1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Time of day based timer functions.
4 *
5 * S390 version
6 * Copyright IBM Corp. 1999, 2008
7 * Author(s): Hartmut Penner ([email protected]),
8 * Martin Schwidefsky ([email protected]),
9 * Denis Joseph Barrow ([email protected],[email protected])
10 *
11 * Derived from "arch/i386/kernel/time.c"
12 * Copyright (C) 1991, 1992, 1995 Linus Torvalds
13 */
14
15 #define KMSG_COMPONENT "time"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
18 #include <linux/kernel_stat.h>
19 #include <linux/errno.h>
20 #include <linux/export.h>
21 #include <linux/sched.h>
22 #include <linux/sched/clock.h>
23 #include <linux/kernel.h>
24 #include <linux/param.h>
25 #include <linux/string.h>
26 #include <linux/mm.h>
27 #include <linux/interrupt.h>
28 #include <linux/cpu.h>
29 #include <linux/stop_machine.h>
30 #include <linux/time.h>
31 #include <linux/device.h>
32 #include <linux/delay.h>
33 #include <linux/init.h>
34 #include <linux/smp.h>
35 #include <linux/types.h>
36 #include <linux/profile.h>
37 #include <linux/timex.h>
38 #include <linux/notifier.h>
39 #include <linux/clockchips.h>
40 #include <linux/gfp.h>
41 #include <linux/kprobes.h>
42 #include <linux/uaccess.h>
43 #include <vdso/vsyscall.h>
44 #include <vdso/clocksource.h>
45 #include <vdso/helpers.h>
46 #include <asm/facility.h>
47 #include <asm/delay.h>
48 #include <asm/div64.h>
49 #include <asm/vdso.h>
50 #include <asm/irq.h>
51 #include <asm/irq_regs.h>
52 #include <asm/vtimer.h>
53 #include <asm/stp.h>
54 #include <asm/cio.h>
55 #include "entry.h"
56
57 union tod_clock tod_clock_base __section(".data");
58 EXPORT_SYMBOL_GPL(tod_clock_base);
59
60 u64 clock_comparator_max = -1ULL;
61 EXPORT_SYMBOL_GPL(clock_comparator_max);
62
63 static DEFINE_PER_CPU(struct clock_event_device, comparators);
64
65 ATOMIC_NOTIFIER_HEAD(s390_epoch_delta_notifier);
66 EXPORT_SYMBOL(s390_epoch_delta_notifier);
67
68 unsigned char ptff_function_mask[16];
69
70 static unsigned long lpar_offset;
71 static unsigned long initial_leap_seconds;
72 static unsigned long tod_steering_end;
73 static long tod_steering_delta;
74
75 /*
76 * Get time offsets with PTFF
77 */
time_early_init(void)78 void __init time_early_init(void)
79 {
80 struct ptff_qto qto;
81 struct ptff_qui qui;
82 int cs;
83
84 /* Initialize TOD steering parameters */
85 tod_steering_end = tod_clock_base.tod;
86 for (cs = 0; cs < CS_BASES; cs++)
87 vdso_data[cs].arch_data.tod_steering_end = tod_steering_end;
88
89 if (!test_facility(28))
90 return;
91
92 ptff(&ptff_function_mask, sizeof(ptff_function_mask), PTFF_QAF);
93
94 /* get LPAR offset */
95 if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0)
96 lpar_offset = qto.tod_epoch_difference;
97
98 /* get initial leap seconds */
99 if (ptff_query(PTFF_QUI) && ptff(&qui, sizeof(qui), PTFF_QUI) == 0)
100 initial_leap_seconds = (unsigned long)
101 ((long) qui.old_leap * 4096000000L);
102 }
103
sched_clock_noinstr(void)104 unsigned long long noinstr sched_clock_noinstr(void)
105 {
106 return tod_to_ns(__get_tod_clock_monotonic());
107 }
108
109 /*
110 * Scheduler clock - returns current time in nanosec units.
111 */
sched_clock(void)112 unsigned long long notrace sched_clock(void)
113 {
114 return tod_to_ns(get_tod_clock_monotonic());
115 }
116 NOKPROBE_SYMBOL(sched_clock);
117
ext_to_timespec64(union tod_clock * clk,struct timespec64 * xt)118 static void ext_to_timespec64(union tod_clock *clk, struct timespec64 *xt)
119 {
120 unsigned long rem, sec, nsec;
121
122 sec = clk->us;
123 rem = do_div(sec, 1000000);
124 nsec = ((clk->sus + (rem << 12)) * 125) >> 9;
125 xt->tv_sec = sec;
126 xt->tv_nsec = nsec;
127 }
128
clock_comparator_work(void)129 void clock_comparator_work(void)
130 {
131 struct clock_event_device *cd;
132
133 get_lowcore()->clock_comparator = clock_comparator_max;
134 cd = this_cpu_ptr(&comparators);
135 cd->event_handler(cd);
136 }
137
s390_next_event(unsigned long delta,struct clock_event_device * evt)138 static int s390_next_event(unsigned long delta,
139 struct clock_event_device *evt)
140 {
141 get_lowcore()->clock_comparator = get_tod_clock() + delta;
142 set_clock_comparator(get_lowcore()->clock_comparator);
143 return 0;
144 }
145
146 /*
147 * Set up lowcore and control register of the current cpu to
148 * enable TOD clock and clock comparator interrupts.
149 */
init_cpu_timer(void)150 void init_cpu_timer(void)
151 {
152 struct clock_event_device *cd;
153 int cpu;
154
155 get_lowcore()->clock_comparator = clock_comparator_max;
156 set_clock_comparator(get_lowcore()->clock_comparator);
157
158 cpu = smp_processor_id();
159 cd = &per_cpu(comparators, cpu);
160 cd->name = "comparator";
161 cd->features = CLOCK_EVT_FEAT_ONESHOT;
162 cd->mult = 16777;
163 cd->shift = 12;
164 cd->min_delta_ns = 1;
165 cd->min_delta_ticks = 1;
166 cd->max_delta_ns = LONG_MAX;
167 cd->max_delta_ticks = ULONG_MAX;
168 cd->rating = 400;
169 cd->cpumask = cpumask_of(cpu);
170 cd->set_next_event = s390_next_event;
171
172 clockevents_register_device(cd);
173
174 /* Enable clock comparator timer interrupt. */
175 local_ctl_set_bit(0, CR0_CLOCK_COMPARATOR_SUBMASK_BIT);
176
177 /* Always allow the timing alert external interrupt. */
178 local_ctl_set_bit(0, CR0_ETR_SUBMASK_BIT);
179 }
180
clock_comparator_interrupt(struct ext_code ext_code,unsigned int param32,unsigned long param64)181 static void clock_comparator_interrupt(struct ext_code ext_code,
182 unsigned int param32,
183 unsigned long param64)
184 {
185 inc_irq_stat(IRQEXT_CLK);
186 if (get_lowcore()->clock_comparator == clock_comparator_max)
187 set_clock_comparator(get_lowcore()->clock_comparator);
188 }
189
190 static void stp_timing_alert(struct stp_irq_parm *);
191
timing_alert_interrupt(struct ext_code ext_code,unsigned int param32,unsigned long param64)192 static void timing_alert_interrupt(struct ext_code ext_code,
193 unsigned int param32, unsigned long param64)
194 {
195 inc_irq_stat(IRQEXT_TLA);
196 if (param32 & 0x00038000)
197 stp_timing_alert((struct stp_irq_parm *) ¶m32);
198 }
199
200 static void stp_reset(void);
201
read_persistent_clock64(struct timespec64 * ts)202 void read_persistent_clock64(struct timespec64 *ts)
203 {
204 union tod_clock clk;
205 u64 delta;
206
207 delta = initial_leap_seconds + TOD_UNIX_EPOCH;
208 store_tod_clock_ext(&clk);
209 clk.eitod -= delta;
210 ext_to_timespec64(&clk, ts);
211 }
212
read_persistent_wall_and_boot_offset(struct timespec64 * wall_time,struct timespec64 * boot_offset)213 void __init read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
214 struct timespec64 *boot_offset)
215 {
216 struct timespec64 boot_time;
217 union tod_clock clk;
218 u64 delta;
219
220 delta = initial_leap_seconds + TOD_UNIX_EPOCH;
221 clk = tod_clock_base;
222 clk.eitod -= delta;
223 ext_to_timespec64(&clk, &boot_time);
224
225 read_persistent_clock64(wall_time);
226 *boot_offset = timespec64_sub(*wall_time, boot_time);
227 }
228
read_tod_clock(struct clocksource * cs)229 static u64 read_tod_clock(struct clocksource *cs)
230 {
231 unsigned long now, adj;
232
233 preempt_disable(); /* protect from changes to steering parameters */
234 now = get_tod_clock();
235 adj = tod_steering_end - now;
236 if (unlikely((s64) adj > 0))
237 /*
238 * manually steer by 1 cycle every 2^16 cycles. This
239 * corresponds to shifting the tod delta by 15. 1s is
240 * therefore steered in ~9h. The adjust will decrease
241 * over time, until it finally reaches 0.
242 */
243 now += (tod_steering_delta < 0) ? (adj >> 15) : -(adj >> 15);
244 preempt_enable();
245 return now;
246 }
247
248 static struct clocksource clocksource_tod = {
249 .name = "tod",
250 .rating = 400,
251 .read = read_tod_clock,
252 .mask = CLOCKSOURCE_MASK(64),
253 .mult = 4096000,
254 .shift = 24,
255 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
256 .vdso_clock_mode = VDSO_CLOCKMODE_TOD,
257 .id = CSID_S390_TOD,
258 };
259
clocksource_default_clock(void)260 struct clocksource * __init clocksource_default_clock(void)
261 {
262 return &clocksource_tod;
263 }
264
265 /*
266 * Initialize the TOD clock and the CPU timer of
267 * the boot cpu.
268 */
time_init(void)269 void __init time_init(void)
270 {
271 /* Reset time synchronization interfaces. */
272 stp_reset();
273
274 /* request the clock comparator external interrupt */
275 if (register_external_irq(EXT_IRQ_CLK_COMP, clock_comparator_interrupt))
276 panic("Couldn't request external interrupt 0x1004");
277
278 /* request the timing alert external interrupt */
279 if (register_external_irq(EXT_IRQ_TIMING_ALERT, timing_alert_interrupt))
280 panic("Couldn't request external interrupt 0x1406");
281
282 if (__clocksource_register(&clocksource_tod) != 0)
283 panic("Could not register TOD clock source");
284
285 /* Enable TOD clock interrupts on the boot cpu. */
286 init_cpu_timer();
287
288 /* Enable cpu timer interrupts on the boot cpu. */
289 vtime_init();
290 }
291
292 static DEFINE_PER_CPU(atomic_t, clock_sync_word);
293 static DEFINE_MUTEX(stp_mutex);
294 static unsigned long clock_sync_flags;
295
296 #define CLOCK_SYNC_HAS_STP 0
297 #define CLOCK_SYNC_STP 1
298 #define CLOCK_SYNC_STPINFO_VALID 2
299
300 /*
301 * The get_clock function for the physical clock. It will get the current
302 * TOD clock, subtract the LPAR offset and write the result to *clock.
303 * The function returns 0 if the clock is in sync with the external time
304 * source. If the clock mode is local it will return -EOPNOTSUPP and
305 * -EAGAIN if the clock is not in sync with the external reference.
306 */
get_phys_clock(unsigned long * clock)307 int get_phys_clock(unsigned long *clock)
308 {
309 atomic_t *sw_ptr;
310 unsigned int sw0, sw1;
311
312 sw_ptr = &get_cpu_var(clock_sync_word);
313 sw0 = atomic_read(sw_ptr);
314 *clock = get_tod_clock() - lpar_offset;
315 sw1 = atomic_read(sw_ptr);
316 put_cpu_var(clock_sync_word);
317 if (sw0 == sw1 && (sw0 & 0x80000000U))
318 /* Success: time is in sync. */
319 return 0;
320 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
321 return -EOPNOTSUPP;
322 if (!test_bit(CLOCK_SYNC_STP, &clock_sync_flags))
323 return -EACCES;
324 return -EAGAIN;
325 }
326 EXPORT_SYMBOL(get_phys_clock);
327
328 /*
329 * Make get_phys_clock() return -EAGAIN.
330 */
disable_sync_clock(void * dummy)331 static void disable_sync_clock(void *dummy)
332 {
333 atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
334 /*
335 * Clear the in-sync bit 2^31. All get_phys_clock calls will
336 * fail until the sync bit is turned back on. In addition
337 * increase the "sequence" counter to avoid the race of an
338 * stp event and the complete recovery against get_phys_clock.
339 */
340 atomic_andnot(0x80000000, sw_ptr);
341 atomic_inc(sw_ptr);
342 }
343
344 /*
345 * Make get_phys_clock() return 0 again.
346 * Needs to be called from a context disabled for preemption.
347 */
enable_sync_clock(void)348 static void enable_sync_clock(void)
349 {
350 atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
351 atomic_or(0x80000000, sw_ptr);
352 }
353
354 /*
355 * Function to check if the clock is in sync.
356 */
check_sync_clock(void)357 static inline int check_sync_clock(void)
358 {
359 atomic_t *sw_ptr;
360 int rc;
361
362 sw_ptr = &get_cpu_var(clock_sync_word);
363 rc = (atomic_read(sw_ptr) & 0x80000000U) != 0;
364 put_cpu_var(clock_sync_word);
365 return rc;
366 }
367
368 /*
369 * Apply clock delta to the global data structures.
370 * This is called once on the CPU that performed the clock sync.
371 */
clock_sync_global(long delta)372 static void clock_sync_global(long delta)
373 {
374 unsigned long now, adj;
375 struct ptff_qto qto;
376 int cs;
377
378 /* Fixup the monotonic sched clock. */
379 tod_clock_base.eitod += delta;
380 /* Adjust TOD steering parameters. */
381 now = get_tod_clock();
382 adj = tod_steering_end - now;
383 if (unlikely((s64) adj >= 0))
384 /* Calculate how much of the old adjustment is left. */
385 tod_steering_delta = (tod_steering_delta < 0) ?
386 -(adj >> 15) : (adj >> 15);
387 tod_steering_delta += delta;
388 if ((abs(tod_steering_delta) >> 48) != 0)
389 panic("TOD clock sync offset %li is too large to drift\n",
390 tod_steering_delta);
391 tod_steering_end = now + (abs(tod_steering_delta) << 15);
392 for (cs = 0; cs < CS_BASES; cs++) {
393 vdso_data[cs].arch_data.tod_steering_end = tod_steering_end;
394 vdso_data[cs].arch_data.tod_steering_delta = tod_steering_delta;
395 }
396
397 /* Update LPAR offset. */
398 if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0)
399 lpar_offset = qto.tod_epoch_difference;
400 /* Call the TOD clock change notifier. */
401 atomic_notifier_call_chain(&s390_epoch_delta_notifier, 0, &delta);
402 }
403
404 /*
405 * Apply clock delta to the per-CPU data structures of this CPU.
406 * This is called for each online CPU after the call to clock_sync_global.
407 */
clock_sync_local(long delta)408 static void clock_sync_local(long delta)
409 {
410 /* Add the delta to the clock comparator. */
411 if (get_lowcore()->clock_comparator != clock_comparator_max) {
412 get_lowcore()->clock_comparator += delta;
413 set_clock_comparator(get_lowcore()->clock_comparator);
414 }
415 /* Adjust the last_update_clock time-stamp. */
416 get_lowcore()->last_update_clock += delta;
417 }
418
419 /* Single threaded workqueue used for stp sync events */
420 static struct workqueue_struct *time_sync_wq;
421
time_init_wq(void)422 static void __init time_init_wq(void)
423 {
424 if (time_sync_wq)
425 return;
426 time_sync_wq = create_singlethread_workqueue("timesync");
427 }
428
429 struct clock_sync_data {
430 atomic_t cpus;
431 int in_sync;
432 long clock_delta;
433 };
434
435 /*
436 * Server Time Protocol (STP) code.
437 */
438 static bool stp_online;
439 static struct stp_sstpi stp_info;
440 static void *stp_page;
441
442 static void stp_work_fn(struct work_struct *work);
443 static DECLARE_WORK(stp_work, stp_work_fn);
444 static struct timer_list stp_timer;
445
early_parse_stp(char * p)446 static int __init early_parse_stp(char *p)
447 {
448 return kstrtobool(p, &stp_online);
449 }
450 early_param("stp", early_parse_stp);
451
452 /*
453 * Reset STP attachment.
454 */
stp_reset(void)455 static void __init stp_reset(void)
456 {
457 int rc;
458
459 stp_page = (void *) get_zeroed_page(GFP_ATOMIC);
460 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL);
461 if (rc == 0)
462 set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags);
463 else if (stp_online) {
464 pr_warn("The real or virtual hardware system does not provide an STP interface\n");
465 free_page((unsigned long) stp_page);
466 stp_page = NULL;
467 stp_online = false;
468 }
469 }
470
stp_enabled(void)471 bool stp_enabled(void)
472 {
473 return test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags) && stp_online;
474 }
475 EXPORT_SYMBOL(stp_enabled);
476
stp_timeout(struct timer_list * unused)477 static void stp_timeout(struct timer_list *unused)
478 {
479 queue_work(time_sync_wq, &stp_work);
480 }
481
stp_init(void)482 static int __init stp_init(void)
483 {
484 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
485 return 0;
486 timer_setup(&stp_timer, stp_timeout, 0);
487 time_init_wq();
488 if (!stp_online)
489 return 0;
490 queue_work(time_sync_wq, &stp_work);
491 return 0;
492 }
493
494 arch_initcall(stp_init);
495
496 /*
497 * STP timing alert. There are three causes:
498 * 1) timing status change
499 * 2) link availability change
500 * 3) time control parameter change
501 * In all three cases we are only interested in the clock source state.
502 * If a STP clock source is now available use it.
503 */
stp_timing_alert(struct stp_irq_parm * intparm)504 static void stp_timing_alert(struct stp_irq_parm *intparm)
505 {
506 if (intparm->tsc || intparm->lac || intparm->tcpc)
507 queue_work(time_sync_wq, &stp_work);
508 }
509
510 /*
511 * STP sync check machine check. This is called when the timing state
512 * changes from the synchronized state to the unsynchronized state.
513 * After a STP sync check the clock is not in sync. The machine check
514 * is broadcasted to all cpus at the same time.
515 */
stp_sync_check(void)516 int stp_sync_check(void)
517 {
518 disable_sync_clock(NULL);
519 return 1;
520 }
521
522 /*
523 * STP island condition machine check. This is called when an attached
524 * server attempts to communicate over an STP link and the servers
525 * have matching CTN ids and have a valid stratum-1 configuration
526 * but the configurations do not match.
527 */
stp_island_check(void)528 int stp_island_check(void)
529 {
530 disable_sync_clock(NULL);
531 return 1;
532 }
533
stp_queue_work(void)534 void stp_queue_work(void)
535 {
536 queue_work(time_sync_wq, &stp_work);
537 }
538
__store_stpinfo(void)539 static int __store_stpinfo(void)
540 {
541 int rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi));
542
543 if (rc)
544 clear_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags);
545 else
546 set_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags);
547 return rc;
548 }
549
stpinfo_valid(void)550 static int stpinfo_valid(void)
551 {
552 return stp_online && test_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags);
553 }
554
stp_sync_clock(void * data)555 static int stp_sync_clock(void *data)
556 {
557 struct clock_sync_data *sync = data;
558 long clock_delta, flags;
559 static int first;
560 int rc;
561
562 enable_sync_clock();
563 if (xchg(&first, 1) == 0) {
564 /* Wait until all other cpus entered the sync function. */
565 while (atomic_read(&sync->cpus) != 0)
566 cpu_relax();
567 rc = 0;
568 if (stp_info.todoff || stp_info.tmd != 2) {
569 flags = vdso_update_begin();
570 rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0,
571 &clock_delta);
572 if (rc == 0) {
573 sync->clock_delta = clock_delta;
574 clock_sync_global(clock_delta);
575 rc = __store_stpinfo();
576 if (rc == 0 && stp_info.tmd != 2)
577 rc = -EAGAIN;
578 }
579 vdso_update_end(flags);
580 }
581 sync->in_sync = rc ? -EAGAIN : 1;
582 xchg(&first, 0);
583 } else {
584 /* Slave */
585 atomic_dec(&sync->cpus);
586 /* Wait for in_sync to be set. */
587 while (READ_ONCE(sync->in_sync) == 0)
588 __udelay(1);
589 }
590 if (sync->in_sync != 1)
591 /* Didn't work. Clear per-cpu in sync bit again. */
592 disable_sync_clock(NULL);
593 /* Apply clock delta to per-CPU fields of this CPU. */
594 clock_sync_local(sync->clock_delta);
595
596 return 0;
597 }
598
stp_clear_leap(void)599 static int stp_clear_leap(void)
600 {
601 struct __kernel_timex txc;
602 int ret;
603
604 memset(&txc, 0, sizeof(txc));
605
606 ret = do_adjtimex(&txc);
607 if (ret < 0)
608 return ret;
609
610 txc.modes = ADJ_STATUS;
611 txc.status &= ~(STA_INS|STA_DEL);
612 return do_adjtimex(&txc);
613 }
614
stp_check_leap(void)615 static void stp_check_leap(void)
616 {
617 struct stp_stzi stzi;
618 struct stp_lsoib *lsoib = &stzi.lsoib;
619 struct __kernel_timex txc;
620 int64_t timediff;
621 int leapdiff, ret;
622
623 if (!stp_info.lu || !check_sync_clock()) {
624 /*
625 * Either a scheduled leap second was removed by the operator,
626 * or STP is out of sync. In both cases, clear the leap second
627 * kernel flags.
628 */
629 if (stp_clear_leap() < 0)
630 pr_err("failed to clear leap second flags\n");
631 return;
632 }
633
634 if (chsc_stzi(stp_page, &stzi, sizeof(stzi))) {
635 pr_err("stzi failed\n");
636 return;
637 }
638
639 timediff = tod_to_ns(lsoib->nlsout - get_tod_clock()) / NSEC_PER_SEC;
640 leapdiff = lsoib->nlso - lsoib->also;
641
642 if (leapdiff != 1 && leapdiff != -1) {
643 pr_err("Cannot schedule %d leap seconds\n", leapdiff);
644 return;
645 }
646
647 if (timediff < 0) {
648 if (stp_clear_leap() < 0)
649 pr_err("failed to clear leap second flags\n");
650 } else if (timediff < 7200) {
651 memset(&txc, 0, sizeof(txc));
652 ret = do_adjtimex(&txc);
653 if (ret < 0)
654 return;
655
656 txc.modes = ADJ_STATUS;
657 if (leapdiff > 0)
658 txc.status |= STA_INS;
659 else
660 txc.status |= STA_DEL;
661 ret = do_adjtimex(&txc);
662 if (ret < 0)
663 pr_err("failed to set leap second flags\n");
664 /* arm Timer to clear leap second flags */
665 mod_timer(&stp_timer, jiffies + secs_to_jiffies(14400));
666 } else {
667 /* The day the leap second is scheduled for hasn't been reached. Retry
668 * in one hour.
669 */
670 mod_timer(&stp_timer, jiffies + secs_to_jiffies(3600));
671 }
672 }
673
674 /*
675 * STP work. Check for the STP state and take over the clock
676 * synchronization if the STP clock source is usable.
677 */
stp_work_fn(struct work_struct * work)678 static void stp_work_fn(struct work_struct *work)
679 {
680 struct clock_sync_data stp_sync;
681 int rc;
682
683 /* prevent multiple execution. */
684 mutex_lock(&stp_mutex);
685
686 if (!stp_online) {
687 chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL);
688 del_timer_sync(&stp_timer);
689 goto out_unlock;
690 }
691
692 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xf0e0, NULL);
693 if (rc)
694 goto out_unlock;
695
696 rc = __store_stpinfo();
697 if (rc || stp_info.c == 0)
698 goto out_unlock;
699
700 /* Skip synchronization if the clock is already in sync. */
701 if (!check_sync_clock()) {
702 memset(&stp_sync, 0, sizeof(stp_sync));
703 cpus_read_lock();
704 atomic_set(&stp_sync.cpus, num_online_cpus() - 1);
705 stop_machine_cpuslocked(stp_sync_clock, &stp_sync, cpu_online_mask);
706 cpus_read_unlock();
707 }
708
709 if (!check_sync_clock())
710 /*
711 * There is a usable clock but the synchronization failed.
712 * Retry after a second.
713 */
714 mod_timer(&stp_timer, jiffies + msecs_to_jiffies(MSEC_PER_SEC));
715 else if (stp_info.lu)
716 stp_check_leap();
717
718 out_unlock:
719 mutex_unlock(&stp_mutex);
720 }
721
722 /*
723 * STP subsys sysfs interface functions
724 */
725 static const struct bus_type stp_subsys = {
726 .name = "stp",
727 .dev_name = "stp",
728 };
729
ctn_id_show(struct device * dev,struct device_attribute * attr,char * buf)730 static ssize_t ctn_id_show(struct device *dev,
731 struct device_attribute *attr,
732 char *buf)
733 {
734 ssize_t ret = -ENODATA;
735
736 mutex_lock(&stp_mutex);
737 if (stpinfo_valid())
738 ret = sysfs_emit(buf, "%016lx\n",
739 *(unsigned long *)stp_info.ctnid);
740 mutex_unlock(&stp_mutex);
741 return ret;
742 }
743
744 static DEVICE_ATTR_RO(ctn_id);
745
ctn_type_show(struct device * dev,struct device_attribute * attr,char * buf)746 static ssize_t ctn_type_show(struct device *dev,
747 struct device_attribute *attr,
748 char *buf)
749 {
750 ssize_t ret = -ENODATA;
751
752 mutex_lock(&stp_mutex);
753 if (stpinfo_valid())
754 ret = sysfs_emit(buf, "%i\n", stp_info.ctn);
755 mutex_unlock(&stp_mutex);
756 return ret;
757 }
758
759 static DEVICE_ATTR_RO(ctn_type);
760
dst_offset_show(struct device * dev,struct device_attribute * attr,char * buf)761 static ssize_t dst_offset_show(struct device *dev,
762 struct device_attribute *attr,
763 char *buf)
764 {
765 ssize_t ret = -ENODATA;
766
767 mutex_lock(&stp_mutex);
768 if (stpinfo_valid() && (stp_info.vbits & 0x2000))
769 ret = sysfs_emit(buf, "%i\n", (int)(s16)stp_info.dsto);
770 mutex_unlock(&stp_mutex);
771 return ret;
772 }
773
774 static DEVICE_ATTR_RO(dst_offset);
775
leap_seconds_show(struct device * dev,struct device_attribute * attr,char * buf)776 static ssize_t leap_seconds_show(struct device *dev,
777 struct device_attribute *attr,
778 char *buf)
779 {
780 ssize_t ret = -ENODATA;
781
782 mutex_lock(&stp_mutex);
783 if (stpinfo_valid() && (stp_info.vbits & 0x8000))
784 ret = sysfs_emit(buf, "%i\n", (int)(s16)stp_info.leaps);
785 mutex_unlock(&stp_mutex);
786 return ret;
787 }
788
789 static DEVICE_ATTR_RO(leap_seconds);
790
leap_seconds_scheduled_show(struct device * dev,struct device_attribute * attr,char * buf)791 static ssize_t leap_seconds_scheduled_show(struct device *dev,
792 struct device_attribute *attr,
793 char *buf)
794 {
795 struct stp_stzi stzi;
796 ssize_t ret;
797
798 mutex_lock(&stp_mutex);
799 if (!stpinfo_valid() || !(stp_info.vbits & 0x8000) || !stp_info.lu) {
800 mutex_unlock(&stp_mutex);
801 return -ENODATA;
802 }
803
804 ret = chsc_stzi(stp_page, &stzi, sizeof(stzi));
805 mutex_unlock(&stp_mutex);
806 if (ret < 0)
807 return ret;
808
809 if (!stzi.lsoib.p)
810 return sysfs_emit(buf, "0,0\n");
811
812 return sysfs_emit(buf, "%lu,%d\n",
813 tod_to_ns(stzi.lsoib.nlsout - TOD_UNIX_EPOCH) / NSEC_PER_SEC,
814 stzi.lsoib.nlso - stzi.lsoib.also);
815 }
816
817 static DEVICE_ATTR_RO(leap_seconds_scheduled);
818
stratum_show(struct device * dev,struct device_attribute * attr,char * buf)819 static ssize_t stratum_show(struct device *dev,
820 struct device_attribute *attr,
821 char *buf)
822 {
823 ssize_t ret = -ENODATA;
824
825 mutex_lock(&stp_mutex);
826 if (stpinfo_valid())
827 ret = sysfs_emit(buf, "%i\n", (int)(s16)stp_info.stratum);
828 mutex_unlock(&stp_mutex);
829 return ret;
830 }
831
832 static DEVICE_ATTR_RO(stratum);
833
time_offset_show(struct device * dev,struct device_attribute * attr,char * buf)834 static ssize_t time_offset_show(struct device *dev,
835 struct device_attribute *attr,
836 char *buf)
837 {
838 ssize_t ret = -ENODATA;
839
840 mutex_lock(&stp_mutex);
841 if (stpinfo_valid() && (stp_info.vbits & 0x0800))
842 ret = sysfs_emit(buf, "%i\n", (int)stp_info.tto);
843 mutex_unlock(&stp_mutex);
844 return ret;
845 }
846
847 static DEVICE_ATTR_RO(time_offset);
848
time_zone_offset_show(struct device * dev,struct device_attribute * attr,char * buf)849 static ssize_t time_zone_offset_show(struct device *dev,
850 struct device_attribute *attr,
851 char *buf)
852 {
853 ssize_t ret = -ENODATA;
854
855 mutex_lock(&stp_mutex);
856 if (stpinfo_valid() && (stp_info.vbits & 0x4000))
857 ret = sysfs_emit(buf, "%i\n", (int)(s16)stp_info.tzo);
858 mutex_unlock(&stp_mutex);
859 return ret;
860 }
861
862 static DEVICE_ATTR_RO(time_zone_offset);
863
timing_mode_show(struct device * dev,struct device_attribute * attr,char * buf)864 static ssize_t timing_mode_show(struct device *dev,
865 struct device_attribute *attr,
866 char *buf)
867 {
868 ssize_t ret = -ENODATA;
869
870 mutex_lock(&stp_mutex);
871 if (stpinfo_valid())
872 ret = sysfs_emit(buf, "%i\n", stp_info.tmd);
873 mutex_unlock(&stp_mutex);
874 return ret;
875 }
876
877 static DEVICE_ATTR_RO(timing_mode);
878
timing_state_show(struct device * dev,struct device_attribute * attr,char * buf)879 static ssize_t timing_state_show(struct device *dev,
880 struct device_attribute *attr,
881 char *buf)
882 {
883 ssize_t ret = -ENODATA;
884
885 mutex_lock(&stp_mutex);
886 if (stpinfo_valid())
887 ret = sysfs_emit(buf, "%i\n", stp_info.tst);
888 mutex_unlock(&stp_mutex);
889 return ret;
890 }
891
892 static DEVICE_ATTR_RO(timing_state);
893
online_show(struct device * dev,struct device_attribute * attr,char * buf)894 static ssize_t online_show(struct device *dev,
895 struct device_attribute *attr,
896 char *buf)
897 {
898 return sysfs_emit(buf, "%i\n", stp_online);
899 }
900
online_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)901 static ssize_t online_store(struct device *dev,
902 struct device_attribute *attr,
903 const char *buf, size_t count)
904 {
905 unsigned int value;
906
907 value = simple_strtoul(buf, NULL, 0);
908 if (value != 0 && value != 1)
909 return -EINVAL;
910 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
911 return -EOPNOTSUPP;
912 mutex_lock(&stp_mutex);
913 stp_online = value;
914 if (stp_online)
915 set_bit(CLOCK_SYNC_STP, &clock_sync_flags);
916 else
917 clear_bit(CLOCK_SYNC_STP, &clock_sync_flags);
918 queue_work(time_sync_wq, &stp_work);
919 mutex_unlock(&stp_mutex);
920 return count;
921 }
922
923 /*
924 * Can't use DEVICE_ATTR because the attribute should be named
925 * stp/online but dev_attr_online already exists in this file ..
926 */
927 static DEVICE_ATTR_RW(online);
928
929 static struct attribute *stp_dev_attrs[] = {
930 &dev_attr_ctn_id.attr,
931 &dev_attr_ctn_type.attr,
932 &dev_attr_dst_offset.attr,
933 &dev_attr_leap_seconds.attr,
934 &dev_attr_online.attr,
935 &dev_attr_leap_seconds_scheduled.attr,
936 &dev_attr_stratum.attr,
937 &dev_attr_time_offset.attr,
938 &dev_attr_time_zone_offset.attr,
939 &dev_attr_timing_mode.attr,
940 &dev_attr_timing_state.attr,
941 NULL
942 };
943 ATTRIBUTE_GROUPS(stp_dev);
944
stp_init_sysfs(void)945 static int __init stp_init_sysfs(void)
946 {
947 return subsys_system_register(&stp_subsys, stp_dev_groups);
948 }
949
950 device_initcall(stp_init_sysfs);
951