xref: /aosp_15_r20/external/pytorch/torch/utils/_sympy/solve.py (revision da0073e96a02ea20f0ac840b70461e3646d07c45)
1import logging
2from typing import Dict, Optional, Tuple, Type
3
4import sympy
5
6from torch.utils._sympy.functions import FloorDiv
7
8
9log = logging.getLogger(__name__)
10
11_MIRROR_REL_OP: Dict[Type[sympy.Basic], Type[sympy.Rel]] = {
12    sympy.Eq: sympy.Eq,
13    sympy.Ne: sympy.Ne,
14    sympy.Ge: sympy.Le,
15    sympy.Gt: sympy.Lt,
16    sympy.Le: sympy.Ge,
17    sympy.Lt: sympy.Gt,
18}
19
20INEQUALITY_TYPES = (sympy.Gt, sympy.Ge, sympy.Lt, sympy.Le)
21
22
23def mirror_rel_op(type: Type) -> Optional[Type[sympy.Rel]]:
24    return _MIRROR_REL_OP.get(type, None)
25
26
27# Tries to simplify 'expr', so as to leave only 'thing' in the left-hand side.
28#
29# Returns a tuple of:
30#   1. The simplified expression
31#   2. The expression on the right-hand side
32#
33# Returns 'None' if it can't reach a state where the only thing in the left
34# hand side is 'thing'.
35#
36# 'trials': number of times 'try_solve' will try to isolate 'thing' to the
37# left-hand side.
38#
39# 'floordiv_inequality': flag to enable conversion of 'FloorDiv' into
40# inequalities.
41def try_solve(
42    expr: sympy.Basic,
43    thing: sympy.Basic,
44    trials: int = 5,
45    floordiv_inequality: bool = True,
46) -> Optional[Tuple[sympy.Rel, sympy.Basic]]:
47    mirror = mirror_rel_op(type(expr))
48
49    # Ignore unsupported expressions:
50    #   - Those that are not relational operations
51    #   - Those that don't have a mirror (just avoiding unexpected classes)
52    if not isinstance(expr, sympy.Rel) or mirror is None:
53        log.debug("expression with unsupported type: %s", type(expr))
54        return None
55
56    lhs_has_thing = expr.lhs.has(thing)
57    rhs_has_thing = expr.rhs.has(thing)
58
59    # Give up when 'thing' appears on both sides of the relational expression.
60    # That is because, as is, we assume the thing we are trying to isolate is
61    # only on the right-hand side.
62    if lhs_has_thing and rhs_has_thing:
63        log.debug("thing (%s) found in both sides of expression: %s", thing, expr)
64        return None
65
66    # Try considering both LHS and RHS by mirroring the original expression:
67    # a < b ==> b > a
68    expressions = []
69
70    # Add each version of 'expr' if 'thing' is in its left-hand side.
71    if lhs_has_thing:
72        expressions.append(expr)
73    if rhs_has_thing:
74        expressions.append(mirror(expr.rhs, expr.lhs))
75
76    for e in expressions:
77        if e is None:
78            continue
79
80        assert isinstance(e, sympy.Rel)
81
82        for _ in range(trials):
83            trial = _try_isolate_lhs(e, thing, floordiv_inequality=floordiv_inequality)
84            # Stop if there was no change in this trial.
85            if trial == e:
86                break
87            e = trial  # type: ignore[assignment]
88
89        # Return if we were able to isolate 'thing' on the left-hand side.
90        if isinstance(e, sympy.Rel) and e.lhs == thing:
91            log.debug("solved: %s ---> %s", expr, e)
92            return e, e.rhs
93
94    return None
95
96
97def _try_isolate_lhs(
98    e: sympy.Basic, thing: sympy.Basic, floordiv_inequality: bool
99) -> sympy.Basic:
100    op = type(e)
101
102    if isinstance(e, sympy.Rel):
103        # Move any constants in the left-hand side to the right-hand side.
104        lhs_not_thing = (
105            sum(a for a in e.lhs.args if not a.has(thing))
106            if isinstance(e.lhs, sympy.Add)
107            else 0
108        )
109        e = op(e.lhs - lhs_not_thing, e.rhs - lhs_not_thing)  # type: ignore[attr-defined]
110
111    # Divide both sides by the factors that don't contain thing.
112    if isinstance(e, sympy.Rel) and isinstance(e.lhs, sympy.Mul):
113        lhs, rhs = e.args
114        other = sympy.Mul(*[a for a in lhs.args if not a.has(thing)])
115
116        # If we can't tell whether 'other' is negative or positive, we do nothing.
117        # That is because we don't know whether we have mirror the operation or not.
118        if not (isinstance(e, INEQUALITY_TYPES) and other.is_negative is None):
119            # Divide both sides by 'other'.
120            lhs = lhs / other
121            rhs = rhs / other
122
123            # If 'e' is an inequality and 'other' is negative, we have to
124            # mirror the expression.
125            if isinstance(e, INEQUALITY_TYPES) and other.is_negative:
126                op = mirror_rel_op(op)  # type: ignore[assignment]
127
128            assert op is not None
129            e = op(lhs, rhs)
130
131    ################################################################################
132    # left-hand side is FloorDiv
133    ################################################################################
134    #
135    # Given the expression: a // b op c
136    # where 'op' is a relational operation, these rules only work if:
137    #   - b > 0
138    #   - c is an integer
139    if (
140        floordiv_inequality
141        and isinstance(e, sympy.Rel)
142        and isinstance(e.lhs, FloorDiv)
143        and e.lhs.divisor.is_positive
144        and e.rhs.is_integer
145    ):
146        # a // b == expr
147        # => a >= (b * expr) and a < (b * (expr + 1))
148        if isinstance(e, sympy.Eq):
149            numerator, denominator = e.lhs.args
150            return sympy.And(
151                sympy.Ge(numerator, (e.rhs * denominator)),  # type: ignore[arg-type]
152                sympy.Lt(numerator, ((e.rhs + 1) * denominator)),  # type: ignore[arg-type]
153            )
154        # a // b != expr
155        # => a < (b * expr) or a >= (b * (expr + 1))
156        if isinstance(e, sympy.Ne):
157            numerator, denominator = e.lhs.args
158            return sympy.Or(
159                sympy.Lt(numerator, (e.rhs * denominator)),  # type: ignore[arg-type]
160                sympy.Ge(numerator, ((e.rhs + 1) * denominator)),  # type: ignore[arg-type]
161            )
162        # The transformations below only work if b is positive.
163        # Note: we only have this information for constants.
164        # a // b > expr  => a >= b * (expr + 1)
165        # a // b >= expr => a >= b * expr
166        if isinstance(e, (sympy.Gt, sympy.Ge)):
167            quotient = e.rhs if isinstance(e, sympy.Ge) else (e.rhs + 1)  # type: ignore[arg-type]
168            return sympy.Ge(e.lhs.args[0], (quotient * e.lhs.args[1]))  # type: ignore[arg-type]
169        # a // b < expr  => a < b * expr
170        # a // b <= expr => a < b * (expr + 1)
171        if isinstance(e, (sympy.Lt, sympy.Le)):
172            quotient = e.rhs if isinstance(e, sympy.Lt) else (e.rhs + 1)  # type: ignore[arg-type]
173            return sympy.Lt(e.lhs.args[0], (quotient * e.lhs.args[1]))  # type: ignore[arg-type]
174
175    return e
176