1 // sha3.c
2 // 19-Nov-11  Markku-Juhani O. Saarinen <[email protected]>
3 
4 // Revised 07-Aug-15 to match with official release of FIPS PUB 202 "SHA3"
5 // Revised 03-Sep-15 for portability + OpenSSL - style API
6 
7 #include "sha3.h"
8 
9 // update the state with given number of rounds
10 
sha3_keccakf(uint64_t st[25])11 static void sha3_keccakf(uint64_t st[25])
12 {
13     // constants
14     const uint64_t keccakf_rndc[24] = {
15         0x0000000000000001, 0x0000000000008082, 0x800000000000808a,
16         0x8000000080008000, 0x000000000000808b, 0x0000000080000001,
17         0x8000000080008081, 0x8000000000008009, 0x000000000000008a,
18         0x0000000000000088, 0x0000000080008009, 0x000000008000000a,
19         0x000000008000808b, 0x800000000000008b, 0x8000000000008089,
20         0x8000000000008003, 0x8000000000008002, 0x8000000000000080,
21         0x000000000000800a, 0x800000008000000a, 0x8000000080008081,
22         0x8000000000008080, 0x0000000080000001, 0x8000000080008008
23     };
24     const int keccakf_rotc[24] = {
25         1,  3,  6,  10, 15, 21, 28, 36, 45, 55, 2,  14,
26         27, 41, 56, 8,  25, 43, 62, 18, 39, 61, 20, 44
27     };
28     const int keccakf_piln[24] = {
29         10, 7,  11, 17, 18, 3, 5,  16, 8,  21, 24, 4,
30         15, 23, 19, 13, 12, 2, 20, 14, 22, 9,  6,  1
31     };
32 
33     // variables
34     int i, j, r;
35     uint64_t t, bc[5];
36 
37 #if __BYTE_ORDER__ != __ORDER_LITTLE_ENDIAN__
38     uint8_t *v;
39 
40     // endianess conversion. this is redundant on little-endian targets
41     for (i = 0; i < 25; i++) {
42         v = (uint8_t *) &st[i];
43         st[i] = ((uint64_t) v[0])     | (((uint64_t) v[1]) << 8) |
44             (((uint64_t) v[2]) << 16) | (((uint64_t) v[3]) << 24) |
45             (((uint64_t) v[4]) << 32) | (((uint64_t) v[5]) << 40) |
46             (((uint64_t) v[6]) << 48) | (((uint64_t) v[7]) << 56);
47     }
48 #endif
49 
50     // actual iteration
51     for (r = 0; r < KECCAKF_ROUNDS; r++) {
52 
53         // Theta
54         for (i = 0; i < 5; i++)
55             bc[i] = st[i] ^ st[i + 5] ^ st[i + 10] ^ st[i + 15] ^ st[i + 20];
56 
57         for (i = 0; i < 5; i++) {
58             t = bc[(i + 4) % 5] ^ ROTL64(bc[(i + 1) % 5], 1);
59             for (j = 0; j < 25; j += 5)
60                 st[j + i] ^= t;
61         }
62 
63         // Rho Pi
64         t = st[1];
65         for (i = 0; i < 24; i++) {
66             j = keccakf_piln[i];
67             bc[0] = st[j];
68             st[j] = ROTL64(t, keccakf_rotc[i]);
69             t = bc[0];
70         }
71 
72         //  Chi
73         for (j = 0; j < 25; j += 5) {
74             for (i = 0; i < 5; i++)
75                 bc[i] = st[j + i];
76             for (i = 0; i < 5; i++)
77                 st[j + i] ^= (~bc[(i + 1) % 5]) & bc[(i + 2) % 5];
78         }
79 
80         //  Iota
81         st[0] ^= keccakf_rndc[r];
82     }
83 
84 #if __BYTE_ORDER__ != __ORDER_LITTLE_ENDIAN__
85     // endianess conversion. this is redundant on little-endian targets
86     for (i = 0; i < 25; i++) {
87         v = (uint8_t *) &st[i];
88         t = st[i];
89         v[0] = t & 0xFF;
90         v[1] = (t >> 8) & 0xFF;
91         v[2] = (t >> 16) & 0xFF;
92         v[3] = (t >> 24) & 0xFF;
93         v[4] = (t >> 32) & 0xFF;
94         v[5] = (t >> 40) & 0xFF;
95         v[6] = (t >> 48) & 0xFF;
96         v[7] = (t >> 56) & 0xFF;
97     }
98 #endif
99 }
100 
101 // Initialize the context for SHA3
102 
sha3_init(sha3_ctx_t * c,int mdlen)103 static int sha3_init(sha3_ctx_t *c, int mdlen)
104 {
105     int i;
106 
107     for (i = 0; i < 25; i++)
108         c->st.q[i] = 0;
109     c->mdlen = mdlen;
110     c->rsiz = 200 - 2 * mdlen;
111     c->pt = 0;
112 
113     return 1;
114 }
115 
116 // update state with more data
117 
sha3_update(sha3_ctx_t * c,const void * data,size_t len)118 static int sha3_update(sha3_ctx_t *c, const void *data, size_t len)
119 {
120     size_t i;
121     int j;
122 
123     j = c->pt;
124     for (i = 0; i < len; i++) {
125         c->st.b[j++] ^= ((const uint8_t *) data)[i];
126         if (j >= c->rsiz) {
127             sha3_keccakf(c->st.q);
128             j = 0;
129         }
130     }
131     c->pt = j;
132 
133     return 1;
134 }
135 
136 // finalize and output a hash
137 
sha3_final(void * md,sha3_ctx_t * c)138 static int sha3_final(void *md, sha3_ctx_t *c)
139 {
140     int i;
141 
142     c->st.b[c->pt] ^= 0x06;
143     c->st.b[c->rsiz - 1] ^= 0x80;
144     sha3_keccakf(c->st.q);
145 
146     for (i = 0; i < c->mdlen; i++) {
147         ((uint8_t *) md)[i] = c->st.b[i];
148     }
149 
150     return 1;
151 }
152 
153 #if 0
154 // compute a SHA-3 hash (md) of given byte length from "in"
155 
156 void *sha3(const void *in, size_t inlen, void *md, int mdlen)
157 {
158     sha3_ctx_t sha3;
159 
160     sha3_init(&sha3, mdlen);
161     sha3_update(&sha3, in, inlen);
162     sha3_final(md, &sha3);
163 
164     return md;
165 }
166 #endif
167 
168 // SHAKE128 and SHAKE256 extensible-output functionality
169 
shake_xof(sha3_ctx_t * c)170 static void shake_xof(sha3_ctx_t *c)
171 {
172     c->st.b[c->pt] ^= 0x1F;
173     c->st.b[c->rsiz - 1] ^= 0x80;
174     sha3_keccakf(c->st.q);
175     c->pt = 0;
176 }
177 
shake_out(sha3_ctx_t * c,void * out,size_t len)178 static void shake_out(sha3_ctx_t *c, void *out, size_t len)
179 {
180     size_t i;
181     int j;
182 
183     j = c->pt;
184     for (i = 0; i < len; i++) {
185         if (j >= c->rsiz) {
186             sha3_keccakf(c->st.q);
187             j = 0;
188         }
189         ((uint8_t *) out)[i] = c->st.b[j++];
190     }
191     c->pt = j;
192 }
193 
194