xref: /aosp_15_r20/external/mesa3d/src/gallium/drivers/radeonsi/si_shader_llvm.c (revision 6104692788411f58d303aa86923a9ff6ecaded22)
1 /*
2  * Copyright 2016 Advanced Micro Devices, Inc.
3  *
4  * SPDX-License-Identifier: MIT
5  */
6 
7 #include "ac_nir.h"
8 #include "ac_nir_to_llvm.h"
9 #include "ac_rtld.h"
10 #include "si_pipe.h"
11 #include "si_shader_internal.h"
12 #include "si_shader_llvm.h"
13 #include "sid.h"
14 #include "util/u_memory.h"
15 #include "util/u_prim.h"
16 
17 struct si_llvm_diagnostics {
18    struct util_debug_callback *debug;
19    unsigned retval;
20 };
21 
si_diagnostic_handler(LLVMDiagnosticInfoRef di,void * context)22 static void si_diagnostic_handler(LLVMDiagnosticInfoRef di, void *context)
23 {
24    struct si_llvm_diagnostics *diag = (struct si_llvm_diagnostics *)context;
25    LLVMDiagnosticSeverity severity = LLVMGetDiagInfoSeverity(di);
26    const char *severity_str = NULL;
27 
28    switch (severity) {
29    case LLVMDSError:
30       severity_str = "error";
31       break;
32    case LLVMDSWarning:
33       severity_str = "warning";
34       break;
35    case LLVMDSRemark:
36    case LLVMDSNote:
37    default:
38       return;
39    }
40 
41    char *description = LLVMGetDiagInfoDescription(di);
42 
43    util_debug_message(diag->debug, SHADER_INFO, "LLVM diagnostic (%s): %s", severity_str,
44                       description);
45 
46    if (severity == LLVMDSError) {
47       diag->retval = 1;
48       fprintf(stderr, "LLVM triggered Diagnostic Handler: %s\n", description);
49    }
50 
51    LLVMDisposeMessage(description);
52 }
53 
si_compile_llvm(struct si_screen * sscreen,struct si_shader_binary * binary,struct ac_shader_config * conf,struct ac_llvm_compiler * compiler,struct ac_llvm_context * ac,struct util_debug_callback * debug,gl_shader_stage stage,const char * name,bool less_optimized)54 bool si_compile_llvm(struct si_screen *sscreen, struct si_shader_binary *binary,
55                      struct ac_shader_config *conf, struct ac_llvm_compiler *compiler,
56                      struct ac_llvm_context *ac, struct util_debug_callback *debug,
57                      gl_shader_stage stage, const char *name, bool less_optimized)
58 {
59    unsigned count = p_atomic_inc_return(&sscreen->num_compilations);
60 
61    if (si_can_dump_shader(sscreen, stage, SI_DUMP_LLVM_IR)) {
62       fprintf(stderr, "radeonsi: Compiling shader %d\n", count);
63 
64       fprintf(stderr, "%s LLVM IR:\n\n", name);
65       ac_dump_module(ac->module);
66       fprintf(stderr, "\n");
67    }
68 
69    if (sscreen->record_llvm_ir) {
70       char *ir = LLVMPrintModuleToString(ac->module);
71       binary->llvm_ir_string = strdup(ir);
72       LLVMDisposeMessage(ir);
73    }
74 
75    if (!si_replace_shader(count, binary)) {
76       struct ac_compiler_passes *passes = compiler->passes;
77 
78       if (less_optimized && compiler->low_opt_passes)
79          passes = compiler->low_opt_passes;
80 
81       struct si_llvm_diagnostics diag = {debug};
82       LLVMContextSetDiagnosticHandler(ac->context, si_diagnostic_handler, &diag);
83 
84       if (!ac_compile_module_to_elf(passes, ac->module, (char **)&binary->code_buffer,
85                                     &binary->code_size))
86          diag.retval = 1;
87 
88       if (diag.retval != 0) {
89          util_debug_message(debug, SHADER_INFO, "LLVM compilation failed");
90          return false;
91       }
92 
93       binary->type = SI_SHADER_BINARY_ELF;
94    }
95 
96    struct ac_rtld_binary rtld;
97    if (!ac_rtld_open(&rtld, (struct ac_rtld_open_info){
98                                .info = &sscreen->info,
99                                .shader_type = stage,
100                                .wave_size = ac->wave_size,
101                                .num_parts = 1,
102                                .elf_ptrs = &binary->code_buffer,
103                                .elf_sizes = &binary->code_size}))
104       return false;
105 
106    bool ok = ac_rtld_read_config(&sscreen->info, &rtld, conf);
107    ac_rtld_close(&rtld);
108    return ok;
109 }
110 
si_llvm_context_init(struct si_shader_context * ctx,struct si_screen * sscreen,struct ac_llvm_compiler * compiler,unsigned wave_size,bool exports_color_null,bool exports_mrtz,enum ac_float_mode float_mode)111 void si_llvm_context_init(struct si_shader_context *ctx, struct si_screen *sscreen,
112                           struct ac_llvm_compiler *compiler, unsigned wave_size,
113                           bool exports_color_null, bool exports_mrtz,
114                           enum ac_float_mode float_mode)
115 {
116    memset(ctx, 0, sizeof(*ctx));
117    ctx->screen = sscreen;
118    ctx->compiler = compiler;
119 
120    ac_llvm_context_init(&ctx->ac, compiler, &sscreen->info, float_mode,
121                         wave_size, 64, exports_color_null, exports_mrtz);
122 }
123 
si_llvm_create_func(struct si_shader_context * ctx,const char * name,LLVMTypeRef * return_types,unsigned num_return_elems,unsigned max_workgroup_size)124 void si_llvm_create_func(struct si_shader_context *ctx, const char *name, LLVMTypeRef *return_types,
125                          unsigned num_return_elems, unsigned max_workgroup_size)
126 {
127    LLVMTypeRef ret_type;
128    enum ac_llvm_calling_convention call_conv;
129 
130    if (num_return_elems)
131       ret_type = LLVMStructTypeInContext(ctx->ac.context, return_types, num_return_elems, true);
132    else
133       ret_type = ctx->ac.voidt;
134 
135    gl_shader_stage real_stage = ctx->stage;
136 
137    /* LS is merged into HS (TCS), and ES is merged into GS. */
138    if (ctx->screen->info.gfx_level >= GFX9 && ctx->stage <= MESA_SHADER_GEOMETRY) {
139       if (ctx->shader->key.ge.as_ls)
140          real_stage = MESA_SHADER_TESS_CTRL;
141       else if (ctx->shader->key.ge.as_es || ctx->shader->key.ge.as_ngg)
142          real_stage = MESA_SHADER_GEOMETRY;
143    }
144 
145    switch (real_stage) {
146    case MESA_SHADER_VERTEX:
147    case MESA_SHADER_TESS_EVAL:
148       call_conv = AC_LLVM_AMDGPU_VS;
149       break;
150    case MESA_SHADER_TESS_CTRL:
151       call_conv = AC_LLVM_AMDGPU_HS;
152       break;
153    case MESA_SHADER_GEOMETRY:
154       call_conv = AC_LLVM_AMDGPU_GS;
155       break;
156    case MESA_SHADER_FRAGMENT:
157       call_conv = AC_LLVM_AMDGPU_PS;
158       break;
159    case MESA_SHADER_COMPUTE:
160       call_conv = AC_LLVM_AMDGPU_CS;
161       break;
162    default:
163       unreachable("Unhandle shader type");
164    }
165 
166    /* Setup the function */
167    ctx->return_type = ret_type;
168    ctx->main_fn = ac_build_main(&ctx->args->ac, &ctx->ac, call_conv, name, ret_type, ctx->ac.module);
169    ctx->return_value = LLVMGetUndef(ctx->return_type);
170 
171    if (ctx->screen->info.address32_hi) {
172       ac_llvm_add_target_dep_function_attr(ctx->main_fn.value, "amdgpu-32bit-address-high-bits",
173                                            ctx->screen->info.address32_hi);
174    }
175 
176    if (ctx->screen->info.gfx_level < GFX12 && ctx->stage <= MESA_SHADER_GEOMETRY &&
177        ctx->shader->key.ge.as_ngg && si_shader_uses_streamout(ctx->shader))
178       ac_llvm_add_target_dep_function_attr(ctx->main_fn.value, "amdgpu-gds-size", 256);
179 
180    ac_llvm_set_workgroup_size(ctx->main_fn.value, max_workgroup_size);
181    ac_llvm_set_target_features(ctx->main_fn.value, &ctx->ac, false);
182 }
183 
si_llvm_create_main_func(struct si_shader_context * ctx)184 void si_llvm_create_main_func(struct si_shader_context *ctx)
185 {
186    struct si_shader *shader = ctx->shader;
187    LLVMTypeRef returns[AC_MAX_ARGS];
188    unsigned i;
189 
190    for (i = 0; i < ctx->args->ac.num_sgprs_returned; i++)
191       returns[i] = ctx->ac.i32; /* SGPR */
192    for (; i < ctx->args->ac.return_count; i++)
193       returns[i] = ctx->ac.f32; /* VGPR */
194 
195    si_llvm_create_func(ctx, "main", returns, ctx->args->ac.return_count,
196                        si_get_max_workgroup_size(shader));
197 
198    /* Reserve register locations for VGPR inputs the PS prolog may need. */
199    if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->shader->is_monolithic) {
200       ac_llvm_add_target_dep_function_attr(
201          ctx->main_fn.value, "InitialPSInputAddr", SI_SPI_PS_INPUT_ADDR_FOR_PROLOG);
202    }
203 
204 
205    if (ctx->stage <= MESA_SHADER_GEOMETRY &&
206        (shader->key.ge.as_ls || ctx->stage == MESA_SHADER_TESS_CTRL)) {
207       /* The LSHS size is not known until draw time, so we append it
208        * at the end of whatever LDS use there may be in the rest of
209        * the shader (currently none, unless LLVM decides to do its
210        * own LDS-based lowering).
211        */
212       ctx->ac.lds = (struct ac_llvm_pointer) {
213          .value = LLVMAddGlobalInAddressSpace(ctx->ac.module, LLVMArrayType(ctx->ac.i32, 0),
214                                                 "__lds_end", AC_ADDR_SPACE_LDS),
215          .pointee_type = LLVMArrayType(ctx->ac.i32, 0)
216       };
217       LLVMSetAlignment(ctx->ac.lds.value, 256);
218    }
219 
220    if (ctx->stage == MESA_SHADER_VERTEX) {
221       ctx->abi.vertex_id = ac_get_arg(&ctx->ac, ctx->args->ac.vertex_id);
222       ctx->abi.instance_id = ac_get_arg(&ctx->ac, ctx->args->ac.instance_id);
223       if (ctx->args->ac.vs_rel_patch_id.used)
224          ctx->abi.vs_rel_patch_id = ac_get_arg(&ctx->ac, ctx->args->ac.vs_rel_patch_id);
225 
226       /* Apply the LS-HS input VGPR hw bug workaround. */
227       if (shader->key.ge.as_ls && ctx->screen->info.has_ls_vgpr_init_bug)
228          ac_fixup_ls_hs_input_vgprs(&ctx->ac, &ctx->abi, &ctx->args->ac);
229    }
230 }
231 
si_llvm_optimize_module(struct si_shader_context * ctx)232 void si_llvm_optimize_module(struct si_shader_context *ctx)
233 {
234    /* Dump LLVM IR before any optimization passes */
235    if (si_can_dump_shader(ctx->screen, ctx->stage, SI_DUMP_INIT_LLVM_IR))
236       ac_dump_module(ctx->ac.module);
237 
238    /* Run the pass */
239    LLVMRunPassManager(ctx->compiler->passmgr, ctx->ac.module);
240 }
241 
si_llvm_dispose(struct si_shader_context * ctx)242 void si_llvm_dispose(struct si_shader_context *ctx)
243 {
244    LLVMDisposeModule(ctx->ac.module);
245    LLVMContextDispose(ctx->ac.context);
246    ac_llvm_context_dispose(&ctx->ac);
247 }
248 
249 /**
250  * Load a dword from a constant buffer.
251  */
si_buffer_load_const(struct si_shader_context * ctx,LLVMValueRef resource,LLVMValueRef offset)252 LLVMValueRef si_buffer_load_const(struct si_shader_context *ctx, LLVMValueRef resource,
253                                   LLVMValueRef offset)
254 {
255    return ac_build_buffer_load(&ctx->ac, resource, 1, NULL, offset, NULL, ctx->ac.f32,
256                                0, true, true);
257 }
258 
si_llvm_build_ret(struct si_shader_context * ctx,LLVMValueRef ret)259 void si_llvm_build_ret(struct si_shader_context *ctx, LLVMValueRef ret)
260 {
261    if (LLVMGetTypeKind(LLVMTypeOf(ret)) == LLVMVoidTypeKind)
262       LLVMBuildRetVoid(ctx->ac.builder);
263    else
264       LLVMBuildRet(ctx->ac.builder, ret);
265 }
266 
si_insert_input_ret(struct si_shader_context * ctx,LLVMValueRef ret,struct ac_arg param,unsigned return_index)267 LLVMValueRef si_insert_input_ret(struct si_shader_context *ctx, LLVMValueRef ret,
268                                  struct ac_arg param, unsigned return_index)
269 {
270    return LLVMBuildInsertValue(ctx->ac.builder, ret, ac_get_arg(&ctx->ac, param), return_index, "");
271 }
272 
si_insert_input_ret_float(struct si_shader_context * ctx,LLVMValueRef ret,struct ac_arg param,unsigned return_index)273 LLVMValueRef si_insert_input_ret_float(struct si_shader_context *ctx, LLVMValueRef ret,
274                                        struct ac_arg param, unsigned return_index)
275 {
276    LLVMBuilderRef builder = ctx->ac.builder;
277    LLVMValueRef p = ac_get_arg(&ctx->ac, param);
278 
279    return LLVMBuildInsertValue(builder, ret, ac_to_float(&ctx->ac, p), return_index, "");
280 }
281 
si_insert_input_ptr(struct si_shader_context * ctx,LLVMValueRef ret,struct ac_arg param,unsigned return_index)282 LLVMValueRef si_insert_input_ptr(struct si_shader_context *ctx, LLVMValueRef ret,
283                                  struct ac_arg param, unsigned return_index)
284 {
285    LLVMBuilderRef builder = ctx->ac.builder;
286    LLVMValueRef ptr = ac_get_arg(&ctx->ac, param);
287    ptr = LLVMBuildPtrToInt(builder, ptr, ctx->ac.i32, "");
288    return LLVMBuildInsertValue(builder, ret, ptr, return_index, "");
289 }
290 
si_prolog_get_internal_binding_slot(struct si_shader_context * ctx,unsigned slot)291 LLVMValueRef si_prolog_get_internal_binding_slot(struct si_shader_context *ctx, unsigned slot)
292 {
293    LLVMValueRef list = LLVMBuildIntToPtr(
294       ctx->ac.builder, ac_get_arg(&ctx->ac, ctx->args->internal_bindings),
295       ac_array_in_const32_addr_space(ctx->ac.v4i32), "");
296    LLVMValueRef index = LLVMConstInt(ctx->ac.i32, slot, 0);
297 
298    return ac_build_load_to_sgpr(&ctx->ac,
299                                 (struct ac_llvm_pointer) { .t = ctx->ac.v4i32, .v = list },
300                                 index);
301 }
302 
303 /* Ensure that the esgs ring is declared.
304  *
305  * We declare it with 64KB alignment as a hint that the
306  * pointer value will always be 0.
307  */
si_llvm_declare_lds_esgs_ring(struct si_shader_context * ctx)308 static void si_llvm_declare_lds_esgs_ring(struct si_shader_context *ctx)
309 {
310    if (ctx->ac.lds.value)
311       return;
312 
313    assert(!LLVMGetNamedGlobal(ctx->ac.module, "esgs_ring"));
314 
315    LLVMValueRef esgs_ring =
316       LLVMAddGlobalInAddressSpace(ctx->ac.module, LLVMArrayType(ctx->ac.i32, 0),
317                                   "esgs_ring", AC_ADDR_SPACE_LDS);
318    LLVMSetLinkage(esgs_ring, LLVMExternalLinkage);
319    LLVMSetAlignment(esgs_ring, 64 * 1024);
320 
321    ctx->ac.lds.value = esgs_ring;
322    ctx->ac.lds.pointee_type = ctx->ac.i32;
323 }
324 
si_init_exec_from_input(struct si_shader_context * ctx,struct ac_arg param,unsigned bitoffset)325 static void si_init_exec_from_input(struct si_shader_context *ctx, struct ac_arg param,
326                                     unsigned bitoffset)
327 {
328    LLVMValueRef args[] = {
329       ac_get_arg(&ctx->ac, param),
330       LLVMConstInt(ctx->ac.i32, bitoffset, 0),
331    };
332    ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.init.exec.from.input", ctx->ac.voidt, args, 2, 0);
333 }
334 
335 /**
336  * Get the value of a shader input parameter and extract a bitfield.
337  */
unpack_llvm_param(struct si_shader_context * ctx,LLVMValueRef value,unsigned rshift,unsigned bitwidth)338 static LLVMValueRef unpack_llvm_param(struct si_shader_context *ctx, LLVMValueRef value,
339                                       unsigned rshift, unsigned bitwidth)
340 {
341    if (LLVMGetTypeKind(LLVMTypeOf(value)) == LLVMFloatTypeKind)
342       value = ac_to_integer(&ctx->ac, value);
343 
344    if (rshift)
345       value = LLVMBuildLShr(ctx->ac.builder, value, LLVMConstInt(ctx->ac.i32, rshift, 0), "");
346 
347    if (rshift + bitwidth < 32) {
348       unsigned mask = (1 << bitwidth) - 1;
349       value = LLVMBuildAnd(ctx->ac.builder, value, LLVMConstInt(ctx->ac.i32, mask, 0), "");
350    }
351 
352    return value;
353 }
354 
si_unpack_param(struct si_shader_context * ctx,struct ac_arg param,unsigned rshift,unsigned bitwidth)355 LLVMValueRef si_unpack_param(struct si_shader_context *ctx, struct ac_arg param, unsigned rshift,
356                              unsigned bitwidth)
357 {
358    LLVMValueRef value = ac_get_arg(&ctx->ac, param);
359 
360    return unpack_llvm_param(ctx, value, rshift, bitwidth);
361 }
362 
si_llvm_declare_compute_memory(struct si_shader_context * ctx)363 static void si_llvm_declare_compute_memory(struct si_shader_context *ctx)
364 {
365    struct si_shader_selector *sel = ctx->shader->selector;
366    unsigned lds_size = sel->info.base.shared_size;
367 
368    LLVMTypeRef i8p = LLVMPointerType(ctx->ac.i8, AC_ADDR_SPACE_LDS);
369    LLVMValueRef var;
370 
371    assert(!ctx->ac.lds.value);
372 
373    LLVMTypeRef type = LLVMArrayType(ctx->ac.i8, lds_size);
374    var = LLVMAddGlobalInAddressSpace(ctx->ac.module, type,
375                                      "compute_lds", AC_ADDR_SPACE_LDS);
376    LLVMSetAlignment(var, 64 * 1024);
377 
378    ctx->ac.lds = (struct ac_llvm_pointer) {
379       .value = LLVMBuildBitCast(ctx->ac.builder, var, i8p, ""),
380       .pointee_type = type,
381    };
382 }
383 
384 /**
385  * Given two parts (LS/HS or ES/GS) of a merged shader, build a wrapper function that
386  * runs them in sequence to form a monolithic shader.
387  */
si_build_wrapper_function(struct si_shader_context * ctx,struct ac_llvm_pointer parts[2],bool same_thread_count)388 static void si_build_wrapper_function(struct si_shader_context *ctx,
389                                       struct ac_llvm_pointer parts[2],
390                                       bool same_thread_count)
391 {
392    LLVMBuilderRef builder = ctx->ac.builder;
393 
394    for (unsigned i = 0; i < 2; ++i) {
395       ac_add_function_attr(ctx->ac.context, parts[i].value, -1, "alwaysinline");
396       LLVMSetLinkage(parts[i].value, LLVMPrivateLinkage);
397    }
398 
399    si_llvm_create_func(ctx, "wrapper", NULL, 0, si_get_max_workgroup_size(ctx->shader));
400 
401    if (same_thread_count) {
402       si_init_exec_from_input(ctx, ctx->args->ac.merged_wave_info, 0);
403    } else {
404       ac_init_exec_full_mask(&ctx->ac);
405 
406       LLVMValueRef count = ac_get_arg(&ctx->ac, ctx->args->ac.merged_wave_info);
407       count = LLVMBuildAnd(builder, count, LLVMConstInt(ctx->ac.i32, 0x7f, 0), "");
408 
409       LLVMValueRef ena = LLVMBuildICmp(builder, LLVMIntULT, ac_get_thread_id(&ctx->ac), count, "");
410       ac_build_ifcc(&ctx->ac, ena, 6506);
411    }
412 
413    LLVMValueRef params[AC_MAX_ARGS];
414    unsigned num_params = LLVMCountParams(ctx->main_fn.value);
415    LLVMGetParams(ctx->main_fn.value, params);
416 
417    /* wrapper function has same parameter as first part shader */
418    LLVMValueRef ret =
419       ac_build_call(&ctx->ac, parts[0].pointee_type, parts[0].value, params, num_params);
420 
421    if (same_thread_count) {
422       LLVMTypeRef type = LLVMTypeOf(ret);
423       assert(LLVMGetTypeKind(type) == LLVMStructTypeKind);
424 
425       /* output of first part shader is the input of the second part */
426       num_params = LLVMCountStructElementTypes(type);
427       assert(num_params == LLVMCountParams(parts[1].value));
428 
429       for (unsigned i = 0; i < num_params; i++) {
430          params[i] = LLVMBuildExtractValue(builder, ret, i, "");
431 
432          /* Convert return value to same type as next shader's input param. */
433          LLVMTypeRef ret_type = LLVMTypeOf(params[i]);
434          LLVMTypeRef param_type = LLVMTypeOf(LLVMGetParam(parts[1].value, i));
435          assert(ac_get_type_size(ret_type) == 4);
436          assert(ac_get_type_size(param_type) == 4);
437 
438          if (ret_type != param_type) {
439             if (LLVMGetTypeKind(param_type) == LLVMPointerTypeKind) {
440                assert(LLVMGetPointerAddressSpace(param_type) == AC_ADDR_SPACE_CONST_32BIT);
441                assert(ret_type == ctx->ac.i32);
442 
443                params[i] = LLVMBuildIntToPtr(builder, params[i], param_type, "");
444             } else {
445                params[i] = LLVMBuildBitCast(builder, params[i], param_type, "");
446             }
447          }
448       }
449    } else {
450       ac_build_endif(&ctx->ac, 6506);
451 
452       if (ctx->stage == MESA_SHADER_TESS_CTRL) {
453          LLVMValueRef count = ac_get_arg(&ctx->ac, ctx->args->ac.merged_wave_info);
454          count = LLVMBuildLShr(builder, count, LLVMConstInt(ctx->ac.i32, 8, 0), "");
455          count = LLVMBuildAnd(builder, count, LLVMConstInt(ctx->ac.i32, 0x7f, 0), "");
456 
457          LLVMValueRef ena = LLVMBuildICmp(builder, LLVMIntULT, ac_get_thread_id(&ctx->ac), count, "");
458          ac_build_ifcc(&ctx->ac, ena, 6507);
459       }
460 
461       /* The second half of the merged shader should use
462        * the inputs from the toplevel (wrapper) function,
463        * not the return value from the last call.
464        *
465        * That's because the last call was executed condi-
466        * tionally, so we can't consume it in the main
467        * block.
468        */
469 
470       /* Second part params are same as the preceeding params of the first part. */
471       num_params = LLVMCountParams(parts[1].value);
472    }
473 
474    ac_build_call(&ctx->ac, parts[1].pointee_type, parts[1].value, params, num_params);
475 
476    /* Close the conditional wrapping the second shader. */
477    if (ctx->stage == MESA_SHADER_TESS_CTRL && !same_thread_count)
478       ac_build_endif(&ctx->ac, 6507);
479 
480    LLVMBuildRetVoid(builder);
481 }
482 
si_llvm_load_intrinsic(struct ac_shader_abi * abi,nir_intrinsic_instr * intrin)483 static LLVMValueRef si_llvm_load_intrinsic(struct ac_shader_abi *abi, nir_intrinsic_instr *intrin)
484 {
485    struct si_shader_context *ctx = si_shader_context_from_abi(abi);
486 
487    switch (intrin->intrinsic) {
488    case nir_intrinsic_load_lds_ngg_scratch_base_amd:
489       return LLVMBuildPtrToInt(ctx->ac.builder, ctx->gs_ngg_scratch.value, ctx->ac.i32, "");
490 
491    case nir_intrinsic_load_lds_ngg_gs_out_vertex_base_amd:
492       return LLVMBuildPtrToInt(ctx->ac.builder, ctx->gs_ngg_emit, ctx->ac.i32, "");
493 
494    default:
495       return NULL;
496    }
497 }
498 
si_llvm_load_sampler_desc(struct ac_shader_abi * abi,LLVMValueRef index,enum ac_descriptor_type desc_type)499 static LLVMValueRef si_llvm_load_sampler_desc(struct ac_shader_abi *abi, LLVMValueRef index,
500                                               enum ac_descriptor_type desc_type)
501 {
502    struct si_shader_context *ctx = si_shader_context_from_abi(abi);
503    LLVMBuilderRef builder = ctx->ac.builder;
504 
505    if (index && LLVMTypeOf(index) == ctx->ac.i32) {
506       bool is_vec4 = false;
507 
508       switch (desc_type) {
509       case AC_DESC_IMAGE:
510          /* The image is at [0:7]. */
511          index = LLVMBuildMul(builder, index, LLVMConstInt(ctx->ac.i32, 2, 0), "");
512          break;
513       case AC_DESC_BUFFER:
514          /* The buffer is in [4:7]. */
515          index = ac_build_imad(&ctx->ac, index, LLVMConstInt(ctx->ac.i32, 4, 0), ctx->ac.i32_1);
516          is_vec4 = true;
517          break;
518       case AC_DESC_FMASK:
519          /* The FMASK is at [8:15]. */
520          assert(ctx->screen->info.gfx_level < GFX11);
521          index = ac_build_imad(&ctx->ac, index, LLVMConstInt(ctx->ac.i32, 2, 0), ctx->ac.i32_1);
522          break;
523       case AC_DESC_SAMPLER:
524          /* The sampler state is at [12:15]. */
525          index = ac_build_imad(&ctx->ac, index, LLVMConstInt(ctx->ac.i32, 4, 0),
526                                LLVMConstInt(ctx->ac.i32, 3, 0));
527          is_vec4 = true;
528          break;
529       default:
530          unreachable("invalid desc");
531       }
532 
533       struct ac_llvm_pointer list = {
534          .value = ac_get_arg(&ctx->ac, ctx->args->samplers_and_images),
535          .pointee_type = is_vec4 ? ctx->ac.v4i32 : ctx->ac.v8i32,
536       };
537 
538       return ac_build_load_to_sgpr(&ctx->ac, list, index);
539    }
540 
541    return index;
542 }
543 
si_llvm_translate_nir(struct si_shader_context * ctx,struct si_shader * shader,struct nir_shader * nir,bool free_nir)544 static bool si_llvm_translate_nir(struct si_shader_context *ctx, struct si_shader *shader,
545                                   struct nir_shader *nir, bool free_nir)
546 {
547    struct si_shader_selector *sel = shader->selector;
548    const struct si_shader_info *info = &sel->info;
549 
550    ctx->shader = shader;
551    ctx->stage = shader->is_gs_copy_shader ? MESA_SHADER_VERTEX : sel->stage;
552 
553    ctx->num_const_buffers = info->base.num_ubos;
554    ctx->num_shader_buffers = info->base.num_ssbos;
555 
556    ctx->num_samplers = BITSET_LAST_BIT(info->base.textures_used);
557    ctx->num_images = info->base.num_images;
558 
559    ctx->abi.intrinsic_load = si_llvm_load_intrinsic;
560    ctx->abi.load_sampler_desc = si_llvm_load_sampler_desc;
561 
562    si_llvm_create_main_func(ctx);
563 
564    switch (ctx->stage) {
565    case MESA_SHADER_VERTEX:
566       break;
567 
568    case MESA_SHADER_TESS_CTRL:
569       si_llvm_init_tcs_callbacks(ctx);
570       break;
571 
572    case MESA_SHADER_GEOMETRY:
573       if (ctx->shader->key.ge.as_ngg) {
574          LLVMTypeRef ai32 = LLVMArrayType(ctx->ac.i32, gfx10_ngg_get_scratch_dw_size(shader));
575          ctx->gs_ngg_scratch = (struct ac_llvm_pointer) {
576             .value = LLVMAddGlobalInAddressSpace(ctx->ac.module, ai32, "ngg_scratch", AC_ADDR_SPACE_LDS),
577             .pointee_type = ai32
578          };
579          LLVMSetInitializer(ctx->gs_ngg_scratch.value, LLVMGetUndef(ai32));
580          LLVMSetAlignment(ctx->gs_ngg_scratch.value, 8);
581 
582          ctx->gs_ngg_emit = LLVMAddGlobalInAddressSpace(
583             ctx->ac.module, LLVMArrayType(ctx->ac.i32, 0), "ngg_emit", AC_ADDR_SPACE_LDS);
584          LLVMSetLinkage(ctx->gs_ngg_emit, LLVMExternalLinkage);
585          LLVMSetAlignment(ctx->gs_ngg_emit, 4);
586       }
587       break;
588 
589    case MESA_SHADER_FRAGMENT: {
590       ctx->abi.kill_ps_if_inf_interp =
591          ctx->screen->options.no_infinite_interp &&
592          (ctx->shader->selector->info.uses_persp_center ||
593           ctx->shader->selector->info.uses_persp_centroid ||
594           ctx->shader->selector->info.uses_persp_sample);
595       break;
596    }
597 
598    case MESA_SHADER_COMPUTE:
599       if (ctx->shader->selector->info.base.shared_size)
600          si_llvm_declare_compute_memory(ctx);
601       break;
602 
603    default:
604       break;
605    }
606 
607    bool is_merged_esgs_stage =
608       ctx->screen->info.gfx_level >= GFX9 && ctx->stage <= MESA_SHADER_GEOMETRY &&
609       (ctx->shader->key.ge.as_es || ctx->stage == MESA_SHADER_GEOMETRY);
610 
611    bool is_nogs_ngg_stage =
612       (ctx->stage == MESA_SHADER_VERTEX || ctx->stage == MESA_SHADER_TESS_EVAL) &&
613       shader->key.ge.as_ngg && !shader->key.ge.as_es;
614 
615    /* Declare the ESGS ring as an explicit LDS symbol.
616     * When NGG VS/TES, unconditionally declare for streamout and vertex compaction.
617     * Whether space is actually allocated is determined during linking / PM4 creation.
618     */
619    if (is_merged_esgs_stage || is_nogs_ngg_stage)
620       si_llvm_declare_lds_esgs_ring(ctx);
621 
622    /* This is really only needed when streamout and / or vertex
623     * compaction is enabled.
624     */
625    if (is_nogs_ngg_stage &&
626        (si_shader_uses_streamout(shader) || shader->key.ge.opt.ngg_culling)) {
627       LLVMTypeRef asi32 = LLVMArrayType(ctx->ac.i32, gfx10_ngg_get_scratch_dw_size(shader));
628       ctx->gs_ngg_scratch = (struct ac_llvm_pointer) {
629          .value = LLVMAddGlobalInAddressSpace(ctx->ac.module, asi32, "ngg_scratch",
630                                               AC_ADDR_SPACE_LDS),
631          .pointee_type = asi32
632       };
633       LLVMSetInitializer(ctx->gs_ngg_scratch.value, LLVMGetUndef(asi32));
634       LLVMSetAlignment(ctx->gs_ngg_scratch.value, 8);
635    }
636 
637    /* For merged shaders (VS-TCS, VS-GS, TES-GS): */
638    if (ctx->screen->info.gfx_level >= GFX9 && si_is_merged_shader(shader)) {
639       /* Set EXEC = ~0 before the first shader. For monolithic shaders, the wrapper
640        * function does this.
641        */
642       if (ctx->stage == MESA_SHADER_TESS_EVAL) {
643          /* TES has only 1 shader part, therefore it doesn't use the wrapper function. */
644          if (!shader->is_monolithic || !shader->key.ge.as_es)
645             ac_init_exec_full_mask(&ctx->ac);
646       } else if (ctx->stage == MESA_SHADER_VERTEX) {
647          if (shader->is_monolithic) {
648             /* Only mono VS with TCS/GS present has wrapper function. */
649             if (!shader->key.ge.as_ls && !shader->key.ge.as_es)
650                ac_init_exec_full_mask(&ctx->ac);
651          } else {
652             ac_init_exec_full_mask(&ctx->ac);
653          }
654       }
655 
656       /* NGG VS and NGG TES: nir ngg lowering send gs_alloc_req at the beginning when culling
657        * is disabled, but GFX10 may hang if not all waves are launched before gs_alloc_req.
658        * We work around this HW bug by inserting a barrier before gs_alloc_req.
659        */
660       if (ctx->screen->info.gfx_level == GFX10 &&
661           (ctx->stage == MESA_SHADER_VERTEX || ctx->stage == MESA_SHADER_TESS_EVAL) &&
662           shader->key.ge.as_ngg && !shader->key.ge.as_es && !shader->key.ge.opt.ngg_culling)
663          ac_build_s_barrier(&ctx->ac, ctx->stage);
664 
665       LLVMValueRef thread_enabled = NULL;
666 
667       if ((ctx->stage == MESA_SHADER_GEOMETRY && !shader->key.ge.as_ngg) ||
668           (ctx->stage == MESA_SHADER_TESS_CTRL && !shader->is_monolithic)) {
669          /* Wrap both shaders in an if statement according to the number of enabled threads
670           * there. For monolithic TCS, the if statement is inserted by the wrapper function,
671           * not here. For NGG GS, the if statement is inserted by nir lowering.
672           */
673          thread_enabled = si_is_gs_thread(ctx); /* 2nd shader: thread enabled bool */
674       } else if ((shader->key.ge.as_ls || shader->key.ge.as_es) && !shader->is_monolithic) {
675          /* For monolithic LS (VS before TCS) and ES (VS before GS and TES before GS),
676           * the if statement is inserted by the wrapper function.
677           */
678          thread_enabled = si_is_es_thread(ctx); /* 1st shader: thread enabled bool */
679       }
680 
681       if (thread_enabled) {
682          ctx->merged_wrap_if_entry_block = LLVMGetInsertBlock(ctx->ac.builder);
683          ctx->merged_wrap_if_label = 11500;
684          ac_build_ifcc(&ctx->ac, thread_enabled, ctx->merged_wrap_if_label);
685       }
686 
687       /* Execute a barrier before the second shader in
688        * a merged shader.
689        *
690        * Execute the barrier inside the conditional block,
691        * so that empty waves can jump directly to s_endpgm,
692        * which will also signal the barrier.
693        *
694        * This is possible in gfx9, because an empty wave for the second shader does not insert
695        * any ending. With NGG, empty waves may still be required to export data (e.g. GS output
696        * vertices), so we cannot let them exit early.
697        *
698        * If the shader is TCS and the TCS epilog is present
699        * and contains a barrier, it will wait there and then
700        * reach s_endpgm.
701        */
702       if (ctx->stage == MESA_SHADER_TESS_CTRL) {
703          /* We need the barrier only if TCS inputs are read from LDS. */
704          if (!shader->key.ge.opt.same_patch_vertices ||
705              shader->selector->info.base.inputs_read &
706              ~shader->selector->info.tcs_vgpr_only_inputs) {
707             ac_build_waitcnt(&ctx->ac, AC_WAIT_DS);
708 
709             /* If both input and output patches are wholly in one wave, we don't need a barrier.
710              * That's true when both VS and TCS have the same number of patch vertices and
711              * the wave size is a multiple of the number of patch vertices.
712              */
713             if (!shader->key.ge.opt.same_patch_vertices ||
714                 ctx->ac.wave_size % sel->info.base.tess.tcs_vertices_out != 0)
715                ac_build_s_barrier(&ctx->ac, ctx->stage);
716          }
717       } else if (ctx->stage == MESA_SHADER_GEOMETRY) {
718          ac_build_waitcnt(&ctx->ac, AC_WAIT_DS);
719          ac_build_s_barrier(&ctx->ac, ctx->stage);
720       }
721    }
722 
723    ctx->abi.clamp_shadow_reference = true;
724    ctx->abi.robust_buffer_access = true;
725    ctx->abi.load_grid_size_from_user_sgpr = true;
726    ctx->abi.clamp_div_by_zero = ctx->screen->options.clamp_div_by_zero ||
727                                 info->options & SI_PROFILE_CLAMP_DIV_BY_ZERO;
728    ctx->abi.disable_aniso_single_level = true;
729 
730    bool ls_need_output =
731       ctx->stage == MESA_SHADER_VERTEX && shader->key.ge.as_ls &&
732       shader->key.ge.opt.same_patch_vertices;
733 
734    bool ps_need_output = ctx->stage == MESA_SHADER_FRAGMENT;
735 
736    if (ls_need_output || ps_need_output) {
737       for (unsigned i = 0; i < info->num_outputs; i++) {
738          LLVMTypeRef type = ctx->ac.f32;
739 
740          /* Only FS uses unpacked f16. Other stages pack 16-bit outputs into low and high bits of f32. */
741          if (nir->info.stage == MESA_SHADER_FRAGMENT &&
742              nir_alu_type_get_type_size(ctx->shader->selector->info.output_type[i]) == 16)
743             type = ctx->ac.f16;
744 
745          for (unsigned j = 0; j < 4; j++) {
746             ctx->abi.outputs[i * 4 + j] = ac_build_alloca_undef(&ctx->ac, type, "");
747             ctx->abi.is_16bit[i * 4 + j] = type == ctx->ac.f16;
748          }
749       }
750    }
751 
752    if (!ac_nir_translate(&ctx->ac, &ctx->abi, &ctx->args->ac, nir))
753       return false;
754 
755    switch (ctx->stage) {
756    case MESA_SHADER_VERTEX:
757       if (shader->key.ge.as_ls)
758          si_llvm_ls_build_end(ctx);
759       else if (shader->key.ge.as_es)
760          si_llvm_es_build_end(ctx);
761       break;
762 
763    case MESA_SHADER_TESS_CTRL:
764       if (!shader->is_monolithic)
765          si_llvm_tcs_build_end(ctx);
766       break;
767 
768    case MESA_SHADER_TESS_EVAL:
769       if (ctx->shader->key.ge.as_es)
770          si_llvm_es_build_end(ctx);
771       break;
772 
773    case MESA_SHADER_GEOMETRY:
774       if (!ctx->shader->key.ge.as_ngg)
775          si_llvm_gs_build_end(ctx);
776       break;
777 
778    case MESA_SHADER_FRAGMENT:
779       if (!shader->is_monolithic)
780          si_llvm_ps_build_end(ctx);
781       break;
782 
783    default:
784       break;
785    }
786 
787    si_llvm_build_ret(ctx, ctx->return_value);
788 
789    if (free_nir)
790       ralloc_free(nir);
791    return true;
792 }
793 
si_should_optimize_less(struct ac_llvm_compiler * compiler,struct si_shader_selector * sel)794 static bool si_should_optimize_less(struct ac_llvm_compiler *compiler,
795                                     struct si_shader_selector *sel)
796 {
797    if (!compiler->low_opt_passes)
798       return false;
799 
800    /* Assume a slow CPU. */
801    assert(!sel->screen->info.has_dedicated_vram && sel->screen->info.gfx_level <= GFX8);
802 
803    /* For a crazy dEQP test containing 2597 memory opcodes, mostly
804     * buffer stores. */
805    return sel->stage == MESA_SHADER_COMPUTE && sel->info.num_memory_stores > 1000;
806 }
807 
si_llvm_compile_shader(struct si_screen * sscreen,struct ac_llvm_compiler * compiler,struct si_shader * shader,struct si_shader_args * args,struct util_debug_callback * debug,struct nir_shader * nir)808 bool si_llvm_compile_shader(struct si_screen *sscreen, struct ac_llvm_compiler *compiler,
809                             struct si_shader *shader, struct si_shader_args *args,
810                             struct util_debug_callback *debug, struct nir_shader *nir)
811 {
812    struct si_shader_selector *sel = shader->selector;
813    struct si_shader_context ctx;
814    enum ac_float_mode float_mode = nir->info.stage == MESA_SHADER_KERNEL ? AC_FLOAT_MODE_DEFAULT : AC_FLOAT_MODE_DEFAULT_OPENGL;
815    bool exports_color_null = false;
816    bool exports_mrtz = false;
817 
818    if (sel->stage == MESA_SHADER_FRAGMENT) {
819       exports_color_null = sel->info.colors_written;
820       exports_mrtz = sel->info.writes_z || sel->info.writes_stencil || shader->ps.writes_samplemask;
821       if (!exports_mrtz && !exports_color_null)
822          exports_color_null = si_shader_uses_discard(shader) || sscreen->info.gfx_level < GFX10;
823    }
824 
825    si_llvm_context_init(&ctx, sscreen, compiler, shader->wave_size, exports_color_null, exports_mrtz,
826                         float_mode);
827    ctx.args = args;
828 
829    if (!si_llvm_translate_nir(&ctx, shader, nir, false)) {
830       si_llvm_dispose(&ctx);
831       return false;
832    }
833 
834    /* For merged shader stage. */
835    if (shader->is_monolithic && sscreen->info.gfx_level >= GFX9 &&
836        (sel->stage == MESA_SHADER_TESS_CTRL || sel->stage == MESA_SHADER_GEOMETRY)) {
837       /* LS or ES shader. */
838       struct si_shader prev_shader = {};
839 
840       bool free_nir;
841       nir = si_get_prev_stage_nir_shader(shader, &prev_shader, ctx.args, &free_nir);
842 
843       struct ac_llvm_pointer parts[2];
844       parts[1] = ctx.main_fn;
845 
846       if (!si_llvm_translate_nir(&ctx, &prev_shader, nir, free_nir)) {
847          si_llvm_dispose(&ctx);
848          return false;
849       }
850 
851       parts[0] = ctx.main_fn;
852 
853       /* Reset the shader context. */
854       ctx.shader = shader;
855       ctx.stage = sel->stage;
856 
857       bool same_thread_count = shader->key.ge.opt.same_patch_vertices;
858       si_build_wrapper_function(&ctx, parts, same_thread_count);
859    }
860 
861    si_llvm_optimize_module(&ctx);
862 
863    /* Make sure the input is a pointer and not integer followed by inttoptr. */
864    assert(LLVMGetTypeKind(LLVMTypeOf(LLVMGetParam(ctx.main_fn.value, 0))) == LLVMPointerTypeKind);
865 
866    /* Compile to bytecode. */
867    if (!si_compile_llvm(sscreen, &shader->binary, &shader->config, compiler, &ctx.ac, debug,
868                         sel->stage, si_get_shader_name(shader),
869                         si_should_optimize_less(compiler, shader->selector))) {
870       si_llvm_dispose(&ctx);
871       fprintf(stderr, "LLVM failed to compile shader\n");
872       return false;
873    }
874 
875    si_llvm_dispose(&ctx);
876    return true;
877 }
878 
si_llvm_build_shader_part(struct si_screen * sscreen,gl_shader_stage stage,bool prolog,struct ac_llvm_compiler * compiler,struct util_debug_callback * debug,const char * name,struct si_shader_part * result)879 bool si_llvm_build_shader_part(struct si_screen *sscreen, gl_shader_stage stage,
880                                bool prolog, struct ac_llvm_compiler *compiler,
881                                struct util_debug_callback *debug, const char *name,
882                                struct si_shader_part *result)
883 {
884    union si_shader_part_key *key = &result->key;
885 
886    struct si_shader_selector sel = {};
887    sel.screen = sscreen;
888 
889    struct si_shader shader = {};
890    shader.selector = &sel;
891    bool wave32 = false;
892    bool exports_color_null = false;
893    bool exports_mrtz = false;
894 
895    switch (stage) {
896    case MESA_SHADER_FRAGMENT:
897       if (prolog) {
898          shader.key.ps.part.prolog = key->ps_prolog.states;
899          wave32 = key->ps_prolog.wave32;
900          exports_color_null = key->ps_prolog.states.poly_stipple;
901       } else {
902          shader.key.ps.part.epilog = key->ps_epilog.states;
903          wave32 = key->ps_epilog.wave32;
904          exports_color_null = key->ps_epilog.colors_written;
905          exports_mrtz = key->ps_epilog.writes_z || key->ps_epilog.writes_stencil ||
906                         key->ps_epilog.writes_samplemask;
907          if (!exports_mrtz && !exports_color_null)
908             exports_color_null = key->ps_epilog.uses_discard || sscreen->info.gfx_level < GFX10;
909       }
910       break;
911    default:
912       unreachable("bad shader part");
913    }
914 
915    struct si_shader_context ctx;
916    si_llvm_context_init(&ctx, sscreen, compiler, wave32 ? 32 : 64, exports_color_null, exports_mrtz,
917                         AC_FLOAT_MODE_DEFAULT_OPENGL);
918 
919    ctx.shader = &shader;
920    ctx.stage = stage;
921 
922    struct si_shader_args args;
923    ctx.args = &args;
924 
925    void (*build)(struct si_shader_context *, union si_shader_part_key *);
926 
927    switch (stage) {
928    case MESA_SHADER_FRAGMENT:
929       build = prolog ? si_llvm_build_ps_prolog : si_llvm_build_ps_epilog;
930       break;
931    default:
932       unreachable("bad shader part");
933    }
934 
935    build(&ctx, key);
936 
937    /* Compile. */
938    si_llvm_optimize_module(&ctx);
939 
940    bool ret = si_compile_llvm(sscreen, &result->binary, &result->config, compiler,
941                               &ctx.ac, debug, ctx.stage, name, false);
942 
943    si_llvm_dispose(&ctx);
944    return ret;
945 }
946