach_transformed_block_in_plane(xd, uv_bsize, AOM_PLANE_U,
876                                              av1_estimate_block_intra, &args);
877     }
878     if (x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_V)]) {
879       av1_foreach_transformed_block_in_plane(xd, uv_bsize, AOM_PLANE_V,
880                                              av1_estimate_block_intra, &args);
881     }
882 
883     int mode_cost = 0;
884     if (av1_is_directional_mode(this_mode) && av1_use_angle_delta(bsize)) {
885       mode_cost +=
886           x->mode_costs.angle_delta_cost[this_mode - V_PRED]
887                                         [MAX_ANGLE_DELTA +
888                                          mi->angle_delta[PLANE_TYPE_Y]];
889     }
890     if (this_mode == DC_PRED && av1_filter_intra_allowed_bsize(cm, bsize)) {
891       mode_cost += x->mode_costs.filter_intra_cost[bsize][0];
892     }
893     this_rdc.rate += ref_cost_intra;
894     this_rdc.rate += intra_cost_penalty;
895     this_rdc.rate += mode_cost;
896     this_rdc.rdcost = RDCOST(x->rdmult, this_rdc.rate, this_rdc.dist);
897 
898     if (is_screen_content && rt_sf->source_metrics_sb_nonrd) {
899       // For blocks with low spatial variance and color sad,
900       // favor the intra-modes, only on scene/slide change.
901       if (cpi->rc.high_source_sad && x->source_variance < 800 &&
902           (x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_U)] ||
903            x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_V)]))
904         this_rdc.rdcost = CALC_BIASED_RDCOST(this_rdc.rdcost);
905       // Otherwise bias against intra for blocks with zero
906       // motion and no color, on non-scene/slide changes.
907       else if (!cpi->rc.high_source_sad && x->source_variance > 0 &&
908                x->content_state_sb.source_sad_nonrd == kZeroSad &&
909                x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_U)] == 0 &&
910                x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_V)] == 0)
911         this_rdc.rdcost = (3 * this_rdc.rdcost) >> 1;
912     }
913 
914     if (this_rdc.rdcost < best_rdc->rdcost) {
915       *best_rdc = this_rdc;
916       best_pickmode->best_mode = this_mode;
917       best_pickmode->best_tx_size = mi->tx_size;
918       best_pickmode->best_ref_frame = INTRA_FRAME;
919       best_pickmode->best_second_ref_frame = NONE;
920       best_pickmode->best_mode_skip_txfm = this_rdc.skip_txfm;
921       mi->uv_mode = this_mode;
922       mi->mv[0].as_int = INVALID_MV;
923       mi->mv[1].as_int = INVALID_MV;
924       if (!this_rdc.skip_txfm)
925         memset(ctx->blk_skip, 0,
926                sizeof(x->txfm_search_info.blk_skip[0]) * ctx->num_4x4_blk);
927     }
928   }
929   if (best_pickmode->best_ref_frame == INTRA_FRAME)
930     memset(ctx->blk_skip, 0,
931            sizeof(x->txfm_search_info.blk_skip[0]) * ctx->num_4x4_blk);
932   mi->tx_size = best_pickmode->best_tx_size;
933 }
934