1// Copyright 2009 The Go Authors. All rights reserved. 2// Use of this source code is governed by a BSD-style 3// license that can be found in the LICENSE file. 4 5// Garbage collector: marking and scanning 6 7package runtime 8 9import ( 10 "internal/abi" 11 "internal/goarch" 12 "internal/runtime/atomic" 13 "runtime/internal/sys" 14 "unsafe" 15) 16 17const ( 18 fixedRootFinalizers = iota 19 fixedRootFreeGStacks 20 fixedRootCount 21 22 // rootBlockBytes is the number of bytes to scan per data or 23 // BSS root. 24 rootBlockBytes = 256 << 10 25 26 // maxObletBytes is the maximum bytes of an object to scan at 27 // once. Larger objects will be split up into "oblets" of at 28 // most this size. Since we can scan 1–2 MB/ms, 128 KB bounds 29 // scan preemption at ~100 µs. 30 // 31 // This must be > _MaxSmallSize so that the object base is the 32 // span base. 33 maxObletBytes = 128 << 10 34 35 // drainCheckThreshold specifies how many units of work to do 36 // between self-preemption checks in gcDrain. Assuming a scan 37 // rate of 1 MB/ms, this is ~100 µs. Lower values have higher 38 // overhead in the scan loop (the scheduler check may perform 39 // a syscall, so its overhead is nontrivial). Higher values 40 // make the system less responsive to incoming work. 41 drainCheckThreshold = 100000 42 43 // pagesPerSpanRoot indicates how many pages to scan from a span root 44 // at a time. Used by special root marking. 45 // 46 // Higher values improve throughput by increasing locality, but 47 // increase the minimum latency of a marking operation. 48 // 49 // Must be a multiple of the pageInUse bitmap element size and 50 // must also evenly divide pagesPerArena. 51 pagesPerSpanRoot = 512 52) 53 54// gcMarkRootPrepare queues root scanning jobs (stacks, globals, and 55// some miscellany) and initializes scanning-related state. 56// 57// The world must be stopped. 58func gcMarkRootPrepare() { 59 assertWorldStopped() 60 61 // Compute how many data and BSS root blocks there are. 62 nBlocks := func(bytes uintptr) int { 63 return int(divRoundUp(bytes, rootBlockBytes)) 64 } 65 66 work.nDataRoots = 0 67 work.nBSSRoots = 0 68 69 // Scan globals. 70 for _, datap := range activeModules() { 71 nDataRoots := nBlocks(datap.edata - datap.data) 72 if nDataRoots > work.nDataRoots { 73 work.nDataRoots = nDataRoots 74 } 75 76 nBSSRoots := nBlocks(datap.ebss - datap.bss) 77 if nBSSRoots > work.nBSSRoots { 78 work.nBSSRoots = nBSSRoots 79 } 80 } 81 82 // Scan span roots for finalizer specials. 83 // 84 // We depend on addfinalizer to mark objects that get 85 // finalizers after root marking. 86 // 87 // We're going to scan the whole heap (that was available at the time the 88 // mark phase started, i.e. markArenas) for in-use spans which have specials. 89 // 90 // Break up the work into arenas, and further into chunks. 91 // 92 // Snapshot allArenas as markArenas. This snapshot is safe because allArenas 93 // is append-only. 94 mheap_.markArenas = mheap_.allArenas[:len(mheap_.allArenas):len(mheap_.allArenas)] 95 work.nSpanRoots = len(mheap_.markArenas) * (pagesPerArena / pagesPerSpanRoot) 96 97 // Scan stacks. 98 // 99 // Gs may be created after this point, but it's okay that we 100 // ignore them because they begin life without any roots, so 101 // there's nothing to scan, and any roots they create during 102 // the concurrent phase will be caught by the write barrier. 103 work.stackRoots = allGsSnapshot() 104 work.nStackRoots = len(work.stackRoots) 105 106 work.markrootNext = 0 107 work.markrootJobs = uint32(fixedRootCount + work.nDataRoots + work.nBSSRoots + work.nSpanRoots + work.nStackRoots) 108 109 // Calculate base indexes of each root type 110 work.baseData = uint32(fixedRootCount) 111 work.baseBSS = work.baseData + uint32(work.nDataRoots) 112 work.baseSpans = work.baseBSS + uint32(work.nBSSRoots) 113 work.baseStacks = work.baseSpans + uint32(work.nSpanRoots) 114 work.baseEnd = work.baseStacks + uint32(work.nStackRoots) 115} 116 117// gcMarkRootCheck checks that all roots have been scanned. It is 118// purely for debugging. 119func gcMarkRootCheck() { 120 if work.markrootNext < work.markrootJobs { 121 print(work.markrootNext, " of ", work.markrootJobs, " markroot jobs done\n") 122 throw("left over markroot jobs") 123 } 124 125 // Check that stacks have been scanned. 126 // 127 // We only check the first nStackRoots Gs that we should have scanned. 128 // Since we don't care about newer Gs (see comment in 129 // gcMarkRootPrepare), no locking is required. 130 i := 0 131 forEachGRace(func(gp *g) { 132 if i >= work.nStackRoots { 133 return 134 } 135 136 if !gp.gcscandone { 137 println("gp", gp, "goid", gp.goid, 138 "status", readgstatus(gp), 139 "gcscandone", gp.gcscandone) 140 throw("scan missed a g") 141 } 142 143 i++ 144 }) 145} 146 147// ptrmask for an allocation containing a single pointer. 148var oneptrmask = [...]uint8{1} 149 150// markroot scans the i'th root. 151// 152// Preemption must be disabled (because this uses a gcWork). 153// 154// Returns the amount of GC work credit produced by the operation. 155// If flushBgCredit is true, then that credit is also flushed 156// to the background credit pool. 157// 158// nowritebarrier is only advisory here. 159// 160//go:nowritebarrier 161func markroot(gcw *gcWork, i uint32, flushBgCredit bool) int64 { 162 // Note: if you add a case here, please also update heapdump.go:dumproots. 163 var workDone int64 164 var workCounter *atomic.Int64 165 switch { 166 case work.baseData <= i && i < work.baseBSS: 167 workCounter = &gcController.globalsScanWork 168 for _, datap := range activeModules() { 169 workDone += markrootBlock(datap.data, datap.edata-datap.data, datap.gcdatamask.bytedata, gcw, int(i-work.baseData)) 170 } 171 172 case work.baseBSS <= i && i < work.baseSpans: 173 workCounter = &gcController.globalsScanWork 174 for _, datap := range activeModules() { 175 workDone += markrootBlock(datap.bss, datap.ebss-datap.bss, datap.gcbssmask.bytedata, gcw, int(i-work.baseBSS)) 176 } 177 178 case i == fixedRootFinalizers: 179 for fb := allfin; fb != nil; fb = fb.alllink { 180 cnt := uintptr(atomic.Load(&fb.cnt)) 181 scanblock(uintptr(unsafe.Pointer(&fb.fin[0])), cnt*unsafe.Sizeof(fb.fin[0]), &finptrmask[0], gcw, nil) 182 } 183 184 case i == fixedRootFreeGStacks: 185 // Switch to the system stack so we can call 186 // stackfree. 187 systemstack(markrootFreeGStacks) 188 189 case work.baseSpans <= i && i < work.baseStacks: 190 // mark mspan.specials 191 markrootSpans(gcw, int(i-work.baseSpans)) 192 193 default: 194 // the rest is scanning goroutine stacks 195 workCounter = &gcController.stackScanWork 196 if i < work.baseStacks || work.baseEnd <= i { 197 printlock() 198 print("runtime: markroot index ", i, " not in stack roots range [", work.baseStacks, ", ", work.baseEnd, ")\n") 199 throw("markroot: bad index") 200 } 201 gp := work.stackRoots[i-work.baseStacks] 202 203 // remember when we've first observed the G blocked 204 // needed only to output in traceback 205 status := readgstatus(gp) // We are not in a scan state 206 if (status == _Gwaiting || status == _Gsyscall) && gp.waitsince == 0 { 207 gp.waitsince = work.tstart 208 } 209 210 // scanstack must be done on the system stack in case 211 // we're trying to scan our own stack. 212 systemstack(func() { 213 // If this is a self-scan, put the user G in 214 // _Gwaiting to prevent self-deadlock. It may 215 // already be in _Gwaiting if this is a mark 216 // worker or we're in mark termination. 217 userG := getg().m.curg 218 selfScan := gp == userG && readgstatus(userG) == _Grunning 219 if selfScan { 220 casGToWaitingForGC(userG, _Grunning, waitReasonGarbageCollectionScan) 221 } 222 223 // TODO: suspendG blocks (and spins) until gp 224 // stops, which may take a while for 225 // running goroutines. Consider doing this in 226 // two phases where the first is non-blocking: 227 // we scan the stacks we can and ask running 228 // goroutines to scan themselves; and the 229 // second blocks. 230 stopped := suspendG(gp) 231 if stopped.dead { 232 gp.gcscandone = true 233 return 234 } 235 if gp.gcscandone { 236 throw("g already scanned") 237 } 238 workDone += scanstack(gp, gcw) 239 gp.gcscandone = true 240 resumeG(stopped) 241 242 if selfScan { 243 casgstatus(userG, _Gwaiting, _Grunning) 244 } 245 }) 246 } 247 if workCounter != nil && workDone != 0 { 248 workCounter.Add(workDone) 249 if flushBgCredit { 250 gcFlushBgCredit(workDone) 251 } 252 } 253 return workDone 254} 255 256// markrootBlock scans the shard'th shard of the block of memory [b0, 257// b0+n0), with the given pointer mask. 258// 259// Returns the amount of work done. 260// 261//go:nowritebarrier 262func markrootBlock(b0, n0 uintptr, ptrmask0 *uint8, gcw *gcWork, shard int) int64 { 263 if rootBlockBytes%(8*goarch.PtrSize) != 0 { 264 // This is necessary to pick byte offsets in ptrmask0. 265 throw("rootBlockBytes must be a multiple of 8*ptrSize") 266 } 267 268 // Note that if b0 is toward the end of the address space, 269 // then b0 + rootBlockBytes might wrap around. 270 // These tests are written to avoid any possible overflow. 271 off := uintptr(shard) * rootBlockBytes 272 if off >= n0 { 273 return 0 274 } 275 b := b0 + off 276 ptrmask := (*uint8)(add(unsafe.Pointer(ptrmask0), uintptr(shard)*(rootBlockBytes/(8*goarch.PtrSize)))) 277 n := uintptr(rootBlockBytes) 278 if off+n > n0 { 279 n = n0 - off 280 } 281 282 // Scan this shard. 283 scanblock(b, n, ptrmask, gcw, nil) 284 return int64(n) 285} 286 287// markrootFreeGStacks frees stacks of dead Gs. 288// 289// This does not free stacks of dead Gs cached on Ps, but having a few 290// cached stacks around isn't a problem. 291func markrootFreeGStacks() { 292 // Take list of dead Gs with stacks. 293 lock(&sched.gFree.lock) 294 list := sched.gFree.stack 295 sched.gFree.stack = gList{} 296 unlock(&sched.gFree.lock) 297 if list.empty() { 298 return 299 } 300 301 // Free stacks. 302 q := gQueue{list.head, list.head} 303 for gp := list.head.ptr(); gp != nil; gp = gp.schedlink.ptr() { 304 stackfree(gp.stack) 305 gp.stack.lo = 0 306 gp.stack.hi = 0 307 // Manipulate the queue directly since the Gs are 308 // already all linked the right way. 309 q.tail.set(gp) 310 } 311 312 // Put Gs back on the free list. 313 lock(&sched.gFree.lock) 314 sched.gFree.noStack.pushAll(q) 315 unlock(&sched.gFree.lock) 316} 317 318// markrootSpans marks roots for one shard of markArenas. 319// 320//go:nowritebarrier 321func markrootSpans(gcw *gcWork, shard int) { 322 // Objects with finalizers have two GC-related invariants: 323 // 324 // 1) Everything reachable from the object must be marked. 325 // This ensures that when we pass the object to its finalizer, 326 // everything the finalizer can reach will be retained. 327 // 328 // 2) Finalizer specials (which are not in the garbage 329 // collected heap) are roots. In practice, this means the fn 330 // field must be scanned. 331 // 332 // Objects with weak handles have only one invariant related 333 // to this function: weak handle specials (which are not in the 334 // garbage collected heap) are roots. In practice, this means 335 // the handle field must be scanned. Note that the value the 336 // handle pointer referenced does *not* need to be scanned. See 337 // the definition of specialWeakHandle for details. 338 sg := mheap_.sweepgen 339 340 // Find the arena and page index into that arena for this shard. 341 ai := mheap_.markArenas[shard/(pagesPerArena/pagesPerSpanRoot)] 342 ha := mheap_.arenas[ai.l1()][ai.l2()] 343 arenaPage := uint(uintptr(shard) * pagesPerSpanRoot % pagesPerArena) 344 345 // Construct slice of bitmap which we'll iterate over. 346 specialsbits := ha.pageSpecials[arenaPage/8:] 347 specialsbits = specialsbits[:pagesPerSpanRoot/8] 348 for i := range specialsbits { 349 // Find set bits, which correspond to spans with specials. 350 specials := atomic.Load8(&specialsbits[i]) 351 if specials == 0 { 352 continue 353 } 354 for j := uint(0); j < 8; j++ { 355 if specials&(1<<j) == 0 { 356 continue 357 } 358 // Find the span for this bit. 359 // 360 // This value is guaranteed to be non-nil because having 361 // specials implies that the span is in-use, and since we're 362 // currently marking we can be sure that we don't have to worry 363 // about the span being freed and re-used. 364 s := ha.spans[arenaPage+uint(i)*8+j] 365 366 // The state must be mSpanInUse if the specials bit is set, so 367 // sanity check that. 368 if state := s.state.get(); state != mSpanInUse { 369 print("s.state = ", state, "\n") 370 throw("non in-use span found with specials bit set") 371 } 372 // Check that this span was swept (it may be cached or uncached). 373 if !useCheckmark && !(s.sweepgen == sg || s.sweepgen == sg+3) { 374 // sweepgen was updated (+2) during non-checkmark GC pass 375 print("sweep ", s.sweepgen, " ", sg, "\n") 376 throw("gc: unswept span") 377 } 378 379 // Lock the specials to prevent a special from being 380 // removed from the list while we're traversing it. 381 lock(&s.speciallock) 382 for sp := s.specials; sp != nil; sp = sp.next { 383 switch sp.kind { 384 case _KindSpecialFinalizer: 385 // don't mark finalized object, but scan it so we 386 // retain everything it points to. 387 spf := (*specialfinalizer)(unsafe.Pointer(sp)) 388 // A finalizer can be set for an inner byte of an object, find object beginning. 389 p := s.base() + uintptr(spf.special.offset)/s.elemsize*s.elemsize 390 391 // Mark everything that can be reached from 392 // the object (but *not* the object itself or 393 // we'll never collect it). 394 if !s.spanclass.noscan() { 395 scanobject(p, gcw) 396 } 397 398 // The special itself is a root. 399 scanblock(uintptr(unsafe.Pointer(&spf.fn)), goarch.PtrSize, &oneptrmask[0], gcw, nil) 400 case _KindSpecialWeakHandle: 401 // The special itself is a root. 402 spw := (*specialWeakHandle)(unsafe.Pointer(sp)) 403 scanblock(uintptr(unsafe.Pointer(&spw.handle)), goarch.PtrSize, &oneptrmask[0], gcw, nil) 404 } 405 } 406 unlock(&s.speciallock) 407 } 408 } 409} 410 411// gcAssistAlloc performs GC work to make gp's assist debt positive. 412// gp must be the calling user goroutine. 413// 414// This must be called with preemption enabled. 415func gcAssistAlloc(gp *g) { 416 // Don't assist in non-preemptible contexts. These are 417 // generally fragile and won't allow the assist to block. 418 if getg() == gp.m.g0 { 419 return 420 } 421 if mp := getg().m; mp.locks > 0 || mp.preemptoff != "" { 422 return 423 } 424 425 // This extremely verbose boolean indicates whether we've 426 // entered mark assist from the perspective of the tracer. 427 // 428 // In the tracer, this is just before we call gcAssistAlloc1 429 // *regardless* of whether tracing is enabled. This is because 430 // the tracer allows for tracing to begin (and advance 431 // generations) in the middle of a GC mark phase, so we need to 432 // record some state so that the tracer can pick it up to ensure 433 // a consistent trace result. 434 // 435 // TODO(mknyszek): Hide the details of inMarkAssist in tracer 436 // functions and simplify all the state tracking. This is a lot. 437 enteredMarkAssistForTracing := false 438retry: 439 if gcCPULimiter.limiting() { 440 // If the CPU limiter is enabled, intentionally don't 441 // assist to reduce the amount of CPU time spent in the GC. 442 if enteredMarkAssistForTracing { 443 trace := traceAcquire() 444 if trace.ok() { 445 trace.GCMarkAssistDone() 446 // Set this *after* we trace the end to make sure 447 // that we emit an in-progress event if this is 448 // the first event for the goroutine in the trace 449 // or trace generation. Also, do this between 450 // acquire/release because this is part of the 451 // goroutine's trace state, and it must be atomic 452 // with respect to the tracer. 453 gp.inMarkAssist = false 454 traceRelease(trace) 455 } else { 456 // This state is tracked even if tracing isn't enabled. 457 // It's only used by the new tracer. 458 // See the comment on enteredMarkAssistForTracing. 459 gp.inMarkAssist = false 460 } 461 } 462 return 463 } 464 // Compute the amount of scan work we need to do to make the 465 // balance positive. When the required amount of work is low, 466 // we over-assist to build up credit for future allocations 467 // and amortize the cost of assisting. 468 assistWorkPerByte := gcController.assistWorkPerByte.Load() 469 assistBytesPerWork := gcController.assistBytesPerWork.Load() 470 debtBytes := -gp.gcAssistBytes 471 scanWork := int64(assistWorkPerByte * float64(debtBytes)) 472 if scanWork < gcOverAssistWork { 473 scanWork = gcOverAssistWork 474 debtBytes = int64(assistBytesPerWork * float64(scanWork)) 475 } 476 477 // Steal as much credit as we can from the background GC's 478 // scan credit. This is racy and may drop the background 479 // credit below 0 if two mutators steal at the same time. This 480 // will just cause steals to fail until credit is accumulated 481 // again, so in the long run it doesn't really matter, but we 482 // do have to handle the negative credit case. 483 bgScanCredit := gcController.bgScanCredit.Load() 484 stolen := int64(0) 485 if bgScanCredit > 0 { 486 if bgScanCredit < scanWork { 487 stolen = bgScanCredit 488 gp.gcAssistBytes += 1 + int64(assistBytesPerWork*float64(stolen)) 489 } else { 490 stolen = scanWork 491 gp.gcAssistBytes += debtBytes 492 } 493 gcController.bgScanCredit.Add(-stolen) 494 495 scanWork -= stolen 496 497 if scanWork == 0 { 498 // We were able to steal all of the credit we 499 // needed. 500 if enteredMarkAssistForTracing { 501 trace := traceAcquire() 502 if trace.ok() { 503 trace.GCMarkAssistDone() 504 // Set this *after* we trace the end to make sure 505 // that we emit an in-progress event if this is 506 // the first event for the goroutine in the trace 507 // or trace generation. Also, do this between 508 // acquire/release because this is part of the 509 // goroutine's trace state, and it must be atomic 510 // with respect to the tracer. 511 gp.inMarkAssist = false 512 traceRelease(trace) 513 } else { 514 // This state is tracked even if tracing isn't enabled. 515 // It's only used by the new tracer. 516 // See the comment on enteredMarkAssistForTracing. 517 gp.inMarkAssist = false 518 } 519 } 520 return 521 } 522 } 523 if !enteredMarkAssistForTracing { 524 trace := traceAcquire() 525 if trace.ok() { 526 trace.GCMarkAssistStart() 527 // Set this *after* we trace the start, otherwise we may 528 // emit an in-progress event for an assist we're about to start. 529 gp.inMarkAssist = true 530 traceRelease(trace) 531 } else { 532 gp.inMarkAssist = true 533 } 534 // In the new tracer, set enter mark assist tracing if we 535 // ever pass this point, because we must manage inMarkAssist 536 // correctly. 537 // 538 // See the comment on enteredMarkAssistForTracing. 539 enteredMarkAssistForTracing = true 540 } 541 542 // Perform assist work 543 systemstack(func() { 544 gcAssistAlloc1(gp, scanWork) 545 // The user stack may have moved, so this can't touch 546 // anything on it until it returns from systemstack. 547 }) 548 549 completed := gp.param != nil 550 gp.param = nil 551 if completed { 552 gcMarkDone() 553 } 554 555 if gp.gcAssistBytes < 0 { 556 // We were unable steal enough credit or perform 557 // enough work to pay off the assist debt. We need to 558 // do one of these before letting the mutator allocate 559 // more to prevent over-allocation. 560 // 561 // If this is because we were preempted, reschedule 562 // and try some more. 563 if gp.preempt { 564 Gosched() 565 goto retry 566 } 567 568 // Add this G to an assist queue and park. When the GC 569 // has more background credit, it will satisfy queued 570 // assists before flushing to the global credit pool. 571 // 572 // Note that this does *not* get woken up when more 573 // work is added to the work list. The theory is that 574 // there wasn't enough work to do anyway, so we might 575 // as well let background marking take care of the 576 // work that is available. 577 if !gcParkAssist() { 578 goto retry 579 } 580 581 // At this point either background GC has satisfied 582 // this G's assist debt, or the GC cycle is over. 583 } 584 if enteredMarkAssistForTracing { 585 trace := traceAcquire() 586 if trace.ok() { 587 trace.GCMarkAssistDone() 588 // Set this *after* we trace the end to make sure 589 // that we emit an in-progress event if this is 590 // the first event for the goroutine in the trace 591 // or trace generation. Also, do this between 592 // acquire/release because this is part of the 593 // goroutine's trace state, and it must be atomic 594 // with respect to the tracer. 595 gp.inMarkAssist = false 596 traceRelease(trace) 597 } else { 598 // This state is tracked even if tracing isn't enabled. 599 // It's only used by the new tracer. 600 // See the comment on enteredMarkAssistForTracing. 601 gp.inMarkAssist = false 602 } 603 } 604} 605 606// gcAssistAlloc1 is the part of gcAssistAlloc that runs on the system 607// stack. This is a separate function to make it easier to see that 608// we're not capturing anything from the user stack, since the user 609// stack may move while we're in this function. 610// 611// gcAssistAlloc1 indicates whether this assist completed the mark 612// phase by setting gp.param to non-nil. This can't be communicated on 613// the stack since it may move. 614// 615//go:systemstack 616func gcAssistAlloc1(gp *g, scanWork int64) { 617 // Clear the flag indicating that this assist completed the 618 // mark phase. 619 gp.param = nil 620 621 if atomic.Load(&gcBlackenEnabled) == 0 { 622 // The gcBlackenEnabled check in malloc races with the 623 // store that clears it but an atomic check in every malloc 624 // would be a performance hit. 625 // Instead we recheck it here on the non-preemptible system 626 // stack to determine if we should perform an assist. 627 628 // GC is done, so ignore any remaining debt. 629 gp.gcAssistBytes = 0 630 return 631 } 632 // Track time spent in this assist. Since we're on the 633 // system stack, this is non-preemptible, so we can 634 // just measure start and end time. 635 // 636 // Limiter event tracking might be disabled if we end up here 637 // while on a mark worker. 638 startTime := nanotime() 639 trackLimiterEvent := gp.m.p.ptr().limiterEvent.start(limiterEventMarkAssist, startTime) 640 641 decnwait := atomic.Xadd(&work.nwait, -1) 642 if decnwait == work.nproc { 643 println("runtime: work.nwait =", decnwait, "work.nproc=", work.nproc) 644 throw("nwait > work.nprocs") 645 } 646 647 // gcDrainN requires the caller to be preemptible. 648 casGToWaitingForGC(gp, _Grunning, waitReasonGCAssistMarking) 649 650 // drain own cached work first in the hopes that it 651 // will be more cache friendly. 652 gcw := &getg().m.p.ptr().gcw 653 workDone := gcDrainN(gcw, scanWork) 654 655 casgstatus(gp, _Gwaiting, _Grunning) 656 657 // Record that we did this much scan work. 658 // 659 // Back out the number of bytes of assist credit that 660 // this scan work counts for. The "1+" is a poor man's 661 // round-up, to ensure this adds credit even if 662 // assistBytesPerWork is very low. 663 assistBytesPerWork := gcController.assistBytesPerWork.Load() 664 gp.gcAssistBytes += 1 + int64(assistBytesPerWork*float64(workDone)) 665 666 // If this is the last worker and we ran out of work, 667 // signal a completion point. 668 incnwait := atomic.Xadd(&work.nwait, +1) 669 if incnwait > work.nproc { 670 println("runtime: work.nwait=", incnwait, 671 "work.nproc=", work.nproc) 672 throw("work.nwait > work.nproc") 673 } 674 675 if incnwait == work.nproc && !gcMarkWorkAvailable(nil) { 676 // This has reached a background completion point. Set 677 // gp.param to a non-nil value to indicate this. It 678 // doesn't matter what we set it to (it just has to be 679 // a valid pointer). 680 gp.param = unsafe.Pointer(gp) 681 } 682 now := nanotime() 683 duration := now - startTime 684 pp := gp.m.p.ptr() 685 pp.gcAssistTime += duration 686 if trackLimiterEvent { 687 pp.limiterEvent.stop(limiterEventMarkAssist, now) 688 } 689 if pp.gcAssistTime > gcAssistTimeSlack { 690 gcController.assistTime.Add(pp.gcAssistTime) 691 gcCPULimiter.update(now) 692 pp.gcAssistTime = 0 693 } 694} 695 696// gcWakeAllAssists wakes all currently blocked assists. This is used 697// at the end of a GC cycle. gcBlackenEnabled must be false to prevent 698// new assists from going to sleep after this point. 699func gcWakeAllAssists() { 700 lock(&work.assistQueue.lock) 701 list := work.assistQueue.q.popList() 702 injectglist(&list) 703 unlock(&work.assistQueue.lock) 704} 705 706// gcParkAssist puts the current goroutine on the assist queue and parks. 707// 708// gcParkAssist reports whether the assist is now satisfied. If it 709// returns false, the caller must retry the assist. 710func gcParkAssist() bool { 711 lock(&work.assistQueue.lock) 712 // If the GC cycle finished while we were getting the lock, 713 // exit the assist. The cycle can't finish while we hold the 714 // lock. 715 if atomic.Load(&gcBlackenEnabled) == 0 { 716 unlock(&work.assistQueue.lock) 717 return true 718 } 719 720 gp := getg() 721 oldList := work.assistQueue.q 722 work.assistQueue.q.pushBack(gp) 723 724 // Recheck for background credit now that this G is in 725 // the queue, but can still back out. This avoids a 726 // race in case background marking has flushed more 727 // credit since we checked above. 728 if gcController.bgScanCredit.Load() > 0 { 729 work.assistQueue.q = oldList 730 if oldList.tail != 0 { 731 oldList.tail.ptr().schedlink.set(nil) 732 } 733 unlock(&work.assistQueue.lock) 734 return false 735 } 736 // Park. 737 goparkunlock(&work.assistQueue.lock, waitReasonGCAssistWait, traceBlockGCMarkAssist, 2) 738 return true 739} 740 741// gcFlushBgCredit flushes scanWork units of background scan work 742// credit. This first satisfies blocked assists on the 743// work.assistQueue and then flushes any remaining credit to 744// gcController.bgScanCredit. 745// 746// Write barriers are disallowed because this is used by gcDrain after 747// it has ensured that all work is drained and this must preserve that 748// condition. 749// 750//go:nowritebarrierrec 751func gcFlushBgCredit(scanWork int64) { 752 if work.assistQueue.q.empty() { 753 // Fast path; there are no blocked assists. There's a 754 // small window here where an assist may add itself to 755 // the blocked queue and park. If that happens, we'll 756 // just get it on the next flush. 757 gcController.bgScanCredit.Add(scanWork) 758 return 759 } 760 761 assistBytesPerWork := gcController.assistBytesPerWork.Load() 762 scanBytes := int64(float64(scanWork) * assistBytesPerWork) 763 764 lock(&work.assistQueue.lock) 765 for !work.assistQueue.q.empty() && scanBytes > 0 { 766 gp := work.assistQueue.q.pop() 767 // Note that gp.gcAssistBytes is negative because gp 768 // is in debt. Think carefully about the signs below. 769 if scanBytes+gp.gcAssistBytes >= 0 { 770 // Satisfy this entire assist debt. 771 scanBytes += gp.gcAssistBytes 772 gp.gcAssistBytes = 0 773 // It's important that we *not* put gp in 774 // runnext. Otherwise, it's possible for user 775 // code to exploit the GC worker's high 776 // scheduler priority to get itself always run 777 // before other goroutines and always in the 778 // fresh quantum started by GC. 779 ready(gp, 0, false) 780 } else { 781 // Partially satisfy this assist. 782 gp.gcAssistBytes += scanBytes 783 scanBytes = 0 784 // As a heuristic, we move this assist to the 785 // back of the queue so that large assists 786 // can't clog up the assist queue and 787 // substantially delay small assists. 788 work.assistQueue.q.pushBack(gp) 789 break 790 } 791 } 792 793 if scanBytes > 0 { 794 // Convert from scan bytes back to work. 795 assistWorkPerByte := gcController.assistWorkPerByte.Load() 796 scanWork = int64(float64(scanBytes) * assistWorkPerByte) 797 gcController.bgScanCredit.Add(scanWork) 798 } 799 unlock(&work.assistQueue.lock) 800} 801 802// scanstack scans gp's stack, greying all pointers found on the stack. 803// 804// Returns the amount of scan work performed, but doesn't update 805// gcController.stackScanWork or flush any credit. Any background credit produced 806// by this function should be flushed by its caller. scanstack itself can't 807// safely flush because it may result in trying to wake up a goroutine that 808// was just scanned, resulting in a self-deadlock. 809// 810// scanstack will also shrink the stack if it is safe to do so. If it 811// is not, it schedules a stack shrink for the next synchronous safe 812// point. 813// 814// scanstack is marked go:systemstack because it must not be preempted 815// while using a workbuf. 816// 817//go:nowritebarrier 818//go:systemstack 819func scanstack(gp *g, gcw *gcWork) int64 { 820 if readgstatus(gp)&_Gscan == 0 { 821 print("runtime:scanstack: gp=", gp, ", goid=", gp.goid, ", gp->atomicstatus=", hex(readgstatus(gp)), "\n") 822 throw("scanstack - bad status") 823 } 824 825 switch readgstatus(gp) &^ _Gscan { 826 default: 827 print("runtime: gp=", gp, ", goid=", gp.goid, ", gp->atomicstatus=", readgstatus(gp), "\n") 828 throw("mark - bad status") 829 case _Gdead: 830 return 0 831 case _Grunning: 832 print("runtime: gp=", gp, ", goid=", gp.goid, ", gp->atomicstatus=", readgstatus(gp), "\n") 833 throw("scanstack: goroutine not stopped") 834 case _Grunnable, _Gsyscall, _Gwaiting: 835 // ok 836 } 837 838 if gp == getg() { 839 throw("can't scan our own stack") 840 } 841 842 // scannedSize is the amount of work we'll be reporting. 843 // 844 // It is less than the allocated size (which is hi-lo). 845 var sp uintptr 846 if gp.syscallsp != 0 { 847 sp = gp.syscallsp // If in a system call this is the stack pointer (gp.sched.sp can be 0 in this case on Windows). 848 } else { 849 sp = gp.sched.sp 850 } 851 scannedSize := gp.stack.hi - sp 852 853 // Keep statistics for initial stack size calculation. 854 // Note that this accumulates the scanned size, not the allocated size. 855 p := getg().m.p.ptr() 856 p.scannedStackSize += uint64(scannedSize) 857 p.scannedStacks++ 858 859 if isShrinkStackSafe(gp) { 860 // Shrink the stack if not much of it is being used. 861 shrinkstack(gp) 862 } else { 863 // Otherwise, shrink the stack at the next sync safe point. 864 gp.preemptShrink = true 865 } 866 867 var state stackScanState 868 state.stack = gp.stack 869 870 if stackTraceDebug { 871 println("stack trace goroutine", gp.goid) 872 } 873 874 if debugScanConservative && gp.asyncSafePoint { 875 print("scanning async preempted goroutine ", gp.goid, " stack [", hex(gp.stack.lo), ",", hex(gp.stack.hi), ")\n") 876 } 877 878 // Scan the saved context register. This is effectively a live 879 // register that gets moved back and forth between the 880 // register and sched.ctxt without a write barrier. 881 if gp.sched.ctxt != nil { 882 scanblock(uintptr(unsafe.Pointer(&gp.sched.ctxt)), goarch.PtrSize, &oneptrmask[0], gcw, &state) 883 } 884 885 // Scan the stack. Accumulate a list of stack objects. 886 var u unwinder 887 for u.init(gp, 0); u.valid(); u.next() { 888 scanframeworker(&u.frame, &state, gcw) 889 } 890 891 // Find additional pointers that point into the stack from the heap. 892 // Currently this includes defers and panics. See also function copystack. 893 894 // Find and trace other pointers in defer records. 895 for d := gp._defer; d != nil; d = d.link { 896 if d.fn != nil { 897 // Scan the func value, which could be a stack allocated closure. 898 // See issue 30453. 899 scanblock(uintptr(unsafe.Pointer(&d.fn)), goarch.PtrSize, &oneptrmask[0], gcw, &state) 900 } 901 if d.link != nil { 902 // The link field of a stack-allocated defer record might point 903 // to a heap-allocated defer record. Keep that heap record live. 904 scanblock(uintptr(unsafe.Pointer(&d.link)), goarch.PtrSize, &oneptrmask[0], gcw, &state) 905 } 906 // Retain defers records themselves. 907 // Defer records might not be reachable from the G through regular heap 908 // tracing because the defer linked list might weave between the stack and the heap. 909 if d.heap { 910 scanblock(uintptr(unsafe.Pointer(&d)), goarch.PtrSize, &oneptrmask[0], gcw, &state) 911 } 912 } 913 if gp._panic != nil { 914 // Panics are always stack allocated. 915 state.putPtr(uintptr(unsafe.Pointer(gp._panic)), false) 916 } 917 918 // Find and scan all reachable stack objects. 919 // 920 // The state's pointer queue prioritizes precise pointers over 921 // conservative pointers so that we'll prefer scanning stack 922 // objects precisely. 923 state.buildIndex() 924 for { 925 p, conservative := state.getPtr() 926 if p == 0 { 927 break 928 } 929 obj := state.findObject(p) 930 if obj == nil { 931 continue 932 } 933 r := obj.r 934 if r == nil { 935 // We've already scanned this object. 936 continue 937 } 938 obj.setRecord(nil) // Don't scan it again. 939 if stackTraceDebug { 940 printlock() 941 print(" live stkobj at", hex(state.stack.lo+uintptr(obj.off)), "of size", obj.size) 942 if conservative { 943 print(" (conservative)") 944 } 945 println() 946 printunlock() 947 } 948 gcdata := r.gcdata() 949 var s *mspan 950 if r.useGCProg() { 951 // This path is pretty unlikely, an object large enough 952 // to have a GC program allocated on the stack. 953 // We need some space to unpack the program into a straight 954 // bitmask, which we allocate/free here. 955 // TODO: it would be nice if there were a way to run a GC 956 // program without having to store all its bits. We'd have 957 // to change from a Lempel-Ziv style program to something else. 958 // Or we can forbid putting objects on stacks if they require 959 // a gc program (see issue 27447). 960 s = materializeGCProg(r.ptrdata(), gcdata) 961 gcdata = (*byte)(unsafe.Pointer(s.startAddr)) 962 } 963 964 b := state.stack.lo + uintptr(obj.off) 965 if conservative { 966 scanConservative(b, r.ptrdata(), gcdata, gcw, &state) 967 } else { 968 scanblock(b, r.ptrdata(), gcdata, gcw, &state) 969 } 970 971 if s != nil { 972 dematerializeGCProg(s) 973 } 974 } 975 976 // Deallocate object buffers. 977 // (Pointer buffers were all deallocated in the loop above.) 978 for state.head != nil { 979 x := state.head 980 state.head = x.next 981 if stackTraceDebug { 982 for i := 0; i < x.nobj; i++ { 983 obj := &x.obj[i] 984 if obj.r == nil { // reachable 985 continue 986 } 987 println(" dead stkobj at", hex(gp.stack.lo+uintptr(obj.off)), "of size", obj.r.size) 988 // Note: not necessarily really dead - only reachable-from-ptr dead. 989 } 990 } 991 x.nobj = 0 992 putempty((*workbuf)(unsafe.Pointer(x))) 993 } 994 if state.buf != nil || state.cbuf != nil || state.freeBuf != nil { 995 throw("remaining pointer buffers") 996 } 997 return int64(scannedSize) 998} 999 1000// Scan a stack frame: local variables and function arguments/results. 1001// 1002//go:nowritebarrier 1003func scanframeworker(frame *stkframe, state *stackScanState, gcw *gcWork) { 1004 if _DebugGC > 1 && frame.continpc != 0 { 1005 print("scanframe ", funcname(frame.fn), "\n") 1006 } 1007 1008 isAsyncPreempt := frame.fn.valid() && frame.fn.funcID == abi.FuncID_asyncPreempt 1009 isDebugCall := frame.fn.valid() && frame.fn.funcID == abi.FuncID_debugCallV2 1010 if state.conservative || isAsyncPreempt || isDebugCall { 1011 if debugScanConservative { 1012 println("conservatively scanning function", funcname(frame.fn), "at PC", hex(frame.continpc)) 1013 } 1014 1015 // Conservatively scan the frame. Unlike the precise 1016 // case, this includes the outgoing argument space 1017 // since we may have stopped while this function was 1018 // setting up a call. 1019 // 1020 // TODO: We could narrow this down if the compiler 1021 // produced a single map per function of stack slots 1022 // and registers that ever contain a pointer. 1023 if frame.varp != 0 { 1024 size := frame.varp - frame.sp 1025 if size > 0 { 1026 scanConservative(frame.sp, size, nil, gcw, state) 1027 } 1028 } 1029 1030 // Scan arguments to this frame. 1031 if n := frame.argBytes(); n != 0 { 1032 // TODO: We could pass the entry argument map 1033 // to narrow this down further. 1034 scanConservative(frame.argp, n, nil, gcw, state) 1035 } 1036 1037 if isAsyncPreempt || isDebugCall { 1038 // This function's frame contained the 1039 // registers for the asynchronously stopped 1040 // parent frame. Scan the parent 1041 // conservatively. 1042 state.conservative = true 1043 } else { 1044 // We only wanted to scan those two frames 1045 // conservatively. Clear the flag for future 1046 // frames. 1047 state.conservative = false 1048 } 1049 return 1050 } 1051 1052 locals, args, objs := frame.getStackMap(false) 1053 1054 // Scan local variables if stack frame has been allocated. 1055 if locals.n > 0 { 1056 size := uintptr(locals.n) * goarch.PtrSize 1057 scanblock(frame.varp-size, size, locals.bytedata, gcw, state) 1058 } 1059 1060 // Scan arguments. 1061 if args.n > 0 { 1062 scanblock(frame.argp, uintptr(args.n)*goarch.PtrSize, args.bytedata, gcw, state) 1063 } 1064 1065 // Add all stack objects to the stack object list. 1066 if frame.varp != 0 { 1067 // varp is 0 for defers, where there are no locals. 1068 // In that case, there can't be a pointer to its args, either. 1069 // (And all args would be scanned above anyway.) 1070 for i := range objs { 1071 obj := &objs[i] 1072 off := obj.off 1073 base := frame.varp // locals base pointer 1074 if off >= 0 { 1075 base = frame.argp // arguments and return values base pointer 1076 } 1077 ptr := base + uintptr(off) 1078 if ptr < frame.sp { 1079 // object hasn't been allocated in the frame yet. 1080 continue 1081 } 1082 if stackTraceDebug { 1083 println("stkobj at", hex(ptr), "of size", obj.size) 1084 } 1085 state.addObject(ptr, obj) 1086 } 1087 } 1088} 1089 1090type gcDrainFlags int 1091 1092const ( 1093 gcDrainUntilPreempt gcDrainFlags = 1 << iota 1094 gcDrainFlushBgCredit 1095 gcDrainIdle 1096 gcDrainFractional 1097) 1098 1099// gcDrainMarkWorkerIdle is a wrapper for gcDrain that exists to better account 1100// mark time in profiles. 1101func gcDrainMarkWorkerIdle(gcw *gcWork) { 1102 gcDrain(gcw, gcDrainIdle|gcDrainUntilPreempt|gcDrainFlushBgCredit) 1103} 1104 1105// gcDrainMarkWorkerDedicated is a wrapper for gcDrain that exists to better account 1106// mark time in profiles. 1107func gcDrainMarkWorkerDedicated(gcw *gcWork, untilPreempt bool) { 1108 flags := gcDrainFlushBgCredit 1109 if untilPreempt { 1110 flags |= gcDrainUntilPreempt 1111 } 1112 gcDrain(gcw, flags) 1113} 1114 1115// gcDrainMarkWorkerFractional is a wrapper for gcDrain that exists to better account 1116// mark time in profiles. 1117func gcDrainMarkWorkerFractional(gcw *gcWork) { 1118 gcDrain(gcw, gcDrainFractional|gcDrainUntilPreempt|gcDrainFlushBgCredit) 1119} 1120 1121// gcDrain scans roots and objects in work buffers, blackening grey 1122// objects until it is unable to get more work. It may return before 1123// GC is done; it's the caller's responsibility to balance work from 1124// other Ps. 1125// 1126// If flags&gcDrainUntilPreempt != 0, gcDrain returns when g.preempt 1127// is set. 1128// 1129// If flags&gcDrainIdle != 0, gcDrain returns when there is other work 1130// to do. 1131// 1132// If flags&gcDrainFractional != 0, gcDrain self-preempts when 1133// pollFractionalWorkerExit() returns true. This implies 1134// gcDrainNoBlock. 1135// 1136// If flags&gcDrainFlushBgCredit != 0, gcDrain flushes scan work 1137// credit to gcController.bgScanCredit every gcCreditSlack units of 1138// scan work. 1139// 1140// gcDrain will always return if there is a pending STW or forEachP. 1141// 1142// Disabling write barriers is necessary to ensure that after we've 1143// confirmed that we've drained gcw, that we don't accidentally end 1144// up flipping that condition by immediately adding work in the form 1145// of a write barrier buffer flush. 1146// 1147// Don't set nowritebarrierrec because it's safe for some callees to 1148// have write barriers enabled. 1149// 1150//go:nowritebarrier 1151func gcDrain(gcw *gcWork, flags gcDrainFlags) { 1152 if !writeBarrier.enabled { 1153 throw("gcDrain phase incorrect") 1154 } 1155 1156 // N.B. We must be running in a non-preemptible context, so it's 1157 // safe to hold a reference to our P here. 1158 gp := getg().m.curg 1159 pp := gp.m.p.ptr() 1160 preemptible := flags&gcDrainUntilPreempt != 0 1161 flushBgCredit := flags&gcDrainFlushBgCredit != 0 1162 idle := flags&gcDrainIdle != 0 1163 1164 initScanWork := gcw.heapScanWork 1165 1166 // checkWork is the scan work before performing the next 1167 // self-preempt check. 1168 checkWork := int64(1<<63 - 1) 1169 var check func() bool 1170 if flags&(gcDrainIdle|gcDrainFractional) != 0 { 1171 checkWork = initScanWork + drainCheckThreshold 1172 if idle { 1173 check = pollWork 1174 } else if flags&gcDrainFractional != 0 { 1175 check = pollFractionalWorkerExit 1176 } 1177 } 1178 1179 // Drain root marking jobs. 1180 if work.markrootNext < work.markrootJobs { 1181 // Stop if we're preemptible, if someone wants to STW, or if 1182 // someone is calling forEachP. 1183 for !(gp.preempt && (preemptible || sched.gcwaiting.Load() || pp.runSafePointFn != 0)) { 1184 job := atomic.Xadd(&work.markrootNext, +1) - 1 1185 if job >= work.markrootJobs { 1186 break 1187 } 1188 markroot(gcw, job, flushBgCredit) 1189 if check != nil && check() { 1190 goto done 1191 } 1192 } 1193 } 1194 1195 // Drain heap marking jobs. 1196 // 1197 // Stop if we're preemptible, if someone wants to STW, or if 1198 // someone is calling forEachP. 1199 // 1200 // TODO(mknyszek): Consider always checking gp.preempt instead 1201 // of having the preempt flag, and making an exception for certain 1202 // mark workers in retake. That might be simpler than trying to 1203 // enumerate all the reasons why we might want to preempt, even 1204 // if we're supposed to be mostly non-preemptible. 1205 for !(gp.preempt && (preemptible || sched.gcwaiting.Load() || pp.runSafePointFn != 0)) { 1206 // Try to keep work available on the global queue. We used to 1207 // check if there were waiting workers, but it's better to 1208 // just keep work available than to make workers wait. In the 1209 // worst case, we'll do O(log(_WorkbufSize)) unnecessary 1210 // balances. 1211 if work.full == 0 { 1212 gcw.balance() 1213 } 1214 1215 b := gcw.tryGetFast() 1216 if b == 0 { 1217 b = gcw.tryGet() 1218 if b == 0 { 1219 // Flush the write barrier 1220 // buffer; this may create 1221 // more work. 1222 wbBufFlush() 1223 b = gcw.tryGet() 1224 } 1225 } 1226 if b == 0 { 1227 // Unable to get work. 1228 break 1229 } 1230 scanobject(b, gcw) 1231 1232 // Flush background scan work credit to the global 1233 // account if we've accumulated enough locally so 1234 // mutator assists can draw on it. 1235 if gcw.heapScanWork >= gcCreditSlack { 1236 gcController.heapScanWork.Add(gcw.heapScanWork) 1237 if flushBgCredit { 1238 gcFlushBgCredit(gcw.heapScanWork - initScanWork) 1239 initScanWork = 0 1240 } 1241 checkWork -= gcw.heapScanWork 1242 gcw.heapScanWork = 0 1243 1244 if checkWork <= 0 { 1245 checkWork += drainCheckThreshold 1246 if check != nil && check() { 1247 break 1248 } 1249 } 1250 } 1251 } 1252 1253done: 1254 // Flush remaining scan work credit. 1255 if gcw.heapScanWork > 0 { 1256 gcController.heapScanWork.Add(gcw.heapScanWork) 1257 if flushBgCredit { 1258 gcFlushBgCredit(gcw.heapScanWork - initScanWork) 1259 } 1260 gcw.heapScanWork = 0 1261 } 1262} 1263 1264// gcDrainN blackens grey objects until it has performed roughly 1265// scanWork units of scan work or the G is preempted. This is 1266// best-effort, so it may perform less work if it fails to get a work 1267// buffer. Otherwise, it will perform at least n units of work, but 1268// may perform more because scanning is always done in whole object 1269// increments. It returns the amount of scan work performed. 1270// 1271// The caller goroutine must be in a preemptible state (e.g., 1272// _Gwaiting) to prevent deadlocks during stack scanning. As a 1273// consequence, this must be called on the system stack. 1274// 1275//go:nowritebarrier 1276//go:systemstack 1277func gcDrainN(gcw *gcWork, scanWork int64) int64 { 1278 if !writeBarrier.enabled { 1279 throw("gcDrainN phase incorrect") 1280 } 1281 1282 // There may already be scan work on the gcw, which we don't 1283 // want to claim was done by this call. 1284 workFlushed := -gcw.heapScanWork 1285 1286 // In addition to backing out because of a preemption, back out 1287 // if the GC CPU limiter is enabled. 1288 gp := getg().m.curg 1289 for !gp.preempt && !gcCPULimiter.limiting() && workFlushed+gcw.heapScanWork < scanWork { 1290 // See gcDrain comment. 1291 if work.full == 0 { 1292 gcw.balance() 1293 } 1294 1295 b := gcw.tryGetFast() 1296 if b == 0 { 1297 b = gcw.tryGet() 1298 if b == 0 { 1299 // Flush the write barrier buffer; 1300 // this may create more work. 1301 wbBufFlush() 1302 b = gcw.tryGet() 1303 } 1304 } 1305 1306 if b == 0 { 1307 // Try to do a root job. 1308 if work.markrootNext < work.markrootJobs { 1309 job := atomic.Xadd(&work.markrootNext, +1) - 1 1310 if job < work.markrootJobs { 1311 workFlushed += markroot(gcw, job, false) 1312 continue 1313 } 1314 } 1315 // No heap or root jobs. 1316 break 1317 } 1318 1319 scanobject(b, gcw) 1320 1321 // Flush background scan work credit. 1322 if gcw.heapScanWork >= gcCreditSlack { 1323 gcController.heapScanWork.Add(gcw.heapScanWork) 1324 workFlushed += gcw.heapScanWork 1325 gcw.heapScanWork = 0 1326 } 1327 } 1328 1329 // Unlike gcDrain, there's no need to flush remaining work 1330 // here because this never flushes to bgScanCredit and 1331 // gcw.dispose will flush any remaining work to scanWork. 1332 1333 return workFlushed + gcw.heapScanWork 1334} 1335 1336// scanblock scans b as scanobject would, but using an explicit 1337// pointer bitmap instead of the heap bitmap. 1338// 1339// This is used to scan non-heap roots, so it does not update 1340// gcw.bytesMarked or gcw.heapScanWork. 1341// 1342// If stk != nil, possible stack pointers are also reported to stk.putPtr. 1343// 1344//go:nowritebarrier 1345func scanblock(b0, n0 uintptr, ptrmask *uint8, gcw *gcWork, stk *stackScanState) { 1346 // Use local copies of original parameters, so that a stack trace 1347 // due to one of the throws below shows the original block 1348 // base and extent. 1349 b := b0 1350 n := n0 1351 1352 for i := uintptr(0); i < n; { 1353 // Find bits for the next word. 1354 bits := uint32(*addb(ptrmask, i/(goarch.PtrSize*8))) 1355 if bits == 0 { 1356 i += goarch.PtrSize * 8 1357 continue 1358 } 1359 for j := 0; j < 8 && i < n; j++ { 1360 if bits&1 != 0 { 1361 // Same work as in scanobject; see comments there. 1362 p := *(*uintptr)(unsafe.Pointer(b + i)) 1363 if p != 0 { 1364 if obj, span, objIndex := findObject(p, b, i); obj != 0 { 1365 greyobject(obj, b, i, span, gcw, objIndex) 1366 } else if stk != nil && p >= stk.stack.lo && p < stk.stack.hi { 1367 stk.putPtr(p, false) 1368 } 1369 } 1370 } 1371 bits >>= 1 1372 i += goarch.PtrSize 1373 } 1374 } 1375} 1376 1377// scanobject scans the object starting at b, adding pointers to gcw. 1378// b must point to the beginning of a heap object or an oblet. 1379// scanobject consults the GC bitmap for the pointer mask and the 1380// spans for the size of the object. 1381// 1382//go:nowritebarrier 1383func scanobject(b uintptr, gcw *gcWork) { 1384 // Prefetch object before we scan it. 1385 // 1386 // This will overlap fetching the beginning of the object with initial 1387 // setup before we start scanning the object. 1388 sys.Prefetch(b) 1389 1390 // Find the bits for b and the size of the object at b. 1391 // 1392 // b is either the beginning of an object, in which case this 1393 // is the size of the object to scan, or it points to an 1394 // oblet, in which case we compute the size to scan below. 1395 s := spanOfUnchecked(b) 1396 n := s.elemsize 1397 if n == 0 { 1398 throw("scanobject n == 0") 1399 } 1400 if s.spanclass.noscan() { 1401 // Correctness-wise this is ok, but it's inefficient 1402 // if noscan objects reach here. 1403 throw("scanobject of a noscan object") 1404 } 1405 1406 var tp typePointers 1407 if n > maxObletBytes { 1408 // Large object. Break into oblets for better 1409 // parallelism and lower latency. 1410 if b == s.base() { 1411 // Enqueue the other oblets to scan later. 1412 // Some oblets may be in b's scalar tail, but 1413 // these will be marked as "no more pointers", 1414 // so we'll drop out immediately when we go to 1415 // scan those. 1416 for oblet := b + maxObletBytes; oblet < s.base()+s.elemsize; oblet += maxObletBytes { 1417 if !gcw.putFast(oblet) { 1418 gcw.put(oblet) 1419 } 1420 } 1421 } 1422 1423 // Compute the size of the oblet. Since this object 1424 // must be a large object, s.base() is the beginning 1425 // of the object. 1426 n = s.base() + s.elemsize - b 1427 n = min(n, maxObletBytes) 1428 tp = s.typePointersOfUnchecked(s.base()) 1429 tp = tp.fastForward(b-tp.addr, b+n) 1430 } else { 1431 tp = s.typePointersOfUnchecked(b) 1432 } 1433 1434 var scanSize uintptr 1435 for { 1436 var addr uintptr 1437 if tp, addr = tp.nextFast(); addr == 0 { 1438 if tp, addr = tp.next(b + n); addr == 0 { 1439 break 1440 } 1441 } 1442 1443 // Keep track of farthest pointer we found, so we can 1444 // update heapScanWork. TODO: is there a better metric, 1445 // now that we can skip scalar portions pretty efficiently? 1446 scanSize = addr - b + goarch.PtrSize 1447 1448 // Work here is duplicated in scanblock and above. 1449 // If you make changes here, make changes there too. 1450 obj := *(*uintptr)(unsafe.Pointer(addr)) 1451 1452 // At this point we have extracted the next potential pointer. 1453 // Quickly filter out nil and pointers back to the current object. 1454 if obj != 0 && obj-b >= n { 1455 // Test if obj points into the Go heap and, if so, 1456 // mark the object. 1457 // 1458 // Note that it's possible for findObject to 1459 // fail if obj points to a just-allocated heap 1460 // object because of a race with growing the 1461 // heap. In this case, we know the object was 1462 // just allocated and hence will be marked by 1463 // allocation itself. 1464 if obj, span, objIndex := findObject(obj, b, addr-b); obj != 0 { 1465 greyobject(obj, b, addr-b, span, gcw, objIndex) 1466 } 1467 } 1468 } 1469 gcw.bytesMarked += uint64(n) 1470 gcw.heapScanWork += int64(scanSize) 1471} 1472 1473// scanConservative scans block [b, b+n) conservatively, treating any 1474// pointer-like value in the block as a pointer. 1475// 1476// If ptrmask != nil, only words that are marked in ptrmask are 1477// considered as potential pointers. 1478// 1479// If state != nil, it's assumed that [b, b+n) is a block in the stack 1480// and may contain pointers to stack objects. 1481func scanConservative(b, n uintptr, ptrmask *uint8, gcw *gcWork, state *stackScanState) { 1482 if debugScanConservative { 1483 printlock() 1484 print("conservatively scanning [", hex(b), ",", hex(b+n), ")\n") 1485 hexdumpWords(b, b+n, func(p uintptr) byte { 1486 if ptrmask != nil { 1487 word := (p - b) / goarch.PtrSize 1488 bits := *addb(ptrmask, word/8) 1489 if (bits>>(word%8))&1 == 0 { 1490 return '$' 1491 } 1492 } 1493 1494 val := *(*uintptr)(unsafe.Pointer(p)) 1495 if state != nil && state.stack.lo <= val && val < state.stack.hi { 1496 return '@' 1497 } 1498 1499 span := spanOfHeap(val) 1500 if span == nil { 1501 return ' ' 1502 } 1503 idx := span.objIndex(val) 1504 if span.isFree(idx) { 1505 return ' ' 1506 } 1507 return '*' 1508 }) 1509 printunlock() 1510 } 1511 1512 for i := uintptr(0); i < n; i += goarch.PtrSize { 1513 if ptrmask != nil { 1514 word := i / goarch.PtrSize 1515 bits := *addb(ptrmask, word/8) 1516 if bits == 0 { 1517 // Skip 8 words (the loop increment will do the 8th) 1518 // 1519 // This must be the first time we've 1520 // seen this word of ptrmask, so i 1521 // must be 8-word-aligned, but check 1522 // our reasoning just in case. 1523 if i%(goarch.PtrSize*8) != 0 { 1524 throw("misaligned mask") 1525 } 1526 i += goarch.PtrSize*8 - goarch.PtrSize 1527 continue 1528 } 1529 if (bits>>(word%8))&1 == 0 { 1530 continue 1531 } 1532 } 1533 1534 val := *(*uintptr)(unsafe.Pointer(b + i)) 1535 1536 // Check if val points into the stack. 1537 if state != nil && state.stack.lo <= val && val < state.stack.hi { 1538 // val may point to a stack object. This 1539 // object may be dead from last cycle and 1540 // hence may contain pointers to unallocated 1541 // objects, but unlike heap objects we can't 1542 // tell if it's already dead. Hence, if all 1543 // pointers to this object are from 1544 // conservative scanning, we have to scan it 1545 // defensively, too. 1546 state.putPtr(val, true) 1547 continue 1548 } 1549 1550 // Check if val points to a heap span. 1551 span := spanOfHeap(val) 1552 if span == nil { 1553 continue 1554 } 1555 1556 // Check if val points to an allocated object. 1557 idx := span.objIndex(val) 1558 if span.isFree(idx) { 1559 continue 1560 } 1561 1562 // val points to an allocated object. Mark it. 1563 obj := span.base() + idx*span.elemsize 1564 greyobject(obj, b, i, span, gcw, idx) 1565 } 1566} 1567 1568// Shade the object if it isn't already. 1569// The object is not nil and known to be in the heap. 1570// Preemption must be disabled. 1571// 1572//go:nowritebarrier 1573func shade(b uintptr) { 1574 if obj, span, objIndex := findObject(b, 0, 0); obj != 0 { 1575 gcw := &getg().m.p.ptr().gcw 1576 greyobject(obj, 0, 0, span, gcw, objIndex) 1577 } 1578} 1579 1580// obj is the start of an object with mark mbits. 1581// If it isn't already marked, mark it and enqueue into gcw. 1582// base and off are for debugging only and could be removed. 1583// 1584// See also wbBufFlush1, which partially duplicates this logic. 1585// 1586//go:nowritebarrierrec 1587func greyobject(obj, base, off uintptr, span *mspan, gcw *gcWork, objIndex uintptr) { 1588 // obj should be start of allocation, and so must be at least pointer-aligned. 1589 if obj&(goarch.PtrSize-1) != 0 { 1590 throw("greyobject: obj not pointer-aligned") 1591 } 1592 mbits := span.markBitsForIndex(objIndex) 1593 1594 if useCheckmark { 1595 if setCheckmark(obj, base, off, mbits) { 1596 // Already marked. 1597 return 1598 } 1599 } else { 1600 if debug.gccheckmark > 0 && span.isFree(objIndex) { 1601 print("runtime: marking free object ", hex(obj), " found at *(", hex(base), "+", hex(off), ")\n") 1602 gcDumpObject("base", base, off) 1603 gcDumpObject("obj", obj, ^uintptr(0)) 1604 getg().m.traceback = 2 1605 throw("marking free object") 1606 } 1607 1608 // If marked we have nothing to do. 1609 if mbits.isMarked() { 1610 return 1611 } 1612 mbits.setMarked() 1613 1614 // Mark span. 1615 arena, pageIdx, pageMask := pageIndexOf(span.base()) 1616 if arena.pageMarks[pageIdx]&pageMask == 0 { 1617 atomic.Or8(&arena.pageMarks[pageIdx], pageMask) 1618 } 1619 1620 // If this is a noscan object, fast-track it to black 1621 // instead of greying it. 1622 if span.spanclass.noscan() { 1623 gcw.bytesMarked += uint64(span.elemsize) 1624 return 1625 } 1626 } 1627 1628 // We're adding obj to P's local workbuf, so it's likely 1629 // this object will be processed soon by the same P. 1630 // Even if the workbuf gets flushed, there will likely still be 1631 // some benefit on platforms with inclusive shared caches. 1632 sys.Prefetch(obj) 1633 // Queue the obj for scanning. 1634 if !gcw.putFast(obj) { 1635 gcw.put(obj) 1636 } 1637} 1638 1639// gcDumpObject dumps the contents of obj for debugging and marks the 1640// field at byte offset off in obj. 1641func gcDumpObject(label string, obj, off uintptr) { 1642 s := spanOf(obj) 1643 print(label, "=", hex(obj)) 1644 if s == nil { 1645 print(" s=nil\n") 1646 return 1647 } 1648 print(" s.base()=", hex(s.base()), " s.limit=", hex(s.limit), " s.spanclass=", s.spanclass, " s.elemsize=", s.elemsize, " s.state=") 1649 if state := s.state.get(); 0 <= state && int(state) < len(mSpanStateNames) { 1650 print(mSpanStateNames[state], "\n") 1651 } else { 1652 print("unknown(", state, ")\n") 1653 } 1654 1655 skipped := false 1656 size := s.elemsize 1657 if s.state.get() == mSpanManual && size == 0 { 1658 // We're printing something from a stack frame. We 1659 // don't know how big it is, so just show up to an 1660 // including off. 1661 size = off + goarch.PtrSize 1662 } 1663 for i := uintptr(0); i < size; i += goarch.PtrSize { 1664 // For big objects, just print the beginning (because 1665 // that usually hints at the object's type) and the 1666 // fields around off. 1667 if !(i < 128*goarch.PtrSize || off-16*goarch.PtrSize < i && i < off+16*goarch.PtrSize) { 1668 skipped = true 1669 continue 1670 } 1671 if skipped { 1672 print(" ...\n") 1673 skipped = false 1674 } 1675 print(" *(", label, "+", i, ") = ", hex(*(*uintptr)(unsafe.Pointer(obj + i)))) 1676 if i == off { 1677 print(" <==") 1678 } 1679 print("\n") 1680 } 1681 if skipped { 1682 print(" ...\n") 1683 } 1684} 1685 1686// gcmarknewobject marks a newly allocated object black. obj must 1687// not contain any non-nil pointers. 1688// 1689// This is nosplit so it can manipulate a gcWork without preemption. 1690// 1691//go:nowritebarrier 1692//go:nosplit 1693func gcmarknewobject(span *mspan, obj uintptr) { 1694 if useCheckmark { // The world should be stopped so this should not happen. 1695 throw("gcmarknewobject called while doing checkmark") 1696 } 1697 1698 // Mark object. 1699 objIndex := span.objIndex(obj) 1700 span.markBitsForIndex(objIndex).setMarked() 1701 1702 // Mark span. 1703 arena, pageIdx, pageMask := pageIndexOf(span.base()) 1704 if arena.pageMarks[pageIdx]&pageMask == 0 { 1705 atomic.Or8(&arena.pageMarks[pageIdx], pageMask) 1706 } 1707 1708 gcw := &getg().m.p.ptr().gcw 1709 gcw.bytesMarked += uint64(span.elemsize) 1710} 1711 1712// gcMarkTinyAllocs greys all active tiny alloc blocks. 1713// 1714// The world must be stopped. 1715func gcMarkTinyAllocs() { 1716 assertWorldStopped() 1717 1718 for _, p := range allp { 1719 c := p.mcache 1720 if c == nil || c.tiny == 0 { 1721 continue 1722 } 1723 _, span, objIndex := findObject(c.tiny, 0, 0) 1724 gcw := &p.gcw 1725 greyobject(c.tiny, 0, 0, span, gcw, objIndex) 1726 } 1727} 1728