1 #include <torch/csrc/jit/frontend/schema_matching.h>
2
3 #include <ATen/core/interned_strings.h>
4 #include <ATen/core/jit_type.h>
5 #include <c10/util/Exception.h>
6 #include <c10/util/irange.h>
7 #include <caffe2/serialize/versions.h>
8 #include <torch/csrc/jit/frontend/builtin_functions.h>
9 #include <torch/csrc/jit/frontend/error_report.h>
10 #include <torch/csrc/jit/frontend/function_schema_parser.h>
11 #include <torch/csrc/jit/ir/ir.h>
12 #include <torch/csrc/jit/operator_upgraders/utils.h>
13 #include <torch/csrc/jit/operator_upgraders/version_map.h>
14 #include <torch/csrc/jit/runtime/operator.h>
15 #include <optional>
16
17 namespace torch::jit {
18
unwrapOptional(TypePtr opt_type)19 static inline TypePtr unwrapOptional(TypePtr opt_type) {
20 if (auto dyn = opt_type->castRaw<c10::DynamicType>()) {
21 return unwrapOptional(dyn->fallback());
22 }
23 if (auto unwrap_list_type = opt_type->cast<OptionalType>()) {
24 return unwrap_list_type->getElementType();
25 }
26 return opt_type;
27 }
28
isIntOrFloatUsedAsList(const Value * value,const Argument & arg)29 static inline bool isIntOrFloatUsedAsList(
30 const Value* value,
31 const Argument& arg) {
32 // Look for int[N] or float[N]
33 const auto& v_type = value->type();
34 if (v_type != FloatType::get() && v_type != IntType::get())
35 return false;
36 auto arg_type = unwrapOptional(arg.type());
37 auto list_type = arg_type->cast<ListType>();
38 return list_type && list_type->getElementType() == v_type && arg.N();
39 }
40
41 /// Returns true if `type` is a Tuple in which all the elements have the
42 /// same type or if it's a subtype of `list_type_`.
convertibleToList(const TypePtr & type,const TypePtr & list_type_)43 bool convertibleToList(const TypePtr& type, const TypePtr& list_type_) {
44 auto list_type = list_type_->castRaw<ListType>();
45 if (!list_type) {
46 return false;
47 }
48 if (type->isSubtypeOf(*list_type_)) {
49 return true;
50 }
51 if (auto tuple = type->castRaw<TupleType>()) {
52 return std::all_of(
53 tuple->elements().begin(),
54 tuple->elements().end(),
55 [&](const TypePtr& t) {
56 // TODO: resolve VarType if necessary
57 return t->isSubtypeOf(*list_type->getElementType());
58 });
59 }
60 return false;
61 }
62
63 // Applies implicit conversion from value trying to turn it into type
64 // concrete_type. It succeeds if `return_value->isSubtypeOf(concrete_type)`
tryConvertToType(const SourceRange & loc,Graph & graph,const TypePtr & concrete_type,Value * value,bool allow_conversions)65 Value* tryConvertToType(
66 const SourceRange& loc,
67 Graph& graph,
68 const TypePtr& concrete_type,
69 Value* value,
70 bool allow_conversions) {
71 // treat conversion to Optional[T] as conversions to T
72 if (OptionalTypePtr op = concrete_type->cast<OptionalType>()) {
73 if (value->type()->kind() != OptionalType::Kind &&
74 !value->type()->isSubtypeOf(*NoneType::get())) {
75 return tryConvertToType(
76 loc, graph, op->getElementType(), value, allow_conversions);
77 }
78 }
79
80 // allow temporary, unannotated list literals `[]` to match to arbitrary list
81 // types
82 if (value->node()->kind() == prim::EmptyListLiteral &&
83 concrete_type->cast<ListType>()) {
84 value = graph
85 .insertNode(graph.createList(
86 concrete_type->cast<ListType>()->getElementType(), {}))
87 ->output();
88 }
89
90 if (auto value_tuple = value->type()->cast<TupleType>()) {
91 // Allow homogeneous tuples to be casted implicitly to lists of appropriate
92 // types
93 if (convertibleToList(value->type(), unwrapOptional(concrete_type))) {
94 auto unpacked = createTupleUnpack(value);
95 auto elem_type =
96 unwrapOptional(concrete_type)->expectRef<ListType>().getElementType();
97 value = graph.insertNode(graph.createList(elem_type, unpacked))->output();
98 }
99
100 // inductively apply implicit conversions to tuples
101 if (auto concrete_tuple = concrete_type->cast<TupleType>()) {
102 if (!value_tuple->isSubtypeOf(*concrete_tuple) &&
103 concrete_tuple->elements().size() == value_tuple->elements().size()) {
104 auto unpacked = createTupleUnpack(value);
105 std::vector<Value*> converted;
106 for (size_t i = 0; i < concrete_tuple->elements().size(); ++i) {
107 converted.emplace_back(tryConvertToType(
108 loc,
109 graph,
110 concrete_tuple->elements().at(i),
111 unpacked.at(i),
112 allow_conversions));
113 }
114 value = graph.insertNode(graph.createTuple(converted))->output();
115 }
116 }
117 }
118
119 // implicit conversions
120 if (allow_conversions) {
121 // Convert tensor or number to concrete int/float types
122 bool value_isa_tensor = value->type()->isSubtypeOf(*TensorType::get());
123 bool value_equals_number = *value->type() == *NumberType::get();
124 bool concrete_float = *concrete_type == *FloatType::get();
125 bool concrete_complex = *concrete_type == *ComplexType::get();
126 bool concrete_int = *concrete_type == *IntType::get();
127 bool concrete_number = *concrete_type == *NumberType::get();
128 if (value_isa_tensor) {
129 if (concrete_float) {
130 value = graph.insert(aten::FloatImplicit, {value}, {}, loc);
131 } else if (concrete_complex) {
132 value = graph.insert(aten::ComplexImplicit, {value}, {}, loc);
133 } else if (concrete_int) {
134 value = graph.insert(aten::IntImplicit, {value}, {}, loc);
135 } else if (concrete_number) {
136 value = graph.insert(aten::ScalarImplicit, {value}, {}, loc);
137 }
138 } else if (value_equals_number) {
139 if (concrete_float) {
140 value = graph.insert(aten::Float, {value}, {}, loc);
141 } else if (concrete_complex) {
142 value = graph.insert(aten::Complex, {value}, {}, loc);
143 } else if (concrete_int) {
144 value = graph.insert(aten::Int, {value}, {}, loc);
145 }
146 } else if (*value->type() == *BoolType::get()) {
147 if (concrete_float) {
148 value = graph.insert(aten::Float, {value}, {}, loc);
149 } else if (concrete_int || concrete_number) {
150 value = graph.insert(aten::Int, {value}, {}, loc);
151 }
152 }
153
154 // Convert strings to device
155 if (value->type()->isSubtypeOf(*StringType::get()) &&
156 concrete_type->isSubtypeOf(*DeviceObjType::get())) {
157 return graph.insert(aten::device, {value}, {}, loc);
158 }
159 }
160
161 return value;
162 }
163
164 // Checks if `named_value` can be used as a value for `arg`. If `arg` is a
165 // VarType, it will be added to the type_env through `matchTypeVariables` as
166 // the corresponding actual type. If `allow_conversions` is true, implicit
167 // conversions to the `arg` type may be performed through `tryConvertToType`.
tryMatchArgument(const Argument & arg,Graph & graph,const SourceRange & loc,const NamedValue & named_value,std::ostream * failure_messages,const std::function<std::ostream & ()> & err,bool allow_conversions,TypeEnv & type_env)168 static Value* tryMatchArgument(
169 const Argument& arg,
170 Graph& graph,
171 const SourceRange& loc,
172 const NamedValue& named_value,
173 std::ostream* failure_messages,
174 const std::function<std::ostream&()>& err,
175 bool allow_conversions,
176 TypeEnv& type_env) {
177 Value* value = named_value.value(graph);
178
179 // Some functions that take lists of integers or floats for fixed size arrays
180 // also allow single ints/floats to be passed in their place. The single
181 // int/float is then repeated to the length of the list
182 if (isIntOrFloatUsedAsList(value, arg)) {
183 std::vector<Value*> repeated(*arg.N(), value);
184 value =
185 graph.insertNode(graph.createList(value->type(), repeated))->output();
186 }
187
188 // Resolve VarType variables
189 const MatchTypeReturn matched =
190 matchTypeVariables(arg.type(), value->type(), type_env);
191 if (!matched.success()) {
192 if (failure_messages) {
193 err() << "Could not match type " << value->type()->repr_str() << " to "
194 << arg.type()->repr_str() << " in argument '" << arg.name()
195 << "': " << matched.reason() << ".\n";
196 }
197 return nullptr;
198 }
199 const auto concrete_type = tryEvalTypeVariables(arg.type(), type_env);
200 if (!concrete_type) {
201 if (failure_messages) {
202 err() << "Type variables in type " << arg.type()->repr_str()
203 << " could not be inferred from actual type "
204 << value->type()->repr_str();
205 }
206 return nullptr;
207 }
208
209 // Check if the value can be matched to the arg through any implicit
210 // conversions
211 value = tryConvertToType(loc, graph, concrete_type, value, allow_conversions);
212 std::stringstream ss;
213 if (!value->type()->isSubtypeOfExt(
214 *concrete_type, /*why_not=*/(failure_messages) ? &ss : nullptr)) {
215 if (failure_messages) {
216 auto& ostream = err()
217 << arg.formatTypeMismatchMsg(value->type()->repr_str());
218
219 if (auto pt = value->type()->cast<TensorType>()) {
220 if (pt->isInferredType()) {
221 std::string inferred_type_hint;
222 inferred_type_hint = c10::str(
223 "Inferred the value for argument '",
224 arg.name(),
225 "' to be of type 'Tensor' ",
226 "because it was not annotated with an explicit type.\n");
227 ostream << inferred_type_hint;
228 }
229 }
230
231 if (auto v = value->type()->cast<ListType>()) {
232 if (v->getElementType()->isSubtypeOf(*TensorType::get())) {
233 ostream << "Empty lists default to List[Tensor]. Add a variable "
234 "annotation to the assignment to create an empty list "
235 "of another type (torch.jit.annotate(List[T, []]) where T "
236 "is the type of elements in the list for Python 2)\n";
237 }
238 }
239
240 ostream << ss.str();
241 }
242
243 return nullptr;
244 }
245 return value;
246 }
247
findInputWithName(const std::string & name,at::ArrayRef<NamedValue> kwargs,bool is_aten)248 std::optional<size_t> findInputWithName(
249 const std::string& name,
250 at::ArrayRef<NamedValue> kwargs,
251 bool is_aten) {
252 for (const auto i : c10::irange(kwargs.size())) {
253 // TS doesn't understand that the self argument in function
254 // scheams is renamed to input for the functional variant
255 if (is_aten && name == "self" && kwargs[i].name() == "input") {
256 return i;
257 }
258 if (kwargs[i].name() == name) {
259 return i;
260 }
261 }
262 return std::nullopt;
263 }
264
265 /// Creates a list with the provided values if each value's type can be matched
266 /// to an argument with type `elem_type`. If a type in `varargs` does not match
267 /// `elem_type`, nullptr is returned. This is used for creating lists from
268 /// varargs so that calls like torch.zeros(1, 2, 3) will be matched to
269 /// aten::zeros(int[]).
tryCreateList(const TypePtr & elem_type,Graph & graph,const SourceRange & loc,at::ArrayRef<NamedValue> varargs,std::ostream * failure_messages,const std::function<std::ostream & ()> & err,bool convert_tensor_to_num,TypeEnv & type_env)270 static Value* tryCreateList(
271 const TypePtr& elem_type,
272 Graph& graph,
273 const SourceRange& loc,
274 at::ArrayRef<NamedValue> varargs,
275 std::ostream* failure_messages,
276 const std::function<std::ostream&()>& err,
277 bool convert_tensor_to_num,
278 TypeEnv& type_env) {
279 Argument elem_arg("<varargs>", elem_type);
280 std::vector<Value*> list_elements;
281 for (const auto& named_value : varargs) {
282 // Try to convert named_value to elem_type
283 Value* matched_value = tryMatchArgument(
284 /*arg=*/elem_arg,
285 graph,
286 loc,
287 named_value,
288 failure_messages,
289 err,
290 /*allow_conversions=*/convert_tensor_to_num,
291 type_env);
292 if (!matched_value) {
293 return nullptr;
294 }
295 list_elements.push_back(matched_value);
296 }
297
298 return graph.insertNode(graph.createList(elem_type, list_elements))->output();
299 }
300
301 // Check if it is possible to convert all the remaining non-kwarg arguments
302 // to a list. This allows zeros(IntArrayRef sizes) to work with zeros(1, 2) or
303 // zeros(1)
varargsCanBeUsedAsList(const FunctionSchema & schema,size_t arg_index,const Argument & arg)304 static bool varargsCanBeUsedAsList(
305 const FunctionSchema& schema,
306 size_t arg_index,
307 const Argument& arg) {
308 // The arg must be the last one in the arg list that is not a kwarg
309 bool is_last_argument = arg_index + 1 == schema.arguments().size() ||
310 schema.arguments()[arg_index + 1].kwarg_only();
311
312 auto arg_type = arg.type();
313 if (auto dyn = arg_type->castRaw<c10::DynamicType>()) {
314 arg_type = dyn->fallback();
315 }
316
317 // The formal must be a list
318 bool argument_is_list = arg_type->kind() == TypeKind::ListType;
319
320 // matching varargs of typevar list nyi
321 bool typevar_list = argument_is_list &&
322 arg_type->castRaw<ListType>()->getElementType()->cast<VarType>();
323
324 // it must not be a broadcasting list like int[3],
325 // otherwise a single int is a valid input
326 bool arg_is_broadcasting_list = bool(arg.N());
327
328 return is_last_argument && argument_is_list && !arg_is_broadcasting_list &&
329 !typevar_list;
330 }
331
isBlockListedSchema(const FunctionSchema & schema)332 bool isBlockListedSchema(const FunctionSchema& schema) {
333 // Note (@zasdfgbnm):
334 // This is a workaround for https://github.com/pytorch/pytorch/issues/47964
335 // Currently JIT does not distinguish ScalarType vs int, so there is really
336 // no way to distinguish x.view(1) vs x.view(torch.int8). So we have to
337 // hardcode the aten::view.dtype here to block this overload. This blocklist
338 // should be removed when JIT fully suports ScalarType as its own type.
339 if (schema.name() == "aten::view" && schema.overload_name() == "dtype") {
340 return true;
341 }
342 // Note (@tugsbayasgalan)
343 // TorchScript doesn't suport kwargs so this op collides with aten.max.others
344 // since both of them have 2 Tensor inputs. Since we don't expect users to
345 // use this op in TS, we just skip it
346 if (schema.name() == "aten::max" && schema.overload_name() == "unary_out") {
347 return true;
348 }
349 if (schema.name() == "aten::min" && schema.overload_name() == "unary_out") {
350 return true;
351 }
352 return false;
353 }
354
tryMatchSchema(const FunctionSchema & schema,const SourceRange & loc,Graph & graph,at::ArrayRef<NamedValue> args,at::ArrayRef<NamedValue> kwargs,std::optional<NamedValue> self,std::ostream * failure_messages,bool allow_conversions)355 static std::optional<MatchedSchema> tryMatchSchema(
356 const FunctionSchema& schema,
357 const SourceRange& loc,
358 Graph& graph,
359 at::ArrayRef<NamedValue> args,
360 at::ArrayRef<NamedValue> kwargs,
361 std::optional<NamedValue> self,
362 std::ostream* failure_messages,
363 bool allow_conversions) {
364 if (isBlockListedSchema(schema)) {
365 return std::nullopt;
366 }
367
368 auto err = [&]() -> std::ostream& {
369 *failure_messages << "\n" << schema << ":\n";
370 return *failure_messages;
371 };
372
373 // For VarTypes, maps VarType name to actual type as it's used with these
374 // args
375 TypeEnv type_env;
376 std::vector<Value*> positional_inputs;
377 std::vector<bool> used_kwarg(kwargs.size(), false);
378
379 auto schema_namespace = schema.operator_name().getNamespace();
380 bool is_aten = false;
381 if (schema_namespace.has_value()) {
382 if (schema_namespace.value() == "aten") {
383 is_aten = true;
384 }
385 }
386 // if we finish the loop will we have consumed all arguments?
387 size_t used_args = 0;
388 for (const auto schema_i : c10::irange(schema.arguments().size())) {
389 const auto& arg = schema.arguments()[schema_i];
390 std::optional<NamedValue> actual_named_value;
391 if (arg.name() == "self" && self) {
392 actual_named_value = self;
393 self = std::nullopt;
394 } else if (!arg.kwarg_only() && used_args < args.size()) {
395 // Try to convert all the remaining non-kwarg arguments (used_args) to a
396 // list. Allow zeros(IntArrayRef sizes) to work with zeros(1, 2) or
397 // zeros(1)
398 if (allow_conversions && varargsCanBeUsedAsList(schema, schema_i, arg)) {
399 auto value = args[used_args].value(graph);
400 const auto& actual_type = value->type();
401 // The actual cannot already be a list
402 if (actual_type->kind() != TypeKind::ListType &&
403 !convertibleToList(actual_type, unwrapOptional(arg.type()))) {
404 auto formal_type = unwrapOptional(arg.type())
405 ->expectRef<ListType>()
406 .getElementType();
407
408 Value* list = tryCreateList(
409 formal_type,
410 graph,
411 loc,
412 at::ArrayRef<NamedValue>(args).slice(used_args),
413 failure_messages,
414 err,
415 allow_conversions,
416 type_env);
417 if (!list) {
418 return std::nullopt;
419 }
420 used_args = args.size();
421 positional_inputs.push_back(list);
422 continue;
423 }
424 }
425
426 // Set actual_named_value to the argument and mark the arg position as
427 // used
428 actual_named_value = args[used_args];
429 used_args++;
430 } else if (
431 auto kwarg_idx = findInputWithName(arg.name(), kwargs, is_aten)) {
432 const NamedValue& nv = kwargs[*kwarg_idx];
433 if (used_kwarg[*kwarg_idx]) {
434 if (failure_messages) {
435 err() << "Argument " << nv.name()
436 << " specified twice in schema, submit a bug report!\n";
437 }
438 return std::nullopt;
439 }
440 used_kwarg[*kwarg_idx] = true;
441 actual_named_value = nv;
442 } else if (arg.default_value()) {
443 // Argument has a default value and no value was provided, so use the
444 // default
445 actual_named_value = NamedValue(*arg.default_value());
446 } else {
447 if (failure_messages) {
448 err() << "Argument " << schema.arguments()[schema_i].name()
449 << " not provided.\n";
450 }
451 return std::nullopt;
452 }
453
454 // Make sure the actual_named_value found matches the type of arg
455 Value* positional = tryMatchArgument(
456 arg,
457 graph,
458 loc,
459 *actual_named_value,
460 failure_messages,
461 err,
462 allow_conversions,
463 type_env);
464 if (!positional) {
465 return std::nullopt;
466 }
467 positional_inputs.push_back(positional);
468 }
469 // check for unused self argument
470 if (self != std::nullopt) {
471 if (failure_messages) {
472 err() << "Provided self argument not used in schema.\n";
473 }
474 return std::nullopt;
475 }
476
477 if (schema.is_vararg()) {
478 for (; used_args < args.size(); ++used_args) {
479 positional_inputs.push_back(args[used_args].value(graph));
480 }
481 }
482
483 // check for unused positional arguments
484 if (used_args < args.size()) {
485 if (failure_messages) {
486 err() << "Expected at most " << used_args << " arguments "
487 << "but found " << args.size() << " positional arguments.\n";
488 }
489 return std::nullopt;
490 }
491 // check for unused kwargs
492 for (const auto i : c10::irange(kwargs.size())) {
493 const auto& nv = kwargs[i];
494 if (!used_kwarg[i]) {
495 if (failure_messages) {
496 if (!schema.argumentIndexWithName(nv.name())) {
497 err() << "Keyword argument " << nv.name() << " unknown.\n";
498 } else {
499 err() << "Keyword argument " << nv.name() << " specified twice.\n";
500 }
501 }
502 return std::nullopt;
503 }
504 }
505
506 const auto& returns = schema.returns();
507 auto return_types = fmap(returns, [&](const Argument& r) {
508 TypePtr result = tryEvalTypeVariables(r.type(), type_env);
509 TORCH_INTERNAL_ASSERT(
510 result, r.type()->repr_str(), " has unbound type variables.");
511 return result;
512 });
513 // Codegen does not support return of namedtuples with undefined field names.
514 // Therefore, either all or none returns has field names.
515 bool return_has_field_names =
516 std::all_of(returns.begin(), returns.end(), [&](const Argument& r) {
517 return !r.name().empty();
518 });
519 c10::OptNameList return_field_names = std::nullopt;
520 if (return_has_field_names) {
521 return_field_names =
522 fmap(returns, [&](const Argument& r) { return r.name(); });
523 }
524
525 // construct the full name of the schema for easier look up
526 auto schema_name = getFullSchemaName(schema);
527
528 return MatchedSchema{
529 std::move(positional_inputs),
530 std::move(return_types),
531 std::move(return_field_names),
532 schema_name};
533 }
534
matchSchema(const::c10::FunctionSchema & schema,const SourceRange & loc,Graph & graph,at::ArrayRef<NamedValue> args,at::ArrayRef<NamedValue> kwargs,const std::optional<NamedValue> & self)535 MatchedSchema matchSchema(
536 const ::c10::FunctionSchema& schema,
537 const SourceRange& loc,
538 Graph& graph,
539 at::ArrayRef<NamedValue> args,
540 at::ArrayRef<NamedValue> kwargs,
541 const std::optional<NamedValue>& self) {
542 std::stringstream failure_messages;
543 if (auto result = tryMatchSchema(
544 schema,
545 loc,
546 graph,
547 args,
548 kwargs,
549 self,
550 &failure_messages,
551 /*allow_conversions=*/true)) {
552 return *result;
553 }
554 throw(ErrorReport(loc) << failure_messages.str());
555 }
556
prefixLine(const std::string & str,const std::string & prefix)557 static std::string prefixLine(
558 const std::string& str,
559 const std::string& prefix) {
560 std::stringstream ss;
561 bool was_newline = true;
562 for (auto c : str) {
563 if (was_newline)
564 ss << prefix;
565 ss.put(c);
566 was_newline = c == '\n';
567 }
568 return ss.str();
569 }
570
matchSchemas(const std::vector<const FunctionSchema * > & schemas,const SourceRange & loc,Graph & graph,at::ArrayRef<NamedValue> args,at::ArrayRef<NamedValue> kwargs,const std::optional<NamedValue> & self,bool render_errors)571 std::pair<size_t, MatchedSchema> matchSchemas(
572 const std::vector<const FunctionSchema*>& schemas,
573 const SourceRange& loc,
574 Graph& graph,
575 at::ArrayRef<NamedValue> args,
576 at::ArrayRef<NamedValue> kwargs,
577 const std::optional<NamedValue>& self,
578 bool render_errors) {
579 TORCH_INTERNAL_ASSERT(!schemas.empty());
580 // if there is only one schema, we do not need to try without conversions
581 // first. this is faster and puts less dead code in the graph.
582 if (schemas.size() == 1) {
583 return std::make_pair(
584 0, matchSchema(*schemas.at(0), loc, graph, args, kwargs, self));
585 }
586 std::stringstream failure_messages;
587 for (bool allow_conversions : {false, true}) {
588 // clear previous error messages
589 failure_messages.str("");
590 for (const auto i : c10::irange(schemas.size())) {
591 const auto matched_schema = tryMatchSchema(
592 *schemas[i],
593 loc,
594 graph,
595 args,
596 kwargs,
597 self,
598 render_errors ? &failure_messages : nullptr,
599 allow_conversions);
600 if (matched_schema) {
601 return std::make_pair(i, *matched_schema);
602 }
603 }
604 }
605 // we optimistically assume this call will not error, and avoid formatting the
606 // error strings. If we discover it did error, then we replay it, recording
607 // the errors.
608 if (!render_errors) {
609 return matchSchemas(
610 schemas, loc, graph, args, kwargs, self, /*render_errors=*/true);
611 }
612
613 throw(
614 ErrorReport(loc) << "Arguments for call are not valid.\n"
615 << "The following variants are available:\n"
616 << prefixLine(failure_messages.str(), " ")
617 << "\nThe original call is");
618 throw(ErrorReport(loc) << failure_messages.str());
619 }
620
621 // pack outputs of a function following python rules. If there is a single value
622 // return a SimpleValue, otherwise pack all the values into a Tuple.
packOutputs(Graph & g,at::ArrayRef<Value * > values,c10::OptNameList field_names)623 static Value* packOutputs(
624 Graph& g,
625 at::ArrayRef<Value*> values,
626 c10::OptNameList field_names) {
627 if (values.size() == 1) {
628 return values[0];
629 }
630 std::shared_ptr<FunctionSchema> schema;
631 TupleTypePtr named_tuple = nullptr;
632 if (field_names) {
633 auto types = fmap(values, [](Value* v) { return v->type(); });
634 named_tuple =
635 TupleType::createNamed(std::nullopt, field_names.value(), types);
636 }
637 return g.insertNode(g.createTuple(values, named_tuple))->output();
638 }
639
640 // Given a successful match between operator schema and symbol, emit a node
641 // with the appropriate inputs and outputs.
emitBuiltinNode(const MatchedSchema & matched_schema,const SourceRange & loc,Graph & graph,Symbol name,std::optional<size_t> version)642 static Value* emitBuiltinNode(
643 const MatchedSchema& matched_schema,
644 const SourceRange& loc,
645 Graph& graph,
646 Symbol name,
647 std::optional<size_t> version) {
648 auto n = graph.insertNode(graph.create(name, matched_schema.inputs, 0))
649 ->setSourceRange(loc);
650
651 for (auto& ret : matched_schema.return_types) {
652 n->addOutput()->setType(ret);
653 }
654
655 // assert that we did indeed create an op that has implementation
656 // otherwise schema and dispatch are not in sync ONLY if the op is up
657 // to date with the server version
658 if (!version.has_value() ||
659 isOpSymbolCurrent(matched_schema.schema_name, version.value())) {
660 n->getOperation();
661 } else {
662 n->setHistoricSchemaName(matched_schema.schema_name);
663 }
664
665 return packOutputs(graph, n->outputs(), matched_schema.return_field_names);
666 }
667
getFullSchemaName(const::c10::FunctionSchema & schema)668 std::string getFullSchemaName(const ::c10::FunctionSchema& schema) {
669 if (!schema.overload_name().empty()) {
670 return schema.operator_name().name + "." + schema.overload_name();
671 }
672 return schema.operator_name().name;
673 }
674
675 // Search for operators matching the provided symbol name and input types.
676 // If one is found, emit a node to the graph for that operator.
emitBuiltinCall(const SourceRange & loc,Graph & graph,Symbol name,at::ArrayRef<NamedValue> args,at::ArrayRef<NamedValue> kwargs,const std::optional<NamedValue> & self)677 Value* emitBuiltinCall(
678 const SourceRange& loc,
679 Graph& graph,
680 Symbol name,
681 at::ArrayRef<NamedValue> args,
682 at::ArrayRef<NamedValue> kwargs,
683 const std::optional<NamedValue>& self) {
684 const auto& variants = getAllOperatorsFor(name);
685 const auto& builtin_functions = getAllBuiltinFunctionsFor(name);
686
687 // first let's set the graph's version
688 auto graph_version = graph.get_op_version();
689
690 std::vector<const FunctionSchema*> schemas;
691 // we append them later to schemas because
692 // parseSchema returns rvalue which can not
693 // be casted to const pointer.
694 std::vector<FunctionSchema> upgrader_schemas;
695 schemas.reserve(variants.size());
696 for (const std::shared_ptr<Operator>& op : variants) {
697 bool found_upgrader = false;
698 auto op_name = getFullSchemaName(op->schema());
699 if (graph_version.has_value()) {
700 auto version_entry = get_operator_version_map().find(op_name);
701 if (version_entry != get_operator_version_map().end()) {
702 auto old_schema_entry =
703 findUpgrader(version_entry->second, graph_version.value());
704 if (old_schema_entry.has_value()) {
705 FunctionSchema old_schema =
706 parseSchema(old_schema_entry.value().old_schema);
707 upgrader_schemas.push_back(old_schema);
708 found_upgrader = true;
709 } else {
710 if (!isOpCurrentBasedOnUpgraderEntries(
711 version_entry->second, graph_version.value())) {
712 TORCH_INTERNAL_ASSERT(false, "Valid upgrader must be present");
713 }
714 }
715 }
716 }
717 if (!found_upgrader)
718 schemas.push_back(&op->schema());
719 }
720
721 // we might have seen old historic
722 // ops that are deprecated
723 if (variants.empty()) {
724 auto oldSchemas =
725 loadPossibleHistoricOps(name.toQualString(), graph_version);
726 upgrader_schemas.reserve(oldSchemas.size());
727 for (const auto& old_schema_entry : oldSchemas) {
728 FunctionSchema old_schema = parseSchema(old_schema_entry);
729 upgrader_schemas.emplace_back(old_schema);
730 }
731 }
732
733 // TODO (tugsuu): make sure this is optimized later
734 for (const auto& schema : upgrader_schemas) {
735 schemas.push_back(&schema);
736 }
737
738 for (const auto method : builtin_functions) {
739 method->ensure_defined();
740 schemas.push_back(&method->getSchema());
741 }
742
743 // no operators found with the same name, print out similarly named operators
744 if (schemas.empty()) {
745 const auto close_symbols = findSimilarOperators(name);
746 auto error = ErrorReport(loc);
747 const auto& user_function_name = name.toQualString();
748 error << "Unknown builtin op: " << user_function_name << ".\n";
749 if (close_symbols.empty()) {
750 error
751 << "Could not find any similar ops to " << user_function_name
752 << ". This op may not exist or may not be currently supported in TorchScript.\n";
753 } else {
754 error << "Here are some suggestions: \n";
755 for (const auto& sym : close_symbols) {
756 error << "\t" << sym.toQualString() << "\n";
757 }
758 error << "\nThe original call is";
759 }
760 throw ErrorReport(error);
761 }
762
763 auto matched = matchSchemas(schemas, loc, graph, args, kwargs, self);
764
765 if (matched.first < variants.size() + upgrader_schemas.size()) {
766 return emitBuiltinNode(matched.second, loc, graph, name, graph_version);
767 } else {
768 auto& fn = *builtin_functions[matched.first - variants.size()];
769 // we inline builtin calls because they are normally very small
770 // wrappers and are not useful for keeping around to debug
771 return insertGraph(
772 graph, *toGraphFunction(fn).graph(), matched.second.inputs)
773 .at(0);
774 }
775 }
776
777 } // namespace torch::jit
778