xref: /aosp_15_r20/external/skia/src/gpu/ganesh/geometry/GrQuad.h (revision c8dee2aa9b3f27cf6c858bd81872bdeb2c07ed17)
1 /*
2  * Copyright 2015 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #ifndef GrQuad_DEFINED
9 #define GrQuad_DEFINED
10 
11 #include "include/core/SkPoint.h"
12 #include "include/core/SkPoint3.h"
13 #include "include/core/SkRect.h"
14 #include "include/core/SkScalar.h"
15 #include "include/private/base/SkAssert.h"
16 #include "include/private/base/SkFloatingPoint.h"
17 #include "src/base/SkVx.h"
18 #include "src/gpu/BufferWriter.h"
19 
20 #include <algorithm>
21 #include <type_traits>
22 
23 class SkMatrix;
24 enum class GrQuadAAFlags;
25 
26 /**
27  * GrQuad is a collection of 4 points which can be used to represent an arbitrary quadrilateral. The
28  * points make a triangle strip with CCW triangles (top-left, bottom-left, top-right, bottom-right).
29  */
30 class GrQuad {
31 public:
32     // Quadrilaterals can be classified in several useful ways that assist AA tessellation and other
33     // analysis when drawing, in particular, knowing if it was originally a rectangle transformed by
34     // certain types of matrices:
35     enum class Type {
36         // The 4 points remain an axis-aligned rectangle; their logical indices may not respect
37         // TL, BL, TR, BR ordering if the transform was a 90 degree rotation or mirror.
38         kAxisAligned,
39         // The 4 points represent a rectangle subjected to a rotation, its corners are right angles.
40         kRectilinear,
41         // Arbitrary 2D quadrilateral; may have been a rectangle transformed with skew or some
42         // clipped polygon. Its w coordinates will all be 1.
43         kGeneral,
44         // Even more general-purpose than kGeneral, this allows the w coordinates to be non-unity.
45         kPerspective,
46         kLast = kPerspective
47     };
48     static const int kTypeCount = static_cast<int>(Type::kLast) + 1;
49 
50     // This enforces W == 1 for non-perspective quads, but does not initialize X or Y.
51     GrQuad() = default;
52     GrQuad(const GrQuad&) = default;
53 
GrQuad(const SkRect & rect)54     explicit GrQuad(const SkRect& rect)
55             : fX{rect.fLeft, rect.fLeft, rect.fRight, rect.fRight}
56             , fY{rect.fTop, rect.fBottom, rect.fTop, rect.fBottom} {}
57 
58     static GrQuad MakeFromRect(const SkRect&, const SkMatrix&);
59 
60     // Creates a GrQuad from the quadrilateral 'pts', transformed by the matrix. The input
61     // points array is arranged as per SkRect::toQuad (top-left, top-right, bottom-right,
62     // bottom-left). The returned instance's point order will still be CCW tri-strip order.
63     static GrQuad MakeFromSkQuad(const SkPoint pts[4], const SkMatrix&);
64 
65     GrQuad& operator=(const GrQuad&) = default;
66 
point3(int i)67     SkPoint3 point3(int i) const { return {fX[i], fY[i], fW[i]}; }
68 
point(int i)69     SkPoint point(int i) const {
70         if (fType == Type::kPerspective) {
71             return {fX[i] / fW[i], fY[i] / fW[i]};
72         } else {
73             return {fX[i], fY[i]};
74         }
75     }
76 
writeVertex(int cornerIdx,skgpu::VertexWriter & w)77     void writeVertex(int cornerIdx, skgpu::VertexWriter& w) const {
78         w << this->point(cornerIdx);
79     }
80 
bounds()81     SkRect bounds() const {
82         if (fType == GrQuad::Type::kPerspective) {
83             return this->projectedBounds();
84         }
85         // Calculate min/max directly on the 4 floats, instead of loading/unloading into SIMD. Since
86         // there's no horizontal min/max, it's not worth it. Defining non-perspective case in header
87         // also leads to substantial performance boost due to inlining.
88         auto min = [](const float c[4]) { return std::min(std::min(c[0], c[1]),
89                                                           std::min(c[2], c[3]));};
90         auto max = [](const float c[4]) { return std::max(std::max(c[0], c[1]),
91                                                           std::max(c[2], c[3]));};
92         return { min(fX), min(fY), max(fX), max(fY) };
93     }
94 
isFinite()95     bool isFinite() const {
96         // If any coordinate is infinity or NaN, then multiplying it with 0 will make accum NaN
97         float accum = 0;
98         for (int i = 0; i < 4; ++i) {
99             accum *= fX[i];
100             accum *= fY[i];
101             accum *= fW[i];
102         }
103         SkASSERT(0 == accum || SkIsNaN(accum));
104 
105         return accum == 0.0f;
106     }
107 
x(int i)108     float x(int i) const { return fX[i]; }
y(int i)109     float y(int i) const { return fY[i]; }
w(int i)110     float w(int i) const { return fW[i]; }
iw(int i)111     float iw(int i) const { return sk_ieee_float_divide(1.f, fW[i]); }
112 
x4f()113     skvx::Vec<4, float> x4f() const { return skvx::Vec<4, float>::Load(fX); }
y4f()114     skvx::Vec<4, float> y4f() const { return skvx::Vec<4, float>::Load(fY); }
w4f()115     skvx::Vec<4, float> w4f() const { return skvx::Vec<4, float>::Load(fW); }
iw4f()116     skvx::Vec<4, float> iw4f() const { return 1.f / this->w4f(); }
117 
quadType()118     Type quadType() const { return fType; }
119 
hasPerspective()120     bool hasPerspective() const { return fType == Type::kPerspective; }
121 
122     // True if anti-aliasing affects this quad. Only valid when quadType == kAxisAligned
123     bool aaHasEffectOnRect(GrQuadAAFlags edgeFlags) const;
124 
125     // True if this quad is axis-aligned and still has its top-left corner at v0. Equivalently,
126     // quad == GrQuad(quad->bounds()). Axis-aligned quads with flips and rotations may exactly
127     // fill their bounds, but their vertex order will not match TL BL TR BR anymore.
128     bool asRect(SkRect* rect) const;
129 
130     // The non-const pointers are provided to support modifying a GrQuad in-place, but care must be
131     // taken to keep its quad type aligned with the geometric nature of the new coordinates.
xs()132     const float* xs() const { return fX; }
xs()133     float* xs() { return fX; }
ys()134     const float* ys() const { return fY; }
ys()135     float* ys() { return fY; }
ws()136     const float* ws() const { return fW; }
ws()137     float* ws() { return fW; }
138 
139     // Automatically ensures ws are 1 if new type is not perspective.
setQuadType(Type newType)140     void setQuadType(Type newType) {
141         if (newType != Type::kPerspective && fType == Type::kPerspective) {
142             fW[0] = fW[1] = fW[2] = fW[3] = 1.f;
143         }
144         SkASSERT(newType == Type::kPerspective ||
145                  (SkScalarNearlyEqual(fW[0], 1.f) && SkScalarNearlyEqual(fW[1], 1.f) &&
146                   SkScalarNearlyEqual(fW[2], 1.f) && SkScalarNearlyEqual(fW[3], 1.f)));
147 
148         fType = newType;
149     }
150 private:
151     template<typename T>
152     friend class GrQuadListBase; // for access to fX, fY, fW
153 
GrQuad(const skvx::Vec<4,float> & xs,const skvx::Vec<4,float> & ys,Type type)154     GrQuad(const skvx::Vec<4, float>& xs, const skvx::Vec<4, float>& ys, Type type)
155             : fType(type) {
156         SkASSERT(type != Type::kPerspective);
157         xs.store(fX);
158         ys.store(fY);
159     }
160 
GrQuad(const skvx::Vec<4,float> & xs,const skvx::Vec<4,float> & ys,const skvx::Vec<4,float> & ws,Type type)161     GrQuad(const skvx::Vec<4, float>& xs, const skvx::Vec<4, float>& ys,
162            const skvx::Vec<4, float>& ws, Type type)
163             : fW{} // Include fW in member initializer to avoid redundant default initializer
164             , fType(type) {
165         xs.store(fX);
166         ys.store(fY);
167         ws.store(fW);
168     }
169 
170     // Defined in GrQuadUtils.cpp to share the coord clipping code
171     SkRect projectedBounds() const;
172 
173     float fX[4];
174     float fY[4];
175     float fW[4] = {1.f, 1.f, 1.f, 1.f};
176 
177     Type fType = Type::kAxisAligned;
178 };
179 
180 template<> struct skgpu::VertexWriter::is_quad<GrQuad> : std::true_type {};
181 
182 // A simple struct representing the common work unit of a pair of device and local coordinates, as
183 // well as the edge flags controlling anti-aliasing for the quadrilateral when drawn.
184 struct DrawQuad {
185     GrQuad        fDevice;
186     GrQuad        fLocal;
187     GrQuadAAFlags fEdgeFlags;
188 };
189 
190 #endif
191