xref: /aosp_15_r20/external/mesa3d/src/freedreno/vulkan/tu_cmd_buffer.cc (revision 6104692788411f58d303aa86923a9ff6ecaded22)
1 /*
2  * Copyright © 2016 Red Hat.
3  * Copyright © 2016 Bas Nieuwenhuizen
4  * SPDX-License-Identifier: MIT
5  *
6  * based in part on anv driver which is:
7  * Copyright © 2015 Intel Corporation
8  */
9 
10 #include "tu_cmd_buffer.h"
11 
12 #include "vk_common_entrypoints.h"
13 #include "vk_render_pass.h"
14 #include "vk_util.h"
15 
16 #include "tu_buffer.h"
17 #include "tu_clear_blit.h"
18 #include "tu_cs.h"
19 #include "tu_event.h"
20 #include "tu_image.h"
21 #include "tu_tracepoints.h"
22 
23 #include "common/freedreno_gpu_event.h"
24 #include "common/freedreno_lrz.h"
25 
26 static void
tu_clone_trace_range(struct tu_cmd_buffer * cmd,struct tu_cs * cs,struct u_trace_iterator begin,struct u_trace_iterator end)27 tu_clone_trace_range(struct tu_cmd_buffer *cmd, struct tu_cs *cs,
28                      struct u_trace_iterator begin, struct u_trace_iterator end)
29 {
30    if (u_trace_iterator_equal(begin, end))
31       return;
32 
33    tu_cs_emit_wfi(cs);
34    tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
35    u_trace_clone_append(begin, end, &cmd->trace, cs, tu_copy_buffer);
36 }
37 
38 static void
tu_clone_trace(struct tu_cmd_buffer * cmd,struct tu_cs * cs,struct u_trace * trace)39 tu_clone_trace(struct tu_cmd_buffer *cmd, struct tu_cs *cs,
40                struct u_trace *trace)
41 {
42    tu_clone_trace_range(cmd, cs, u_trace_begin_iterator(trace),
43          u_trace_end_iterator(trace));
44 }
45 
46 template <chip CHIP>
47 static void
tu_emit_raw_event_write(struct tu_cmd_buffer * cmd,struct tu_cs * cs,enum vgt_event_type event,bool needs_seqno)48 tu_emit_raw_event_write(struct tu_cmd_buffer *cmd,
49                         struct tu_cs *cs,
50                         enum vgt_event_type event,
51                         bool needs_seqno)
52 {
53    if (CHIP == A6XX) {
54       tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, needs_seqno ? 4 : 1);
55       tu_cs_emit(cs, CP_EVENT_WRITE_0_EVENT(event));
56    } else {
57       tu_cs_emit_pkt7(cs, CP_EVENT_WRITE7, needs_seqno ? 4 : 1);
58       tu_cs_emit(cs,
59          CP_EVENT_WRITE7_0(.event = event,
60                            .write_src = EV_WRITE_USER_32B,
61                            .write_dst = EV_DST_RAM,
62                            .write_enabled = needs_seqno).value);
63    }
64 
65    if (needs_seqno) {
66       tu_cs_emit_qw(cs, global_iova(cmd, seqno_dummy));
67       tu_cs_emit(cs, 0);
68    }
69 }
70 
71 template <chip CHIP>
72 void
tu_emit_event_write(struct tu_cmd_buffer * cmd,struct tu_cs * cs,enum fd_gpu_event event)73 tu_emit_event_write(struct tu_cmd_buffer *cmd,
74                     struct tu_cs *cs,
75                     enum fd_gpu_event event)
76 {
77    struct fd_gpu_event_info event_info = fd_gpu_events<CHIP>[event];
78    tu_emit_raw_event_write<CHIP>(cmd, cs, event_info.raw_event,
79                                  event_info.needs_seqno);
80 }
81 TU_GENX(tu_emit_event_write);
82 
83 /* Emits the tessfactor address to the top-level CS if it hasn't been already.
84  * Updating this register requires a WFI if outstanding drawing is using it, but
85  * tu6_init_hardware() will have WFIed before we started and no other draws
86  * could be using the tessfactor address yet since we only emit one per cmdbuf.
87  */
88 template <chip CHIP>
89 static void
tu6_lazy_emit_tessfactor_addr(struct tu_cmd_buffer * cmd)90 tu6_lazy_emit_tessfactor_addr(struct tu_cmd_buffer *cmd)
91 {
92    if (cmd->state.tessfactor_addr_set)
93       return;
94 
95    tu_cs_emit_regs(&cmd->cs, PC_TESSFACTOR_ADDR(CHIP, .qword = cmd->device->tess_bo->iova));
96    /* Updating PC_TESSFACTOR_ADDR could race with the next draw which uses it. */
97    cmd->state.cache.flush_bits |= TU_CMD_FLAG_WAIT_FOR_IDLE;
98    cmd->state.tessfactor_addr_set = true;
99 }
100 
101 template <chip CHIP>
102 static void
tu6_lazy_emit_vsc(struct tu_cmd_buffer * cmd,struct tu_cs * cs)103 tu6_lazy_emit_vsc(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
104 {
105    struct tu_device *dev = cmd->device;
106    uint32_t num_vsc_pipes = dev->physical_device->info->num_vsc_pipes;
107 
108    /* VSC buffers:
109     * use vsc pitches from the largest values used so far with this device
110     * if there hasn't been overflow, there will already be a scratch bo
111     * allocated for these sizes
112     *
113     * if overflow is detected, the stream size is increased by 2x
114     */
115    mtx_lock(&dev->mutex);
116 
117    struct tu6_global *global = dev->global_bo_map;
118 
119    uint32_t vsc_draw_overflow = global->vsc_draw_overflow;
120    uint32_t vsc_prim_overflow = global->vsc_prim_overflow;
121 
122    if (vsc_draw_overflow >= dev->vsc_draw_strm_pitch)
123       dev->vsc_draw_strm_pitch = (dev->vsc_draw_strm_pitch - VSC_PAD) * 2 + VSC_PAD;
124 
125    if (vsc_prim_overflow >= dev->vsc_prim_strm_pitch)
126       dev->vsc_prim_strm_pitch = (dev->vsc_prim_strm_pitch - VSC_PAD) * 2 + VSC_PAD;
127 
128    cmd->vsc_prim_strm_pitch = dev->vsc_prim_strm_pitch;
129    cmd->vsc_draw_strm_pitch = dev->vsc_draw_strm_pitch;
130 
131    mtx_unlock(&dev->mutex);
132 
133    struct tu_bo *vsc_bo;
134    uint32_t size0 = cmd->vsc_prim_strm_pitch * num_vsc_pipes +
135                     cmd->vsc_draw_strm_pitch * num_vsc_pipes;
136 
137    tu_get_scratch_bo(dev, size0 + num_vsc_pipes * 4, &vsc_bo);
138 
139    if (CHIP == A6XX) {
140       tu_cs_emit_regs(cs,
141                      A6XX_VSC_DRAW_STRM_SIZE_ADDRESS(.bo = vsc_bo, .bo_offset = size0));
142       tu_cs_emit_regs(cs,
143                      A6XX_VSC_PRIM_STRM_ADDRESS(.bo = vsc_bo));
144       tu_cs_emit_regs(
145          cs, A6XX_VSC_DRAW_STRM_ADDRESS(.bo = vsc_bo,
146                                        .bo_offset = cmd->vsc_prim_strm_pitch *
147                                                    num_vsc_pipes));
148    } else {
149       tu_cs_emit_pkt7(cs, CP_SET_PSEUDO_REG, 3 * 3);
150       tu_cs_emit(cs, A6XX_CP_SET_PSEUDO_REG__0_PSEUDO_REG(DRAW_STRM_ADDRESS));
151       tu_cs_emit_qw(cs, vsc_bo->iova + cmd->vsc_prim_strm_pitch * num_vsc_pipes);
152       tu_cs_emit(cs, A6XX_CP_SET_PSEUDO_REG__0_PSEUDO_REG(DRAW_STRM_SIZE_ADDRESS));
153       tu_cs_emit_qw(cs, vsc_bo->iova + size0);
154       tu_cs_emit(cs, A6XX_CP_SET_PSEUDO_REG__0_PSEUDO_REG(PRIM_STRM_ADDRESS));
155       tu_cs_emit_qw(cs, vsc_bo->iova);
156    }
157 
158    cmd->vsc_initialized = true;
159 }
160 
161 template <chip CHIP>
162 static void
tu6_emit_flushes(struct tu_cmd_buffer * cmd_buffer,struct tu_cs * cs,struct tu_cache_state * cache)163 tu6_emit_flushes(struct tu_cmd_buffer *cmd_buffer,
164                  struct tu_cs *cs,
165                  struct tu_cache_state *cache)
166 {
167    BITMASK_ENUM(tu_cmd_flush_bits) flushes = cache->flush_bits;
168    cache->flush_bits = 0;
169 
170    if (TU_DEBUG(FLUSHALL))
171       flushes |= TU_CMD_FLAG_ALL_CLEAN | TU_CMD_FLAG_ALL_INVALIDATE;
172 
173    if (TU_DEBUG(SYNCDRAW))
174       flushes |= TU_CMD_FLAG_WAIT_MEM_WRITES |
175                  TU_CMD_FLAG_WAIT_FOR_IDLE |
176                  TU_CMD_FLAG_WAIT_FOR_ME;
177 
178    /* Experiments show that invalidating CCU while it still has data in it
179     * doesn't work, so make sure to always flush before invalidating in case
180     * any data remains that hasn't yet been made available through a barrier.
181     * However it does seem to work for UCHE.
182     */
183    if (flushes & (TU_CMD_FLAG_CCU_CLEAN_COLOR |
184                   TU_CMD_FLAG_CCU_INVALIDATE_COLOR))
185       tu_emit_event_write<CHIP>(cmd_buffer, cs, FD_CCU_CLEAN_COLOR);
186    if (flushes & (TU_CMD_FLAG_CCU_CLEAN_DEPTH |
187                   TU_CMD_FLAG_CCU_INVALIDATE_DEPTH))
188       tu_emit_event_write<CHIP>(cmd_buffer, cs, FD_CCU_CLEAN_DEPTH);
189    if (flushes & TU_CMD_FLAG_CCU_INVALIDATE_COLOR)
190       tu_emit_event_write<CHIP>(cmd_buffer, cs, FD_CCU_INVALIDATE_COLOR);
191    if (flushes & TU_CMD_FLAG_CCU_INVALIDATE_DEPTH)
192       tu_emit_event_write<CHIP>(cmd_buffer, cs, FD_CCU_INVALIDATE_DEPTH);
193    if (flushes & TU_CMD_FLAG_CACHE_CLEAN)
194       tu_emit_event_write<CHIP>(cmd_buffer, cs, FD_CACHE_CLEAN);
195    if (flushes & TU_CMD_FLAG_CACHE_INVALIDATE)
196       tu_emit_event_write<CHIP>(cmd_buffer, cs, FD_CACHE_INVALIDATE);
197    if (flushes & TU_CMD_FLAG_BINDLESS_DESCRIPTOR_INVALIDATE) {
198       tu_cs_emit_regs(cs, HLSQ_INVALIDATE_CMD(CHIP,
199             .cs_bindless = CHIP == A6XX ? 0x1f : 0xff,
200             .gfx_bindless = CHIP == A6XX ? 0x1f : 0xff,
201       ));
202    }
203    if (CHIP >= A7XX && flushes & TU_CMD_FLAG_BLIT_CACHE_CLEAN)
204       /* On A7XX, blit cache flushes are required to ensure blit writes are visible
205        * via UCHE. This isn't necessary on A6XX, all writes should be visible implictly.
206        */
207       tu_emit_event_write<CHIP>(cmd_buffer, cs, FD_CCU_CLEAN_BLIT_CACHE);
208    if (CHIP >= A7XX && (flushes & TU_CMD_FLAG_CCHE_INVALIDATE) &&
209        /* Invalidating UCHE seems to also invalidate CCHE */
210        !(flushes & TU_CMD_FLAG_CACHE_INVALIDATE))
211       tu_cs_emit_pkt7(cs, CP_CCHE_INVALIDATE, 0);
212    if (flushes & TU_CMD_FLAG_WAIT_MEM_WRITES)
213       tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0);
214    if (flushes & TU_CMD_FLAG_WAIT_FOR_IDLE)
215       tu_cs_emit_wfi(cs);
216    if (flushes & TU_CMD_FLAG_WAIT_FOR_ME)
217       tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
218 }
219 
220 /* "Normal" cache flushes outside the renderpass, that don't require any special handling */
221 template <chip CHIP>
222 void
tu_emit_cache_flush(struct tu_cmd_buffer * cmd_buffer)223 tu_emit_cache_flush(struct tu_cmd_buffer *cmd_buffer)
224 {
225    tu6_emit_flushes<CHIP>(cmd_buffer, &cmd_buffer->cs, &cmd_buffer->state.cache);
226 }
227 TU_GENX(tu_emit_cache_flush);
228 
229 /* Renderpass cache flushes inside the draw_cs */
230 template <chip CHIP>
231 void
tu_emit_cache_flush_renderpass(struct tu_cmd_buffer * cmd_buffer)232 tu_emit_cache_flush_renderpass(struct tu_cmd_buffer *cmd_buffer)
233 {
234    if (!cmd_buffer->state.renderpass_cache.flush_bits &&
235        likely(!tu_env.debug))
236       return;
237    tu6_emit_flushes<CHIP>(cmd_buffer, &cmd_buffer->draw_cs,
238                     &cmd_buffer->state.renderpass_cache);
239 }
240 TU_GENX(tu_emit_cache_flush_renderpass);
241 
242 template <chip CHIP>
243 static void
emit_rb_ccu_cntl(struct tu_cs * cs,struct tu_device * dev,bool gmem)244 emit_rb_ccu_cntl(struct tu_cs *cs, struct tu_device *dev, bool gmem)
245 {
246    /* The CCUs are a cache that allocates memory from GMEM while facilitating
247     * framebuffer caching for sysmem rendering. The CCU is split into two parts,
248     * one for color and one for depth. The size and offset of these in GMEM can
249     * be configured separately.
250     *
251     * The most common configuration for the CCU is to occupy as much as possible
252     * of GMEM (CACHE_SIZE_FULL) during sysmem rendering as GMEM is unused. On
253     * the other hand, when rendering to GMEM, the CCUs can be left enabled at
254     * any configuration as they don't interfere with GMEM rendering and only
255     * overwrite GMEM when sysmem operations are performed.
256     *
257     * The vast majority of GMEM rendering doesn't need any sysmem operations
258     * but there are some cases where it is required. For example, when the
259     * framebuffer isn't aligned to the tile size or with certain MSAA resolves.
260     *
261     * To correctly handle these cases, we need to be able to switch between
262     * sysmem and GMEM rendering. We do this by allocating a carveout at the
263     * end of GMEM for the color CCU (as none of these operations are depth)
264     * which the color CCU offset is set to and the GMEM size available to the
265     * GMEM layout calculations is adjusted accordingly.
266     */
267    uint32_t color_offset = gmem ? dev->physical_device->ccu_offset_gmem
268                                 : dev->physical_device->ccu_offset_bypass;
269 
270    uint32_t color_offset_hi = color_offset >> 21;
271    color_offset &= 0x1fffff;
272 
273    uint32_t depth_offset = gmem ? 0
274                                 : dev->physical_device->ccu_depth_offset_bypass;
275 
276    uint32_t depth_offset_hi = depth_offset >> 21;
277    depth_offset &= 0x1fffff;
278 
279    enum a6xx_ccu_cache_size color_cache_size = !gmem ? CCU_CACHE_SIZE_FULL : !gmem ? CCU_CACHE_SIZE_FULL :
280       (a6xx_ccu_cache_size)(dev->physical_device->info->a6xx.gmem_ccu_color_cache_fraction);
281 
282    if (CHIP == A7XX) {
283       tu_cs_emit_regs(cs, A7XX_RB_CCU_CNTL2(
284          .depth_offset_hi = depth_offset_hi,
285          .color_offset_hi = color_offset_hi,
286          .depth_cache_size = CCU_CACHE_SIZE_FULL,
287          .depth_offset = depth_offset,
288          .color_cache_size = color_cache_size,
289          .color_offset = color_offset
290       ));
291 
292       if (dev->physical_device->info->a7xx.has_gmem_vpc_attr_buf) {
293          tu_cs_emit_regs(cs,
294             A7XX_VPC_ATTR_BUF_SIZE_GMEM(
295                   .size_gmem =
296                      gmem ? dev->physical_device->vpc_attr_buf_size_gmem
297                           : dev->physical_device->vpc_attr_buf_size_bypass),
298             A7XX_VPC_ATTR_BUF_BASE_GMEM(
299                   .base_gmem =
300                      gmem ? dev->physical_device->vpc_attr_buf_offset_gmem
301                           : dev->physical_device->vpc_attr_buf_offset_bypass), );
302          tu_cs_emit_regs(cs,
303             A7XX_PC_ATTR_BUF_SIZE_GMEM(
304                   .size_gmem =
305                      gmem ? dev->physical_device->vpc_attr_buf_size_gmem
306                           : dev->physical_device->vpc_attr_buf_size_bypass), );
307       }
308    } else {
309       tu_cs_emit_regs(cs, RB_CCU_CNTL(CHIP,
310          .gmem_fast_clear_disable =
311             !dev->physical_device->info->a6xx.has_gmem_fast_clear,
312          .concurrent_resolve =
313             dev->physical_device->info->a6xx.concurrent_resolve,
314          .depth_offset_hi = 0,
315          .color_offset_hi = color_offset_hi,
316          .depth_cache_size = CCU_CACHE_SIZE_FULL,
317          .depth_offset = 0,
318          .color_cache_size = color_cache_size,
319          .color_offset = color_offset
320       ));
321    }
322 }
323 
324 /* Cache flushes for things that use the color/depth read/write path (i.e.
325  * blits and draws). This deals with changing CCU state as well as the usual
326  * cache flushing.
327  */
328 template <chip CHIP>
329 void
tu_emit_cache_flush_ccu(struct tu_cmd_buffer * cmd_buffer,struct tu_cs * cs,enum tu_cmd_ccu_state ccu_state)330 tu_emit_cache_flush_ccu(struct tu_cmd_buffer *cmd_buffer,
331                         struct tu_cs *cs,
332                         enum tu_cmd_ccu_state ccu_state)
333 {
334    assert(ccu_state != TU_CMD_CCU_UNKNOWN);
335    /* It's unsafe to flush inside condition because we clear flush_bits */
336    assert(!cs->cond_stack_depth);
337 
338    /* Changing CCU state must involve invalidating the CCU. In sysmem mode,
339     * the CCU may also contain data that we haven't flushed out yet, so we
340     * also need to flush. Also, in order to program RB_CCU_CNTL, we need to
341     * emit a WFI as it isn't pipelined.
342     *
343     * Note: On A7XX, with the introduction of RB_CCU_CNTL2, we no longer need
344     * to emit a WFI when changing a subset of CCU state.
345     */
346    if (ccu_state != cmd_buffer->state.ccu_state) {
347       if (cmd_buffer->state.ccu_state != TU_CMD_CCU_GMEM) {
348          cmd_buffer->state.cache.flush_bits |=
349             TU_CMD_FLAG_CCU_CLEAN_COLOR |
350             TU_CMD_FLAG_CCU_CLEAN_DEPTH;
351          cmd_buffer->state.cache.pending_flush_bits &= ~(
352             TU_CMD_FLAG_CCU_CLEAN_COLOR |
353             TU_CMD_FLAG_CCU_CLEAN_DEPTH);
354       }
355       cmd_buffer->state.cache.flush_bits |=
356          TU_CMD_FLAG_CCU_INVALIDATE_COLOR |
357          TU_CMD_FLAG_CCU_INVALIDATE_DEPTH |
358          (CHIP == A6XX ? TU_CMD_FLAG_WAIT_FOR_IDLE : 0);
359       cmd_buffer->state.cache.pending_flush_bits &= ~(
360          TU_CMD_FLAG_CCU_INVALIDATE_COLOR |
361          TU_CMD_FLAG_CCU_INVALIDATE_DEPTH |
362          (CHIP == A6XX ? TU_CMD_FLAG_WAIT_FOR_IDLE : 0));
363    }
364 
365    tu6_emit_flushes<CHIP>(cmd_buffer, cs, &cmd_buffer->state.cache);
366 
367    if (ccu_state != cmd_buffer->state.ccu_state) {
368       emit_rb_ccu_cntl<CHIP>(cs, cmd_buffer->device,
369                              ccu_state == TU_CMD_CCU_GMEM);
370       cmd_buffer->state.ccu_state = ccu_state;
371    }
372 }
373 TU_GENX(tu_emit_cache_flush_ccu);
374 
375 template <chip CHIP>
376 static void
tu6_emit_zs(struct tu_cmd_buffer * cmd,const struct tu_subpass * subpass,struct tu_cs * cs)377 tu6_emit_zs(struct tu_cmd_buffer *cmd,
378             const struct tu_subpass *subpass,
379             struct tu_cs *cs)
380 {
381    const uint32_t a = subpass->depth_stencil_attachment.attachment;
382    if (a == VK_ATTACHMENT_UNUSED) {
383       tu_cs_emit_regs(cs,
384                       RB_DEPTH_BUFFER_INFO(CHIP, .depth_format = DEPTH6_NONE),
385                       A6XX_RB_DEPTH_BUFFER_PITCH(0),
386                       A6XX_RB_DEPTH_BUFFER_ARRAY_PITCH(0),
387                       A6XX_RB_DEPTH_BUFFER_BASE(0),
388                       A6XX_RB_DEPTH_BUFFER_BASE_GMEM(0));
389 
390       tu_cs_emit_regs(cs,
391                       A6XX_GRAS_SU_DEPTH_BUFFER_INFO(.depth_format = DEPTH6_NONE));
392 
393       tu_cs_emit_regs(cs, RB_STENCIL_INFO(CHIP, 0));
394 
395       return;
396    }
397 
398    const struct tu_image_view *iview = cmd->state.attachments[a];
399    const struct tu_render_pass_attachment *attachment =
400       &cmd->state.pass->attachments[a];
401    enum a6xx_depth_format fmt = tu6_pipe2depth(attachment->format);
402 
403    tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_BUFFER_INFO, 6);
404    tu_cs_emit(cs, RB_DEPTH_BUFFER_INFO(CHIP,
405                      .depth_format = fmt,
406                      .tilemode = TILE6_3,
407                      .losslesscompen = iview->view.ubwc_enabled,
408                      ).value);
409    if (attachment->format == VK_FORMAT_D32_SFLOAT_S8_UINT)
410       tu_cs_image_depth_ref(cs, iview, 0);
411    else
412       tu_cs_image_ref(cs, &iview->view, 0);
413    tu_cs_emit(cs, tu_attachment_gmem_offset(cmd, attachment, 0));
414 
415    tu_cs_emit_regs(cs,
416                    A6XX_GRAS_SU_DEPTH_BUFFER_INFO(.depth_format = fmt));
417 
418    tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_FLAG_BUFFER_BASE, 3);
419    tu_cs_image_flag_ref(cs, &iview->view, 0);
420 
421    if (attachment->format == VK_FORMAT_D32_SFLOAT_S8_UINT ||
422        attachment->format == VK_FORMAT_S8_UINT) {
423 
424       tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCIL_INFO, 6);
425       tu_cs_emit(cs, RB_STENCIL_INFO(CHIP,
426                         .separate_stencil = true,
427                         .tilemode = TILE6_3,
428                         ).value);
429       if (attachment->format == VK_FORMAT_D32_SFLOAT_S8_UINT) {
430          tu_cs_image_stencil_ref(cs, iview, 0);
431          tu_cs_emit(cs, tu_attachment_gmem_offset_stencil(cmd, attachment, 0));
432       } else {
433          tu_cs_image_ref(cs, &iview->view, 0);
434          tu_cs_emit(cs, tu_attachment_gmem_offset(cmd, attachment, 0));
435       }
436    } else {
437       tu_cs_emit_regs(cs,
438                      RB_STENCIL_INFO(CHIP, 0));
439    }
440 }
441 
442 template <chip CHIP>
443 static void
tu6_emit_mrt(struct tu_cmd_buffer * cmd,const struct tu_subpass * subpass,struct tu_cs * cs)444 tu6_emit_mrt(struct tu_cmd_buffer *cmd,
445              const struct tu_subpass *subpass,
446              struct tu_cs *cs)
447 {
448    const struct tu_framebuffer *fb = cmd->state.framebuffer;
449 
450    enum a6xx_format mrt0_format = FMT6_NONE;
451 
452    for (uint32_t i = 0; i < subpass->color_count; ++i) {
453       uint32_t a = subpass->color_attachments[i].attachment;
454       if (a == VK_ATTACHMENT_UNUSED) {
455          /* From the VkPipelineRenderingCreateInfo definition:
456           *
457           *    Valid formats indicate that an attachment can be used - but it
458           *    is still valid to set the attachment to NULL when beginning
459           *    rendering.
460           *
461           * This means that with dynamic rendering, pipelines may write to
462           * some attachments that are UNUSED here. Setting the format to 0
463           * here should prevent them from writing to anything. This also seems
464           * to also be required for alpha-to-coverage which can use the alpha
465           * value for an otherwise-unused attachment.
466           */
467          tu_cs_emit_regs(cs,
468             RB_MRT_BUF_INFO(CHIP, i),
469             A6XX_RB_MRT_PITCH(i),
470             A6XX_RB_MRT_ARRAY_PITCH(i),
471             A6XX_RB_MRT_BASE(i),
472             A6XX_RB_MRT_BASE_GMEM(i),
473          );
474 
475          tu_cs_emit_regs(cs,
476                          A6XX_SP_FS_MRT_REG(i, .dword = 0));
477          continue;
478       }
479 
480       const struct tu_image_view *iview = cmd->state.attachments[a];
481 
482       tu_cs_emit_regs(cs,
483          RB_MRT_BUF_INFO(CHIP, i, .dword = iview->view.RB_MRT_BUF_INFO),
484          A6XX_RB_MRT_PITCH(i, iview->view.pitch),
485          A6XX_RB_MRT_ARRAY_PITCH(i, iview->view.layer_size),
486          A6XX_RB_MRT_BASE(i, .qword = tu_layer_address(&iview->view, 0)),
487          A6XX_RB_MRT_BASE_GMEM(i,
488             tu_attachment_gmem_offset(cmd, &cmd->state.pass->attachments[a], 0)
489          ),
490       );
491 
492       tu_cs_emit_regs(cs,
493                       A6XX_SP_FS_MRT_REG(i, .dword = iview->view.SP_FS_MRT_REG));
494 
495       tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_FLAG_BUFFER_ADDR(i), 3);
496       tu_cs_image_flag_ref(cs, &iview->view, 0);
497 
498       if (i == 0)
499          mrt0_format = (enum a6xx_format) (iview->view.SP_FS_MRT_REG & 0xff);
500    }
501 
502    tu_cs_emit_regs(cs, A6XX_GRAS_LRZ_MRT_BUF_INFO_0(.color_format = mrt0_format));
503 
504    const bool dither = subpass->legacy_dithering_enabled;
505    const uint32_t dither_cntl =
506       A6XX_RB_DITHER_CNTL(
507             .dither_mode_mrt0 = dither ? DITHER_ALWAYS : DITHER_DISABLE,
508             .dither_mode_mrt1 = dither ? DITHER_ALWAYS : DITHER_DISABLE,
509             .dither_mode_mrt2 = dither ? DITHER_ALWAYS : DITHER_DISABLE,
510             .dither_mode_mrt3 = dither ? DITHER_ALWAYS : DITHER_DISABLE,
511             .dither_mode_mrt4 = dither ? DITHER_ALWAYS : DITHER_DISABLE,
512             .dither_mode_mrt5 = dither ? DITHER_ALWAYS : DITHER_DISABLE,
513             .dither_mode_mrt6 = dither ? DITHER_ALWAYS : DITHER_DISABLE,
514             .dither_mode_mrt7 = dither ? DITHER_ALWAYS : DITHER_DISABLE, )
515          .value;
516    tu_cs_emit_regs(cs, A6XX_RB_DITHER_CNTL(.dword = dither_cntl));
517    if (CHIP >= A7XX) {
518       tu_cs_emit_regs(cs, A7XX_SP_DITHER_CNTL(.dword = dither_cntl));
519    }
520 
521    tu_cs_emit_regs(cs,
522                    A6XX_RB_SRGB_CNTL(.dword = subpass->srgb_cntl));
523    tu_cs_emit_regs(cs,
524                    A6XX_SP_SRGB_CNTL(.dword = subpass->srgb_cntl));
525 
526    unsigned layers = MAX2(fb->layers, util_logbase2(subpass->multiview_mask) + 1);
527    tu_cs_emit_regs(cs, A6XX_GRAS_MAX_LAYER_INDEX(layers - 1));
528 }
529 
530 struct tu_bin_size_params {
531    enum a6xx_render_mode render_mode;
532    bool force_lrz_write_dis;
533    enum a6xx_buffers_location buffers_location;
534    enum a6xx_lrz_feedback_mask lrz_feedback_zmode_mask;
535 };
536 
537 template <chip CHIP>
538 static void
tu6_emit_bin_size(struct tu_cs * cs,uint32_t bin_w,uint32_t bin_h,struct tu_bin_size_params && p)539 tu6_emit_bin_size(struct tu_cs *cs,
540                   uint32_t bin_w,
541                   uint32_t bin_h,
542                   struct tu_bin_size_params &&p)
543 {
544    if (CHIP == A6XX) {
545       tu_cs_emit_regs(
546          cs, A6XX_GRAS_BIN_CONTROL(.binw = bin_w,
547                                    .binh = bin_h,
548                                    .render_mode = p.render_mode,
549                                    .force_lrz_write_dis = p.force_lrz_write_dis,
550                                    .buffers_location = p.buffers_location,
551                                    .lrz_feedback_zmode_mask = p.lrz_feedback_zmode_mask, ));
552    } else {
553       tu_cs_emit_regs(cs,
554                       A6XX_GRAS_BIN_CONTROL(.binw = bin_w,
555                                             .binh = bin_h,
556                                             .render_mode = p.render_mode,
557                                             .force_lrz_write_dis = p.force_lrz_write_dis,
558                                             .lrz_feedback_zmode_mask =
559                                                p.lrz_feedback_zmode_mask, ));
560    }
561 
562    tu_cs_emit_regs(cs, RB_BIN_CONTROL(CHIP,
563                         .binw = bin_w,
564                         .binh = bin_h,
565                         .render_mode = p.render_mode,
566                         .force_lrz_write_dis = p.force_lrz_write_dis,
567                         .buffers_location = p.buffers_location,
568                         .lrz_feedback_zmode_mask = p.lrz_feedback_zmode_mask, ));
569 
570    /* no flag for RB_BIN_CONTROL2... */
571    tu_cs_emit_regs(cs,
572                    A6XX_RB_BIN_CONTROL2(.binw = bin_w,
573                                         .binh = bin_h));
574 }
575 
576 template <chip CHIP>
577 static void
578 tu6_emit_render_cntl(struct tu_cmd_buffer *cmd,
579                      const struct tu_subpass *subpass,
580                      struct tu_cs *cs,
581                      bool binning);
582 
583 template <>
584 void
tu6_emit_render_cntl(struct tu_cmd_buffer * cmd,const struct tu_subpass * subpass,struct tu_cs * cs,bool binning)585 tu6_emit_render_cntl<A6XX>(struct tu_cmd_buffer *cmd,
586                      const struct tu_subpass *subpass,
587                      struct tu_cs *cs,
588                      bool binning)
589 {
590    /* doesn't RB_RENDER_CNTL set differently for binning pass: */
591    bool no_track = !cmd->device->physical_device->info->a6xx.has_cp_reg_write;
592    uint32_t cntl = 0;
593    cntl |= A6XX_RB_RENDER_CNTL_CCUSINGLECACHELINESIZE(2);
594    if (binning) {
595       if (no_track)
596          return;
597       cntl |= A6XX_RB_RENDER_CNTL_BINNING;
598    } else {
599       uint32_t mrts_ubwc_enable = 0;
600       for (uint32_t i = 0; i < subpass->color_count; ++i) {
601          uint32_t a = subpass->color_attachments[i].attachment;
602          if (a == VK_ATTACHMENT_UNUSED)
603             continue;
604 
605          const struct tu_image_view *iview = cmd->state.attachments[a];
606          if (iview->view.ubwc_enabled)
607             mrts_ubwc_enable |= 1 << i;
608       }
609 
610       cntl |= A6XX_RB_RENDER_CNTL_FLAG_MRTS(mrts_ubwc_enable);
611 
612       const uint32_t a = subpass->depth_stencil_attachment.attachment;
613       if (a != VK_ATTACHMENT_UNUSED) {
614          const struct tu_image_view *iview = cmd->state.attachments[a];
615          if (iview->view.ubwc_enabled)
616             cntl |= A6XX_RB_RENDER_CNTL_FLAG_DEPTH;
617       }
618 
619       if (no_track) {
620          tu_cs_emit_pkt4(cs, REG_A6XX_RB_RENDER_CNTL, 1);
621          tu_cs_emit(cs, cntl);
622          return;
623       }
624 
625       /* In the !binning case, we need to set RB_RENDER_CNTL in the draw_cs
626        * in order to set it correctly for the different subpasses. However,
627        * that means the packets we're emitting also happen during binning. So
628        * we need to guard the write on !BINNING at CP execution time.
629        */
630       tu_cs_reserve(cs, 3 + 4);
631       tu_cs_emit_pkt7(cs, CP_COND_REG_EXEC, 2);
632       tu_cs_emit(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
633                      CP_COND_REG_EXEC_0_GMEM | CP_COND_REG_EXEC_0_SYSMEM);
634       tu_cs_emit(cs, RENDER_MODE_CP_COND_REG_EXEC_1_DWORDS(4));
635    }
636 
637    tu_cs_emit_pkt7(cs, CP_REG_WRITE, 3);
638    tu_cs_emit(cs, CP_REG_WRITE_0_TRACKER(TRACK_RENDER_CNTL));
639    tu_cs_emit(cs, REG_A6XX_RB_RENDER_CNTL);
640    tu_cs_emit(cs, cntl);
641 }
642 
643 template <>
644 void
tu6_emit_render_cntl(struct tu_cmd_buffer * cmd,const struct tu_subpass * subpass,struct tu_cs * cs,bool binning)645 tu6_emit_render_cntl<A7XX>(struct tu_cmd_buffer *cmd,
646                      const struct tu_subpass *subpass,
647                      struct tu_cs *cs,
648                      bool binning)
649 {
650    tu_cs_emit_regs(
651       cs, RB_RENDER_CNTL(A7XX, .binning = binning, .raster_mode = TYPE_TILED,
652                               .raster_direction = LR_TB));
653    tu_cs_emit_regs(cs, A7XX_GRAS_SU_RENDER_CNTL(.binning = binning));
654 }
655 
656 static void
tu6_emit_blit_scissor(struct tu_cmd_buffer * cmd,struct tu_cs * cs,bool align)657 tu6_emit_blit_scissor(struct tu_cmd_buffer *cmd, struct tu_cs *cs, bool align)
658 {
659    struct tu_physical_device *phys_dev = cmd->device->physical_device;
660    const VkRect2D *render_area = &cmd->state.render_area;
661 
662    /* Avoid assertion fails with an empty render area at (0, 0) where the
663     * subtraction below wraps around. Empty render areas should be forced to
664     * the sysmem path by use_sysmem_rendering(). It's not even clear whether
665     * an empty scissor here works, and the blob seems to force sysmem too as
666     * it sets something wrong (non-empty) for the scissor.
667     */
668    if (render_area->extent.width == 0 ||
669        render_area->extent.height == 0)
670       return;
671 
672    uint32_t x1 = render_area->offset.x;
673    uint32_t y1 = render_area->offset.y;
674    uint32_t x2 = x1 + render_area->extent.width - 1;
675    uint32_t y2 = y1 + render_area->extent.height - 1;
676 
677    if (align) {
678       x1 = x1 & ~(phys_dev->info->gmem_align_w - 1);
679       y1 = y1 & ~(phys_dev->info->gmem_align_h - 1);
680       x2 = ALIGN_POT(x2 + 1, phys_dev->info->gmem_align_w) - 1;
681       y2 = ALIGN_POT(y2 + 1, phys_dev->info->gmem_align_h) - 1;
682    }
683 
684    tu_cs_emit_regs(cs,
685                    A6XX_RB_BLIT_SCISSOR_TL(.x = x1, .y = y1),
686                    A6XX_RB_BLIT_SCISSOR_BR(.x = x2, .y = y2));
687 }
688 
689 void
tu6_emit_window_scissor(struct tu_cs * cs,uint32_t x1,uint32_t y1,uint32_t x2,uint32_t y2)690 tu6_emit_window_scissor(struct tu_cs *cs,
691                         uint32_t x1,
692                         uint32_t y1,
693                         uint32_t x2,
694                         uint32_t y2)
695 {
696    tu_cs_emit_regs(cs,
697                    A6XX_GRAS_SC_WINDOW_SCISSOR_TL(.x = x1, .y = y1),
698                    A6XX_GRAS_SC_WINDOW_SCISSOR_BR(.x = x2, .y = y2));
699 
700    tu_cs_emit_regs(cs,
701                    A6XX_GRAS_2D_RESOLVE_CNTL_1(.x = x1, .y = y1),
702                    A6XX_GRAS_2D_RESOLVE_CNTL_2(.x = x2, .y = y2));
703 }
704 
705 template <chip CHIP>
706 void
tu6_emit_window_offset(struct tu_cs * cs,uint32_t x1,uint32_t y1)707 tu6_emit_window_offset(struct tu_cs *cs, uint32_t x1, uint32_t y1)
708 {
709    tu_cs_emit_regs(cs,
710                    A6XX_RB_WINDOW_OFFSET(.x = x1, .y = y1));
711 
712    tu_cs_emit_regs(cs,
713                    A6XX_RB_WINDOW_OFFSET2(.x = x1, .y = y1));
714 
715    tu_cs_emit_regs(cs,
716                    SP_WINDOW_OFFSET(CHIP, .x = x1, .y = y1));
717 
718    tu_cs_emit_regs(cs,
719                    A6XX_SP_TP_WINDOW_OFFSET(.x = x1, .y = y1));
720 
721    tu_cs_emit_regs(cs,
722                    A7XX_SP_PS_2D_WINDOW_OFFSET(.x = x1, .y = y1));
723 }
724 
725 void
tu6_apply_depth_bounds_workaround(struct tu_device * device,uint32_t * rb_depth_cntl)726 tu6_apply_depth_bounds_workaround(struct tu_device *device,
727                                   uint32_t *rb_depth_cntl)
728 {
729    if (!device->physical_device->info->a6xx.depth_bounds_require_depth_test_quirk)
730       return;
731 
732    /* On some GPUs it is necessary to enable z test for depth bounds test when
733     * UBWC is enabled. Otherwise, the GPU would hang. FUNC_ALWAYS is required to
734     * pass z test. Relevant tests:
735     *  dEQP-VK.pipeline.extended_dynamic_state.two_draws_dynamic.depth_bounds_test_disable
736     *  dEQP-VK.dynamic_state.ds_state.depth_bounds_1
737     */
738    *rb_depth_cntl |= A6XX_RB_DEPTH_CNTL_Z_TEST_ENABLE |
739                      A6XX_RB_DEPTH_CNTL_ZFUNC(FUNC_ALWAYS);
740 }
741 
742 static void
tu_cs_emit_draw_state(struct tu_cs * cs,uint32_t id,struct tu_draw_state state)743 tu_cs_emit_draw_state(struct tu_cs *cs, uint32_t id, struct tu_draw_state state)
744 {
745    uint32_t enable_mask;
746    switch (id) {
747    case TU_DRAW_STATE_VS:
748    case TU_DRAW_STATE_FS:
749    case TU_DRAW_STATE_VPC:
750    /* The blob seems to not enable this (DESC_SETS_LOAD) for binning, even
751     * when resources would actually be used in the binning shader.
752     * Presumably the overhead of prefetching the resources isn't
753     * worth it.
754     */
755    case TU_DRAW_STATE_DESC_SETS_LOAD:
756       enable_mask = CP_SET_DRAW_STATE__0_GMEM |
757                     CP_SET_DRAW_STATE__0_SYSMEM;
758       break;
759    case TU_DRAW_STATE_VS_BINNING:
760    case TU_DRAW_STATE_GS_BINNING:
761       enable_mask = CP_SET_DRAW_STATE__0_BINNING;
762       break;
763    case TU_DRAW_STATE_INPUT_ATTACHMENTS_GMEM:
764       enable_mask = CP_SET_DRAW_STATE__0_GMEM;
765       break;
766    case TU_DRAW_STATE_PRIM_MODE_GMEM:
767       /* On a7xx the prim mode is the same for gmem and sysmem, and it no
768        * longer depends on dynamic state, so we reuse the gmem state for
769        * everything:
770        */
771       if (cs->device->physical_device->info->a6xx.has_coherent_ubwc_flag_caches) {
772          enable_mask = CP_SET_DRAW_STATE__0_GMEM |
773                        CP_SET_DRAW_STATE__0_SYSMEM |
774                        CP_SET_DRAW_STATE__0_BINNING;
775       } else {
776          enable_mask = CP_SET_DRAW_STATE__0_GMEM;
777       }
778       break;
779    case TU_DRAW_STATE_INPUT_ATTACHMENTS_SYSMEM:
780       enable_mask = CP_SET_DRAW_STATE__0_SYSMEM;
781       break;
782    case TU_DRAW_STATE_DYNAMIC + TU_DYNAMIC_STATE_PRIM_MODE_SYSMEM:
783       /* By also applying the state during binning we ensure that there
784        * is no rotation applied, by previous A6XX_GRAS_SC_CNTL::rotation.
785        */
786       enable_mask =
787          CP_SET_DRAW_STATE__0_SYSMEM | CP_SET_DRAW_STATE__0_BINNING;
788       break;
789    default:
790       enable_mask = CP_SET_DRAW_STATE__0_GMEM |
791                     CP_SET_DRAW_STATE__0_SYSMEM |
792                     CP_SET_DRAW_STATE__0_BINNING;
793       break;
794    }
795 
796    STATIC_ASSERT(TU_DRAW_STATE_COUNT <= 32);
797 
798    /* We need to reload the descriptors every time the descriptor sets
799     * change. However, the commands we send only depend on the pipeline
800     * because the whole point is to cache descriptors which are used by the
801     * pipeline. There's a problem here, in that the firmware has an
802     * "optimization" which skips executing groups that are set to the same
803     * value as the last draw. This means that if the descriptor sets change
804     * but not the pipeline, we'd try to re-execute the same buffer which
805     * the firmware would ignore and we wouldn't pre-load the new
806     * descriptors. Set the DIRTY bit to avoid this optimization.
807     *
808     * We set the dirty bit for shader draw states because they contain
809     * CP_LOAD_STATE packets that are invalidated by the PROGRAM_CONFIG draw
810     * state, so if PROGRAM_CONFIG changes but one of the shaders stays the
811     * same then we still need to re-emit everything. The GLES blob which
812     * implements separate shader draw states does the same thing.
813     *
814     * We also need to set this bit for draw states which may be patched by the
815     * GPU, because their underlying memory may change between setting the draw
816     * state.
817     */
818    if (id == TU_DRAW_STATE_DESC_SETS_LOAD ||
819        id == TU_DRAW_STATE_VS ||
820        id == TU_DRAW_STATE_VS_BINNING ||
821        id == TU_DRAW_STATE_HS ||
822        id == TU_DRAW_STATE_DS ||
823        id == TU_DRAW_STATE_GS ||
824        id == TU_DRAW_STATE_GS_BINNING ||
825        id == TU_DRAW_STATE_FS ||
826        state.writeable)
827       enable_mask |= CP_SET_DRAW_STATE__0_DIRTY;
828 
829    tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(state.size) |
830                   enable_mask |
831                   CP_SET_DRAW_STATE__0_GROUP_ID(id) |
832                   COND(!state.size || !state.iova, CP_SET_DRAW_STATE__0_DISABLE));
833    tu_cs_emit_qw(cs, state.iova);
834 }
835 
836 void
tu6_emit_msaa(struct tu_cs * cs,VkSampleCountFlagBits vk_samples,bool msaa_disable)837 tu6_emit_msaa(struct tu_cs *cs, VkSampleCountFlagBits vk_samples,
838               bool msaa_disable)
839 {
840    const enum a3xx_msaa_samples samples = tu_msaa_samples(vk_samples);
841    msaa_disable |= (samples == MSAA_ONE);
842    tu_cs_emit_regs(cs,
843                    A6XX_SP_TP_RAS_MSAA_CNTL(samples),
844                    A6XX_SP_TP_DEST_MSAA_CNTL(.samples = samples,
845                                              .msaa_disable = msaa_disable));
846 
847    tu_cs_emit_regs(cs,
848                    A6XX_GRAS_RAS_MSAA_CNTL(samples),
849                    A6XX_GRAS_DEST_MSAA_CNTL(.samples = samples,
850                                             .msaa_disable = msaa_disable));
851 
852    tu_cs_emit_regs(cs,
853                    A6XX_RB_RAS_MSAA_CNTL(samples),
854                    A6XX_RB_DEST_MSAA_CNTL(.samples = samples,
855                                           .msaa_disable = msaa_disable));
856 }
857 
858 static void
tu6_update_msaa(struct tu_cmd_buffer * cmd)859 tu6_update_msaa(struct tu_cmd_buffer *cmd)
860 {
861    VkSampleCountFlagBits samples =
862       cmd->vk.dynamic_graphics_state.ms.rasterization_samples;;
863 
864    /* The samples may not be set by the pipeline or dynamically if raster
865     * discard is enabled. We can set any valid value, but don't set the
866     * default invalid value of 0.
867     */
868    if (samples == 0)
869       samples = VK_SAMPLE_COUNT_1_BIT;
870    tu6_emit_msaa(&cmd->draw_cs, samples, cmd->state.msaa_disable);
871 }
872 
873 static void
tu6_update_msaa_disable(struct tu_cmd_buffer * cmd)874 tu6_update_msaa_disable(struct tu_cmd_buffer *cmd)
875 {
876    VkPrimitiveTopology topology =
877       (VkPrimitiveTopology)cmd->vk.dynamic_graphics_state.ia.primitive_topology;
878    bool is_line =
879       topology == VK_PRIMITIVE_TOPOLOGY_LINE_LIST ||
880       topology == VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY ||
881       topology == VK_PRIMITIVE_TOPOLOGY_LINE_STRIP ||
882       topology == VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY ||
883       (topology == VK_PRIMITIVE_TOPOLOGY_PATCH_LIST &&
884        cmd->state.shaders[MESA_SHADER_TESS_EVAL] &&
885        cmd->state.shaders[MESA_SHADER_TESS_EVAL]->variant &&
886        cmd->state.shaders[MESA_SHADER_TESS_EVAL]->variant->key.tessellation == IR3_TESS_ISOLINES);
887    bool msaa_disable = is_line &&
888       cmd->vk.dynamic_graphics_state.rs.line.mode == VK_LINE_RASTERIZATION_MODE_BRESENHAM_KHR;
889 
890    if (cmd->state.msaa_disable != msaa_disable) {
891       cmd->state.msaa_disable = msaa_disable;
892       tu6_update_msaa(cmd);
893    }
894 }
895 
896 static bool
use_hw_binning(struct tu_cmd_buffer * cmd)897 use_hw_binning(struct tu_cmd_buffer *cmd)
898 {
899    const struct tu_framebuffer *fb = cmd->state.framebuffer;
900    const struct tu_tiling_config *tiling = &fb->tiling[cmd->state.gmem_layout];
901 
902    /* XFB commands are emitted for BINNING || SYSMEM, which makes it
903     * incompatible with non-hw binning GMEM rendering. this is required because
904     * some of the XFB commands need to only be executed once.
905     * use_sysmem_rendering() should have made sure we only ended up here if no
906     * XFB was used.
907     */
908    if (cmd->state.rp.xfb_used) {
909       assert(tiling->binning_possible);
910       return true;
911    }
912 
913    /* VK_QUERY_TYPE_PRIMITIVES_GENERATED_EXT emulates GL_PRIMITIVES_GENERATED,
914     * which wasn't designed to care about tilers and expects the result not to
915     * be multiplied by tile count.
916     * See https://gitlab.khronos.org/vulkan/vulkan/-/issues/3131
917     */
918    if (cmd->state.rp.has_prim_generated_query_in_rp ||
919        cmd->state.prim_generated_query_running_before_rp) {
920       assert(tiling->binning_possible);
921       return true;
922    }
923 
924    return tiling->binning;
925 }
926 
927 static bool
use_sysmem_rendering(struct tu_cmd_buffer * cmd,struct tu_renderpass_result ** autotune_result)928 use_sysmem_rendering(struct tu_cmd_buffer *cmd,
929                      struct tu_renderpass_result **autotune_result)
930 {
931    if (TU_DEBUG(SYSMEM))
932       return true;
933 
934    /* can't fit attachments into gmem */
935    if (!cmd->state.tiling->possible)
936       return true;
937 
938    if (cmd->state.framebuffer->layers > 1)
939       return true;
940 
941    /* Use sysmem for empty render areas */
942    if (cmd->state.render_area.extent.width == 0 ||
943        cmd->state.render_area.extent.height == 0)
944       return true;
945 
946    if (cmd->state.rp.has_tess)
947       return true;
948 
949    if (cmd->state.rp.disable_gmem)
950       return true;
951 
952    /* XFB is incompatible with non-hw binning GMEM rendering, see use_hw_binning */
953    if (cmd->state.rp.xfb_used && !cmd->state.tiling->binning_possible)
954       return true;
955 
956    /* QUERY_TYPE_PRIMITIVES_GENERATED is incompatible with non-hw binning
957     * GMEM rendering, see use_hw_binning.
958     */
959    if ((cmd->state.rp.has_prim_generated_query_in_rp ||
960         cmd->state.prim_generated_query_running_before_rp) &&
961        !cmd->state.tiling->binning_possible)
962       return true;
963 
964    if (TU_DEBUG(GMEM))
965       return false;
966 
967    bool use_sysmem = tu_autotune_use_bypass(&cmd->device->autotune,
968                                             cmd, autotune_result);
969    if (*autotune_result) {
970       list_addtail(&(*autotune_result)->node, &cmd->renderpass_autotune_results);
971    }
972 
973    return use_sysmem;
974 }
975 
976 /* Optimization: there is no reason to load gmem if there is no
977  * geometry to process. COND_REG_EXEC predicate is set here,
978  * but the actual skip happens in tu_load_gmem_attachment() and tile_store_cs,
979  * for each blit separately.
980  */
981 static void
tu6_emit_cond_for_load_stores(struct tu_cmd_buffer * cmd,struct tu_cs * cs,uint32_t pipe,uint32_t slot,bool skip_wfm)982 tu6_emit_cond_for_load_stores(struct tu_cmd_buffer *cmd, struct tu_cs *cs,
983                               uint32_t pipe, uint32_t slot, bool skip_wfm)
984 {
985    if (cmd->state.tiling->binning_possible &&
986        cmd->state.pass->has_cond_load_store) {
987       tu_cs_emit_pkt7(cs, CP_REG_TEST, 1);
988       tu_cs_emit(cs, A6XX_CP_REG_TEST_0_REG(REG_A6XX_VSC_STATE_REG(pipe)) |
989                      A6XX_CP_REG_TEST_0_BIT(slot) |
990                      COND(skip_wfm, A6XX_CP_REG_TEST_0_SKIP_WAIT_FOR_ME));
991    } else {
992       /* COND_REG_EXECs are not emitted in non-binning case */
993    }
994 }
995 
996 template <chip CHIP>
997 static void
tu6_emit_tile_select(struct tu_cmd_buffer * cmd,struct tu_cs * cs,uint32_t tx,uint32_t ty,uint32_t pipe,uint32_t slot,const struct tu_image_view * fdm)998 tu6_emit_tile_select(struct tu_cmd_buffer *cmd,
999                      struct tu_cs *cs,
1000                      uint32_t tx, uint32_t ty, uint32_t pipe, uint32_t slot,
1001                      const struct tu_image_view *fdm)
1002 {
1003    const struct tu_tiling_config *tiling = cmd->state.tiling;
1004 
1005    tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
1006    tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_GMEM));
1007 
1008    const uint32_t x1 = tiling->tile0.width * tx;
1009    const uint32_t y1 = tiling->tile0.height * ty;
1010    const uint32_t x2 = MIN2(x1 + tiling->tile0.width, MAX_VIEWPORT_SIZE);
1011    const uint32_t y2 = MIN2(y1 + tiling->tile0.height, MAX_VIEWPORT_SIZE);
1012    tu6_emit_window_scissor(cs, x1, y1, x2 - 1, y2 - 1);
1013    tu6_emit_window_offset<CHIP>(cs, x1, y1);
1014 
1015    bool hw_binning = use_hw_binning(cmd);
1016 
1017    if (hw_binning) {
1018       tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
1019 
1020       tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
1021       tu_cs_emit(cs, 0x0);
1022 
1023       tu_cs_emit_pkt7(cs, CP_SET_BIN_DATA5_OFFSET, 4);
1024       tu_cs_emit(cs, tiling->pipe_sizes[pipe] |
1025                      CP_SET_BIN_DATA5_0_VSC_N(slot));
1026       tu_cs_emit(cs, pipe * cmd->vsc_draw_strm_pitch);
1027       tu_cs_emit(cs, pipe * 4);
1028       tu_cs_emit(cs, pipe * cmd->vsc_prim_strm_pitch);
1029    }
1030 
1031    tu6_emit_cond_for_load_stores(cmd, cs, pipe, slot, hw_binning);
1032 
1033    tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
1034    tu_cs_emit(cs, !hw_binning);
1035 
1036    tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
1037    tu_cs_emit(cs, 0x0);
1038 
1039    if (fdm || (TU_DEBUG(FDM) && cmd->state.pass->has_fdm)) {
1040       unsigned views =
1041          cmd->state.pass->num_views ? cmd->state.pass->num_views : 1;
1042       const struct tu_framebuffer *fb = cmd->state.framebuffer;
1043       struct tu_frag_area raw_areas[views];
1044       if (fdm) {
1045          tu_fragment_density_map_sample(fdm,
1046                                         (x1 + MIN2(x2, fb->width)) / 2,
1047                                         (y1 + MIN2(y2, fb->height)) / 2,
1048                                         fb->width, fb->height, views,
1049                                         raw_areas);
1050       } else {
1051          for (unsigned i = 0; i < views; i++)
1052             raw_areas[i].width = raw_areas[i].height = 1.0f;
1053       }
1054 
1055       VkExtent2D frag_areas[views];
1056       for (unsigned i = 0; i < views; i++) {
1057          float floor_x, floor_y;
1058          float area = raw_areas[i].width * raw_areas[i].height;
1059          float frac_x = modff(raw_areas[i].width, &floor_x);
1060          float frac_y = modff(raw_areas[i].height, &floor_y);
1061          /* The spec allows rounding up one of the axes as long as the total
1062           * area is less than or equal to the original area. Take advantage of
1063           * this to try rounding up the number with the largest fraction.
1064           */
1065          if ((frac_x > frac_y ? (floor_x + 1.f) * floor_y :
1066                                  floor_x * (floor_y + 1.f)) <= area) {
1067             if (frac_x > frac_y)
1068                floor_x += 1.f;
1069             else
1070                floor_y += 1.f;
1071          }
1072          frag_areas[i].width = floor_x;
1073          frag_areas[i].height = floor_y;
1074 
1075          /* Make sure that the width/height divides the tile width/height so
1076           * we don't have to do extra awkward clamping of the edges of each
1077           * bin when resolving. Note that because the tile width is rounded to
1078           * a multiple of 32 any power of two 32 or less will work.
1079           *
1080           * TODO: Try to take advantage of the total area allowance here, too.
1081           */
1082          while (tiling->tile0.width % frag_areas[i].width != 0)
1083             frag_areas[i].width--;
1084          while (tiling->tile0.height % frag_areas[i].height != 0)
1085             frag_areas[i].height--;
1086       }
1087 
1088       /* If at any point we were forced to use the same scaling for all
1089        * viewports, we need to make sure that any users *not* using shared
1090        * scaling, including loads/stores, also consistently share the scaling.
1091        */
1092       if (cmd->state.rp.shared_viewport) {
1093          VkExtent2D frag_area = { UINT32_MAX, UINT32_MAX };
1094          for (unsigned i = 0; i < views; i++) {
1095             frag_area.width = MIN2(frag_area.width, frag_areas[i].width);
1096             frag_area.height = MIN2(frag_area.height, frag_areas[i].height);
1097          }
1098 
1099          for (unsigned i = 0; i < views; i++)
1100             frag_areas[i] = frag_area;
1101       }
1102 
1103       VkRect2D bin = { { x1, y1 }, { x2 - x1, y2 - y1 } };
1104       util_dynarray_foreach (&cmd->fdm_bin_patchpoints,
1105                              struct tu_fdm_bin_patchpoint, patch) {
1106          tu_cs_emit_pkt7(cs, CP_MEM_WRITE, 2 + patch->size);
1107          tu_cs_emit_qw(cs, patch->iova);
1108          patch->apply(cmd, cs, patch->data, bin, views, frag_areas);
1109       }
1110 
1111       /* Make the CP wait until the CP_MEM_WRITE's to the command buffers
1112        * land. When loading FS params via UBOs, we also need to invalidate
1113        * UCHE because the FS param patchpoint is read through UCHE.
1114        */
1115       tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0);
1116       if (cmd->device->compiler->load_shader_consts_via_preamble) {
1117          tu_emit_event_write<CHIP>(cmd, cs, FD_CACHE_INVALIDATE);
1118          tu_cs_emit_wfi(cs);
1119       }
1120       tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
1121    }
1122 }
1123 
1124 template <chip CHIP>
1125 static void
tu6_emit_sysmem_resolve(struct tu_cmd_buffer * cmd,struct tu_cs * cs,uint32_t layer_mask,uint32_t a,uint32_t gmem_a)1126 tu6_emit_sysmem_resolve(struct tu_cmd_buffer *cmd,
1127                         struct tu_cs *cs,
1128                         uint32_t layer_mask,
1129                         uint32_t a,
1130                         uint32_t gmem_a)
1131 {
1132    const struct tu_framebuffer *fb = cmd->state.framebuffer;
1133    const struct tu_image_view *dst = cmd->state.attachments[a];
1134    const struct tu_image_view *src = cmd->state.attachments[gmem_a];
1135 
1136    tu_resolve_sysmem<CHIP>(cmd, cs, src, dst, layer_mask, fb->layers, &cmd->state.render_area);
1137 }
1138 
1139 template <chip CHIP>
1140 static void
tu6_emit_sysmem_resolves(struct tu_cmd_buffer * cmd,struct tu_cs * cs,const struct tu_subpass * subpass)1141 tu6_emit_sysmem_resolves(struct tu_cmd_buffer *cmd,
1142                          struct tu_cs *cs,
1143                          const struct tu_subpass *subpass)
1144 {
1145    if (subpass->resolve_attachments) {
1146       /* From the documentation for vkCmdNextSubpass, section 7.4 "Render Pass
1147        * Commands":
1148        *
1149        *    End-of-subpass multisample resolves are treated as color
1150        *    attachment writes for the purposes of synchronization.
1151        *    This applies to resolve operations for both color and
1152        *    depth/stencil attachments. That is, they are considered to
1153        *    execute in the VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT
1154        *    pipeline stage and their writes are synchronized with
1155        *    VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT. Synchronization between
1156        *    rendering within a subpass and any resolve operations at the end
1157        *    of the subpass occurs automatically, without need for explicit
1158        *    dependencies or pipeline barriers. However, if the resolve
1159        *    attachment is also used in a different subpass, an explicit
1160        *    dependency is needed.
1161        *
1162        * We use the CP_BLIT path for sysmem resolves, which is really a
1163        * transfer command, so we have to manually flush similar to the gmem
1164        * resolve case. However, a flush afterwards isn't needed because of the
1165        * last sentence and the fact that we're in sysmem mode.
1166        */
1167       tu_emit_event_write<CHIP>(cmd, cs, FD_CCU_CLEAN_COLOR);
1168       if (subpass->resolve_depth_stencil)
1169          tu_emit_event_write<CHIP>(cmd, cs, FD_CCU_CLEAN_DEPTH);
1170 
1171       tu_emit_event_write<CHIP>(cmd, cs, FD_CACHE_INVALIDATE);
1172 
1173       /* Wait for the flushes to land before using the 2D engine */
1174       tu_cs_emit_wfi(cs);
1175 
1176       for (unsigned i = 0; i < subpass->resolve_count; i++) {
1177          uint32_t a = subpass->resolve_attachments[i].attachment;
1178          if (a == VK_ATTACHMENT_UNUSED)
1179             continue;
1180 
1181          uint32_t gmem_a = tu_subpass_get_attachment_to_resolve(subpass, i);
1182 
1183          tu6_emit_sysmem_resolve<CHIP>(cmd, cs, subpass->multiview_mask, a, gmem_a);
1184       }
1185    }
1186 }
1187 
1188 template <chip CHIP>
1189 static void
tu6_emit_tile_store(struct tu_cmd_buffer * cmd,struct tu_cs * cs)1190 tu6_emit_tile_store(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1191 {
1192    const struct tu_render_pass *pass = cmd->state.pass;
1193    const struct tu_subpass *subpass = &pass->subpasses[pass->subpass_count-1];
1194    const struct tu_framebuffer *fb = cmd->state.framebuffer;
1195 
1196    if (pass->has_fdm)
1197       tu_cs_set_writeable(cs, true);
1198 
1199    tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
1200    tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_RESOLVE));
1201 
1202    tu6_emit_blit_scissor(cmd, cs, true);
1203 
1204    /* Resolve should happen before store in case BLIT_EVENT_STORE_AND_CLEAR is
1205     * used for a store.
1206     */
1207    if (subpass->resolve_attachments) {
1208       for (unsigned i = 0; i < subpass->resolve_count; i++) {
1209          uint32_t a = subpass->resolve_attachments[i].attachment;
1210          if (a != VK_ATTACHMENT_UNUSED) {
1211             uint32_t gmem_a = tu_subpass_get_attachment_to_resolve(subpass, i);
1212             tu_store_gmem_attachment<CHIP>(cmd, cs, a, gmem_a, fb->layers,
1213                                      subpass->multiview_mask, false);
1214          }
1215       }
1216    }
1217 
1218    for (uint32_t a = 0; a < pass->attachment_count; ++a) {
1219       if (pass->attachments[a].gmem) {
1220          const bool cond_exec_allowed = cmd->state.tiling->binning_possible &&
1221                                         cmd->state.pass->has_cond_load_store;
1222          tu_store_gmem_attachment<CHIP>(cmd, cs, a, a,
1223                                   fb->layers, subpass->multiview_mask,
1224                                   cond_exec_allowed);
1225       }
1226    }
1227 
1228    if (pass->has_fdm)
1229       tu_cs_set_writeable(cs, false);
1230 }
1231 
1232 void
tu_disable_draw_states(struct tu_cmd_buffer * cmd,struct tu_cs * cs)1233 tu_disable_draw_states(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1234 {
1235    tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
1236    tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(0) |
1237                      CP_SET_DRAW_STATE__0_DISABLE_ALL_GROUPS |
1238                      CP_SET_DRAW_STATE__0_GROUP_ID(0));
1239    tu_cs_emit(cs, CP_SET_DRAW_STATE__1_ADDR_LO(0));
1240    tu_cs_emit(cs, CP_SET_DRAW_STATE__2_ADDR_HI(0));
1241 
1242    cmd->state.dirty |= TU_CMD_DIRTY_DRAW_STATE;
1243 }
1244 
1245 template <chip CHIP>
1246 static void
tu6_init_hw(struct tu_cmd_buffer * cmd,struct tu_cs * cs)1247 tu6_init_hw(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1248 {
1249    struct tu_device *dev = cmd->device;
1250    const struct tu_physical_device *phys_dev = dev->physical_device;
1251 
1252    if (CHIP == A6XX) {
1253       tu_emit_event_write<CHIP>(cmd, cs, FD_CACHE_INVALIDATE);
1254    } else {
1255       tu_cs_emit_pkt7(cs, CP_THREAD_CONTROL, 1);
1256       tu_cs_emit(cs, CP_THREAD_CONTROL_0_THREAD(CP_SET_THREAD_BR) |
1257                      CP_THREAD_CONTROL_0_CONCURRENT_BIN_DISABLE);
1258 
1259       tu_emit_event_write<CHIP>(cmd, cs, FD_CCU_INVALIDATE_COLOR);
1260       tu_emit_event_write<CHIP>(cmd, cs, FD_CCU_INVALIDATE_DEPTH);
1261       tu_emit_raw_event_write<CHIP>(cmd, cs, UNK_40, false);
1262       tu_emit_event_write<CHIP>(cmd, cs, FD_CACHE_INVALIDATE);
1263       tu_cs_emit_wfi(cs);
1264    }
1265 
1266    tu_cs_emit_regs(cs, HLSQ_INVALIDATE_CMD(CHIP,
1267          .vs_state = true,
1268          .hs_state = true,
1269          .ds_state = true,
1270          .gs_state = true,
1271          .fs_state = true,
1272          .cs_state = true,
1273          .cs_ibo = true,
1274          .gfx_ibo = true,
1275          .cs_shared_const = true,
1276          .gfx_shared_const = true,
1277          .cs_bindless = CHIP == A6XX ? 0x1f : 0xff,
1278          .gfx_bindless = CHIP == A6XX ? 0x1f : 0xff,));
1279 
1280    tu_cs_emit_wfi(cs);
1281 
1282    if (dev->dbg_cmdbuf_stomp_cs) {
1283       tu_cs_emit_call(cs, dev->dbg_cmdbuf_stomp_cs);
1284    }
1285 
1286    cmd->state.cache.pending_flush_bits &=
1287       ~(TU_CMD_FLAG_WAIT_FOR_IDLE | TU_CMD_FLAG_CACHE_INVALIDATE);
1288 
1289    if (CHIP >= A7XX) {
1290       /* On A7XX, RB_CCU_CNTL was broken into two registers, RB_CCU_CNTL which has
1291        * static properties that can be set once, this requires a WFI to take effect.
1292        * While the newly introduced register RB_CCU_CNTL2 has properties that may
1293        * change per-RP and don't require a WFI to take effect, only CCU inval/flush
1294        * events are required.
1295        */
1296       tu_cs_emit_regs(cs, RB_CCU_CNTL(CHIP,
1297          .gmem_fast_clear_disable =
1298             !dev->physical_device->info->a6xx.has_gmem_fast_clear,
1299          .concurrent_resolve = dev->physical_device->info->a6xx.concurrent_resolve,
1300       ));
1301       tu_cs_emit_wfi(cs);
1302    }
1303 
1304    emit_rb_ccu_cntl<CHIP>(cs, cmd->device, false);
1305    cmd->state.ccu_state = TU_CMD_CCU_SYSMEM;
1306 
1307    for (size_t i = 0; i < ARRAY_SIZE(phys_dev->info->a6xx.magic_raw); i++) {
1308       auto magic_reg = phys_dev->info->a6xx.magic_raw[i];
1309       if (!magic_reg.reg)
1310          break;
1311 
1312       uint32_t value = magic_reg.value;
1313       switch(magic_reg.reg) {
1314          case REG_A6XX_TPL1_DBG_ECO_CNTL1:
1315             value = (value & ~A6XX_TPL1_DBG_ECO_CNTL1_TP_UBWC_FLAG_HINT) |
1316                     (phys_dev->info->a7xx.enable_tp_ubwc_flag_hint
1317                         ? A6XX_TPL1_DBG_ECO_CNTL1_TP_UBWC_FLAG_HINT
1318                         : 0);
1319             break;
1320       }
1321 
1322       tu_cs_emit_write_reg(cs, magic_reg.reg, value);
1323    }
1324 
1325    tu_cs_emit_write_reg(cs, REG_A6XX_RB_DBG_ECO_CNTL,
1326                         phys_dev->info->a6xx.magic.RB_DBG_ECO_CNTL);
1327    tu_cs_emit_write_reg(cs, REG_A6XX_SP_FLOAT_CNTL, 0);
1328    tu_cs_emit_write_reg(cs, REG_A6XX_SP_DBG_ECO_CNTL,
1329                         phys_dev->info->a6xx.magic.SP_DBG_ECO_CNTL);
1330    tu_cs_emit_write_reg(cs, REG_A6XX_SP_PERFCTR_ENABLE, 0x3f);
1331    if (CHIP == A6XX)
1332       tu_cs_emit_write_reg(cs, REG_A6XX_TPL1_UNKNOWN_B605, 0x44);
1333    tu_cs_emit_write_reg(cs, REG_A6XX_TPL1_DBG_ECO_CNTL,
1334                         phys_dev->info->a6xx.magic.TPL1_DBG_ECO_CNTL);
1335    if (CHIP == A6XX) {
1336       tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BE00, 0x80);
1337       tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BE01, 0);
1338    }
1339 
1340    tu_cs_emit_write_reg(cs, REG_A6XX_VPC_DBG_ECO_CNTL,
1341                         phys_dev->info->a6xx.magic.VPC_DBG_ECO_CNTL);
1342    tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_DBG_ECO_CNTL,
1343                         phys_dev->info->a6xx.magic.GRAS_DBG_ECO_CNTL);
1344    if (CHIP == A6XX) {
1345       tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_DBG_ECO_CNTL,
1346                            phys_dev->info->a6xx.magic.HLSQ_DBG_ECO_CNTL);
1347    }
1348    tu_cs_emit_write_reg(cs, REG_A6XX_SP_CHICKEN_BITS,
1349                         phys_dev->info->a6xx.magic.SP_CHICKEN_BITS);
1350    tu_cs_emit_write_reg(cs, REG_A6XX_SP_IBO_COUNT, 0); // 2 on a740 ???
1351    tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B182, 0);
1352    if (CHIP == A6XX)
1353       tu_cs_emit_regs(cs, A6XX_HLSQ_SHARED_CONSTS(.enable = false));
1354    tu_cs_emit_write_reg(cs, REG_A6XX_UCHE_UNKNOWN_0E12,
1355                         phys_dev->info->a6xx.magic.UCHE_UNKNOWN_0E12);
1356    tu_cs_emit_write_reg(cs, REG_A6XX_UCHE_CLIENT_PF,
1357                         phys_dev->info->a6xx.magic.UCHE_CLIENT_PF);
1358    tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8E01,
1359                         phys_dev->info->a6xx.magic.RB_UNKNOWN_8E01);
1360    tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_A9A8, 0);
1361    tu_cs_emit_regs(cs, A6XX_SP_MODE_CONTROL(.constant_demotion_enable = true,
1362                                             .isammode = ISAMMODE_GL,
1363                                             .shared_consts_enable = false));
1364 
1365    /* TODO: set A6XX_VFD_ADD_OFFSET_INSTANCE and fix ir3 to avoid adding base instance */
1366    tu_cs_emit_write_reg(cs, REG_A6XX_VFD_ADD_OFFSET, A6XX_VFD_ADD_OFFSET_VERTEX);
1367    tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8811, 0x00000010);
1368    tu_cs_emit_write_reg(cs, REG_A6XX_PC_MODE_CNTL,
1369                         phys_dev->info->a6xx.magic.PC_MODE_CNTL);
1370 
1371    tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_8110, 0);
1372 
1373    tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8818, 0);
1374 
1375    if (CHIP == A6XX) {
1376       tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8819, 0);
1377       tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881A, 0);
1378       tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881B, 0);
1379       tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881C, 0);
1380       tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881D, 0);
1381       tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881E, 0);
1382    }
1383 
1384    tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_88F0, 0);
1385 
1386    tu_cs_emit_regs(cs, A6XX_VPC_POINT_COORD_INVERT(false));
1387    tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9300, 0);
1388 
1389    tu_cs_emit_regs(cs, A6XX_VPC_SO_DISABLE(true));
1390 
1391    tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B183, 0);
1392 
1393    tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_SU_CONSERVATIVE_RAS_CNTL, 0);
1394    tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_80AF, 0);
1395    if (CHIP == A6XX) {
1396       tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9210, 0);
1397       tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9211, 0);
1398    }
1399    tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9602, 0);
1400    tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9E72, 0);
1401    tu_cs_emit_write_reg(cs, REG_A6XX_SP_TP_MODE_CNTL,
1402                         0x000000a0 |
1403                         A6XX_SP_TP_MODE_CNTL_ISAMMODE(ISAMMODE_GL));
1404    tu_cs_emit_regs(cs, HLSQ_CONTROL_5_REG(CHIP, .dword = 0xfc));
1405 
1406    tu_cs_emit_write_reg(cs, REG_A6XX_VFD_MODE_CNTL, 0x00000000);
1407 
1408    tu_cs_emit_write_reg(cs, REG_A6XX_PC_MODE_CNTL, phys_dev->info->a6xx.magic.PC_MODE_CNTL);
1409 
1410    tu_cs_emit_regs(cs, A6XX_RB_ALPHA_CONTROL()); /* always disable alpha test */
1411 
1412    tu_disable_draw_states(cmd, cs);
1413 
1414    tu_cs_emit_regs(cs,
1415                    A6XX_SP_TP_BORDER_COLOR_BASE_ADDR(.bo = dev->global_bo,
1416                                                      .bo_offset = gb_offset(bcolor_builtin)));
1417    tu_cs_emit_regs(cs,
1418                    A6XX_SP_PS_TP_BORDER_COLOR_BASE_ADDR(.bo = dev->global_bo,
1419                                                         .bo_offset = gb_offset(bcolor_builtin)));
1420 
1421    if (CHIP == A7XX) {
1422       tu_cs_emit_regs(cs, TPL1_BICUBIC_WEIGHTS_TABLE_0(CHIP, 0),
1423                       TPL1_BICUBIC_WEIGHTS_TABLE_1(CHIP, 0x3fe05ff4),
1424                       TPL1_BICUBIC_WEIGHTS_TABLE_2(CHIP, 0x3fa0ebee),
1425                       TPL1_BICUBIC_WEIGHTS_TABLE_3(CHIP, 0x3f5193ed),
1426                       TPL1_BICUBIC_WEIGHTS_TABLE_4(CHIP, 0x3f0243f0), );
1427    }
1428 
1429    if (phys_dev->info->a7xx.cmdbuf_start_a725_quirk) {
1430       tu_cs_reserve(cs, 3 + 4);
1431       tu_cs_emit_pkt7(cs, CP_COND_REG_EXEC, 2);
1432       tu_cs_emit(cs, CP_COND_REG_EXEC_0_MODE(THREAD_MODE) |
1433                      CP_COND_REG_EXEC_0_BR | CP_COND_REG_EXEC_0_LPAC);
1434       tu_cs_emit(cs, RENDER_MODE_CP_COND_REG_EXEC_1_DWORDS(4));
1435       tu_cs_emit_ib(cs, dev->cmdbuf_start_a725_quirk_entry);
1436    }
1437 
1438    if (CHIP >= A7XX) {
1439       /* Blob sets these two per draw. */
1440       tu_cs_emit_regs(cs, A7XX_PC_TESS_PARAM_SIZE(TU_TESS_PARAM_SIZE));
1441       /* Blob adds a bit more space ({0x10, 0x20, 0x30, 0x40} bytes)
1442        * but the meaning of this additional space is not known,
1443        * so we play safe and don't add it.
1444        */
1445       tu_cs_emit_regs(cs, A7XX_PC_TESS_FACTOR_SIZE(TU_TESS_FACTOR_SIZE));
1446    }
1447 
1448    /* There is an optimization to skip executing draw states for draws with no
1449     * instances. Instead of simply skipping the draw, internally the firmware
1450     * sets a bit in PC_DRAW_INITIATOR that seemingly skips the draw. However
1451     * there is a hardware bug where this bit does not always cause the FS
1452     * early preamble to be skipped. Because the draw states were skipped,
1453     * SP_FS_CTRL_REG0, SP_FS_OBJ_START and so on are never updated and a
1454     * random FS preamble from the last draw is executed. If the last visible
1455     * draw is from the same submit, it shouldn't be a problem because we just
1456     * re-execute the same preamble and preambles don't have side effects, but
1457     * if it's from another process then we could execute a garbage preamble
1458     * leading to hangs and faults. To make sure this doesn't happen, we reset
1459     * SP_FS_CTRL_REG0 here, making sure that the EARLYPREAMBLE bit isn't set
1460     * so any leftover early preamble doesn't get executed. Other stages don't
1461     * seem to be affected.
1462     */
1463    if (phys_dev->info->a6xx.has_early_preamble) {
1464       tu_cs_emit_regs(cs, A6XX_SP_FS_CTRL_REG0());
1465    }
1466 
1467    tu_cs_sanity_check(cs);
1468 }
1469 
1470 static void
update_vsc_pipe(struct tu_cmd_buffer * cmd,struct tu_cs * cs,uint32_t num_vsc_pipes)1471 update_vsc_pipe(struct tu_cmd_buffer *cmd,
1472                 struct tu_cs *cs,
1473                 uint32_t num_vsc_pipes)
1474 {
1475    const struct tu_tiling_config *tiling = cmd->state.tiling;
1476 
1477    tu_cs_emit_regs(cs,
1478                    A6XX_VSC_BIN_SIZE(.width = tiling->tile0.width,
1479                                      .height = tiling->tile0.height));
1480 
1481    tu_cs_emit_regs(cs,
1482                    A6XX_VSC_BIN_COUNT(.nx = tiling->tile_count.width,
1483                                       .ny = tiling->tile_count.height));
1484 
1485    tu_cs_emit_pkt4(cs, REG_A6XX_VSC_PIPE_CONFIG_REG(0), num_vsc_pipes);
1486    tu_cs_emit_array(cs, tiling->pipe_config, num_vsc_pipes);
1487 
1488    tu_cs_emit_regs(cs,
1489                    A6XX_VSC_PRIM_STRM_PITCH(cmd->vsc_prim_strm_pitch),
1490                    A6XX_VSC_PRIM_STRM_LIMIT(cmd->vsc_prim_strm_pitch - VSC_PAD));
1491 
1492    tu_cs_emit_regs(cs,
1493                    A6XX_VSC_DRAW_STRM_PITCH(cmd->vsc_draw_strm_pitch),
1494                    A6XX_VSC_DRAW_STRM_LIMIT(cmd->vsc_draw_strm_pitch - VSC_PAD));
1495 
1496    tu_cs_emit_regs(cs, A7XX_VSC_UNKNOWN_0D08(0));
1497 }
1498 
1499 static void
emit_vsc_overflow_test(struct tu_cmd_buffer * cmd,struct tu_cs * cs)1500 emit_vsc_overflow_test(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1501 {
1502    const struct tu_tiling_config *tiling = cmd->state.tiling;
1503    const uint32_t used_pipe_count =
1504       tiling->pipe_count.width * tiling->pipe_count.height;
1505 
1506    for (int i = 0; i < used_pipe_count; i++) {
1507       tu_cs_emit_pkt7(cs, CP_COND_WRITE5, 8);
1508       tu_cs_emit(cs, CP_COND_WRITE5_0_FUNCTION(WRITE_GE) |
1509             CP_COND_WRITE5_0_WRITE_MEMORY);
1510       tu_cs_emit(cs, CP_COND_WRITE5_1_POLL_ADDR_LO(REG_A6XX_VSC_DRAW_STRM_SIZE_REG(i)));
1511       tu_cs_emit(cs, CP_COND_WRITE5_2_POLL_ADDR_HI(0));
1512       tu_cs_emit(cs, CP_COND_WRITE5_3_REF(cmd->vsc_draw_strm_pitch - VSC_PAD));
1513       tu_cs_emit(cs, CP_COND_WRITE5_4_MASK(~0));
1514       tu_cs_emit_qw(cs, global_iova(cmd, vsc_draw_overflow));
1515       tu_cs_emit(cs, CP_COND_WRITE5_7_WRITE_DATA(cmd->vsc_draw_strm_pitch));
1516 
1517       tu_cs_emit_pkt7(cs, CP_COND_WRITE5, 8);
1518       tu_cs_emit(cs, CP_COND_WRITE5_0_FUNCTION(WRITE_GE) |
1519             CP_COND_WRITE5_0_WRITE_MEMORY);
1520       tu_cs_emit(cs, CP_COND_WRITE5_1_POLL_ADDR_LO(REG_A6XX_VSC_PRIM_STRM_SIZE_REG(i)));
1521       tu_cs_emit(cs, CP_COND_WRITE5_2_POLL_ADDR_HI(0));
1522       tu_cs_emit(cs, CP_COND_WRITE5_3_REF(cmd->vsc_prim_strm_pitch - VSC_PAD));
1523       tu_cs_emit(cs, CP_COND_WRITE5_4_MASK(~0));
1524       tu_cs_emit_qw(cs, global_iova(cmd, vsc_prim_overflow));
1525       tu_cs_emit(cs, CP_COND_WRITE5_7_WRITE_DATA(cmd->vsc_prim_strm_pitch));
1526    }
1527 
1528    tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0);
1529 }
1530 
1531 template <chip CHIP>
1532 static void
tu6_emit_binning_pass(struct tu_cmd_buffer * cmd,struct tu_cs * cs)1533 tu6_emit_binning_pass(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1534 {
1535    struct tu_physical_device *phys_dev = cmd->device->physical_device;
1536    const struct tu_framebuffer *fb = cmd->state.framebuffer;
1537 
1538    /* If this command buffer may be executed multiple times, then
1539     * viewports/scissor states may have been changed by previous executions
1540     * and we need to reset them before executing the binning IB.
1541     */
1542    if (!(cmd->usage_flags & VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT) &&
1543        cmd->fdm_bin_patchpoints.size != 0) {
1544       unsigned num_views = MAX2(cmd->state.pass->num_views, 1);
1545       VkExtent2D unscaled_frag_areas[num_views];
1546       for (unsigned i = 0; i < num_views; i++)
1547          unscaled_frag_areas[i] = (VkExtent2D) { 1, 1 };
1548       VkRect2D bin = { { 0, 0 }, { fb->width, fb->height } };
1549       util_dynarray_foreach (&cmd->fdm_bin_patchpoints,
1550                              struct tu_fdm_bin_patchpoint, patch) {
1551          tu_cs_emit_pkt7(cs, CP_MEM_WRITE, 2 + patch->size);
1552          tu_cs_emit_qw(cs, patch->iova);
1553          patch->apply(cmd, cs, patch->data, bin, num_views, unscaled_frag_areas);
1554       }
1555 
1556       tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0);
1557       tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
1558    }
1559 
1560    tu6_emit_window_scissor(cs, 0, 0, fb->width - 1, fb->height - 1);
1561 
1562    tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
1563    tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_BINNING));
1564 
1565    tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
1566    tu_cs_emit(cs, 0x1);
1567 
1568    tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
1569    tu_cs_emit(cs, 0x1);
1570 
1571    tu_cs_emit_wfi(cs);
1572 
1573    tu_cs_emit_regs(cs,
1574                    A6XX_VFD_MODE_CNTL(.render_mode = BINNING_PASS));
1575 
1576    update_vsc_pipe(cmd, cs, phys_dev->info->num_vsc_pipes);
1577 
1578    if (CHIP == A6XX) {
1579       tu_cs_emit_regs(cs,
1580                      A6XX_PC_POWER_CNTL(phys_dev->info->a6xx.magic.PC_POWER_CNTL));
1581 
1582       tu_cs_emit_regs(cs,
1583                      A6XX_VFD_POWER_CNTL(phys_dev->info->a6xx.magic.PC_POWER_CNTL));
1584    }
1585 
1586    tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 1);
1587    tu_cs_emit(cs, UNK_2C);
1588 
1589    tu_cs_emit_regs(cs,
1590                    A6XX_RB_WINDOW_OFFSET(.x = 0, .y = 0));
1591 
1592    tu_cs_emit_regs(cs,
1593                    A6XX_SP_TP_WINDOW_OFFSET(.x = 0, .y = 0));
1594 
1595    trace_start_binning_ib(&cmd->trace, cs);
1596 
1597    /* emit IB to binning drawcmds: */
1598    tu_cs_emit_call(cs, &cmd->draw_cs);
1599 
1600    trace_end_binning_ib(&cmd->trace, cs);
1601 
1602    /* switching from binning pass to GMEM pass will cause a switch from
1603     * PROGRAM_BINNING to PROGRAM, which invalidates const state (XS_CONST states)
1604     * so make sure these states are re-emitted
1605     * (eventually these states shouldn't exist at all with shader prologue)
1606     * only VS and GS are invalidated, as FS isn't emitted in binning pass,
1607     * and we don't use HW binning when tesselation is used
1608     */
1609    tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
1610    tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(0) |
1611                   CP_SET_DRAW_STATE__0_DISABLE |
1612                   CP_SET_DRAW_STATE__0_GROUP_ID(TU_DRAW_STATE_CONST));
1613    tu_cs_emit(cs, CP_SET_DRAW_STATE__1_ADDR_LO(0));
1614    tu_cs_emit(cs, CP_SET_DRAW_STATE__2_ADDR_HI(0));
1615 
1616    tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 1);
1617    tu_cs_emit(cs, UNK_2D);
1618 
1619    /* This flush is probably required because the VSC, which produces the
1620     * visibility stream, is a client of UCHE, whereas the CP needs to read the
1621     * visibility stream (without caching) to do draw skipping. The
1622     * WFI+WAIT_FOR_ME combination guarantees that the binning commands
1623     * submitted are finished before reading the VSC regs (in
1624     * emit_vsc_overflow_test) or the VSC_DATA buffer directly (implicitly as
1625     * part of draws).
1626     */
1627    tu_emit_event_write<CHIP>(cmd, cs, FD_CACHE_CLEAN);
1628 
1629    tu_cs_emit_wfi(cs);
1630 
1631    tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
1632 
1633    emit_vsc_overflow_test(cmd, cs);
1634 
1635    tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
1636    tu_cs_emit(cs, 0x0);
1637 
1638    tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
1639    tu_cs_emit(cs, 0x0);
1640 }
1641 
1642 static struct tu_draw_state
tu_emit_input_attachments(struct tu_cmd_buffer * cmd,const struct tu_subpass * subpass,bool gmem)1643 tu_emit_input_attachments(struct tu_cmd_buffer *cmd,
1644                           const struct tu_subpass *subpass,
1645                           bool gmem)
1646 {
1647    const struct tu_tiling_config *tiling = cmd->state.tiling;
1648 
1649    /* note: we can probably emit input attachments just once for the whole
1650     * renderpass, this would avoid emitting both sysmem/gmem versions
1651     *
1652     * emit two texture descriptors for each input, as a workaround for
1653     * d24s8/d32s8, which can be sampled as both float (depth) and integer (stencil)
1654     * tu_shader lowers uint input attachment loads to use the 2nd descriptor
1655     * in the pair
1656     * TODO: a smarter workaround
1657     */
1658 
1659    if (!subpass->input_count)
1660       return (struct tu_draw_state) {};
1661 
1662    struct tu_cs_memory texture;
1663    VkResult result = tu_cs_alloc(&cmd->sub_cs, subpass->input_count * 2,
1664                                  A6XX_TEX_CONST_DWORDS, &texture);
1665    if (result != VK_SUCCESS) {
1666       vk_command_buffer_set_error(&cmd->vk, result);
1667       return (struct tu_draw_state) {};
1668    }
1669 
1670    for (unsigned i = 0; i < subpass->input_count * 2; i++) {
1671       uint32_t a = subpass->input_attachments[i / 2].attachment;
1672       if (a == VK_ATTACHMENT_UNUSED)
1673          continue;
1674 
1675       const struct tu_image_view *iview = cmd->state.attachments[a];
1676       const struct tu_render_pass_attachment *att =
1677          &cmd->state.pass->attachments[a];
1678       uint32_t *dst = &texture.map[A6XX_TEX_CONST_DWORDS * i];
1679       uint32_t gmem_offset = tu_attachment_gmem_offset(cmd, att, 0);
1680       uint32_t cpp = att->cpp;
1681 
1682       memcpy(dst, iview->view.descriptor, A6XX_TEX_CONST_DWORDS * 4);
1683 
1684       /* Cube descriptors require a different sampling instruction in shader,
1685        * however we don't know whether image is a cube or not until the start
1686        * of a renderpass. We have to patch the descriptor to make it compatible
1687        * with how it is sampled in shader.
1688        */
1689       enum a6xx_tex_type tex_type =
1690          (enum a6xx_tex_type)((dst[2] & A6XX_TEX_CONST_2_TYPE__MASK) >>
1691                               A6XX_TEX_CONST_2_TYPE__SHIFT);
1692       if (tex_type == A6XX_TEX_CUBE) {
1693          dst[2] &= ~A6XX_TEX_CONST_2_TYPE__MASK;
1694          dst[2] |= A6XX_TEX_CONST_2_TYPE(A6XX_TEX_2D);
1695 
1696          uint32_t depth = (dst[5] & A6XX_TEX_CONST_5_DEPTH__MASK) >>
1697                           A6XX_TEX_CONST_5_DEPTH__SHIFT;
1698          dst[5] &= ~A6XX_TEX_CONST_5_DEPTH__MASK;
1699          dst[5] |= A6XX_TEX_CONST_5_DEPTH(depth * 6);
1700       }
1701 
1702       if (i % 2 == 1 && att->format == VK_FORMAT_D24_UNORM_S8_UINT) {
1703          /* note this works because spec says fb and input attachments
1704           * must use identity swizzle
1705           *
1706           * Also we clear swap to WZYX.  This is because the view might have
1707           * picked XYZW to work better with border colors.
1708           */
1709          dst[0] &= ~(A6XX_TEX_CONST_0_FMT__MASK |
1710             A6XX_TEX_CONST_0_SWAP__MASK |
1711             A6XX_TEX_CONST_0_SWIZ_X__MASK | A6XX_TEX_CONST_0_SWIZ_Y__MASK |
1712             A6XX_TEX_CONST_0_SWIZ_Z__MASK | A6XX_TEX_CONST_0_SWIZ_W__MASK);
1713          if (!cmd->device->physical_device->info->a6xx.has_z24uint_s8uint) {
1714             dst[0] |= A6XX_TEX_CONST_0_FMT(FMT6_8_8_8_8_UINT) |
1715                A6XX_TEX_CONST_0_SWIZ_X(A6XX_TEX_W) |
1716                A6XX_TEX_CONST_0_SWIZ_Y(A6XX_TEX_ZERO) |
1717                A6XX_TEX_CONST_0_SWIZ_Z(A6XX_TEX_ZERO) |
1718                A6XX_TEX_CONST_0_SWIZ_W(A6XX_TEX_ONE);
1719          } else {
1720             dst[0] |= A6XX_TEX_CONST_0_FMT(FMT6_Z24_UINT_S8_UINT) |
1721                A6XX_TEX_CONST_0_SWIZ_X(A6XX_TEX_Y) |
1722                A6XX_TEX_CONST_0_SWIZ_Y(A6XX_TEX_ZERO) |
1723                A6XX_TEX_CONST_0_SWIZ_Z(A6XX_TEX_ZERO) |
1724                A6XX_TEX_CONST_0_SWIZ_W(A6XX_TEX_ONE);
1725          }
1726       }
1727 
1728       if (i % 2 == 1 && att->format == VK_FORMAT_D32_SFLOAT_S8_UINT) {
1729          dst[0] &= ~A6XX_TEX_CONST_0_FMT__MASK;
1730          dst[0] |= A6XX_TEX_CONST_0_FMT(FMT6_8_UINT);
1731          dst[2] &= ~(A6XX_TEX_CONST_2_PITCHALIGN__MASK | A6XX_TEX_CONST_2_PITCH__MASK);
1732          dst[2] |= A6XX_TEX_CONST_2_PITCH(iview->stencil_pitch);
1733          dst[3] = 0;
1734          dst[4] = iview->stencil_base_addr;
1735          dst[5] = (dst[5] & 0xffff) | iview->stencil_base_addr >> 32;
1736 
1737          cpp = att->samples;
1738          gmem_offset = att->gmem_offset_stencil[cmd->state.gmem_layout];
1739       }
1740 
1741       if (!gmem || !subpass->input_attachments[i / 2].patch_input_gmem)
1742          continue;
1743 
1744       /* patched for gmem */
1745       dst[0] &= ~(A6XX_TEX_CONST_0_SWAP__MASK | A6XX_TEX_CONST_0_TILE_MODE__MASK);
1746       dst[0] |= A6XX_TEX_CONST_0_TILE_MODE(TILE6_2);
1747       dst[2] =
1748          A6XX_TEX_CONST_2_TYPE(A6XX_TEX_2D) |
1749          A6XX_TEX_CONST_2_PITCH(tiling->tile0.width * cpp);
1750       /* Note: it seems the HW implicitly calculates the array pitch with the
1751        * GMEM tiling, so we don't need to specify the pitch ourselves.
1752        */
1753       dst[3] = 0;
1754       dst[4] = cmd->device->physical_device->gmem_base + gmem_offset;
1755       dst[5] &= A6XX_TEX_CONST_5_DEPTH__MASK;
1756       for (unsigned i = 6; i < A6XX_TEX_CONST_DWORDS; i++)
1757          dst[i] = 0;
1758    }
1759 
1760    struct tu_cs cs;
1761    struct tu_draw_state ds = tu_cs_draw_state(&cmd->sub_cs, &cs, 9);
1762 
1763    tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_FRAG, 3);
1764    tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(0) |
1765                   CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
1766                   CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
1767                   CP_LOAD_STATE6_0_STATE_BLOCK(SB6_FS_TEX) |
1768                   CP_LOAD_STATE6_0_NUM_UNIT(subpass->input_count * 2));
1769    tu_cs_emit_qw(&cs, texture.iova);
1770 
1771    tu_cs_emit_regs(&cs, A6XX_SP_FS_TEX_CONST(.qword = texture.iova));
1772 
1773    tu_cs_emit_regs(&cs, A6XX_SP_FS_TEX_COUNT(subpass->input_count * 2));
1774 
1775    assert(cs.cur == cs.end); /* validate draw state size */
1776 
1777    return ds;
1778 }
1779 
1780 static void
tu_set_input_attachments(struct tu_cmd_buffer * cmd,const struct tu_subpass * subpass)1781 tu_set_input_attachments(struct tu_cmd_buffer *cmd, const struct tu_subpass *subpass)
1782 {
1783    struct tu_cs *cs = &cmd->draw_cs;
1784 
1785    tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 6);
1786    tu_cs_emit_draw_state(cs, TU_DRAW_STATE_INPUT_ATTACHMENTS_GMEM,
1787                          tu_emit_input_attachments(cmd, subpass, true));
1788    tu_cs_emit_draw_state(cs, TU_DRAW_STATE_INPUT_ATTACHMENTS_SYSMEM,
1789                          tu_emit_input_attachments(cmd, subpass, false));
1790 }
1791 
1792 static void
tu_trace_start_render_pass(struct tu_cmd_buffer * cmd)1793 tu_trace_start_render_pass(struct tu_cmd_buffer *cmd)
1794 {
1795    if (!u_trace_enabled(&cmd->device->trace_context))
1796       return;
1797 
1798    uint32_t load_cpp = 0;
1799    uint32_t store_cpp = 0;
1800    uint32_t clear_cpp = 0;
1801    bool has_depth = false;
1802    char ubwc[MAX_RTS + 3];
1803    for (uint32_t i = 0; i < cmd->state.pass->attachment_count; i++) {
1804       const struct tu_render_pass_attachment *attachment =
1805          &cmd->state.pass->attachments[i];
1806       if (attachment->load) {
1807          load_cpp += attachment->cpp;
1808       }
1809 
1810       if (attachment->store) {
1811          store_cpp += attachment->cpp;
1812       }
1813 
1814       if (attachment->clear_mask) {
1815          clear_cpp += attachment->cpp;
1816       }
1817 
1818       has_depth |= vk_format_has_depth(attachment->format);
1819    }
1820 
1821    uint8_t ubwc_len = 0;
1822    const struct tu_subpass *subpass = &cmd->state.pass->subpasses[0];
1823    for (uint32_t i = 0; i < subpass->color_count; i++) {
1824       uint32_t att = subpass->color_attachments[i].attachment;
1825       ubwc[ubwc_len++] = att == VK_ATTACHMENT_UNUSED ? '-'
1826                          : cmd->state.attachments[att]->view.ubwc_enabled
1827                             ? 'y'
1828                             : 'n';
1829    }
1830    if (subpass->depth_used) {
1831       ubwc[ubwc_len++] = '|';
1832       ubwc[ubwc_len++] =
1833          cmd->state.attachments[subpass->depth_stencil_attachment.attachment]
1834                ->view.ubwc_enabled
1835             ? 'y'
1836             : 'n';
1837    }
1838    ubwc[ubwc_len] = '\0';
1839 
1840    uint32_t max_samples = 0;
1841    for (uint32_t i = 0; i < cmd->state.pass->subpass_count; i++) {
1842       max_samples = MAX2(max_samples, cmd->state.pass->subpasses[i].samples);
1843    }
1844 
1845    trace_start_render_pass(&cmd->trace, &cmd->cs, cmd->state.framebuffer,
1846                            cmd->state.tiling, max_samples, clear_cpp,
1847                            load_cpp, store_cpp, has_depth, ubwc);
1848 }
1849 
1850 template <chip CHIP>
1851 static void
tu_trace_end_render_pass(struct tu_cmd_buffer * cmd,bool gmem)1852 tu_trace_end_render_pass(struct tu_cmd_buffer *cmd, bool gmem)
1853 {
1854    if (!u_trace_enabled(&cmd->device->trace_context))
1855       return;
1856 
1857    uint32_t avg_per_sample_bandwidth =
1858       cmd->state.rp.drawcall_bandwidth_per_sample_sum /
1859       MAX2(cmd->state.rp.drawcall_count, 1);
1860 
1861    struct u_trace_address addr = {};
1862    if (cmd->state.lrz.image_view) {
1863       struct tu_image *image = cmd->state.lrz.image_view->image;
1864       addr.bo = image->bo;
1865       addr.offset = (image->iova - image->bo->iova) + image->lrz_fc_offset +
1866                     offsetof(fd_lrzfc_layout<CHIP>, dir_track);
1867    }
1868 
1869    trace_end_render_pass(&cmd->trace, &cmd->cs, gmem,
1870                          cmd->state.rp.drawcall_count,
1871                          avg_per_sample_bandwidth, cmd->state.lrz.valid,
1872                          cmd->state.rp.lrz_disable_reason, addr);
1873 }
1874 
1875 static void
tu_emit_renderpass_begin(struct tu_cmd_buffer * cmd)1876 tu_emit_renderpass_begin(struct tu_cmd_buffer *cmd)
1877 {
1878    /* We need to re-emit any draw states that are patched in order for them to
1879     * be correctly added to the per-renderpass patchpoint list, even if they
1880     * are the same as before.
1881     */
1882    if (cmd->state.pass->has_fdm)
1883       cmd->state.dirty |= TU_CMD_DIRTY_FDM;
1884 
1885    /* We need to re-emit MSAA at the beginning of every renderpass because it
1886     * isn't part of a draw state that gets automatically re-emitted.
1887     */
1888    BITSET_SET(cmd->vk.dynamic_graphics_state.dirty,
1889               MESA_VK_DYNAMIC_MS_RASTERIZATION_SAMPLES);
1890    /* PC_PRIMITIVE_CNTL_0 isn't a part of a draw state and may be changed
1891     * by blits.
1892     */
1893    BITSET_SET(cmd->vk.dynamic_graphics_state.dirty,
1894               MESA_VK_DYNAMIC_IA_PRIMITIVE_RESTART_ENABLE);
1895 }
1896 
1897 template <chip CHIP>
1898 static void
tu6_sysmem_render_begin(struct tu_cmd_buffer * cmd,struct tu_cs * cs,struct tu_renderpass_result * autotune_result)1899 tu6_sysmem_render_begin(struct tu_cmd_buffer *cmd, struct tu_cs *cs,
1900                         struct tu_renderpass_result *autotune_result)
1901 {
1902    const struct tu_framebuffer *fb = cmd->state.framebuffer;
1903 
1904    tu_lrz_sysmem_begin<CHIP>(cmd, cs);
1905 
1906    assert(fb->width > 0 && fb->height > 0);
1907    tu6_emit_window_scissor(cs, 0, 0, fb->width - 1, fb->height - 1);
1908    tu6_emit_window_offset<CHIP>(cs, 0, 0);
1909 
1910    tu6_emit_bin_size<CHIP>(cs, 0, 0, {
1911       .render_mode = RENDERING_PASS,
1912       .force_lrz_write_dis =
1913          !cmd->device->physical_device->info->a6xx.has_lrz_feedback,
1914       .buffers_location = BUFFERS_IN_SYSMEM,
1915       .lrz_feedback_zmode_mask =
1916          cmd->device->physical_device->info->a6xx.has_lrz_feedback
1917             ? LRZ_FEEDBACK_EARLY_Z_OR_EARLY_LRZ_LATE_Z
1918             : LRZ_FEEDBACK_NONE,
1919    });
1920 
1921    if (CHIP == A7XX) {
1922       tu_cs_emit_regs(cs,
1923                      A7XX_RB_UNKNOWN_8812(0x3ff)); // all buffers in sysmem
1924       tu_cs_emit_regs(cs,
1925          A7XX_RB_UNKNOWN_8E06(cmd->device->physical_device->info->a6xx.magic.RB_UNKNOWN_8E06));
1926 
1927       tu_cs_emit_regs(cs, A7XX_GRAS_UNKNOWN_8007(0x0));
1928 
1929       tu_cs_emit_regs(cs, A6XX_GRAS_UNKNOWN_8110(0x2));
1930       tu_cs_emit_regs(cs, A7XX_RB_UNKNOWN_8E09(0x4));
1931 
1932       tu_cs_emit_regs(cs, A7XX_RB_BLIT_CLEAR_MODE(.clear_mode = CLEAR_MODE_SYSMEM));
1933    }
1934 
1935    tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
1936    tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_BYPASS));
1937 
1938    /* A7XX TODO: blob doesn't use CP_SKIP_IB2_ENABLE_* */
1939    tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1940    tu_cs_emit(cs, 0x0);
1941 
1942    tu_emit_cache_flush_ccu<CHIP>(cmd, cs, TU_CMD_CCU_SYSMEM);
1943 
1944    tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
1945    tu_cs_emit(cs, 0x1);
1946 
1947    tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
1948    tu_cs_emit(cs, 0x0);
1949 
1950    tu_autotune_begin_renderpass<CHIP>(cmd, cs, autotune_result);
1951 
1952    tu_cs_sanity_check(cs);
1953 }
1954 
1955 template <chip CHIP>
1956 static void
tu6_sysmem_render_end(struct tu_cmd_buffer * cmd,struct tu_cs * cs,struct tu_renderpass_result * autotune_result)1957 tu6_sysmem_render_end(struct tu_cmd_buffer *cmd, struct tu_cs *cs,
1958                       struct tu_renderpass_result *autotune_result)
1959 {
1960    tu_autotune_end_renderpass<CHIP>(cmd, cs, autotune_result);
1961 
1962    /* Do any resolves of the last subpass. These are handled in the
1963     * tile_store_cs in the gmem path.
1964     */
1965    tu6_emit_sysmem_resolves<CHIP>(cmd, cs, cmd->state.subpass);
1966 
1967    tu_cs_emit_call(cs, &cmd->draw_epilogue_cs);
1968 
1969    tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1970    tu_cs_emit(cs, 0x0);
1971 
1972    tu_lrz_sysmem_end<CHIP>(cmd, cs);
1973 
1974    tu_cs_sanity_check(cs);
1975 }
1976 
1977 template <chip CHIP>
1978 static void
tu6_tile_render_begin(struct tu_cmd_buffer * cmd,struct tu_cs * cs,struct tu_renderpass_result * autotune_result)1979 tu6_tile_render_begin(struct tu_cmd_buffer *cmd, struct tu_cs *cs,
1980                       struct tu_renderpass_result *autotune_result)
1981 {
1982    struct tu_physical_device *phys_dev = cmd->device->physical_device;
1983    const struct tu_tiling_config *tiling = cmd->state.tiling;
1984    tu_lrz_tiling_begin<CHIP>(cmd, cs);
1985 
1986    tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1987    tu_cs_emit(cs, 0x0);
1988 
1989    if (CHIP >= A7XX) {
1990       tu_cs_emit_regs(cs,
1991                      A7XX_RB_UNKNOWN_8812(0x0));
1992       tu_cs_emit_regs(cs,
1993                    A7XX_RB_UNKNOWN_8E06(0x0));
1994 
1995       tu_cs_emit_regs(cs, A7XX_GRAS_UNKNOWN_8007(0x0));
1996 
1997       tu_cs_emit_regs(cs, A6XX_GRAS_UNKNOWN_8110(0x2));
1998       tu_cs_emit_regs(cs, A7XX_RB_UNKNOWN_8E09(0x4));
1999 
2000       tu_cs_emit_regs(cs, A7XX_RB_BLIT_CLEAR_MODE(.clear_mode = CLEAR_MODE_GMEM));
2001    }
2002 
2003    tu_emit_cache_flush_ccu<CHIP>(cmd, cs, TU_CMD_CCU_GMEM);
2004 
2005    if (use_hw_binning(cmd)) {
2006       if (!cmd->vsc_initialized) {
2007          tu6_lazy_emit_vsc<CHIP>(cmd, cs);
2008       }
2009 
2010       tu6_emit_bin_size<CHIP>(cs, tiling->tile0.width, tiling->tile0.height,
2011                               {
2012                                  .render_mode = BINNING_PASS,
2013                                  .buffers_location = BUFFERS_IN_GMEM,
2014                                  .lrz_feedback_zmode_mask =
2015                                     phys_dev->info->a6xx.has_lrz_feedback
2016                                        ? LRZ_FEEDBACK_EARLY_LRZ_LATE_Z
2017                                        : LRZ_FEEDBACK_NONE
2018                               });
2019 
2020       tu6_emit_render_cntl<CHIP>(cmd, cmd->state.subpass, cs, true);
2021 
2022       tu6_emit_binning_pass<CHIP>(cmd, cs);
2023 
2024       tu6_emit_bin_size<CHIP>(
2025          cs, tiling->tile0.width, tiling->tile0.height,
2026          {
2027             .render_mode = RENDERING_PASS,
2028             .force_lrz_write_dis = !phys_dev->info->a6xx.has_lrz_feedback,
2029             .buffers_location = BUFFERS_IN_GMEM,
2030             .lrz_feedback_zmode_mask =
2031                phys_dev->info->a6xx.has_lrz_feedback
2032                   ? LRZ_FEEDBACK_EARLY_LRZ_LATE_Z
2033                   : LRZ_FEEDBACK_NONE,
2034          });
2035 
2036       tu_cs_emit_regs(cs,
2037                       A6XX_VFD_MODE_CNTL(RENDERING_PASS));
2038 
2039       if (CHIP == A6XX) {
2040          tu_cs_emit_regs(cs,
2041                         A6XX_PC_POWER_CNTL(phys_dev->info->a6xx.magic.PC_POWER_CNTL));
2042 
2043          tu_cs_emit_regs(cs,
2044                         A6XX_VFD_POWER_CNTL(phys_dev->info->a6xx.magic.PC_POWER_CNTL));
2045       }
2046 
2047       tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
2048       tu_cs_emit(cs, 0x1);
2049       tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_LOCAL, 1);
2050       tu_cs_emit(cs, 0x1);
2051    } else {
2052       tu6_emit_bin_size<CHIP>(
2053          cs, tiling->tile0.width, tiling->tile0.height,
2054          {
2055             .render_mode = RENDERING_PASS,
2056             .force_lrz_write_dis = !phys_dev->info->a6xx.has_lrz_feedback,
2057             .buffers_location = BUFFERS_IN_GMEM,
2058             .lrz_feedback_zmode_mask =
2059                phys_dev->info->a6xx.has_lrz_feedback
2060                   ? LRZ_FEEDBACK_EARLY_Z_OR_EARLY_LRZ_LATE_Z
2061                   : LRZ_FEEDBACK_NONE,
2062          });
2063 
2064       if (tiling->binning_possible) {
2065          /* Mark all tiles as visible for tu6_emit_cond_for_load_stores(), since
2066           * the actual binner didn't run.
2067           */
2068          int pipe_count = tiling->pipe_count.width * tiling->pipe_count.height;
2069          tu_cs_emit_pkt4(cs, REG_A6XX_VSC_STATE_REG(0), pipe_count);
2070          for (int i = 0; i < pipe_count; i++)
2071             tu_cs_emit(cs, ~0);
2072       }
2073    }
2074 
2075    tu_autotune_begin_renderpass<CHIP>(cmd, cs, autotune_result);
2076 
2077    tu_cs_sanity_check(cs);
2078 }
2079 
2080 template <chip CHIP>
2081 static void
tu6_render_tile(struct tu_cmd_buffer * cmd,struct tu_cs * cs,uint32_t tx,uint32_t ty,uint32_t pipe,uint32_t slot,const struct tu_image_view * fdm)2082 tu6_render_tile(struct tu_cmd_buffer *cmd, struct tu_cs *cs,
2083                 uint32_t tx, uint32_t ty, uint32_t pipe, uint32_t slot,
2084                 const struct tu_image_view *fdm)
2085 {
2086    tu6_emit_tile_select<CHIP>(cmd, &cmd->cs, tx, ty, pipe, slot, fdm);
2087 
2088    trace_start_draw_ib_gmem(&cmd->trace, &cmd->cs);
2089 
2090    /* Primitives that passed all tests are still counted in in each
2091     * tile even with HW binning beforehand. Do not permit it.
2092     */
2093    if (cmd->state.prim_generated_query_running_before_rp)
2094       tu_emit_event_write<CHIP>(cmd, cs, FD_STOP_PRIMITIVE_CTRS);
2095 
2096    tu_cs_emit_call(cs, &cmd->draw_cs);
2097 
2098    if (cmd->state.prim_generated_query_running_before_rp)
2099       tu_emit_event_write<CHIP>(cmd, cs, FD_START_PRIMITIVE_CTRS);
2100 
2101    if (use_hw_binning(cmd)) {
2102       tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
2103       tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_ENDVIS));
2104    }
2105 
2106    /* Predicate is changed in draw_cs so we have to re-emit it */
2107    if (cmd->state.rp.draw_cs_writes_to_cond_pred)
2108       tu6_emit_cond_for_load_stores(cmd, cs, pipe, slot, false);
2109 
2110    tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
2111    tu_cs_emit(cs, 0x0);
2112 
2113    tu_cs_emit_call(cs, &cmd->tile_store_cs);
2114 
2115    tu_clone_trace_range(cmd, cs, cmd->trace_renderpass_start,
2116          cmd->trace_renderpass_end);
2117 
2118    tu_cs_sanity_check(cs);
2119 
2120    trace_end_draw_ib_gmem(&cmd->trace, &cmd->cs);
2121 }
2122 
2123 template <chip CHIP>
2124 static void
tu6_tile_render_end(struct tu_cmd_buffer * cmd,struct tu_cs * cs,struct tu_renderpass_result * autotune_result)2125 tu6_tile_render_end(struct tu_cmd_buffer *cmd, struct tu_cs *cs,
2126                     struct tu_renderpass_result *autotune_result)
2127 {
2128    tu_autotune_end_renderpass<CHIP>(cmd, cs, autotune_result);
2129 
2130    tu_cs_emit_call(cs, &cmd->draw_epilogue_cs);
2131 
2132    tu_lrz_tiling_end<CHIP>(cmd, cs);
2133 
2134    tu_emit_event_write<CHIP>(cmd, cs, FD_CCU_CLEAN_BLIT_CACHE);
2135 
2136    tu_cs_sanity_check(cs);
2137 }
2138 
2139 template <chip CHIP>
2140 static void
tu_cmd_render_tiles(struct tu_cmd_buffer * cmd,struct tu_renderpass_result * autotune_result)2141 tu_cmd_render_tiles(struct tu_cmd_buffer *cmd,
2142                     struct tu_renderpass_result *autotune_result)
2143 {
2144    const struct tu_tiling_config *tiling = cmd->state.tiling;
2145    const struct tu_image_view *fdm = NULL;
2146 
2147    if (cmd->state.pass->fragment_density_map.attachment != VK_ATTACHMENT_UNUSED) {
2148       fdm = cmd->state.attachments[cmd->state.pass->fragment_density_map.attachment];
2149    }
2150 
2151    /* Create gmem stores now (at EndRenderPass time)) because they needed to
2152     * know whether to allow their conditional execution, which was tied to a
2153     * state that was known only at the end of the renderpass.  They will be
2154     * called from tu6_render_tile().
2155     */
2156    tu_cs_begin(&cmd->tile_store_cs);
2157    tu6_emit_tile_store<CHIP>(cmd, &cmd->tile_store_cs);
2158    tu_cs_end(&cmd->tile_store_cs);
2159 
2160    cmd->trace_renderpass_end = u_trace_end_iterator(&cmd->trace);
2161 
2162    tu6_tile_render_begin<CHIP>(cmd, &cmd->cs, autotune_result);
2163 
2164    /* Note: we reverse the order of walking the pipes and tiles on every
2165     * other row, to improve texture cache locality compared to raster order.
2166     */
2167    for (uint32_t py = 0; py < tiling->pipe_count.height; py++) {
2168       uint32_t pipe_row = py * tiling->pipe_count.width;
2169       for (uint32_t pipe_row_i = 0; pipe_row_i < tiling->pipe_count.width; pipe_row_i++) {
2170          uint32_t px;
2171          if (py & 1)
2172             px = tiling->pipe_count.width - 1 - pipe_row_i;
2173          else
2174             px = pipe_row_i;
2175          uint32_t pipe = pipe_row + px;
2176          uint32_t tx1 = px * tiling->pipe0.width;
2177          uint32_t ty1 = py * tiling->pipe0.height;
2178          uint32_t tx2 = MIN2(tx1 + tiling->pipe0.width, tiling->tile_count.width);
2179          uint32_t ty2 = MIN2(ty1 + tiling->pipe0.height, tiling->tile_count.height);
2180          uint32_t tile_row_stride = tx2 - tx1;
2181          uint32_t slot_row = 0;
2182          for (uint32_t ty = ty1; ty < ty2; ty++) {
2183             for (uint32_t tile_row_i = 0; tile_row_i < tile_row_stride; tile_row_i++) {
2184                uint32_t tx;
2185                if (ty & 1)
2186                   tx = tile_row_stride - 1 - tile_row_i;
2187                else
2188                   tx = tile_row_i;
2189                uint32_t slot = slot_row + tx;
2190                tu6_render_tile<CHIP>(cmd, &cmd->cs, tx1 + tx, ty, pipe, slot, fdm);
2191             }
2192             slot_row += tile_row_stride;
2193          }
2194       }
2195    }
2196 
2197    tu6_tile_render_end<CHIP>(cmd, &cmd->cs, autotune_result);
2198 
2199    tu_trace_end_render_pass<CHIP>(cmd, true);
2200 
2201    /* We have trashed the dynamically-emitted viewport, scissor, and FS params
2202     * via the patchpoints, so we need to re-emit them if they are reused for a
2203     * later render pass.
2204     */
2205    if (cmd->state.pass->has_fdm)
2206       cmd->state.dirty |= TU_CMD_DIRTY_FDM;
2207 
2208    /* tu6_render_tile has cloned these tracepoints for each tile */
2209    if (!u_trace_iterator_equal(cmd->trace_renderpass_start, cmd->trace_renderpass_end))
2210       u_trace_disable_event_range(cmd->trace_renderpass_start,
2211                                   cmd->trace_renderpass_end);
2212 
2213    /* Reset the gmem store CS entry lists so that the next render pass
2214     * does its own stores.
2215     */
2216    tu_cs_discard_entries(&cmd->tile_store_cs);
2217 }
2218 
2219 template <chip CHIP>
2220 static void
tu_cmd_render_sysmem(struct tu_cmd_buffer * cmd,struct tu_renderpass_result * autotune_result)2221 tu_cmd_render_sysmem(struct tu_cmd_buffer *cmd,
2222                      struct tu_renderpass_result *autotune_result)
2223 {
2224    cmd->trace_renderpass_end = u_trace_end_iterator(&cmd->trace);
2225 
2226    tu6_sysmem_render_begin<CHIP>(cmd, &cmd->cs, autotune_result);
2227 
2228    trace_start_draw_ib_sysmem(&cmd->trace, &cmd->cs);
2229 
2230    tu_cs_emit_call(&cmd->cs, &cmd->draw_cs);
2231 
2232    trace_end_draw_ib_sysmem(&cmd->trace, &cmd->cs);
2233 
2234    tu6_sysmem_render_end<CHIP>(cmd, &cmd->cs, autotune_result);
2235 
2236    tu_trace_end_render_pass<CHIP>(cmd, false);
2237 }
2238 
2239 template <chip CHIP>
2240 void
tu_cmd_render(struct tu_cmd_buffer * cmd_buffer)2241 tu_cmd_render(struct tu_cmd_buffer *cmd_buffer)
2242 {
2243    if (cmd_buffer->state.rp.has_tess)
2244       tu6_lazy_emit_tessfactor_addr<CHIP>(cmd_buffer);
2245 
2246    struct tu_renderpass_result *autotune_result = NULL;
2247    if (use_sysmem_rendering(cmd_buffer, &autotune_result))
2248       tu_cmd_render_sysmem<CHIP>(cmd_buffer, autotune_result);
2249    else
2250       tu_cmd_render_tiles<CHIP>(cmd_buffer, autotune_result);
2251 
2252    /* Outside of renderpasses we assume all draw states are disabled. We do
2253     * this outside the draw CS for the normal case where 3d gmem stores aren't
2254     * used.
2255     */
2256    tu_disable_draw_states(cmd_buffer, &cmd_buffer->cs);
2257 
2258 }
2259 
tu_reset_render_pass(struct tu_cmd_buffer * cmd_buffer)2260 static void tu_reset_render_pass(struct tu_cmd_buffer *cmd_buffer)
2261 {
2262    /* discard draw_cs and draw_epilogue_cs entries now that the tiles are
2263       rendered */
2264    tu_cs_discard_entries(&cmd_buffer->draw_cs);
2265    tu_cs_begin(&cmd_buffer->draw_cs);
2266    tu_cs_discard_entries(&cmd_buffer->draw_epilogue_cs);
2267    tu_cs_begin(&cmd_buffer->draw_epilogue_cs);
2268 
2269    cmd_buffer->state.pass = NULL;
2270    cmd_buffer->state.subpass = NULL;
2271    cmd_buffer->state.framebuffer = NULL;
2272    cmd_buffer->state.attachments = NULL;
2273    cmd_buffer->state.clear_values = NULL;
2274    cmd_buffer->state.gmem_layout = TU_GMEM_LAYOUT_COUNT; /* invalid value to prevent looking up gmem offsets */
2275    memset(&cmd_buffer->state.rp, 0, sizeof(cmd_buffer->state.rp));
2276 
2277    /* LRZ is not valid next time we use it */
2278    cmd_buffer->state.lrz.valid = false;
2279    cmd_buffer->state.dirty |= TU_CMD_DIRTY_LRZ;
2280 
2281    /* Patchpoints have been executed */
2282    util_dynarray_clear(&cmd_buffer->fdm_bin_patchpoints);
2283    ralloc_free(cmd_buffer->patchpoints_ctx);
2284    cmd_buffer->patchpoints_ctx = NULL;
2285 }
2286 
2287 static VkResult
tu_create_cmd_buffer(struct vk_command_pool * pool,VkCommandBufferLevel level,struct vk_command_buffer ** cmd_buffer_out)2288 tu_create_cmd_buffer(struct vk_command_pool *pool,
2289                      VkCommandBufferLevel level,
2290                      struct vk_command_buffer **cmd_buffer_out)
2291 {
2292    struct tu_device *device =
2293       container_of(pool->base.device, struct tu_device, vk);
2294    struct tu_cmd_buffer *cmd_buffer;
2295 
2296    cmd_buffer = (struct tu_cmd_buffer *) vk_zalloc2(
2297       &device->vk.alloc, NULL, sizeof(*cmd_buffer), 8,
2298       VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2299 
2300    if (cmd_buffer == NULL)
2301       return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
2302 
2303    VkResult result = vk_command_buffer_init(pool, &cmd_buffer->vk,
2304                                             &tu_cmd_buffer_ops, level);
2305    if (result != VK_SUCCESS) {
2306       vk_free2(&device->vk.alloc, NULL, cmd_buffer);
2307       return result;
2308    }
2309 
2310    cmd_buffer->device = device;
2311 
2312    u_trace_init(&cmd_buffer->trace, &device->trace_context);
2313    list_inithead(&cmd_buffer->renderpass_autotune_results);
2314 
2315    tu_cs_init(&cmd_buffer->cs, device, TU_CS_MODE_GROW, 4096, "cmd cs");
2316    tu_cs_init(&cmd_buffer->draw_cs, device, TU_CS_MODE_GROW, 4096, "draw cs");
2317    tu_cs_init(&cmd_buffer->tile_store_cs, device, TU_CS_MODE_GROW, 2048, "tile store cs");
2318    tu_cs_init(&cmd_buffer->draw_epilogue_cs, device, TU_CS_MODE_GROW, 4096, "draw epilogue cs");
2319    tu_cs_init(&cmd_buffer->sub_cs, device, TU_CS_MODE_SUB_STREAM, 2048, "draw sub cs");
2320    tu_cs_init(&cmd_buffer->pre_chain.draw_cs, device, TU_CS_MODE_GROW, 4096, "prechain draw cs");
2321    tu_cs_init(&cmd_buffer->pre_chain.draw_epilogue_cs, device, TU_CS_MODE_GROW, 4096, "prechain draw epiligoue cs");
2322 
2323    for (unsigned i = 0; i < MAX_BIND_POINTS; i++)
2324       cmd_buffer->descriptors[i].push_set.base.type = VK_OBJECT_TYPE_DESCRIPTOR_SET;
2325 
2326    *cmd_buffer_out = &cmd_buffer->vk;
2327 
2328    return VK_SUCCESS;
2329 }
2330 
2331 static void
tu_cmd_buffer_destroy(struct vk_command_buffer * vk_cmd_buffer)2332 tu_cmd_buffer_destroy(struct vk_command_buffer *vk_cmd_buffer)
2333 {
2334    struct tu_cmd_buffer *cmd_buffer =
2335       container_of(vk_cmd_buffer, struct tu_cmd_buffer, vk);
2336 
2337    tu_cs_finish(&cmd_buffer->cs);
2338    tu_cs_finish(&cmd_buffer->draw_cs);
2339    tu_cs_finish(&cmd_buffer->tile_store_cs);
2340    tu_cs_finish(&cmd_buffer->draw_epilogue_cs);
2341    tu_cs_finish(&cmd_buffer->sub_cs);
2342    tu_cs_finish(&cmd_buffer->pre_chain.draw_cs);
2343    tu_cs_finish(&cmd_buffer->pre_chain.draw_epilogue_cs);
2344 
2345    u_trace_fini(&cmd_buffer->trace);
2346 
2347    tu_autotune_free_results(cmd_buffer->device, &cmd_buffer->renderpass_autotune_results);
2348 
2349    for (unsigned i = 0; i < MAX_BIND_POINTS; i++) {
2350       if (cmd_buffer->descriptors[i].push_set.layout)
2351          vk_descriptor_set_layout_unref(&cmd_buffer->device->vk,
2352                                         &cmd_buffer->descriptors[i].push_set.layout->vk);
2353       vk_free(&cmd_buffer->device->vk.alloc,
2354               cmd_buffer->descriptors[i].push_set.mapped_ptr);
2355    }
2356 
2357    ralloc_free(cmd_buffer->patchpoints_ctx);
2358    util_dynarray_fini(&cmd_buffer->fdm_bin_patchpoints);
2359 
2360    vk_command_buffer_finish(&cmd_buffer->vk);
2361    vk_free2(&cmd_buffer->device->vk.alloc, &cmd_buffer->vk.pool->alloc,
2362             cmd_buffer);
2363 }
2364 
2365 static void
tu_reset_cmd_buffer(struct vk_command_buffer * vk_cmd_buffer,UNUSED VkCommandBufferResetFlags flags)2366 tu_reset_cmd_buffer(struct vk_command_buffer *vk_cmd_buffer,
2367                     UNUSED VkCommandBufferResetFlags flags)
2368 {
2369    struct tu_cmd_buffer *cmd_buffer =
2370       container_of(vk_cmd_buffer, struct tu_cmd_buffer, vk);
2371 
2372    vk_command_buffer_reset(&cmd_buffer->vk);
2373 
2374    tu_cs_reset(&cmd_buffer->cs);
2375    tu_cs_reset(&cmd_buffer->draw_cs);
2376    tu_cs_reset(&cmd_buffer->tile_store_cs);
2377    tu_cs_reset(&cmd_buffer->draw_epilogue_cs);
2378    tu_cs_reset(&cmd_buffer->sub_cs);
2379    tu_cs_reset(&cmd_buffer->pre_chain.draw_cs);
2380    tu_cs_reset(&cmd_buffer->pre_chain.draw_epilogue_cs);
2381 
2382    tu_autotune_free_results(cmd_buffer->device, &cmd_buffer->renderpass_autotune_results);
2383 
2384    for (unsigned i = 0; i < MAX_BIND_POINTS; i++) {
2385       memset(&cmd_buffer->descriptors[i].sets, 0, sizeof(cmd_buffer->descriptors[i].sets));
2386       if (cmd_buffer->descriptors[i].push_set.layout) {
2387          vk_descriptor_set_layout_unref(&cmd_buffer->device->vk,
2388                                         &cmd_buffer->descriptors[i].push_set.layout->vk);
2389       }
2390       memset(&cmd_buffer->descriptors[i].push_set, 0, sizeof(cmd_buffer->descriptors[i].push_set));
2391       cmd_buffer->descriptors[i].push_set.base.type = VK_OBJECT_TYPE_DESCRIPTOR_SET;
2392       cmd_buffer->descriptors[i].max_sets_bound = 0;
2393       cmd_buffer->descriptors[i].max_dynamic_offset_size = 0;
2394    }
2395 
2396    u_trace_fini(&cmd_buffer->trace);
2397    u_trace_init(&cmd_buffer->trace, &cmd_buffer->device->trace_context);
2398 
2399    cmd_buffer->state.max_vbs_bound = 0;
2400 
2401    cmd_buffer->vsc_initialized = false;
2402 
2403    ralloc_free(cmd_buffer->patchpoints_ctx);
2404    cmd_buffer->patchpoints_ctx = NULL;
2405    util_dynarray_clear(&cmd_buffer->fdm_bin_patchpoints);
2406 }
2407 
2408 const struct vk_command_buffer_ops tu_cmd_buffer_ops = {
2409    .create = tu_create_cmd_buffer,
2410    .reset = tu_reset_cmd_buffer,
2411    .destroy = tu_cmd_buffer_destroy,
2412 };
2413 
2414 /* Initialize the cache, assuming all necessary flushes have happened but *not*
2415  * invalidations.
2416  */
2417 static void
tu_cache_init(struct tu_cache_state * cache)2418 tu_cache_init(struct tu_cache_state *cache)
2419 {
2420    cache->flush_bits = 0;
2421    cache->pending_flush_bits = TU_CMD_FLAG_ALL_INVALIDATE;
2422 }
2423 
2424 /* Unlike the public entrypoint, this doesn't handle cache tracking, and
2425  * tracking the CCU state. It's used for the driver to insert its own command
2426  * buffer in the middle of a submit.
2427  */
2428 VkResult
tu_cmd_buffer_begin(struct tu_cmd_buffer * cmd_buffer,const VkCommandBufferBeginInfo * pBeginInfo)2429 tu_cmd_buffer_begin(struct tu_cmd_buffer *cmd_buffer,
2430                     const VkCommandBufferBeginInfo *pBeginInfo)
2431 {
2432    vk_command_buffer_begin(&cmd_buffer->vk, pBeginInfo);
2433 
2434    memset(&cmd_buffer->state, 0, sizeof(cmd_buffer->state));
2435    vk_dynamic_graphics_state_init(&cmd_buffer->vk.dynamic_graphics_state);
2436    cmd_buffer->vk.dynamic_graphics_state.vi = &cmd_buffer->state.vi;
2437    cmd_buffer->vk.dynamic_graphics_state.ms.sample_locations = &cmd_buffer->state.sl;
2438    cmd_buffer->state.index_size = 0xff; /* dirty restart index */
2439    cmd_buffer->state.gmem_layout = TU_GMEM_LAYOUT_COUNT; /* dirty value */
2440 
2441    tu_cache_init(&cmd_buffer->state.cache);
2442    tu_cache_init(&cmd_buffer->state.renderpass_cache);
2443    cmd_buffer->usage_flags = pBeginInfo->flags;
2444 
2445    tu_cs_begin(&cmd_buffer->cs);
2446    tu_cs_begin(&cmd_buffer->draw_cs);
2447    tu_cs_begin(&cmd_buffer->draw_epilogue_cs);
2448 
2449    return VK_SUCCESS;
2450 }
2451 
2452 VKAPI_ATTR VkResult VKAPI_CALL
tu_BeginCommandBuffer(VkCommandBuffer commandBuffer,const VkCommandBufferBeginInfo * pBeginInfo)2453 tu_BeginCommandBuffer(VkCommandBuffer commandBuffer,
2454                       const VkCommandBufferBeginInfo *pBeginInfo)
2455 {
2456    VK_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
2457    VkResult result = tu_cmd_buffer_begin(cmd_buffer, pBeginInfo);
2458    if (result != VK_SUCCESS)
2459       return result;
2460 
2461    /* setup initial configuration into command buffer */
2462    if (cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_PRIMARY) {
2463       trace_start_cmd_buffer(&cmd_buffer->trace, &cmd_buffer->cs, cmd_buffer);
2464 
2465       switch (cmd_buffer->queue_family_index) {
2466       case TU_QUEUE_GENERAL:
2467          TU_CALLX(cmd_buffer->device, tu6_init_hw)(cmd_buffer, &cmd_buffer->cs);
2468          break;
2469       default:
2470          break;
2471       }
2472    } else if (cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_SECONDARY) {
2473       const bool pass_continue =
2474          pBeginInfo->flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT;
2475 
2476       trace_start_cmd_buffer(&cmd_buffer->trace,
2477             pass_continue ? &cmd_buffer->draw_cs : &cmd_buffer->cs, cmd_buffer);
2478 
2479       assert(pBeginInfo->pInheritanceInfo);
2480 
2481       cmd_buffer->inherited_pipeline_statistics =
2482          pBeginInfo->pInheritanceInfo->pipelineStatistics;
2483 
2484       vk_foreach_struct_const(ext, pBeginInfo->pInheritanceInfo) {
2485          switch (ext->sType) {
2486          case VK_STRUCTURE_TYPE_COMMAND_BUFFER_INHERITANCE_CONDITIONAL_RENDERING_INFO_EXT: {
2487             const VkCommandBufferInheritanceConditionalRenderingInfoEXT *cond_rend =
2488                (VkCommandBufferInheritanceConditionalRenderingInfoEXT *) ext;
2489             cmd_buffer->state.predication_active = cond_rend->conditionalRenderingEnable;
2490             break;
2491          }
2492          default:
2493             break;
2494          }
2495       }
2496 
2497       if (pass_continue) {
2498          const VkCommandBufferInheritanceRenderingInfo *rendering_info =
2499             vk_find_struct_const(pBeginInfo->pInheritanceInfo->pNext,
2500                                  COMMAND_BUFFER_INHERITANCE_RENDERING_INFO);
2501 
2502          if (TU_DEBUG(DYNAMIC)) {
2503             rendering_info =
2504                vk_get_command_buffer_inheritance_rendering_info(cmd_buffer->vk.level,
2505                                                                 pBeginInfo);
2506          }
2507 
2508          if (rendering_info) {
2509             tu_setup_dynamic_inheritance(cmd_buffer, rendering_info);
2510             cmd_buffer->state.pass = &cmd_buffer->dynamic_pass;
2511             cmd_buffer->state.subpass = &cmd_buffer->dynamic_subpass;
2512          } else {
2513             cmd_buffer->state.pass = tu_render_pass_from_handle(pBeginInfo->pInheritanceInfo->renderPass);
2514             cmd_buffer->state.subpass =
2515                &cmd_buffer->state.pass->subpasses[pBeginInfo->pInheritanceInfo->subpass];
2516          }
2517          tu_fill_render_pass_state(&cmd_buffer->state.vk_rp,
2518                                    cmd_buffer->state.pass,
2519                                    cmd_buffer->state.subpass);
2520          vk_cmd_set_cb_attachment_count(&cmd_buffer->vk,
2521                                         cmd_buffer->state.subpass->color_count);
2522          cmd_buffer->state.dirty |= TU_CMD_DIRTY_SUBPASS;
2523 
2524          cmd_buffer->patchpoints_ctx = ralloc_parent(NULL);
2525 
2526          /* We can't set the gmem layout here, because the state.pass only has
2527           * to be compatible (same formats/sample counts) with the primary's
2528           * renderpass, rather than exactly equal.
2529           */
2530 
2531          tu_lrz_begin_secondary_cmdbuf(cmd_buffer);
2532       } else {
2533          /* When executing in the middle of another command buffer, the CCU
2534           * state is unknown.
2535           */
2536          cmd_buffer->state.ccu_state = TU_CMD_CCU_UNKNOWN;
2537       }
2538    }
2539 
2540    return VK_SUCCESS;
2541 }
2542 
2543 static struct tu_cs
tu_cmd_dynamic_state(struct tu_cmd_buffer * cmd,uint32_t id,uint32_t size)2544 tu_cmd_dynamic_state(struct tu_cmd_buffer *cmd, uint32_t id, uint32_t size)
2545 {
2546    struct tu_cs cs;
2547 
2548    assert(id < ARRAY_SIZE(cmd->state.dynamic_state));
2549    cmd->state.dynamic_state[id] = tu_cs_draw_state(&cmd->sub_cs, &cs, size);
2550 
2551    /* note: this also avoids emitting draw states before renderpass clears,
2552     * which may use the 3D clear path (for MSAA cases)
2553     */
2554    if (cmd->state.dirty & TU_CMD_DIRTY_DRAW_STATE)
2555       return cs;
2556 
2557    tu_cs_emit_pkt7(&cmd->draw_cs, CP_SET_DRAW_STATE, 3);
2558    tu_cs_emit_draw_state(&cmd->draw_cs, TU_DRAW_STATE_DYNAMIC + id, cmd->state.dynamic_state[id]);
2559 
2560    return cs;
2561 }
2562 
2563 static void
tu_cmd_end_dynamic_state(struct tu_cmd_buffer * cmd,struct tu_cs * cs,uint32_t id)2564 tu_cmd_end_dynamic_state(struct tu_cmd_buffer *cmd, struct tu_cs *cs,
2565                          uint32_t id)
2566 {
2567    assert(id < ARRAY_SIZE(cmd->state.dynamic_state));
2568    cmd->state.dynamic_state[id] = tu_cs_end_draw_state(&cmd->sub_cs, cs);
2569 
2570    /* note: this also avoids emitting draw states before renderpass clears,
2571     * which may use the 3D clear path (for MSAA cases)
2572     */
2573    if (cmd->state.dirty & TU_CMD_DIRTY_DRAW_STATE)
2574       return;
2575 
2576    tu_cs_emit_pkt7(&cmd->draw_cs, CP_SET_DRAW_STATE, 3);
2577    tu_cs_emit_draw_state(&cmd->draw_cs, TU_DRAW_STATE_DYNAMIC + id, cmd->state.dynamic_state[id]);
2578 }
2579 
2580 VKAPI_ATTR void VKAPI_CALL
tu_CmdBindVertexBuffers2(VkCommandBuffer commandBuffer,uint32_t firstBinding,uint32_t bindingCount,const VkBuffer * pBuffers,const VkDeviceSize * pOffsets,const VkDeviceSize * pSizes,const VkDeviceSize * pStrides)2581 tu_CmdBindVertexBuffers2(VkCommandBuffer commandBuffer,
2582                          uint32_t firstBinding,
2583                          uint32_t bindingCount,
2584                          const VkBuffer *pBuffers,
2585                          const VkDeviceSize *pOffsets,
2586                          const VkDeviceSize *pSizes,
2587                          const VkDeviceSize *pStrides)
2588 {
2589    VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2590    struct tu_cs cs;
2591 
2592    cmd->state.max_vbs_bound = MAX2(
2593       cmd->state.max_vbs_bound, firstBinding + bindingCount);
2594 
2595    if (pStrides) {
2596       vk_cmd_set_vertex_binding_strides(&cmd->vk, firstBinding, bindingCount,
2597                                         pStrides);
2598    }
2599 
2600    cmd->state.vertex_buffers.iova =
2601       tu_cs_draw_state(&cmd->sub_cs, &cs, 4 * cmd->state.max_vbs_bound).iova;
2602 
2603    for (uint32_t i = 0; i < bindingCount; i++) {
2604       if (pBuffers[i] == VK_NULL_HANDLE) {
2605          cmd->state.vb[firstBinding + i].base = 0;
2606          cmd->state.vb[firstBinding + i].size = 0;
2607       } else {
2608          struct tu_buffer *buf = tu_buffer_from_handle(pBuffers[i]);
2609          cmd->state.vb[firstBinding + i].base = buf->iova + pOffsets[i];
2610          cmd->state.vb[firstBinding + i].size =
2611             vk_buffer_range(&buf->vk, pOffsets[i], pSizes ? pSizes[i] : VK_WHOLE_SIZE);
2612       }
2613    }
2614 
2615    for (uint32_t i = 0; i < cmd->state.max_vbs_bound; i++) {
2616       tu_cs_emit_regs(&cs,
2617                       A6XX_VFD_FETCH_BASE(i, .qword = cmd->state.vb[i].base),
2618                       A6XX_VFD_FETCH_SIZE(i, cmd->state.vb[i].size));
2619    }
2620 
2621    cmd->state.dirty |= TU_CMD_DIRTY_VERTEX_BUFFERS;
2622 }
2623 
2624 VKAPI_ATTR void VKAPI_CALL
tu_CmdBindIndexBuffer2KHR(VkCommandBuffer commandBuffer,VkBuffer buffer,VkDeviceSize offset,VkDeviceSize size,VkIndexType indexType)2625 tu_CmdBindIndexBuffer2KHR(VkCommandBuffer commandBuffer,
2626                           VkBuffer buffer,
2627                           VkDeviceSize offset,
2628                           VkDeviceSize size,
2629                           VkIndexType indexType)
2630 {
2631    VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2632    VK_FROM_HANDLE(tu_buffer, buf, buffer);
2633 
2634    size = buf ? vk_buffer_range(&buf->vk, offset, size) : 0;
2635 
2636    uint32_t index_size, index_shift;
2637    uint32_t restart_index = vk_index_to_restart(indexType);
2638 
2639    switch (indexType) {
2640    case VK_INDEX_TYPE_UINT16:
2641       index_size = INDEX4_SIZE_16_BIT;
2642       index_shift = 1;
2643       break;
2644    case VK_INDEX_TYPE_UINT32:
2645       index_size = INDEX4_SIZE_32_BIT;
2646       index_shift = 2;
2647       break;
2648    case VK_INDEX_TYPE_UINT8_KHR:
2649       index_size = INDEX4_SIZE_8_BIT;
2650       index_shift = 0;
2651       break;
2652    default:
2653       unreachable("invalid VkIndexType");
2654    }
2655 
2656    if (buf) {
2657       /* initialize/update the restart index */
2658       if (cmd->state.index_size != index_size)
2659          tu_cs_emit_regs(&cmd->draw_cs, A6XX_PC_RESTART_INDEX(restart_index));
2660 
2661       cmd->state.index_va = buf->iova + offset;
2662       cmd->state.max_index_count = size >> index_shift;
2663       cmd->state.index_size = index_size;
2664    } else {
2665       cmd->state.index_va = 0;
2666       cmd->state.max_index_count = 0;
2667       cmd->state.index_size = 0;
2668    }
2669 }
2670 
2671 template <chip CHIP>
2672 static void
tu6_emit_descriptor_sets(struct tu_cmd_buffer * cmd,VkPipelineBindPoint bind_point)2673 tu6_emit_descriptor_sets(struct tu_cmd_buffer *cmd,
2674                          VkPipelineBindPoint bind_point)
2675 {
2676    struct tu_descriptor_state *descriptors_state =
2677       tu_get_descriptors_state(cmd, bind_point);
2678    uint32_t sp_bindless_base_reg, hlsq_bindless_base_reg;
2679    struct tu_cs *cs, state_cs;
2680 
2681    if (bind_point == VK_PIPELINE_BIND_POINT_GRAPHICS) {
2682       sp_bindless_base_reg = __SP_BINDLESS_BASE_DESCRIPTOR<CHIP>(0, {}).reg;
2683       hlsq_bindless_base_reg = REG_A6XX_HLSQ_BINDLESS_BASE(0);
2684 
2685       if (CHIP == A6XX) {
2686          cmd->state.desc_sets =
2687             tu_cs_draw_state(&cmd->sub_cs, &state_cs,
2688                              4 + 4 * descriptors_state->max_sets_bound +
2689                              (descriptors_state->max_dynamic_offset_size ? 6 : 0));
2690       } else {
2691          cmd->state.desc_sets =
2692             tu_cs_draw_state(&cmd->sub_cs, &state_cs,
2693                              3 + 2 * descriptors_state->max_sets_bound +
2694                              (descriptors_state->max_dynamic_offset_size ? 3 : 0));
2695       }
2696       cs = &state_cs;
2697    } else {
2698       assert(bind_point == VK_PIPELINE_BIND_POINT_COMPUTE);
2699 
2700       sp_bindless_base_reg = __SP_CS_BINDLESS_BASE_DESCRIPTOR<CHIP>(0, {}).reg;
2701       hlsq_bindless_base_reg = REG_A6XX_HLSQ_CS_BINDLESS_BASE(0);
2702 
2703       cs = &cmd->cs;
2704    }
2705 
2706    tu_cs_emit_pkt4(cs, sp_bindless_base_reg, 2 * descriptors_state->max_sets_bound);
2707    tu_cs_emit_array(cs, (const uint32_t*)descriptors_state->set_iova, 2 * descriptors_state->max_sets_bound);
2708    if (CHIP == A6XX) {
2709       tu_cs_emit_pkt4(cs, hlsq_bindless_base_reg, 2 * descriptors_state->max_sets_bound);
2710       tu_cs_emit_array(cs, (const uint32_t*)descriptors_state->set_iova, 2 * descriptors_state->max_sets_bound);
2711    }
2712 
2713    /* Dynamic descriptors get the reserved descriptor set. */
2714    if (descriptors_state->max_dynamic_offset_size) {
2715       int reserved_set_idx = cmd->device->physical_device->reserved_set_idx;
2716       assert(reserved_set_idx >= 0); /* reserved set must be bound */
2717 
2718       tu_cs_emit_pkt4(cs, sp_bindless_base_reg + reserved_set_idx * 2, 2);
2719       tu_cs_emit_qw(cs, descriptors_state->set_iova[reserved_set_idx]);
2720       if (CHIP == A6XX) {
2721          tu_cs_emit_pkt4(cs, hlsq_bindless_base_reg + reserved_set_idx * 2, 2);
2722          tu_cs_emit_qw(cs, descriptors_state->set_iova[reserved_set_idx]);
2723       }
2724    }
2725 
2726    tu_cs_emit_regs(cs, HLSQ_INVALIDATE_CMD(CHIP,
2727       .cs_bindless = bind_point == VK_PIPELINE_BIND_POINT_COMPUTE ? CHIP == A6XX ? 0x1f : 0xff : 0,
2728       .gfx_bindless = bind_point == VK_PIPELINE_BIND_POINT_GRAPHICS ? CHIP == A6XX ? 0x1f : 0xff : 0,
2729    ));
2730 
2731    if (bind_point == VK_PIPELINE_BIND_POINT_GRAPHICS) {
2732       assert(cs->cur == cs->end); /* validate draw state size */
2733       /* note: this also avoids emitting draw states before renderpass clears,
2734        * which may use the 3D clear path (for MSAA cases)
2735        */
2736       if (!(cmd->state.dirty & TU_CMD_DIRTY_DRAW_STATE)) {
2737          tu_cs_emit_pkt7(&cmd->draw_cs, CP_SET_DRAW_STATE, 3);
2738          tu_cs_emit_draw_state(&cmd->draw_cs, TU_DRAW_STATE_DESC_SETS, cmd->state.desc_sets);
2739       }
2740    }
2741 }
2742 
2743 /* We lazily emit the draw state for desciptor sets at draw time, so that we can
2744  * batch together multiple tu_CmdBindDescriptorSets() calls.  ANGLE and zink
2745  * will often emit multiple bind calls in a draw.
2746  */
2747 static void
tu_dirty_desc_sets(struct tu_cmd_buffer * cmd,VkPipelineBindPoint pipelineBindPoint)2748 tu_dirty_desc_sets(struct tu_cmd_buffer *cmd,
2749                    VkPipelineBindPoint pipelineBindPoint)
2750 {
2751    if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_COMPUTE) {
2752       cmd->state.dirty |= TU_CMD_DIRTY_COMPUTE_DESC_SETS;
2753    } else {
2754       assert(pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS);
2755       cmd->state.dirty |= TU_CMD_DIRTY_DESC_SETS;
2756    }
2757 }
2758 
2759 static void
tu_bind_descriptor_sets(struct tu_cmd_buffer * cmd,const VkBindDescriptorSetsInfoKHR * info,VkPipelineBindPoint bind_point)2760 tu_bind_descriptor_sets(struct tu_cmd_buffer *cmd,
2761                         const VkBindDescriptorSetsInfoKHR *info,
2762                         VkPipelineBindPoint bind_point)
2763 {
2764    VK_FROM_HANDLE(tu_pipeline_layout, layout, info->layout);
2765    unsigned dyn_idx = 0;
2766 
2767    struct tu_descriptor_state *descriptors_state =
2768       tu_get_descriptors_state(cmd, bind_point);
2769 
2770    descriptors_state->max_sets_bound =
2771       MAX2(descriptors_state->max_sets_bound,
2772            info->firstSet + info->descriptorSetCount);
2773 
2774    unsigned dynamic_offset_offset = 0;
2775    for (unsigned i = 0; i < info->firstSet; i++) {
2776       dynamic_offset_offset += layout->set[i].layout->dynamic_offset_size;
2777    }
2778 
2779    for (unsigned i = 0; i < info->descriptorSetCount; ++i) {
2780       unsigned idx = i + info->firstSet;
2781       VK_FROM_HANDLE(tu_descriptor_set, set, info->pDescriptorSets[i]);
2782 
2783       descriptors_state->sets[idx] = set;
2784       descriptors_state->set_iova[idx] = set ?
2785          (set->va | BINDLESS_DESCRIPTOR_64B) : 0;
2786 
2787       if (!set)
2788          continue;
2789 
2790       if (set->layout->has_inline_uniforms)
2791          cmd->state.dirty |= TU_CMD_DIRTY_SHADER_CONSTS;
2792 
2793       if (!set->layout->dynamic_offset_size)
2794          continue;
2795 
2796       uint32_t *src = set->dynamic_descriptors;
2797       uint32_t *dst = descriptors_state->dynamic_descriptors +
2798          dynamic_offset_offset / 4;
2799       for (unsigned j = 0; j < set->layout->binding_count; j++) {
2800          struct tu_descriptor_set_binding_layout *binding =
2801             &set->layout->binding[j];
2802          if (binding->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
2803              binding->type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
2804             for (unsigned k = 0; k < binding->array_size; k++, dyn_idx++) {
2805                assert(dyn_idx < info->dynamicOffsetCount);
2806                uint32_t offset = info->pDynamicOffsets[dyn_idx];
2807                memcpy(dst, src, binding->size);
2808 
2809                if (binding->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC) {
2810                   /* Note: we can assume here that the addition won't roll
2811                    * over and change the SIZE field.
2812                    */
2813                   uint64_t va = src[0] | ((uint64_t)src[1] << 32);
2814                   va += offset;
2815                   dst[0] = va;
2816                   dst[1] = va >> 32;
2817                } else {
2818                   uint32_t *dst_desc = dst;
2819                   for (unsigned i = 0;
2820                        i < binding->size / (4 * A6XX_TEX_CONST_DWORDS);
2821                        i++, dst_desc += A6XX_TEX_CONST_DWORDS) {
2822                      /* Note: A6XX_TEX_CONST_5_DEPTH is always 0 */
2823                      uint64_t va = dst_desc[4] | ((uint64_t)dst_desc[5] << 32);
2824                      uint32_t desc_offset =
2825                         (dst_desc[2] &
2826                          A6XX_TEX_CONST_2_STARTOFFSETTEXELS__MASK) >>
2827                         A6XX_TEX_CONST_2_STARTOFFSETTEXELS__SHIFT;
2828 
2829                      /* Use descriptor's format to determine the shift amount
2830                       * that's to be used on the offset value.
2831                       */
2832                      uint32_t format = (dst_desc[0] &
2833                                         A6XX_TEX_CONST_0_FMT__MASK) >>
2834                                        A6XX_TEX_CONST_0_FMT__SHIFT;
2835                      unsigned offset_shift;
2836                      switch (format) {
2837                      case FMT6_16_UINT:
2838                         offset_shift = 1;
2839                         break;
2840                      case FMT6_32_UINT:
2841                         offset_shift = 2;
2842                         break;
2843                      case FMT6_8_UINT:
2844                      default:
2845                         offset_shift = 0;
2846                         break;
2847                      }
2848 
2849                      va += desc_offset << offset_shift;
2850                      va += offset;
2851                      unsigned new_offset = (va & 0x3f) >> offset_shift;
2852                      va &= ~0x3full;
2853                      dst_desc[4] = va;
2854                      dst_desc[5] = va >> 32;
2855                      dst_desc[2] =
2856                         (dst_desc[2] & ~A6XX_TEX_CONST_2_STARTOFFSETTEXELS__MASK) |
2857                         A6XX_TEX_CONST_2_STARTOFFSETTEXELS(new_offset);
2858                   }
2859                }
2860 
2861                dst += binding->size / 4;
2862                src += binding->size / 4;
2863             }
2864          }
2865       }
2866 
2867       dynamic_offset_offset += layout->set[idx].layout->dynamic_offset_size;
2868    }
2869    assert(dyn_idx == info->dynamicOffsetCount);
2870 
2871    if (dynamic_offset_offset) {
2872       descriptors_state->max_dynamic_offset_size =
2873          MAX2(descriptors_state->max_dynamic_offset_size, dynamic_offset_offset);
2874 
2875       /* allocate and fill out dynamic descriptor set */
2876       struct tu_cs_memory dynamic_desc_set;
2877       int reserved_set_idx = cmd->device->physical_device->reserved_set_idx;
2878       VkResult result =
2879          tu_cs_alloc(&cmd->sub_cs,
2880                      descriptors_state->max_dynamic_offset_size /
2881                      (4 * A6XX_TEX_CONST_DWORDS),
2882                      A6XX_TEX_CONST_DWORDS, &dynamic_desc_set);
2883       if (result != VK_SUCCESS) {
2884          vk_command_buffer_set_error(&cmd->vk, result);
2885          return;
2886       }
2887 
2888       memcpy(dynamic_desc_set.map, descriptors_state->dynamic_descriptors,
2889              descriptors_state->max_dynamic_offset_size);
2890       assert(reserved_set_idx >= 0); /* reserved set must be bound */
2891       descriptors_state->set_iova[reserved_set_idx] = dynamic_desc_set.iova | BINDLESS_DESCRIPTOR_64B;
2892    }
2893 
2894    tu_dirty_desc_sets(cmd, bind_point);
2895 }
2896 
2897 VKAPI_ATTR void VKAPI_CALL
tu_CmdBindDescriptorSets2KHR(VkCommandBuffer commandBuffer,const VkBindDescriptorSetsInfoKHR * pBindDescriptorSetsInfo)2898 tu_CmdBindDescriptorSets2KHR(
2899    VkCommandBuffer commandBuffer,
2900    const VkBindDescriptorSetsInfoKHR *pBindDescriptorSetsInfo)
2901 {
2902    VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2903 
2904    if (pBindDescriptorSetsInfo->stageFlags & VK_SHADER_STAGE_COMPUTE_BIT) {
2905       tu_bind_descriptor_sets(cmd, pBindDescriptorSetsInfo,
2906                               VK_PIPELINE_BIND_POINT_COMPUTE);
2907    }
2908 
2909    if (pBindDescriptorSetsInfo->stageFlags & VK_SHADER_STAGE_ALL_GRAPHICS) {
2910       tu_bind_descriptor_sets(cmd, pBindDescriptorSetsInfo,
2911                               VK_PIPELINE_BIND_POINT_GRAPHICS);
2912    }
2913 }
2914 
2915 VKAPI_ATTR void VKAPI_CALL
tu_CmdBindDescriptorBuffersEXT(VkCommandBuffer commandBuffer,uint32_t bufferCount,const VkDescriptorBufferBindingInfoEXT * pBindingInfos)2916 tu_CmdBindDescriptorBuffersEXT(
2917    VkCommandBuffer commandBuffer,
2918    uint32_t bufferCount,
2919    const VkDescriptorBufferBindingInfoEXT *pBindingInfos)
2920 {
2921    VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2922 
2923    for (unsigned i = 0; i < bufferCount; i++)
2924       cmd->state.descriptor_buffer_iova[i] = pBindingInfos[i].address;
2925 }
2926 
2927 static void
tu_set_descriptor_buffer_offsets(struct tu_cmd_buffer * cmd,const VkSetDescriptorBufferOffsetsInfoEXT * info,VkPipelineBindPoint bind_point)2928 tu_set_descriptor_buffer_offsets(
2929    struct tu_cmd_buffer *cmd,
2930    const VkSetDescriptorBufferOffsetsInfoEXT *info,
2931    VkPipelineBindPoint bind_point)
2932 {
2933    VK_FROM_HANDLE(tu_pipeline_layout, layout, info->layout);
2934 
2935    struct tu_descriptor_state *descriptors_state =
2936       tu_get_descriptors_state(cmd, bind_point);
2937 
2938    descriptors_state->max_sets_bound = MAX2(descriptors_state->max_sets_bound,
2939                                             info->firstSet + info->setCount);
2940 
2941    for (unsigned i = 0; i < info->setCount; ++i) {
2942       unsigned idx = i + info->firstSet;
2943       struct tu_descriptor_set_layout *set_layout = layout->set[idx].layout;
2944 
2945       descriptors_state->set_iova[idx] =
2946          (cmd->state.descriptor_buffer_iova[info->pBufferIndices[i]] +
2947           info->pOffsets[i]) |
2948          BINDLESS_DESCRIPTOR_64B;
2949 
2950       if (set_layout->has_inline_uniforms)
2951          cmd->state.dirty |= TU_CMD_DIRTY_SHADER_CONSTS;
2952    }
2953 
2954    tu_dirty_desc_sets(cmd, bind_point);
2955 }
2956 
2957 VKAPI_ATTR void VKAPI_CALL
tu_CmdSetDescriptorBufferOffsets2EXT(VkCommandBuffer commandBuffer,const VkSetDescriptorBufferOffsetsInfoEXT * pSetDescriptorBufferOffsetsInfo)2958 tu_CmdSetDescriptorBufferOffsets2EXT(
2959    VkCommandBuffer commandBuffer,
2960    const VkSetDescriptorBufferOffsetsInfoEXT *pSetDescriptorBufferOffsetsInfo)
2961 {
2962    VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2963 
2964    if (pSetDescriptorBufferOffsetsInfo->stageFlags &
2965        VK_SHADER_STAGE_COMPUTE_BIT) {
2966       tu_set_descriptor_buffer_offsets(cmd, pSetDescriptorBufferOffsetsInfo,
2967                                        VK_PIPELINE_BIND_POINT_COMPUTE);
2968    }
2969 
2970    if (pSetDescriptorBufferOffsetsInfo->stageFlags &
2971        VK_SHADER_STAGE_ALL_GRAPHICS) {
2972       tu_set_descriptor_buffer_offsets(cmd, pSetDescriptorBufferOffsetsInfo,
2973                                        VK_PIPELINE_BIND_POINT_GRAPHICS);
2974    }
2975 }
2976 
2977 static void
tu_bind_descriptor_buffer_embedded_samplers(struct tu_cmd_buffer * cmd,const VkBindDescriptorBufferEmbeddedSamplersInfoEXT * info,VkPipelineBindPoint bind_point)2978 tu_bind_descriptor_buffer_embedded_samplers(
2979    struct tu_cmd_buffer *cmd,
2980    const VkBindDescriptorBufferEmbeddedSamplersInfoEXT *info,
2981    VkPipelineBindPoint bind_point)
2982 {
2983    VK_FROM_HANDLE(tu_pipeline_layout, layout, info->layout);
2984 
2985    struct tu_descriptor_set_layout *set_layout =
2986       layout->set[info->set].layout;
2987 
2988    struct tu_descriptor_state *descriptors_state =
2989       tu_get_descriptors_state(cmd, bind_point);
2990 
2991    descriptors_state->max_sets_bound =
2992       MAX2(descriptors_state->max_sets_bound, info->set + 1);
2993 
2994    descriptors_state->set_iova[info->set] =
2995       set_layout->embedded_samplers->iova | BINDLESS_DESCRIPTOR_64B;
2996 
2997    tu_dirty_desc_sets(cmd, bind_point);
2998 }
2999 
3000 VKAPI_ATTR void VKAPI_CALL
tu_CmdBindDescriptorBufferEmbeddedSamplers2EXT(VkCommandBuffer commandBuffer,const VkBindDescriptorBufferEmbeddedSamplersInfoEXT * pBindDescriptorBufferEmbeddedSamplersInfo)3001 tu_CmdBindDescriptorBufferEmbeddedSamplers2EXT(
3002    VkCommandBuffer commandBuffer,
3003    const VkBindDescriptorBufferEmbeddedSamplersInfoEXT
3004       *pBindDescriptorBufferEmbeddedSamplersInfo)
3005 {
3006    VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3007 
3008    if (pBindDescriptorBufferEmbeddedSamplersInfo->stageFlags &
3009        VK_SHADER_STAGE_COMPUTE_BIT) {
3010       tu_bind_descriptor_buffer_embedded_samplers(
3011          cmd, pBindDescriptorBufferEmbeddedSamplersInfo,
3012          VK_PIPELINE_BIND_POINT_COMPUTE);
3013    }
3014 
3015    if (pBindDescriptorBufferEmbeddedSamplersInfo->stageFlags &
3016        VK_SHADER_STAGE_ALL_GRAPHICS) {
3017       tu_bind_descriptor_buffer_embedded_samplers(
3018          cmd, pBindDescriptorBufferEmbeddedSamplersInfo,
3019          VK_PIPELINE_BIND_POINT_GRAPHICS);
3020    }
3021 }
3022 
3023 static enum VkResult
tu_push_descriptor_set_update_layout(struct tu_device * device,struct tu_descriptor_set * set,struct tu_descriptor_set_layout * layout)3024 tu_push_descriptor_set_update_layout(struct tu_device *device,
3025                                      struct tu_descriptor_set *set,
3026                                      struct tu_descriptor_set_layout *layout)
3027 {
3028    if (set->layout == layout)
3029       return VK_SUCCESS;
3030 
3031    if (set->layout)
3032       vk_descriptor_set_layout_unref(&device->vk, &set->layout->vk);
3033    vk_descriptor_set_layout_ref(&layout->vk);
3034    set->layout = layout;
3035 
3036    if (set->host_size < layout->size) {
3037       void *new_buf =
3038          vk_realloc(&device->vk.alloc, set->mapped_ptr, layout->size, 8,
3039                     VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3040       if (!new_buf)
3041          return VK_ERROR_OUT_OF_HOST_MEMORY;
3042       set->mapped_ptr = (uint32_t *) new_buf;
3043       set->host_size = layout->size;
3044    }
3045    return VK_SUCCESS;
3046 }
3047 
3048 static void
tu_push_descriptor_set(struct tu_cmd_buffer * cmd,const VkPushDescriptorSetInfoKHR * info,VkPipelineBindPoint bind_point)3049 tu_push_descriptor_set(struct tu_cmd_buffer *cmd,
3050                        const VkPushDescriptorSetInfoKHR *info,
3051                        VkPipelineBindPoint bind_point)
3052 {
3053    VK_FROM_HANDLE(tu_pipeline_layout, pipe_layout, info->layout);
3054    struct tu_descriptor_set_layout *layout =
3055       pipe_layout->set[info->set].layout;
3056    struct tu_descriptor_set *set =
3057       &tu_get_descriptors_state(cmd, bind_point)->push_set;
3058 
3059    struct tu_cs_memory set_mem;
3060    VkResult result = tu_cs_alloc(&cmd->sub_cs,
3061                                  DIV_ROUND_UP(layout->size, A6XX_TEX_CONST_DWORDS * 4),
3062                                  A6XX_TEX_CONST_DWORDS, &set_mem);
3063    if (result != VK_SUCCESS) {
3064       vk_command_buffer_set_error(&cmd->vk, result);
3065       return;
3066    }
3067 
3068    result = tu_push_descriptor_set_update_layout(cmd->device, set, layout);
3069    if (result != VK_SUCCESS) {
3070       vk_command_buffer_set_error(&cmd->vk, result);
3071       return;
3072    }
3073 
3074    tu_update_descriptor_sets(cmd->device, tu_descriptor_set_to_handle(set),
3075                              info->descriptorWriteCount,
3076                              info->pDescriptorWrites, 0, NULL);
3077 
3078    memcpy(set_mem.map, set->mapped_ptr, layout->size);
3079    set->va = set_mem.iova;
3080 
3081    const VkDescriptorSet desc_set[] = { tu_descriptor_set_to_handle(set) };
3082    vk_common_CmdBindDescriptorSets(tu_cmd_buffer_to_handle(cmd), bind_point,
3083                                    info->layout, info->set, 1, desc_set, 0,
3084                                    NULL);
3085 }
3086 
3087 VKAPI_ATTR void VKAPI_CALL
tu_CmdPushDescriptorSet2KHR(VkCommandBuffer commandBuffer,const VkPushDescriptorSetInfoKHR * pPushDescriptorSetInfo)3088 tu_CmdPushDescriptorSet2KHR(
3089    VkCommandBuffer commandBuffer,
3090    const VkPushDescriptorSetInfoKHR *pPushDescriptorSetInfo)
3091 {
3092    VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3093 
3094    if (pPushDescriptorSetInfo->stageFlags & VK_SHADER_STAGE_COMPUTE_BIT) {
3095       tu_push_descriptor_set(cmd, pPushDescriptorSetInfo,
3096                              VK_PIPELINE_BIND_POINT_COMPUTE);
3097    }
3098 
3099    if (pPushDescriptorSetInfo->stageFlags & VK_SHADER_STAGE_ALL_GRAPHICS) {
3100       tu_push_descriptor_set(cmd, pPushDescriptorSetInfo,
3101                              VK_PIPELINE_BIND_POINT_GRAPHICS);
3102    }
3103 }
3104 
3105 VKAPI_ATTR void VKAPI_CALL
tu_CmdPushDescriptorSetWithTemplate2KHR(VkCommandBuffer commandBuffer,const VkPushDescriptorSetWithTemplateInfoKHR * pPushDescriptorSetWithTemplateInfo)3106 tu_CmdPushDescriptorSetWithTemplate2KHR(
3107    VkCommandBuffer commandBuffer,
3108    const VkPushDescriptorSetWithTemplateInfoKHR
3109       *pPushDescriptorSetWithTemplateInfo)
3110 {
3111    VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3112    VK_FROM_HANDLE(tu_pipeline_layout, pipe_layout,
3113                   pPushDescriptorSetWithTemplateInfo->layout);
3114    VK_FROM_HANDLE(
3115       tu_descriptor_update_template, templ,
3116       pPushDescriptorSetWithTemplateInfo->descriptorUpdateTemplate);
3117    struct tu_descriptor_set_layout *layout =
3118       pipe_layout->set[pPushDescriptorSetWithTemplateInfo->set].layout;
3119    struct tu_descriptor_set *set =
3120       &tu_get_descriptors_state(cmd, templ->bind_point)->push_set;
3121 
3122    struct tu_cs_memory set_mem;
3123    VkResult result = tu_cs_alloc(&cmd->sub_cs,
3124                                  DIV_ROUND_UP(layout->size, A6XX_TEX_CONST_DWORDS * 4),
3125                                  A6XX_TEX_CONST_DWORDS, &set_mem);
3126    if (result != VK_SUCCESS) {
3127       vk_command_buffer_set_error(&cmd->vk, result);
3128       return;
3129    }
3130 
3131    result = tu_push_descriptor_set_update_layout(cmd->device, set, layout);
3132    if (result != VK_SUCCESS) {
3133       vk_command_buffer_set_error(&cmd->vk, result);
3134       return;
3135    }
3136 
3137    tu_update_descriptor_set_with_template(
3138       cmd->device, set,
3139       pPushDescriptorSetWithTemplateInfo->descriptorUpdateTemplate,
3140       pPushDescriptorSetWithTemplateInfo->pData);
3141 
3142    memcpy(set_mem.map, set->mapped_ptr, layout->size);
3143    set->va = set_mem.iova;
3144 
3145    const VkDescriptorSet desc_set[] = { tu_descriptor_set_to_handle(set) };
3146    vk_common_CmdBindDescriptorSets(
3147       tu_cmd_buffer_to_handle(cmd), templ->bind_point,
3148       pPushDescriptorSetWithTemplateInfo->layout,
3149       pPushDescriptorSetWithTemplateInfo->set, 1, desc_set, 0, NULL);
3150 }
3151 
3152 VKAPI_ATTR void VKAPI_CALL
tu_CmdBindTransformFeedbackBuffersEXT(VkCommandBuffer commandBuffer,uint32_t firstBinding,uint32_t bindingCount,const VkBuffer * pBuffers,const VkDeviceSize * pOffsets,const VkDeviceSize * pSizes)3153 tu_CmdBindTransformFeedbackBuffersEXT(VkCommandBuffer commandBuffer,
3154                                       uint32_t firstBinding,
3155                                       uint32_t bindingCount,
3156                                       const VkBuffer *pBuffers,
3157                                       const VkDeviceSize *pOffsets,
3158                                       const VkDeviceSize *pSizes)
3159 {
3160    VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3161    struct tu_cs *cs = &cmd->draw_cs;
3162 
3163    /* using COND_REG_EXEC for xfb commands matches the blob behavior
3164     * presumably there isn't any benefit using a draw state when the
3165     * condition is (SYSMEM | BINNING)
3166     */
3167    tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
3168                           CP_COND_REG_EXEC_0_SYSMEM |
3169                           CP_COND_REG_EXEC_0_BINNING);
3170 
3171    for (uint32_t i = 0; i < bindingCount; i++) {
3172       VK_FROM_HANDLE(tu_buffer, buf, pBuffers[i]);
3173       uint64_t iova = buf->iova + pOffsets[i];
3174       uint32_t size = buf->bo->size - (iova - buf->bo->iova);
3175       uint32_t idx = i + firstBinding;
3176 
3177       if (pSizes && pSizes[i] != VK_WHOLE_SIZE)
3178          size = pSizes[i];
3179 
3180       /* BUFFER_BASE is 32-byte aligned, add remaining offset to BUFFER_OFFSET */
3181       uint32_t offset = iova & 0x1f;
3182       iova &= ~(uint64_t) 0x1f;
3183 
3184       tu_cs_emit_pkt4(cs, REG_A6XX_VPC_SO_BUFFER_BASE(idx), 3);
3185       tu_cs_emit_qw(cs, iova);
3186       tu_cs_emit(cs, size + offset);
3187 
3188       cmd->state.streamout_offset[idx] = offset;
3189    }
3190 
3191    tu_cond_exec_end(cs);
3192 }
3193 
3194 VKAPI_ATTR void VKAPI_CALL
tu_CmdBeginTransformFeedbackEXT(VkCommandBuffer commandBuffer,uint32_t firstCounterBuffer,uint32_t counterBufferCount,const VkBuffer * pCounterBuffers,const VkDeviceSize * pCounterBufferOffsets)3195 tu_CmdBeginTransformFeedbackEXT(VkCommandBuffer commandBuffer,
3196                                 uint32_t firstCounterBuffer,
3197                                 uint32_t counterBufferCount,
3198                                 const VkBuffer *pCounterBuffers,
3199                                 const VkDeviceSize *pCounterBufferOffsets)
3200 {
3201    VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3202    struct tu_cs *cs = &cmd->draw_cs;
3203 
3204    tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
3205                           CP_COND_REG_EXEC_0_SYSMEM |
3206                           CP_COND_REG_EXEC_0_BINNING);
3207 
3208    tu_cs_emit_regs(cs, A6XX_VPC_SO_DISABLE(false));
3209 
3210    /* TODO: only update offset for active buffers */
3211    for (uint32_t i = 0; i < IR3_MAX_SO_BUFFERS; i++)
3212       tu_cs_emit_regs(cs, A6XX_VPC_SO_BUFFER_OFFSET(i, cmd->state.streamout_offset[i]));
3213 
3214    for (uint32_t i = 0; i < (pCounterBuffers ? counterBufferCount : 0); i++) {
3215       uint32_t idx = firstCounterBuffer + i;
3216       uint32_t offset = cmd->state.streamout_offset[idx];
3217       uint64_t counter_buffer_offset = pCounterBufferOffsets ? pCounterBufferOffsets[i] : 0u;
3218 
3219       if (!pCounterBuffers[i])
3220          continue;
3221 
3222       VK_FROM_HANDLE(tu_buffer, buf, pCounterBuffers[i]);
3223 
3224       tu_cs_emit_pkt7(cs, CP_MEM_TO_REG, 3);
3225       tu_cs_emit(cs, CP_MEM_TO_REG_0_REG(REG_A6XX_VPC_SO_BUFFER_OFFSET(idx)) |
3226                      CP_MEM_TO_REG_0_UNK31 |
3227                      CP_MEM_TO_REG_0_CNT(1));
3228       tu_cs_emit_qw(cs, buf->iova + counter_buffer_offset);
3229 
3230       if (offset) {
3231          tu_cs_emit_pkt7(cs, CP_REG_RMW, 3);
3232          tu_cs_emit(cs, CP_REG_RMW_0_DST_REG(REG_A6XX_VPC_SO_BUFFER_OFFSET(idx)) |
3233                         CP_REG_RMW_0_SRC1_ADD);
3234          tu_cs_emit(cs, 0xffffffff);
3235          tu_cs_emit(cs, offset);
3236       }
3237    }
3238 
3239    tu_cond_exec_end(cs);
3240 }
3241 
3242 template <chip CHIP>
3243 VKAPI_ATTR void VKAPI_CALL
tu_CmdEndTransformFeedbackEXT(VkCommandBuffer commandBuffer,uint32_t firstCounterBuffer,uint32_t counterBufferCount,const VkBuffer * pCounterBuffers,const VkDeviceSize * pCounterBufferOffsets)3244 tu_CmdEndTransformFeedbackEXT(VkCommandBuffer commandBuffer,
3245                               uint32_t firstCounterBuffer,
3246                               uint32_t counterBufferCount,
3247                               const VkBuffer *pCounterBuffers,
3248                               const VkDeviceSize *pCounterBufferOffsets)
3249 {
3250    VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3251    struct tu_cs *cs = &cmd->draw_cs;
3252 
3253    tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
3254                           CP_COND_REG_EXEC_0_SYSMEM |
3255                           CP_COND_REG_EXEC_0_BINNING);
3256 
3257    tu_cs_emit_regs(cs, A6XX_VPC_SO_DISABLE(true));
3258 
3259    /* TODO: only flush buffers that need to be flushed */
3260    for (uint32_t i = 0; i < IR3_MAX_SO_BUFFERS; i++) {
3261       /* note: FLUSH_BASE is always the same, so it could go in init_hw()? */
3262       tu_cs_emit_pkt4(cs, REG_A6XX_VPC_SO_FLUSH_BASE(i), 2);
3263       tu_cs_emit_qw(cs, global_iova_arr(cmd, flush_base, i));
3264       tu_emit_event_write<CHIP>(cmd, cs, (enum fd_gpu_event) (FD_FLUSH_SO_0 + i));
3265    }
3266 
3267    for (uint32_t i = 0; i < (pCounterBuffers ? counterBufferCount : 0); i++) {
3268       uint32_t idx = firstCounterBuffer + i;
3269       uint32_t offset = cmd->state.streamout_offset[idx];
3270       uint64_t counter_buffer_offset = pCounterBufferOffsets ? pCounterBufferOffsets[i] : 0u;
3271 
3272       if (!pCounterBuffers[i])
3273          continue;
3274 
3275       VK_FROM_HANDLE(tu_buffer, buf, pCounterBuffers[i]);
3276 
3277       /* VPC_SO_FLUSH_BASE has dwords counter, but counter should be in bytes */
3278       tu_cs_emit_pkt7(cs, CP_MEM_TO_REG, 3);
3279       tu_cs_emit(cs, CP_MEM_TO_REG_0_REG(REG_A6XX_CP_SCRATCH_REG(0)) |
3280                      COND(CHIP == A6XX, CP_MEM_TO_REG_0_SHIFT_BY_2) |
3281                      0x40000 | /* ??? */
3282                      CP_MEM_TO_REG_0_UNK31 |
3283                      CP_MEM_TO_REG_0_CNT(1));
3284       tu_cs_emit_qw(cs, global_iova_arr(cmd, flush_base, idx));
3285 
3286       if (offset) {
3287          tu_cs_emit_pkt7(cs, CP_REG_RMW, 3);
3288          tu_cs_emit(cs, CP_REG_RMW_0_DST_REG(REG_A6XX_CP_SCRATCH_REG(0)) |
3289                         CP_REG_RMW_0_SRC1_ADD);
3290          tu_cs_emit(cs, 0xffffffff);
3291          tu_cs_emit(cs, -offset);
3292       }
3293 
3294       tu_cs_emit_pkt7(cs, CP_REG_TO_MEM, 3);
3295       tu_cs_emit(cs, CP_REG_TO_MEM_0_REG(REG_A6XX_CP_SCRATCH_REG(0)) |
3296                      CP_REG_TO_MEM_0_CNT(1));
3297       tu_cs_emit_qw(cs, buf->iova + counter_buffer_offset);
3298    }
3299 
3300    tu_cond_exec_end(cs);
3301 
3302    cmd->state.rp.xfb_used = true;
3303 }
3304 TU_GENX(tu_CmdEndTransformFeedbackEXT);
3305 
3306 VKAPI_ATTR void VKAPI_CALL
tu_CmdPushConstants2KHR(VkCommandBuffer commandBuffer,const VkPushConstantsInfoKHR * pPushConstantsInfo)3307 tu_CmdPushConstants2KHR(VkCommandBuffer commandBuffer,
3308                         const VkPushConstantsInfoKHR *pPushConstantsInfo)
3309 {
3310    VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3311    memcpy((char *) cmd->push_constants + pPushConstantsInfo->offset,
3312           pPushConstantsInfo->pValues, pPushConstantsInfo->size);
3313    cmd->state.dirty |= TU_CMD_DIRTY_SHADER_CONSTS;
3314 }
3315 
3316 /* Clean everything which has been made available but we haven't actually
3317  * cleaned yet.
3318  */
3319 static void
tu_clean_all_pending(struct tu_cache_state * cache)3320 tu_clean_all_pending(struct tu_cache_state *cache)
3321 {
3322    cache->flush_bits |= cache->pending_flush_bits & TU_CMD_FLAG_ALL_CLEAN;
3323    cache->pending_flush_bits &= ~TU_CMD_FLAG_ALL_CLEAN;
3324 }
3325 
3326 template <chip CHIP>
3327 VKAPI_ATTR VkResult VKAPI_CALL
tu_EndCommandBuffer(VkCommandBuffer commandBuffer)3328 tu_EndCommandBuffer(VkCommandBuffer commandBuffer)
3329 {
3330    VK_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3331 
3332    /* We currently flush CCU at the end of the command buffer, like
3333     * what the blob does. There's implicit synchronization around every
3334     * vkQueueSubmit, but the kernel only flushes the UCHE, and we don't
3335     * know yet if this command buffer will be the last in the submit so we
3336     * have to defensively flush everything else.
3337     *
3338     * TODO: We could definitely do better than this, since these flushes
3339     * aren't required by Vulkan, but we'd need kernel support to do that.
3340     * Ideally, we'd like the kernel to flush everything afterwards, so that we
3341     * wouldn't have to do any flushes here, and when submitting multiple
3342     * command buffers there wouldn't be any unnecessary flushes in between.
3343     */
3344    if (cmd_buffer->state.pass) {
3345       tu_clean_all_pending(&cmd_buffer->state.renderpass_cache);
3346       tu_emit_cache_flush_renderpass<CHIP>(cmd_buffer);
3347 
3348       trace_end_cmd_buffer(&cmd_buffer->trace, &cmd_buffer->draw_cs);
3349    } else {
3350       tu_clean_all_pending(&cmd_buffer->state.cache);
3351       cmd_buffer->state.cache.flush_bits |=
3352          TU_CMD_FLAG_CCU_CLEAN_COLOR |
3353          TU_CMD_FLAG_CCU_CLEAN_DEPTH;
3354       tu_emit_cache_flush<CHIP>(cmd_buffer);
3355 
3356       trace_end_cmd_buffer(&cmd_buffer->trace, &cmd_buffer->cs);
3357    }
3358 
3359    tu_cs_end(&cmd_buffer->cs);
3360    tu_cs_end(&cmd_buffer->draw_cs);
3361    tu_cs_end(&cmd_buffer->draw_epilogue_cs);
3362 
3363    return vk_command_buffer_end(&cmd_buffer->vk);
3364 }
3365 TU_GENX(tu_EndCommandBuffer);
3366 
3367 static void
tu_bind_vs(struct tu_cmd_buffer * cmd,struct tu_shader * vs)3368 tu_bind_vs(struct tu_cmd_buffer *cmd, struct tu_shader *vs)
3369 {
3370    cmd->state.shaders[MESA_SHADER_VERTEX] = vs;
3371 }
3372 
3373 static void
tu_bind_tcs(struct tu_cmd_buffer * cmd,struct tu_shader * tcs)3374 tu_bind_tcs(struct tu_cmd_buffer *cmd, struct tu_shader *tcs)
3375 {
3376    cmd->state.shaders[MESA_SHADER_TESS_CTRL] = tcs;
3377 }
3378 
3379 static void
tu_bind_tes(struct tu_cmd_buffer * cmd,struct tu_shader * tes)3380 tu_bind_tes(struct tu_cmd_buffer *cmd, struct tu_shader *tes)
3381 {
3382    if (cmd->state.shaders[MESA_SHADER_TESS_EVAL] != tes) {
3383       cmd->state.shaders[MESA_SHADER_TESS_EVAL] = tes;
3384       cmd->state.dirty |= TU_CMD_DIRTY_TES;
3385 
3386       if (!cmd->state.tess_params.valid ||
3387           cmd->state.tess_params.output_upper_left !=
3388           tes->tes.tess_output_upper_left ||
3389           cmd->state.tess_params.output_lower_left !=
3390           tes->tes.tess_output_lower_left ||
3391           cmd->state.tess_params.spacing != tes->tes.tess_spacing) {
3392          cmd->state.tess_params.output_upper_left =
3393             tes->tes.tess_output_upper_left;
3394          cmd->state.tess_params.output_lower_left =
3395             tes->tes.tess_output_lower_left;
3396          cmd->state.tess_params.spacing = tes->tes.tess_spacing;
3397          cmd->state.tess_params.valid = true;
3398          cmd->state.dirty |= TU_CMD_DIRTY_TESS_PARAMS;
3399       }
3400    }
3401 }
3402 
3403 static void
tu_bind_gs(struct tu_cmd_buffer * cmd,struct tu_shader * gs)3404 tu_bind_gs(struct tu_cmd_buffer *cmd, struct tu_shader *gs)
3405 {
3406    cmd->state.shaders[MESA_SHADER_GEOMETRY] = gs;
3407 }
3408 
3409 static void
tu_bind_fs(struct tu_cmd_buffer * cmd,struct tu_shader * fs)3410 tu_bind_fs(struct tu_cmd_buffer *cmd, struct tu_shader *fs)
3411 {
3412    if (cmd->state.shaders[MESA_SHADER_FRAGMENT] != fs) {
3413       cmd->state.shaders[MESA_SHADER_FRAGMENT] = fs;
3414       cmd->state.dirty |= TU_CMD_DIRTY_LRZ;
3415    }
3416 }
3417 
3418 /* We cannot do this only at pipeline bind time since pipeline
3419  * could have been bound at any time before current renderpass,
3420  * e.g. in the previous renderpass.
3421  */
3422 static void
tu_pipeline_update_rp_state(struct tu_cmd_state * cmd_state)3423 tu_pipeline_update_rp_state(struct tu_cmd_state *cmd_state)
3424 {
3425    if (cmd_state->pipeline_disable_gmem &&
3426        !cmd_state->rp.disable_gmem) {
3427       /* VK_EXT_attachment_feedback_loop_layout allows feedback loop to involve
3428        * not only input attachments but also sampled images or image resources.
3429        * But we cannot just patch gmem for image in the descriptors.
3430        *
3431        * At the moment, in context of DXVK, it is expected that only a few
3432        * drawcalls in a frame would use feedback loop and they would be wrapped
3433        * in their own renderpasses, so it should be ok to force sysmem.
3434        *
3435        * However, there are two further possible optimizations if need would
3436        * arise for other translation layer:
3437        * - Tiling could be enabled if we ensure that there is no barrier in
3438        *   the renderpass;
3439        * - Check that both pipeline and attachments agree that feedback loop
3440        *   is needed.
3441        */
3442       perf_debug(
3443          cmd->device,
3444          "Disabling gmem due to VK_EXT_attachment_feedback_loop_layout");
3445       cmd_state->rp.disable_gmem = true;
3446    }
3447 
3448    if (cmd_state->pipeline_sysmem_single_prim_mode &&
3449        !cmd_state->rp.sysmem_single_prim_mode) {
3450       perf_debug(cmd->device, "single_prim_mode due to pipeline settings");
3451       cmd_state->rp.sysmem_single_prim_mode = true;
3452    }
3453 
3454    if (cmd_state->pipeline_has_tess) {
3455       cmd_state->rp.has_tess = true;
3456    }
3457 }
3458 
3459 VKAPI_ATTR void VKAPI_CALL
tu_CmdBindPipeline(VkCommandBuffer commandBuffer,VkPipelineBindPoint pipelineBindPoint,VkPipeline _pipeline)3460 tu_CmdBindPipeline(VkCommandBuffer commandBuffer,
3461                    VkPipelineBindPoint pipelineBindPoint,
3462                    VkPipeline _pipeline)
3463 {
3464    VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3465    VK_FROM_HANDLE(tu_pipeline, pipeline, _pipeline);
3466 
3467    if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_COMPUTE) {
3468       cmd->state.shaders[MESA_SHADER_COMPUTE] =
3469          pipeline->shaders[MESA_SHADER_COMPUTE];
3470       tu_cs_emit_state_ib(&cmd->cs,
3471                           pipeline->shaders[MESA_SHADER_COMPUTE]->state);
3472       cmd->state.compute_load_state = pipeline->load_state;
3473       return;
3474    }
3475 
3476    assert(pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS);
3477 
3478    struct tu_graphics_pipeline *gfx_pipeline = tu_pipeline_to_graphics(pipeline);
3479    cmd->state.dirty |= TU_CMD_DIRTY_DESC_SETS | TU_CMD_DIRTY_SHADER_CONSTS |
3480                        TU_CMD_DIRTY_VS_PARAMS | TU_CMD_DIRTY_PROGRAM;
3481 
3482    tu_bind_vs(cmd, pipeline->shaders[MESA_SHADER_VERTEX]);
3483    tu_bind_tcs(cmd, pipeline->shaders[MESA_SHADER_TESS_CTRL]);
3484    tu_bind_tes(cmd, pipeline->shaders[MESA_SHADER_TESS_EVAL]);
3485    tu_bind_gs(cmd, pipeline->shaders[MESA_SHADER_GEOMETRY]);
3486    tu_bind_fs(cmd, pipeline->shaders[MESA_SHADER_FRAGMENT]);
3487 
3488    /* We precompile static state and count it as dynamic, so we have to
3489     * manually clear bitset that tells which dynamic state is set, in order to
3490     * make sure that future dynamic state will be emitted. The issue is that
3491     * framework remembers only a past REAL dynamic state and compares a new
3492     * dynamic state against it, and not against our static state masquaraded
3493     * as dynamic.
3494     */
3495    BITSET_ANDNOT(cmd->vk.dynamic_graphics_state.set,
3496                  cmd->vk.dynamic_graphics_state.set,
3497                  pipeline->static_state_mask);
3498 
3499    vk_cmd_set_dynamic_graphics_state(&cmd->vk,
3500                                      &gfx_pipeline->dynamic_state);
3501    cmd->state.program = pipeline->program;
3502 
3503    cmd->state.load_state = pipeline->load_state;
3504    cmd->state.prim_order_gmem = pipeline->prim_order.state_gmem;
3505    cmd->state.pipeline_sysmem_single_prim_mode = pipeline->prim_order.sysmem_single_prim_mode;
3506    cmd->state.pipeline_has_tess = pipeline->active_stages & VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT;
3507    cmd->state.pipeline_disable_gmem = gfx_pipeline->feedback_loop_may_involve_textures;
3508 
3509    tu_pipeline_update_rp_state(&cmd->state);
3510 
3511    if (pipeline->lrz_blend.valid) {
3512       if (cmd->state.blend_reads_dest != pipeline->lrz_blend.reads_dest) {
3513          cmd->state.blend_reads_dest = pipeline->lrz_blend.reads_dest;
3514          cmd->state.dirty |= TU_CMD_DIRTY_LRZ;
3515       }
3516    }
3517    cmd->state.pipeline_blend_lrz = pipeline->lrz_blend.valid;
3518 
3519    if (pipeline->bandwidth.valid)
3520       cmd->state.bandwidth = pipeline->bandwidth;
3521    cmd->state.pipeline_bandwidth = pipeline->bandwidth.valid;
3522 
3523    struct tu_cs *cs = &cmd->draw_cs;
3524 
3525    /* note: this also avoids emitting draw states before renderpass clears,
3526     * which may use the 3D clear path (for MSAA cases)
3527     */
3528    if (!(cmd->state.dirty & TU_CMD_DIRTY_DRAW_STATE)) {
3529       uint32_t mask = pipeline->set_state_mask;
3530 
3531       tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * (10 + util_bitcount(mask)));
3532       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_PROGRAM_CONFIG, pipeline->program.config_state);
3533       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS, pipeline->program.vs_state);
3534       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_BINNING, pipeline->program.vs_binning_state);
3535       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_HS, pipeline->program.hs_state);
3536       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DS, pipeline->program.ds_state);
3537       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_GS, pipeline->program.gs_state);
3538       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_GS_BINNING, pipeline->program.gs_binning_state);
3539       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_FS, pipeline->program.fs_state);
3540       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VPC, pipeline->program.vpc_state);
3541       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_PRIM_MODE_GMEM, pipeline->prim_order.state_gmem);
3542 
3543       u_foreach_bit(i, mask)
3544          tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DYNAMIC + i, pipeline->dynamic_state[i]);
3545    }
3546 
3547    cmd->state.pipeline_draw_states = pipeline->set_state_mask;
3548    u_foreach_bit(i, pipeline->set_state_mask)
3549       cmd->state.dynamic_state[i] = pipeline->dynamic_state[i];
3550 
3551    if (pipeline->program.per_view_viewport != cmd->state.per_view_viewport) {
3552       cmd->state.per_view_viewport = pipeline->program.per_view_viewport;
3553       cmd->state.dirty |= TU_CMD_DIRTY_PER_VIEW_VIEWPORT;
3554    }
3555 
3556    if (gfx_pipeline->feedback_loops != cmd->state.pipeline_feedback_loops) {
3557       cmd->state.pipeline_feedback_loops = gfx_pipeline->feedback_loops;
3558       cmd->state.dirty |= TU_CMD_DIRTY_FEEDBACK_LOOPS | TU_CMD_DIRTY_LRZ;
3559    }
3560 
3561    bool raster_order_attachment_access =
3562       pipeline->output.raster_order_attachment_access ||
3563       pipeline->ds.raster_order_attachment_access;
3564    if (!cmd->state.raster_order_attachment_access_valid ||
3565        raster_order_attachment_access !=
3566        cmd->state.raster_order_attachment_access) {
3567       cmd->state.raster_order_attachment_access =
3568          raster_order_attachment_access;
3569       cmd->state.dirty |= TU_CMD_DIRTY_RAST_ORDER;
3570       cmd->state.raster_order_attachment_access_valid = true;
3571    }
3572 }
3573 
3574 void
tu_flush_for_access(struct tu_cache_state * cache,enum tu_cmd_access_mask src_mask,enum tu_cmd_access_mask dst_mask)3575 tu_flush_for_access(struct tu_cache_state *cache,
3576                     enum tu_cmd_access_mask src_mask,
3577                     enum tu_cmd_access_mask dst_mask)
3578 {
3579    BITMASK_ENUM(tu_cmd_flush_bits) flush_bits = 0;
3580 
3581    if (src_mask & TU_ACCESS_SYSMEM_WRITE) {
3582       cache->pending_flush_bits |= TU_CMD_FLAG_ALL_INVALIDATE;
3583    }
3584 
3585    if (src_mask & TU_ACCESS_CP_WRITE) {
3586       /* Flush the CP write queue.
3587        */
3588       cache->pending_flush_bits |=
3589          TU_CMD_FLAG_WAIT_MEM_WRITES |
3590          TU_CMD_FLAG_ALL_INVALIDATE;
3591    }
3592 
3593 #define SRC_FLUSH(domain, clean, invalidate) \
3594    if (src_mask & TU_ACCESS_##domain##_WRITE) {                      \
3595       cache->pending_flush_bits |= TU_CMD_FLAG_##clean |             \
3596          (TU_CMD_FLAG_ALL_INVALIDATE & ~TU_CMD_FLAG_##invalidate);   \
3597    }
3598 
3599    SRC_FLUSH(UCHE, CACHE_CLEAN, CACHE_INVALIDATE)
3600    SRC_FLUSH(CCU_COLOR, CCU_CLEAN_COLOR, CCU_INVALIDATE_COLOR)
3601    SRC_FLUSH(CCU_DEPTH, CCU_CLEAN_DEPTH, CCU_INVALIDATE_DEPTH)
3602 
3603 #undef SRC_FLUSH
3604 
3605 #define SRC_INCOHERENT_FLUSH(domain, clean, invalidate)              \
3606    if (src_mask & TU_ACCESS_##domain##_INCOHERENT_WRITE) {           \
3607       flush_bits |= TU_CMD_FLAG_##clean;                             \
3608       cache->pending_flush_bits |=                                   \
3609          (TU_CMD_FLAG_ALL_INVALIDATE & ~TU_CMD_FLAG_##invalidate);   \
3610    }
3611 
3612    SRC_INCOHERENT_FLUSH(CCU_COLOR, CCU_CLEAN_COLOR, CCU_INVALIDATE_COLOR)
3613    SRC_INCOHERENT_FLUSH(CCU_DEPTH, CCU_CLEAN_DEPTH, CCU_INVALIDATE_DEPTH)
3614 
3615 #undef SRC_INCOHERENT_FLUSH
3616 
3617    /* Treat host & sysmem write accesses the same, since the kernel implicitly
3618     * drains the queue before signalling completion to the host.
3619     */
3620    if (dst_mask & (TU_ACCESS_SYSMEM_READ | TU_ACCESS_SYSMEM_WRITE)) {
3621       flush_bits |= cache->pending_flush_bits & TU_CMD_FLAG_ALL_CLEAN;
3622    }
3623 
3624 #define DST_FLUSH(domain, clean, invalidate) \
3625    if (dst_mask & (TU_ACCESS_##domain##_READ |                 \
3626                    TU_ACCESS_##domain##_WRITE)) {              \
3627       flush_bits |= cache->pending_flush_bits &                \
3628          (TU_CMD_FLAG_##invalidate |                           \
3629           (TU_CMD_FLAG_ALL_CLEAN & ~TU_CMD_FLAG_##clean));     \
3630    }
3631 
3632    DST_FLUSH(UCHE, CACHE_CLEAN, CACHE_INVALIDATE)
3633    DST_FLUSH(CCU_COLOR, CCU_CLEAN_COLOR, CCU_INVALIDATE_COLOR)
3634    DST_FLUSH(CCU_DEPTH, CCU_CLEAN_DEPTH, CCU_INVALIDATE_DEPTH)
3635 
3636 #undef DST_FLUSH
3637 
3638 #define DST_INCOHERENT_FLUSH(domain, flush, invalidate) \
3639    if (dst_mask & (TU_ACCESS_##domain##_INCOHERENT_READ |      \
3640                    TU_ACCESS_##domain##_INCOHERENT_WRITE)) {   \
3641       flush_bits |= TU_CMD_FLAG_##invalidate |                 \
3642           (cache->pending_flush_bits &                         \
3643            (TU_CMD_FLAG_ALL_CLEAN & ~TU_CMD_FLAG_##flush));    \
3644    }
3645 
3646    DST_INCOHERENT_FLUSH(CCU_COLOR, CCU_CLEAN_COLOR, CCU_INVALIDATE_COLOR)
3647    DST_INCOHERENT_FLUSH(CCU_DEPTH, CCU_CLEAN_DEPTH, CCU_INVALIDATE_DEPTH)
3648 
3649    if (dst_mask & TU_ACCESS_BINDLESS_DESCRIPTOR_READ) {
3650       flush_bits |= TU_CMD_FLAG_BINDLESS_DESCRIPTOR_INVALIDATE;
3651    }
3652 
3653    /* There are multiple incoherent copies of CCHE, so any read through it may
3654     * require invalidating it and we cannot optimize away invalidates.
3655     */
3656    if (dst_mask & TU_ACCESS_CCHE_READ) {
3657       flush_bits |= TU_CMD_FLAG_CCHE_INVALIDATE;
3658    }
3659 
3660    /* The blit cache is a special case dependency between CP_EVENT_WRITE::BLIT
3661     * (from GMEM loads/clears) to any GMEM attachment reads done via the UCHE
3662     * (Eg: Input attachments/CP_BLIT) which needs an explicit BLIT_CACHE_CLEAN
3663     * for the event blit writes to land, it has the following properties:
3664     * - Set on reads rather than on writes, like flushes.
3665     * - Not executed automatically if pending, like invalidates.
3666     * - Pending bits passed through to secondary command buffers, if they're
3667     *   continuing the render pass.
3668     */
3669    if (src_mask & TU_ACCESS_BLIT_WRITE_GMEM) {
3670       cache->pending_flush_bits |= TU_CMD_FLAG_BLIT_CACHE_CLEAN;
3671    }
3672 
3673    if ((dst_mask & TU_ACCESS_UCHE_READ_GMEM) &&
3674        (cache->pending_flush_bits & TU_CMD_FLAG_BLIT_CACHE_CLEAN)) {
3675       flush_bits |= TU_CMD_FLAG_BLIT_CACHE_CLEAN;
3676    }
3677 
3678 #undef DST_INCOHERENT_FLUSH
3679 
3680    cache->flush_bits |= flush_bits;
3681    cache->pending_flush_bits &= ~flush_bits;
3682 }
3683 
3684 /* When translating Vulkan access flags to which cache is accessed
3685  * (CCU/UCHE/sysmem), we should take into account both the access flags and
3686  * the stage so that accesses with MEMORY_READ_BIT/MEMORY_WRITE_BIT + a
3687  * specific stage return something sensible. The specification for
3688  * VK_KHR_synchronization2 says that we should do this:
3689  *
3690  *    Additionally, scoping the pipeline stages into the barrier structs
3691  *    allows the use of the MEMORY_READ and MEMORY_WRITE flags without
3692  *    sacrificing precision. The per-stage access flags should be used to
3693  *    disambiguate specific accesses in a given stage or set of stages - for
3694  *    instance, between uniform reads and sampling operations.
3695  *
3696  * Note that while in all known cases the stage is actually enough, we should
3697  * still narrow things down based on the access flags to handle "old-style"
3698  * barriers that may specify a wider range of stages but more precise access
3699  * flags. These helpers allow us to do both.
3700  */
3701 
3702 static bool
filter_read_access(VkAccessFlags2 flags,VkPipelineStageFlags2 stages,VkAccessFlags2 tu_flags,VkPipelineStageFlags2 tu_stages)3703 filter_read_access(VkAccessFlags2 flags, VkPipelineStageFlags2 stages,
3704                    VkAccessFlags2 tu_flags, VkPipelineStageFlags2 tu_stages)
3705 {
3706    return (flags & (tu_flags | VK_ACCESS_2_MEMORY_READ_BIT)) &&
3707       (stages & (tu_stages | VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT));
3708 }
3709 
3710 static bool
filter_write_access(VkAccessFlags2 flags,VkPipelineStageFlags2 stages,VkAccessFlags2 tu_flags,VkPipelineStageFlags2 tu_stages)3711 filter_write_access(VkAccessFlags2 flags, VkPipelineStageFlags2 stages,
3712                     VkAccessFlags2 tu_flags, VkPipelineStageFlags2 tu_stages)
3713 {
3714    return (flags & (tu_flags | VK_ACCESS_2_MEMORY_WRITE_BIT)) &&
3715       (stages & (tu_stages | VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT));
3716 }
3717 
3718 static bool
gfx_read_access(VkAccessFlags2 flags,VkPipelineStageFlags2 stages,VkAccessFlags2 tu_flags,VkPipelineStageFlags2 tu_stages)3719 gfx_read_access(VkAccessFlags2 flags, VkPipelineStageFlags2 stages,
3720                 VkAccessFlags2 tu_flags, VkPipelineStageFlags2 tu_stages)
3721 {
3722    return filter_read_access(flags, stages, tu_flags,
3723                              tu_stages | VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT);
3724 }
3725 
3726 static bool
gfx_write_access(VkAccessFlags2 flags,VkPipelineStageFlags2 stages,VkAccessFlags2 tu_flags,VkPipelineStageFlags2 tu_stages)3727 gfx_write_access(VkAccessFlags2 flags, VkPipelineStageFlags2 stages,
3728                  VkAccessFlags2 tu_flags, VkPipelineStageFlags2 tu_stages)
3729 {
3730    return filter_write_access(flags, stages, tu_flags,
3731                               tu_stages | VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT);
3732 }
3733 
3734 static enum tu_cmd_access_mask
vk2tu_access(VkAccessFlags2 flags,VkPipelineStageFlags2 stages,bool image_only,bool gmem)3735 vk2tu_access(VkAccessFlags2 flags, VkPipelineStageFlags2 stages, bool image_only, bool gmem)
3736 {
3737    BITMASK_ENUM(tu_cmd_access_mask) mask = 0;
3738 
3739    if (gfx_read_access(flags, stages,
3740                        VK_ACCESS_2_INDIRECT_COMMAND_READ_BIT |
3741                        VK_ACCESS_2_CONDITIONAL_RENDERING_READ_BIT_EXT |
3742                        VK_ACCESS_2_TRANSFORM_FEEDBACK_COUNTER_READ_BIT_EXT |
3743                        VK_ACCESS_2_HOST_READ_BIT,
3744                        VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT |
3745                        VK_PIPELINE_STAGE_2_CONDITIONAL_RENDERING_BIT_EXT |
3746                        VK_PIPELINE_STAGE_2_TRANSFORM_FEEDBACK_BIT_EXT |
3747                        VK_PIPELINE_STAGE_2_HOST_BIT))
3748       mask |= TU_ACCESS_SYSMEM_READ;
3749 
3750    if (gfx_write_access(flags, stages,
3751                         VK_ACCESS_2_TRANSFORM_FEEDBACK_COUNTER_READ_BIT_EXT,
3752                         VK_PIPELINE_STAGE_2_TRANSFORM_FEEDBACK_BIT_EXT))
3753       mask |= TU_ACCESS_CP_WRITE;
3754 
3755    if (gfx_write_access(flags, stages,
3756                         VK_ACCESS_2_HOST_WRITE_BIT,
3757                         VK_PIPELINE_STAGE_2_HOST_BIT))
3758       mask |= TU_ACCESS_SYSMEM_WRITE;
3759 
3760 #define SHADER_STAGES \
3761    (VK_PIPELINE_STAGE_2_VERTEX_SHADER_BIT | \
3762     VK_PIPELINE_STAGE_2_TESSELLATION_CONTROL_SHADER_BIT | \
3763     VK_PIPELINE_STAGE_2_TESSELLATION_EVALUATION_SHADER_BIT | \
3764     VK_PIPELINE_STAGE_2_GEOMETRY_SHADER_BIT | \
3765     VK_PIPELINE_STAGE_2_PRE_RASTERIZATION_SHADERS_BIT | \
3766     VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT | \
3767     VK_PIPELINE_STAGE_2_COMPUTE_SHADER_BIT)
3768 
3769 
3770    if (gfx_read_access(flags, stages,
3771                        VK_ACCESS_2_INDEX_READ_BIT |
3772                        VK_ACCESS_2_VERTEX_ATTRIBUTE_READ_BIT |
3773                        VK_ACCESS_2_UNIFORM_READ_BIT |
3774                        VK_ACCESS_2_INPUT_ATTACHMENT_READ_BIT |
3775                        VK_ACCESS_2_SHADER_READ_BIT |
3776                        VK_ACCESS_2_SHADER_SAMPLED_READ_BIT |
3777                        VK_ACCESS_2_SHADER_STORAGE_READ_BIT |
3778                        VK_ACCESS_2_SHADER_BINDING_TABLE_READ_BIT_KHR,
3779                        VK_PIPELINE_STAGE_2_INDEX_INPUT_BIT |
3780                        VK_PIPELINE_STAGE_2_VERTEX_INPUT_BIT |
3781                        VK_PIPELINE_STAGE_2_VERTEX_ATTRIBUTE_INPUT_BIT |
3782                        SHADER_STAGES))
3783        mask |= TU_ACCESS_UCHE_READ | TU_ACCESS_CCHE_READ;
3784 
3785    if (gfx_read_access(flags, stages,
3786                        VK_ACCESS_2_INPUT_ATTACHMENT_READ_BIT,
3787                        SHADER_STAGES))
3788        mask |= TU_ACCESS_UCHE_READ_GMEM;
3789 
3790    if (gfx_read_access(flags, stages,
3791                        VK_ACCESS_2_DESCRIPTOR_BUFFER_READ_BIT_EXT,
3792                        SHADER_STAGES)) {
3793       mask |= TU_ACCESS_UCHE_READ | TU_ACCESS_BINDLESS_DESCRIPTOR_READ |
3794               TU_ACCESS_CCHE_READ;
3795    }
3796 
3797    if (gfx_write_access(flags, stages,
3798                         VK_ACCESS_2_SHADER_WRITE_BIT |
3799                         VK_ACCESS_2_SHADER_STORAGE_WRITE_BIT |
3800                         VK_ACCESS_2_TRANSFORM_FEEDBACK_WRITE_BIT_EXT,
3801                         VK_PIPELINE_STAGE_2_TRANSFORM_FEEDBACK_BIT_EXT |
3802                         SHADER_STAGES))
3803        mask |= TU_ACCESS_UCHE_WRITE;
3804 
3805    /* When using GMEM, the CCU is always flushed automatically to GMEM, and
3806     * then GMEM is flushed to sysmem. Furthermore, we already had to flush any
3807     * previous writes in sysmem mode when transitioning to GMEM. Therefore we
3808     * can ignore CCU and pretend that color attachments and transfers use
3809     * sysmem directly.
3810     */
3811 
3812    if (gfx_read_access(flags, stages,
3813                        VK_ACCESS_2_COLOR_ATTACHMENT_READ_BIT |
3814                        VK_ACCESS_2_COLOR_ATTACHMENT_READ_NONCOHERENT_BIT_EXT,
3815                        VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT)) {
3816       if (gmem)
3817          mask |= TU_ACCESS_SYSMEM_READ;
3818       else
3819          mask |= TU_ACCESS_CCU_COLOR_INCOHERENT_READ;
3820    }
3821 
3822    if (gfx_read_access(flags, stages,
3823                        VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_READ_BIT,
3824                        VK_PIPELINE_STAGE_2_EARLY_FRAGMENT_TESTS_BIT |
3825                        VK_PIPELINE_STAGE_2_LATE_FRAGMENT_TESTS_BIT)) {
3826       if (gmem)
3827          mask |= TU_ACCESS_SYSMEM_READ;
3828       else
3829          mask |= TU_ACCESS_CCU_DEPTH_INCOHERENT_READ;
3830    }
3831 
3832    if (gfx_write_access(flags, stages,
3833                         VK_ACCESS_2_COLOR_ATTACHMENT_WRITE_BIT,
3834                         VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT)) {
3835       if (gmem) {
3836          mask |= TU_ACCESS_SYSMEM_WRITE;
3837       } else {
3838          mask |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
3839       }
3840    }
3841 
3842    if (gfx_write_access(flags, stages,
3843                         VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT,
3844                         VK_PIPELINE_STAGE_2_EARLY_FRAGMENT_TESTS_BIT |
3845                         VK_PIPELINE_STAGE_2_LATE_FRAGMENT_TESTS_BIT)) {
3846       if (gmem) {
3847          mask |= TU_ACCESS_SYSMEM_WRITE;
3848       } else {
3849          mask |= TU_ACCESS_CCU_DEPTH_INCOHERENT_WRITE;
3850       }
3851    }
3852 
3853    if (filter_write_access(flags, stages,
3854                            VK_ACCESS_2_TRANSFER_WRITE_BIT,
3855                            VK_PIPELINE_STAGE_2_COPY_BIT |
3856                            VK_PIPELINE_STAGE_2_BLIT_BIT |
3857                            VK_PIPELINE_STAGE_2_CLEAR_BIT |
3858                            VK_PIPELINE_STAGE_2_RESOLVE_BIT |
3859                            VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT)) {
3860       if (gmem) {
3861          mask |= TU_ACCESS_SYSMEM_WRITE;
3862       } else if (image_only) {
3863          /* Because we always split up blits/copies of images involving
3864           * multiple layers, we always access each layer in the same way, with
3865           * the same base address, same format, etc. This means we can avoid
3866           * flushing between multiple writes to the same image. This elides
3867           * flushes between e.g. multiple blits to the same image.
3868           */
3869          mask |= TU_ACCESS_CCU_COLOR_WRITE;
3870       } else {
3871          mask |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
3872       }
3873    }
3874 
3875    if (filter_read_access(flags, stages,
3876                           VK_ACCESS_2_TRANSFER_READ_BIT,
3877                           VK_PIPELINE_STAGE_2_COPY_BIT |
3878                           VK_PIPELINE_STAGE_2_BLIT_BIT |
3879                           VK_PIPELINE_STAGE_2_RESOLVE_BIT |
3880                           VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT)) {
3881       mask |= TU_ACCESS_UCHE_READ | TU_ACCESS_CCHE_READ;
3882    }
3883 
3884    return mask;
3885 }
3886 
3887 /* These helpers deal with legacy BOTTOM_OF_PIPE/TOP_OF_PIPE stages.
3888  */
3889 
3890 static VkPipelineStageFlags2
sanitize_src_stage(VkPipelineStageFlags2 stage_mask)3891 sanitize_src_stage(VkPipelineStageFlags2 stage_mask)
3892 {
3893    /* From the Vulkan spec:
3894     *
3895     *    VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT is ...  equivalent to
3896     *    VK_PIPELINE_STAGE_2_NONE in the first scope.
3897     *
3898     *    VK_PIPELINE_STAGE_2_BOTTOM_OF_PIPE_BIT is equivalent to
3899     *    VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT with VkAccessFlags2 set to 0
3900     *    when specified in the first synchronization scope, ...
3901     */
3902    if (stage_mask & VK_PIPELINE_STAGE_2_BOTTOM_OF_PIPE_BIT)
3903       return VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT;
3904 
3905    return stage_mask & ~VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT;
3906 }
3907 
3908 static VkPipelineStageFlags2
sanitize_dst_stage(VkPipelineStageFlags2 stage_mask)3909 sanitize_dst_stage(VkPipelineStageFlags2 stage_mask)
3910 {
3911    /* From the Vulkan spec:
3912     *
3913     *    VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT is equivalent to
3914     *    VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT with VkAccessFlags2 set to 0
3915     *    when specified in the second synchronization scope, ...
3916     *
3917     *    VK_PIPELINE_STAGE_2_BOTTOM_OF_PIPE_BIT is ... equivalent to
3918     *    VK_PIPELINE_STAGE_2_NONE in the second scope.
3919     *
3920     */
3921    if (stage_mask & VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT)
3922       return VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT;
3923 
3924    return stage_mask & ~VK_PIPELINE_STAGE_2_BOTTOM_OF_PIPE_BIT;
3925 }
3926 
3927 static enum tu_stage
vk2tu_single_stage(VkPipelineStageFlags2 vk_stage,bool dst)3928 vk2tu_single_stage(VkPipelineStageFlags2 vk_stage, bool dst)
3929 {
3930    /* If the destination stage is executed on the CP, then the CP also has to
3931     * wait for any WFI's to finish. This is already done for draw calls,
3932     * including before indirect param reads, for the most part, so we just
3933     * need to WFI and can use TU_STAGE_GPU.
3934     *
3935     * However, some indirect draw opcodes, depending on firmware, don't have
3936     * implicit CP_WAIT_FOR_ME so we have to handle it manually.
3937     *
3938     * Transform feedback counters are read via CP_MEM_TO_REG, which implicitly
3939     * does CP_WAIT_FOR_ME, so we don't include them here.
3940     *
3941     * Currently we read the draw predicate using CP_MEM_TO_MEM, which
3942     * also implicitly does CP_WAIT_FOR_ME. However CP_DRAW_PRED_SET does *not*
3943     * implicitly do CP_WAIT_FOR_ME, it seems to only wait for counters to
3944     * complete since it's written for DX11 where you can only predicate on the
3945     * result of a query object. So if we implement 64-bit comparisons in the
3946     * future, or if CP_DRAW_PRED_SET grows the capability to do 32-bit
3947     * comparisons, then this will have to be dealt with.
3948     */
3949    if (vk_stage == VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT ||
3950        vk_stage == VK_PIPELINE_STAGE_2_CONDITIONAL_RENDERING_BIT_EXT ||
3951        vk_stage == VK_PIPELINE_STAGE_2_FRAGMENT_DENSITY_PROCESS_BIT_EXT)
3952       return TU_STAGE_CP;
3953 
3954    if (vk_stage == VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT ||
3955        vk_stage == VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT)
3956       return dst ? TU_STAGE_CP : TU_STAGE_GPU;
3957 
3958    if (vk_stage == VK_PIPELINE_STAGE_2_HOST_BIT)
3959       return dst ? TU_STAGE_BOTTOM : TU_STAGE_CP;
3960 
3961    return TU_STAGE_GPU;
3962 }
3963 
3964 static enum tu_stage
vk2tu_src_stage(VkPipelineStageFlags2 vk_stages)3965 vk2tu_src_stage(VkPipelineStageFlags2 vk_stages)
3966 {
3967    enum tu_stage stage = TU_STAGE_CP;
3968    u_foreach_bit64 (bit, vk_stages) {
3969       enum tu_stage new_stage = vk2tu_single_stage(1ull << bit, false);
3970       stage = MAX2(stage, new_stage);
3971    }
3972 
3973    return stage;
3974 }
3975 
3976 static enum tu_stage
vk2tu_dst_stage(VkPipelineStageFlags2 vk_stages)3977 vk2tu_dst_stage(VkPipelineStageFlags2 vk_stages)
3978 {
3979    enum tu_stage stage = TU_STAGE_BOTTOM;
3980    u_foreach_bit64 (bit, vk_stages) {
3981       enum tu_stage new_stage = vk2tu_single_stage(1ull << bit, true);
3982       stage = MIN2(stage, new_stage);
3983    }
3984 
3985    return stage;
3986 }
3987 
3988 static void
tu_flush_for_stage(struct tu_cache_state * cache,enum tu_stage src_stage,enum tu_stage dst_stage)3989 tu_flush_for_stage(struct tu_cache_state *cache,
3990                    enum tu_stage src_stage, enum tu_stage dst_stage)
3991 {
3992    /* Even if the source is the host or CP, the destination access could
3993     * generate invalidates that we have to wait to complete.
3994     */
3995    if (src_stage == TU_STAGE_CP &&
3996        (cache->flush_bits & TU_CMD_FLAG_ALL_INVALIDATE))
3997       src_stage = TU_STAGE_GPU;
3998 
3999    if (src_stage >= dst_stage) {
4000       cache->flush_bits |= TU_CMD_FLAG_WAIT_FOR_IDLE;
4001       if (dst_stage == TU_STAGE_CP)
4002          cache->pending_flush_bits |= TU_CMD_FLAG_WAIT_FOR_ME;
4003    }
4004 }
4005 
4006 void
tu_render_pass_state_merge(struct tu_render_pass_state * dst,const struct tu_render_pass_state * src)4007 tu_render_pass_state_merge(struct tu_render_pass_state *dst,
4008                            const struct tu_render_pass_state *src)
4009 {
4010    dst->xfb_used |= src->xfb_used;
4011    dst->has_tess |= src->has_tess;
4012    dst->has_prim_generated_query_in_rp |= src->has_prim_generated_query_in_rp;
4013    dst->has_zpass_done_sample_count_write_in_rp |= src->has_zpass_done_sample_count_write_in_rp;
4014    dst->disable_gmem |= src->disable_gmem;
4015    dst->sysmem_single_prim_mode |= src->sysmem_single_prim_mode;
4016    dst->draw_cs_writes_to_cond_pred |= src->draw_cs_writes_to_cond_pred;
4017    dst->shared_viewport |= src->shared_viewport;
4018 
4019    dst->drawcall_count += src->drawcall_count;
4020    dst->drawcall_bandwidth_per_sample_sum +=
4021       src->drawcall_bandwidth_per_sample_sum;
4022    if (!dst->lrz_disable_reason)
4023       dst->lrz_disable_reason = src->lrz_disable_reason;
4024 }
4025 
4026 void
tu_restore_suspended_pass(struct tu_cmd_buffer * cmd,struct tu_cmd_buffer * suspended)4027 tu_restore_suspended_pass(struct tu_cmd_buffer *cmd,
4028                           struct tu_cmd_buffer *suspended)
4029 {
4030    cmd->state.pass = suspended->state.suspended_pass.pass;
4031    cmd->state.subpass = suspended->state.suspended_pass.subpass;
4032    cmd->state.framebuffer = suspended->state.suspended_pass.framebuffer;
4033    cmd->state.attachments = suspended->state.suspended_pass.attachments;
4034    cmd->state.clear_values = suspended->state.suspended_pass.clear_values;
4035    cmd->state.render_area = suspended->state.suspended_pass.render_area;
4036    cmd->state.gmem_layout = suspended->state.suspended_pass.gmem_layout;
4037    cmd->state.tiling = &cmd->state.framebuffer->tiling[cmd->state.gmem_layout];
4038    cmd->state.lrz = suspended->state.suspended_pass.lrz;
4039 }
4040 
4041 /* Take the saved pre-chain in "secondary" and copy its commands to "cmd",
4042  * appending it after any saved-up commands in "cmd".
4043  */
4044 void
tu_append_pre_chain(struct tu_cmd_buffer * cmd,struct tu_cmd_buffer * secondary)4045 tu_append_pre_chain(struct tu_cmd_buffer *cmd,
4046                     struct tu_cmd_buffer *secondary)
4047 {
4048    tu_cs_add_entries(&cmd->draw_cs, &secondary->pre_chain.draw_cs);
4049    tu_cs_add_entries(&cmd->draw_epilogue_cs,
4050                      &secondary->pre_chain.draw_epilogue_cs);
4051 
4052    tu_render_pass_state_merge(&cmd->state.rp,
4053                               &secondary->pre_chain.state);
4054    tu_clone_trace_range(cmd, &cmd->draw_cs, secondary->pre_chain.trace_renderpass_start,
4055          secondary->pre_chain.trace_renderpass_end);
4056    util_dynarray_append_dynarray(&cmd->fdm_bin_patchpoints,
4057                                  &secondary->pre_chain.fdm_bin_patchpoints);
4058 }
4059 
4060 /* Take the saved post-chain in "secondary" and copy it to "cmd".
4061  */
4062 void
tu_append_post_chain(struct tu_cmd_buffer * cmd,struct tu_cmd_buffer * secondary)4063 tu_append_post_chain(struct tu_cmd_buffer *cmd,
4064                      struct tu_cmd_buffer *secondary)
4065 {
4066    tu_cs_add_entries(&cmd->draw_cs, &secondary->draw_cs);
4067    tu_cs_add_entries(&cmd->draw_epilogue_cs, &secondary->draw_epilogue_cs);
4068 
4069    tu_clone_trace_range(cmd, &cmd->draw_cs, secondary->trace_renderpass_start,
4070          secondary->trace_renderpass_end);
4071    cmd->state.rp = secondary->state.rp;
4072    util_dynarray_append_dynarray(&cmd->fdm_bin_patchpoints,
4073                                  &secondary->fdm_bin_patchpoints);
4074 }
4075 
4076 /* Assuming "secondary" is just a sequence of suspended and resuming passes,
4077  * copy its state to "cmd". This also works instead of tu_append_post_chain(),
4078  * but it's a bit slower because we don't assume that the chain begins in
4079  * "secondary" and therefore have to care about the command buffer's
4080  * renderpass state.
4081  */
4082 void
tu_append_pre_post_chain(struct tu_cmd_buffer * cmd,struct tu_cmd_buffer * secondary)4083 tu_append_pre_post_chain(struct tu_cmd_buffer *cmd,
4084                          struct tu_cmd_buffer *secondary)
4085 {
4086    tu_cs_add_entries(&cmd->draw_cs, &secondary->draw_cs);
4087    tu_cs_add_entries(&cmd->draw_epilogue_cs, &secondary->draw_epilogue_cs);
4088 
4089    tu_clone_trace_range(cmd, &cmd->draw_cs, secondary->trace_renderpass_start,
4090          secondary->trace_renderpass_end);
4091    tu_render_pass_state_merge(&cmd->state.rp,
4092                               &secondary->state.rp);
4093    util_dynarray_append_dynarray(&cmd->fdm_bin_patchpoints,
4094                                  &secondary->fdm_bin_patchpoints);
4095 }
4096 
4097 /* Take the current render pass state and save it to "pre_chain" to be
4098  * combined later.
4099  */
4100 static void
tu_save_pre_chain(struct tu_cmd_buffer * cmd)4101 tu_save_pre_chain(struct tu_cmd_buffer *cmd)
4102 {
4103    tu_cs_add_entries(&cmd->pre_chain.draw_cs,
4104                      &cmd->draw_cs);
4105    tu_cs_add_entries(&cmd->pre_chain.draw_epilogue_cs,
4106                      &cmd->draw_epilogue_cs);
4107    cmd->pre_chain.trace_renderpass_start =
4108       cmd->trace_renderpass_start;
4109    cmd->pre_chain.trace_renderpass_end =
4110       cmd->trace_renderpass_end;
4111    cmd->pre_chain.state = cmd->state.rp;
4112    util_dynarray_append_dynarray(&cmd->pre_chain.fdm_bin_patchpoints,
4113                                  &cmd->fdm_bin_patchpoints);
4114    cmd->pre_chain.patchpoints_ctx = cmd->patchpoints_ctx;
4115    cmd->patchpoints_ctx = NULL;
4116 }
4117 
4118 VKAPI_ATTR void VKAPI_CALL
tu_CmdExecuteCommands(VkCommandBuffer commandBuffer,uint32_t commandBufferCount,const VkCommandBuffer * pCmdBuffers)4119 tu_CmdExecuteCommands(VkCommandBuffer commandBuffer,
4120                       uint32_t commandBufferCount,
4121                       const VkCommandBuffer *pCmdBuffers)
4122 {
4123    VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
4124    VkResult result;
4125 
4126    assert(commandBufferCount > 0);
4127 
4128    /* Emit any pending flushes. */
4129    if (cmd->state.pass) {
4130       tu_clean_all_pending(&cmd->state.renderpass_cache);
4131       TU_CALLX(cmd->device, tu_emit_cache_flush_renderpass)(cmd);
4132    } else {
4133       tu_clean_all_pending(&cmd->state.cache);
4134       TU_CALLX(cmd->device, tu_emit_cache_flush)(cmd);
4135    }
4136 
4137    for (uint32_t i = 0; i < commandBufferCount; i++) {
4138       VK_FROM_HANDLE(tu_cmd_buffer, secondary, pCmdBuffers[i]);
4139 
4140       if (secondary->usage_flags &
4141           VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
4142          assert(tu_cs_is_empty(&secondary->cs));
4143 
4144          result = tu_cs_add_entries(&cmd->draw_cs, &secondary->draw_cs);
4145          if (result != VK_SUCCESS) {
4146             vk_command_buffer_set_error(&cmd->vk, result);
4147             break;
4148          }
4149 
4150          result = tu_cs_add_entries(&cmd->draw_epilogue_cs,
4151                &secondary->draw_epilogue_cs);
4152          if (result != VK_SUCCESS) {
4153             vk_command_buffer_set_error(&cmd->vk, result);
4154             break;
4155          }
4156 
4157          /* If LRZ was made invalid in secondary - we should disable
4158           * LRZ retroactively for the whole renderpass.
4159           */
4160          if (!secondary->state.lrz.valid)
4161             cmd->state.lrz.valid = false;
4162 
4163          tu_clone_trace(cmd, &cmd->draw_cs, &secondary->trace);
4164          tu_render_pass_state_merge(&cmd->state.rp, &secondary->state.rp);
4165          util_dynarray_append_dynarray(&cmd->fdm_bin_patchpoints,
4166                                        &secondary->fdm_bin_patchpoints);
4167       } else {
4168          switch (secondary->state.suspend_resume) {
4169          case SR_NONE:
4170             assert(tu_cs_is_empty(&secondary->draw_cs));
4171             assert(tu_cs_is_empty(&secondary->draw_epilogue_cs));
4172             tu_cs_add_entries(&cmd->cs, &secondary->cs);
4173             tu_clone_trace(cmd, &cmd->cs, &secondary->trace);
4174             break;
4175 
4176          case SR_IN_PRE_CHAIN:
4177             /* cmd may be empty, which means that the chain begins before cmd
4178              * in which case we have to update its state.
4179              */
4180             if (cmd->state.suspend_resume == SR_NONE) {
4181                cmd->state.suspend_resume = SR_IN_PRE_CHAIN;
4182                cmd->trace_renderpass_start = u_trace_end_iterator(&cmd->trace);
4183             }
4184 
4185             /* The secondary is just a continuous suspend/resume chain so we
4186              * just have to append it to the the command buffer.
4187              */
4188             assert(tu_cs_is_empty(&secondary->cs));
4189             tu_append_pre_post_chain(cmd, secondary);
4190             break;
4191 
4192          case SR_AFTER_PRE_CHAIN:
4193          case SR_IN_CHAIN:
4194          case SR_IN_CHAIN_AFTER_PRE_CHAIN:
4195             if (secondary->state.suspend_resume == SR_AFTER_PRE_CHAIN ||
4196                 secondary->state.suspend_resume == SR_IN_CHAIN_AFTER_PRE_CHAIN) {
4197                /* In thse cases there is a `pre_chain` in the secondary which
4198                 * ends that we need to append to the primary.
4199                 */
4200 
4201                if (cmd->state.suspend_resume == SR_NONE)
4202                   cmd->trace_renderpass_start = u_trace_end_iterator(&cmd->trace);
4203 
4204                tu_append_pre_chain(cmd, secondary);
4205 
4206                /* We're about to render, so we need to end the command stream
4207                 * in case there were any extra commands generated by copying
4208                 * the trace.
4209                 */
4210                tu_cs_end(&cmd->draw_cs);
4211                tu_cs_end(&cmd->draw_epilogue_cs);
4212 
4213                switch (cmd->state.suspend_resume) {
4214                case SR_NONE:
4215                case SR_IN_PRE_CHAIN:
4216                   /* The renderpass chain ends in the secondary but isn't
4217                    * started in the primary, so we have to move the state to
4218                    * `pre_chain`.
4219                    */
4220                   cmd->trace_renderpass_end = u_trace_end_iterator(&cmd->trace);
4221                   tu_save_pre_chain(cmd);
4222                   cmd->state.suspend_resume = SR_AFTER_PRE_CHAIN;
4223                   break;
4224                case SR_IN_CHAIN:
4225                case SR_IN_CHAIN_AFTER_PRE_CHAIN:
4226                   /* The renderpass ends in the secondary and starts somewhere
4227                    * earlier in this primary. Since the last render pass in
4228                    * the chain is in the secondary, we are technically outside
4229                    * of a render pass.  Fix that here by reusing the dynamic
4230                    * render pass that was setup for the last suspended render
4231                    * pass before the secondary.
4232                    */
4233                   tu_restore_suspended_pass(cmd, cmd);
4234 
4235                   TU_CALLX(cmd->device, tu_cmd_render)(cmd);
4236                   if (cmd->state.suspend_resume == SR_IN_CHAIN)
4237                      cmd->state.suspend_resume = SR_NONE;
4238                   else
4239                      cmd->state.suspend_resume = SR_AFTER_PRE_CHAIN;
4240                   break;
4241                case SR_AFTER_PRE_CHAIN:
4242                   unreachable("resuming render pass is not preceded by suspending one");
4243                }
4244 
4245                tu_reset_render_pass(cmd);
4246             }
4247 
4248             tu_cs_add_entries(&cmd->cs, &secondary->cs);
4249 
4250             if (secondary->state.suspend_resume == SR_IN_CHAIN_AFTER_PRE_CHAIN ||
4251                 secondary->state.suspend_resume == SR_IN_CHAIN) {
4252                /* The secondary ends in a "post-chain" (the opposite of a
4253                 * pre-chain) that we need to copy into the current command
4254                 * buffer.
4255                 */
4256                cmd->trace_renderpass_start = u_trace_end_iterator(&cmd->trace);
4257                tu_append_post_chain(cmd, secondary);
4258                cmd->trace_renderpass_end = u_trace_end_iterator(&cmd->trace);
4259                cmd->state.suspended_pass = secondary->state.suspended_pass;
4260 
4261                switch (cmd->state.suspend_resume) {
4262                case SR_NONE:
4263                   cmd->state.suspend_resume = SR_IN_CHAIN;
4264                   break;
4265                case SR_AFTER_PRE_CHAIN:
4266                   cmd->state.suspend_resume = SR_IN_CHAIN_AFTER_PRE_CHAIN;
4267                   break;
4268                default:
4269                   unreachable("suspending render pass is followed by a not resuming one");
4270                }
4271             }
4272          }
4273       }
4274 
4275       cmd->state.index_size = secondary->state.index_size; /* for restart index update */
4276    }
4277    cmd->state.dirty = ~0u; /* TODO: set dirty only what needs to be */
4278 
4279    if (!cmd->state.lrz.gpu_dir_tracking && cmd->state.pass) {
4280       /* After a secondary command buffer is executed, LRZ is not valid
4281        * until it is cleared again.
4282        */
4283       cmd->state.lrz.valid = false;
4284    }
4285 
4286    /* After executing secondary command buffers, there may have been arbitrary
4287     * flushes executed, so when we encounter a pipeline barrier with a
4288     * srcMask, we have to assume that we need to invalidate. Therefore we need
4289     * to re-initialize the cache with all pending invalidate bits set.
4290     */
4291    if (cmd->state.pass) {
4292       struct tu_cache_state *cache = &cmd->state.renderpass_cache;
4293       BITMASK_ENUM(tu_cmd_flush_bits) retained_pending_flush_bits =
4294          cache->pending_flush_bits & TU_CMD_FLAG_BLIT_CACHE_CLEAN;
4295       tu_cache_init(cache);
4296       cache->pending_flush_bits |= retained_pending_flush_bits;
4297    } else {
4298       tu_cache_init(&cmd->state.cache);
4299    }
4300 }
4301 
4302 static void
tu_subpass_barrier(struct tu_cmd_buffer * cmd_buffer,const struct tu_subpass_barrier * barrier,bool external)4303 tu_subpass_barrier(struct tu_cmd_buffer *cmd_buffer,
4304                    const struct tu_subpass_barrier *barrier,
4305                    bool external)
4306 {
4307    /* Note: we don't know until the end of the subpass whether we'll use
4308     * sysmem, so assume sysmem here to be safe.
4309     */
4310    struct tu_cache_state *cache =
4311       external ? &cmd_buffer->state.cache : &cmd_buffer->state.renderpass_cache;
4312    VkPipelineStageFlags2 src_stage_vk =
4313       sanitize_src_stage(barrier->src_stage_mask);
4314    VkPipelineStageFlags2 dst_stage_vk =
4315       sanitize_dst_stage(barrier->dst_stage_mask);
4316    BITMASK_ENUM(tu_cmd_access_mask) src_flags =
4317       vk2tu_access(barrier->src_access_mask, src_stage_vk, false, false);
4318    BITMASK_ENUM(tu_cmd_access_mask) dst_flags =
4319       vk2tu_access(barrier->dst_access_mask, dst_stage_vk, false, false);
4320 
4321    if (barrier->incoherent_ccu_color)
4322       src_flags |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
4323    if (barrier->incoherent_ccu_depth)
4324       src_flags |= TU_ACCESS_CCU_DEPTH_INCOHERENT_WRITE;
4325 
4326    tu_flush_for_access(cache, src_flags, dst_flags);
4327 
4328    enum tu_stage src_stage = vk2tu_src_stage(src_stage_vk);
4329    enum tu_stage dst_stage = vk2tu_dst_stage(dst_stage_vk);
4330    tu_flush_for_stage(cache, src_stage, dst_stage);
4331 }
4332 
4333 template <chip CHIP>
4334 static void
tu_emit_subpass_begin_gmem(struct tu_cmd_buffer * cmd)4335 tu_emit_subpass_begin_gmem(struct tu_cmd_buffer *cmd)
4336 {
4337    struct tu_cs *cs = &cmd->draw_cs;
4338    uint32_t subpass_idx = cmd->state.subpass - cmd->state.pass->subpasses;
4339 
4340    /* If we might choose to bin, then put the loads under a check for geometry
4341     * having been binned to this tile.  If we don't choose to bin in the end,
4342     * then we will have manually set those registers to say geometry is present.
4343     *
4344     * However, if the draw CS has a write to the condition for some other reason
4345     * (perf queries), then we can't do this optimization since the
4346     * start-of-the-CS geometry condition will have been overwritten.
4347     */
4348    bool cond_load_allowed = cmd->state.tiling->binning &&
4349                             cmd->state.pass->has_cond_load_store &&
4350                             !cmd->state.rp.draw_cs_writes_to_cond_pred;
4351 
4352    if (cmd->state.pass->has_fdm)
4353       tu_cs_set_writeable(cs, true);
4354 
4355    tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_GMEM);
4356 
4357    /* Emit gmem loads that are first used in this subpass. */
4358    bool emitted_scissor = false;
4359    for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i) {
4360       struct tu_render_pass_attachment *att = &cmd->state.pass->attachments[i];
4361       if ((att->load || att->load_stencil) && att->first_subpass_idx == subpass_idx) {
4362          if (!emitted_scissor) {
4363             tu6_emit_blit_scissor(cmd, cs, true);
4364             emitted_scissor = true;
4365          }
4366          tu_load_gmem_attachment<CHIP>(cmd, cs, i, cond_load_allowed, false);
4367       }
4368    }
4369 
4370    if (!cmd->device->physical_device->info->a7xx.has_generic_clear) {
4371       /* Emit gmem clears that are first used in this subpass. */
4372       emitted_scissor = false;
4373       for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i) {
4374          struct tu_render_pass_attachment *att =
4375             &cmd->state.pass->attachments[i];
4376          if (att->clear_mask && att->first_subpass_idx == subpass_idx) {
4377             if (!emitted_scissor) {
4378                tu6_emit_blit_scissor(cmd, cs, false);
4379                emitted_scissor = true;
4380             }
4381             tu_clear_gmem_attachment<CHIP>(cmd, cs, i);
4382          }
4383       }
4384    }
4385 
4386    tu_cond_exec_end(cs); /* CP_COND_EXEC_0_RENDER_MODE_GMEM */
4387 
4388    if (cmd->state.pass->has_fdm)
4389       tu_cs_set_writeable(cs, false);
4390 
4391 }
4392 
4393 /* Emits sysmem clears that are first used in this subpass. */
4394 template <chip CHIP>
4395 static void
tu_emit_subpass_begin_sysmem(struct tu_cmd_buffer * cmd)4396 tu_emit_subpass_begin_sysmem(struct tu_cmd_buffer *cmd)
4397 {
4398    if (cmd->device->physical_device->info->a7xx.has_generic_clear)
4399       return;
4400 
4401    struct tu_cs *cs = &cmd->draw_cs;
4402    uint32_t subpass_idx = cmd->state.subpass - cmd->state.pass->subpasses;
4403 
4404    tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_SYSMEM);
4405    for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i) {
4406       struct tu_render_pass_attachment *att = &cmd->state.pass->attachments[i];
4407       if (att->clear_mask && att->first_subpass_idx == subpass_idx)
4408          tu_clear_sysmem_attachment<CHIP>(cmd, cs, i);
4409    }
4410    tu_cond_exec_end(cs); /* sysmem */
4411 }
4412 
4413 static void
tu7_emit_subpass_clear(struct tu_cmd_buffer * cmd)4414 tu7_emit_subpass_clear(struct tu_cmd_buffer *cmd)
4415 {
4416    if (cmd->state.render_area.extent.width == 0 ||
4417        cmd->state.render_area.extent.height == 0)
4418       return;
4419 
4420    struct tu_cs *cs = &cmd->draw_cs;
4421    uint32_t subpass_idx = cmd->state.subpass - cmd->state.pass->subpasses;
4422 
4423    bool emitted_scissor = false;
4424    for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i) {
4425       struct tu_render_pass_attachment *att =
4426          &cmd->state.pass->attachments[i];
4427       if (att->clear_mask && att->first_subpass_idx == subpass_idx) {
4428          if (!emitted_scissor) {
4429             tu6_emit_blit_scissor(cmd, cs, false);
4430             emitted_scissor = true;
4431          }
4432          tu7_generic_clear_attachment(cmd, cs, i);
4433       }
4434    }
4435 }
4436 
4437 /* emit loads, clears, and mrt/zs/msaa/ubwc state for the subpass that is
4438  * starting (either at vkCmdBeginRenderPass2() or vkCmdNextSubpass2())
4439  *
4440  * Clears and loads have to happen at this point, because with
4441  * VK_ATTACHMENT_DESCRIPTION_MAY_ALIAS_BIT the loads may depend on the output of
4442  * a previous aliased attachment's store.
4443  */
4444 template <chip CHIP>
4445 static void
tu_emit_subpass_begin(struct tu_cmd_buffer * cmd)4446 tu_emit_subpass_begin(struct tu_cmd_buffer *cmd)
4447 {
4448    tu_fill_render_pass_state(&cmd->state.vk_rp, cmd->state.pass, cmd->state.subpass);
4449 
4450    tu_emit_subpass_begin_gmem<CHIP>(cmd);
4451    tu_emit_subpass_begin_sysmem<CHIP>(cmd);
4452    if (cmd->device->physical_device->info->a7xx.has_generic_clear) {
4453       tu7_emit_subpass_clear(cmd);
4454    }
4455 
4456    tu6_emit_zs<CHIP>(cmd, cmd->state.subpass, &cmd->draw_cs);
4457    tu6_emit_mrt<CHIP>(cmd, cmd->state.subpass, &cmd->draw_cs);
4458    tu6_emit_render_cntl<CHIP>(cmd, cmd->state.subpass, &cmd->draw_cs, false);
4459 
4460    tu_set_input_attachments(cmd, cmd->state.subpass);
4461 
4462    vk_cmd_set_cb_attachment_count(&cmd->vk, cmd->state.subpass->color_count);
4463 
4464    cmd->state.dirty |= TU_CMD_DIRTY_SUBPASS;
4465 }
4466 
4467 template <chip CHIP>
4468 VKAPI_ATTR void VKAPI_CALL
tu_CmdBeginRenderPass2(VkCommandBuffer commandBuffer,const VkRenderPassBeginInfo * pRenderPassBegin,const VkSubpassBeginInfo * pSubpassBeginInfo)4469 tu_CmdBeginRenderPass2(VkCommandBuffer commandBuffer,
4470                        const VkRenderPassBeginInfo *pRenderPassBegin,
4471                        const VkSubpassBeginInfo *pSubpassBeginInfo)
4472 {
4473    VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
4474 
4475    if (TU_DEBUG(DYNAMIC)) {
4476       vk_common_CmdBeginRenderPass2(commandBuffer, pRenderPassBegin,
4477                                     pSubpassBeginInfo);
4478       return;
4479    }
4480 
4481    VK_FROM_HANDLE(tu_render_pass, pass, pRenderPassBegin->renderPass);
4482    VK_FROM_HANDLE(tu_framebuffer, fb, pRenderPassBegin->framebuffer);
4483 
4484    const struct VkRenderPassAttachmentBeginInfo *pAttachmentInfo =
4485       vk_find_struct_const(pRenderPassBegin->pNext,
4486                            RENDER_PASS_ATTACHMENT_BEGIN_INFO);
4487 
4488    cmd->state.pass = pass;
4489    cmd->state.subpass = pass->subpasses;
4490    cmd->state.framebuffer = fb;
4491    cmd->state.render_area = pRenderPassBegin->renderArea;
4492 
4493    VK_MULTIALLOC(ma);
4494    vk_multialloc_add(&ma, &cmd->state.attachments,
4495                      const struct tu_image_view *, pass->attachment_count);
4496    vk_multialloc_add(&ma, &cmd->state.clear_values, VkClearValue,
4497                      pRenderPassBegin->clearValueCount);
4498    if (!vk_multialloc_alloc(&ma, &cmd->vk.pool->alloc,
4499                             VK_SYSTEM_ALLOCATION_SCOPE_OBJECT)) {
4500       vk_command_buffer_set_error(&cmd->vk, VK_ERROR_OUT_OF_HOST_MEMORY);
4501       return;
4502    }
4503 
4504    if (cmd->device->dbg_renderpass_stomp_cs) {
4505       tu_cs_emit_call(&cmd->cs, cmd->device->dbg_renderpass_stomp_cs);
4506    }
4507 
4508    for (unsigned i = 0; i < pass->attachment_count; i++) {
4509       cmd->state.attachments[i] = pAttachmentInfo ?
4510          tu_image_view_from_handle(pAttachmentInfo->pAttachments[i]) :
4511          cmd->state.framebuffer->attachments[i].attachment;
4512    }
4513    for (unsigned i = 0; i < pRenderPassBegin->clearValueCount; i++)
4514          cmd->state.clear_values[i] = pRenderPassBegin->pClearValues[i];
4515 
4516    tu_choose_gmem_layout(cmd);
4517 
4518    tu_trace_start_render_pass(cmd);
4519 
4520    /* Note: because this is external, any flushes will happen before draw_cs
4521     * gets called. However deferred flushes could have to happen later as part
4522     * of the subpass.
4523     */
4524    tu_subpass_barrier(cmd, &pass->subpasses[0].start_barrier, true);
4525    cmd->state.renderpass_cache.pending_flush_bits =
4526       cmd->state.cache.pending_flush_bits;
4527    cmd->state.renderpass_cache.flush_bits = 0;
4528 
4529    if (pass->subpasses[0].feedback_invalidate)
4530       cmd->state.renderpass_cache.flush_bits |= TU_CMD_FLAG_CACHE_INVALIDATE;
4531 
4532    tu_lrz_begin_renderpass<CHIP>(cmd);
4533 
4534    cmd->trace_renderpass_start = u_trace_end_iterator(&cmd->trace);
4535 
4536    tu_emit_renderpass_begin(cmd);
4537    tu_emit_subpass_begin<CHIP>(cmd);
4538 
4539    if (pass->has_fdm)
4540       cmd->patchpoints_ctx = ralloc_parent(NULL);
4541 }
4542 TU_GENX(tu_CmdBeginRenderPass2);
4543 
4544 template <chip CHIP>
4545 VKAPI_ATTR void VKAPI_CALL
tu_CmdBeginRendering(VkCommandBuffer commandBuffer,const VkRenderingInfo * pRenderingInfo)4546 tu_CmdBeginRendering(VkCommandBuffer commandBuffer,
4547                      const VkRenderingInfo *pRenderingInfo)
4548 {
4549    VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
4550 
4551    tu_setup_dynamic_render_pass(cmd, pRenderingInfo);
4552    tu_setup_dynamic_framebuffer(cmd, pRenderingInfo);
4553 
4554    cmd->state.pass = &cmd->dynamic_pass;
4555    cmd->state.subpass = &cmd->dynamic_subpass;
4556    cmd->state.framebuffer = &cmd->dynamic_framebuffer;
4557    cmd->state.render_area = pRenderingInfo->renderArea;
4558 
4559    cmd->state.attachments = cmd->dynamic_attachments;
4560    cmd->state.clear_values = cmd->dynamic_clear_values;
4561 
4562    for (unsigned i = 0; i < pRenderingInfo->colorAttachmentCount; i++) {
4563       uint32_t a = cmd->dynamic_subpass.color_attachments[i].attachment;
4564       if (!pRenderingInfo->pColorAttachments[i].imageView)
4565          continue;
4566 
4567       cmd->state.clear_values[a] =
4568          pRenderingInfo->pColorAttachments[i].clearValue;
4569 
4570       VK_FROM_HANDLE(tu_image_view, view,
4571                      pRenderingInfo->pColorAttachments[i].imageView);
4572       cmd->state.attachments[a] = view;
4573 
4574       a = cmd->dynamic_subpass.resolve_attachments[i].attachment;
4575       if (a != VK_ATTACHMENT_UNUSED) {
4576          VK_FROM_HANDLE(tu_image_view, resolve_view,
4577                         pRenderingInfo->pColorAttachments[i].resolveImageView);
4578          cmd->state.attachments[a] = resolve_view;
4579       }
4580    }
4581 
4582    uint32_t a = cmd->dynamic_subpass.depth_stencil_attachment.attachment;
4583    if (pRenderingInfo->pDepthAttachment || pRenderingInfo->pStencilAttachment) {
4584       const struct VkRenderingAttachmentInfo *common_info =
4585          (pRenderingInfo->pDepthAttachment &&
4586           pRenderingInfo->pDepthAttachment->imageView != VK_NULL_HANDLE) ?
4587          pRenderingInfo->pDepthAttachment :
4588          pRenderingInfo->pStencilAttachment;
4589       if (common_info && common_info->imageView != VK_NULL_HANDLE) {
4590          VK_FROM_HANDLE(tu_image_view, view, common_info->imageView);
4591          cmd->state.attachments[a] = view;
4592          if (pRenderingInfo->pDepthAttachment) {
4593             cmd->state.clear_values[a].depthStencil.depth =
4594                pRenderingInfo->pDepthAttachment->clearValue.depthStencil.depth;
4595          }
4596 
4597          if (pRenderingInfo->pStencilAttachment) {
4598             cmd->state.clear_values[a].depthStencil.stencil =
4599                pRenderingInfo->pStencilAttachment->clearValue.depthStencil.stencil;
4600          }
4601 
4602          if (cmd->dynamic_subpass.resolve_count >
4603              cmd->dynamic_subpass.color_count) {
4604             VK_FROM_HANDLE(tu_image_view, resolve_view,
4605                            common_info->resolveImageView);
4606             a = cmd->dynamic_subpass.resolve_attachments[cmd->dynamic_subpass.color_count].attachment;
4607             cmd->state.attachments[a] = resolve_view;
4608          }
4609       }
4610    }
4611 
4612    a = cmd->dynamic_pass.fragment_density_map.attachment;
4613    if (a != VK_ATTACHMENT_UNUSED) {
4614       const VkRenderingFragmentDensityMapAttachmentInfoEXT *fdm_info =
4615          vk_find_struct_const(pRenderingInfo->pNext,
4616                               RENDERING_FRAGMENT_DENSITY_MAP_ATTACHMENT_INFO_EXT);
4617       VK_FROM_HANDLE(tu_image_view, view, fdm_info->imageView);
4618       cmd->state.attachments[a] = view;
4619    }
4620 
4621    if (cmd->dynamic_pass.has_fdm)
4622       cmd->patchpoints_ctx = ralloc_context(NULL);
4623 
4624    tu_choose_gmem_layout(cmd);
4625 
4626    cmd->state.renderpass_cache.pending_flush_bits =
4627       cmd->state.cache.pending_flush_bits;
4628    cmd->state.renderpass_cache.flush_bits = 0;
4629 
4630    bool resuming = pRenderingInfo->flags & VK_RENDERING_RESUMING_BIT;
4631    bool suspending = pRenderingInfo->flags & VK_RENDERING_SUSPENDING_BIT;
4632    cmd->state.suspending = suspending;
4633    cmd->state.resuming = resuming;
4634 
4635    if (!resuming && cmd->device->dbg_renderpass_stomp_cs) {
4636       tu_cs_emit_call(&cmd->cs, cmd->device->dbg_renderpass_stomp_cs);
4637    }
4638 
4639    /* We can't track LRZ across command buffer boundaries, so we have to
4640     * disable LRZ when resuming/suspending unless we can track on the GPU.
4641     */
4642    if ((resuming || suspending) &&
4643        !cmd->device->physical_device->info->a6xx.has_lrz_dir_tracking) {
4644       cmd->state.lrz.valid = false;
4645    } else {
4646       if (resuming)
4647          tu_lrz_begin_resumed_renderpass<CHIP>(cmd);
4648       else
4649          tu_lrz_begin_renderpass<CHIP>(cmd);
4650    }
4651 
4652 
4653    if (suspending) {
4654       cmd->state.suspended_pass.pass = cmd->state.pass;
4655       cmd->state.suspended_pass.subpass = cmd->state.subpass;
4656       cmd->state.suspended_pass.framebuffer = cmd->state.framebuffer;
4657       cmd->state.suspended_pass.render_area = cmd->state.render_area;
4658       cmd->state.suspended_pass.attachments = cmd->state.attachments;
4659       cmd->state.suspended_pass.clear_values = cmd->state.clear_values;
4660       cmd->state.suspended_pass.gmem_layout = cmd->state.gmem_layout;
4661    }
4662 
4663    if (!resuming)
4664       tu_trace_start_render_pass(cmd);
4665 
4666    if (!resuming || cmd->state.suspend_resume == SR_NONE) {
4667       cmd->trace_renderpass_start = u_trace_end_iterator(&cmd->trace);
4668    }
4669 
4670    if (!resuming) {
4671       tu_emit_renderpass_begin(cmd);
4672       tu_emit_subpass_begin<CHIP>(cmd);
4673    }
4674 
4675    if (suspending && !resuming) {
4676       /* entering a chain */
4677       switch (cmd->state.suspend_resume) {
4678       case SR_NONE:
4679          cmd->state.suspend_resume = SR_IN_CHAIN;
4680          break;
4681       case SR_AFTER_PRE_CHAIN:
4682          cmd->state.suspend_resume = SR_IN_CHAIN_AFTER_PRE_CHAIN;
4683          break;
4684       case SR_IN_PRE_CHAIN:
4685       case SR_IN_CHAIN:
4686       case SR_IN_CHAIN_AFTER_PRE_CHAIN:
4687          unreachable("suspending render pass not followed by resuming pass");
4688          break;
4689       }
4690    }
4691 
4692    if (resuming && cmd->state.suspend_resume == SR_NONE)
4693       cmd->state.suspend_resume = SR_IN_PRE_CHAIN;
4694 }
4695 TU_GENX(tu_CmdBeginRendering);
4696 
4697 template <chip CHIP>
4698 VKAPI_ATTR void VKAPI_CALL
tu_CmdNextSubpass2(VkCommandBuffer commandBuffer,const VkSubpassBeginInfo * pSubpassBeginInfo,const VkSubpassEndInfo * pSubpassEndInfo)4699 tu_CmdNextSubpass2(VkCommandBuffer commandBuffer,
4700                    const VkSubpassBeginInfo *pSubpassBeginInfo,
4701                    const VkSubpassEndInfo *pSubpassEndInfo)
4702 {
4703    VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
4704 
4705    if (TU_DEBUG(DYNAMIC)) {
4706       vk_common_CmdNextSubpass2(commandBuffer, pSubpassBeginInfo,
4707                                 pSubpassEndInfo);
4708       return;
4709    }
4710 
4711    const struct tu_render_pass *pass = cmd->state.pass;
4712    const struct tu_framebuffer *fb = cmd->state.framebuffer;
4713    struct tu_cs *cs = &cmd->draw_cs;
4714    const struct tu_subpass *last_subpass = cmd->state.subpass;
4715 
4716    const struct tu_subpass *subpass = cmd->state.subpass++;
4717 
4718    /* Track LRZ valid state
4719     *
4720     * TODO: Improve this tracking for keeping the state of the past depth/stencil images,
4721     * so if they become active again, we reuse its old state.
4722     */
4723    if (last_subpass->depth_stencil_attachment.attachment != subpass->depth_stencil_attachment.attachment) {
4724       cmd->state.lrz.valid = false;
4725       cmd->state.dirty |= TU_CMD_DIRTY_LRZ;
4726    }
4727 
4728    if (cmd->state.tiling->possible) {
4729       if (cmd->state.pass->has_fdm)
4730          tu_cs_set_writeable(cs, true);
4731 
4732       tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_GMEM);
4733 
4734       if (subpass->resolve_attachments) {
4735          tu6_emit_blit_scissor(cmd, cs, true);
4736 
4737          for (unsigned i = 0; i < subpass->resolve_count; i++) {
4738             uint32_t a = subpass->resolve_attachments[i].attachment;
4739             if (a == VK_ATTACHMENT_UNUSED)
4740                continue;
4741 
4742             uint32_t gmem_a = tu_subpass_get_attachment_to_resolve(subpass, i);
4743 
4744             tu_store_gmem_attachment<CHIP>(cmd, cs, a, gmem_a, fb->layers,
4745                                     subpass->multiview_mask, false);
4746 
4747             if (!pass->attachments[a].gmem)
4748                continue;
4749 
4750             /* check if the resolved attachment is needed by later subpasses,
4751             * if it is, should be doing a GMEM->GMEM resolve instead of GMEM->MEM->GMEM..
4752             */
4753             perf_debug(cmd->device, "TODO: missing GMEM->GMEM resolve path\n");
4754             tu_load_gmem_attachment<CHIP>(cmd, cs, a, false, true);
4755          }
4756       }
4757 
4758       tu_cond_exec_end(cs);
4759 
4760       if (cmd->state.pass->has_fdm)
4761          tu_cs_set_writeable(cs, false);
4762 
4763       tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_SYSMEM);
4764    }
4765 
4766    tu6_emit_sysmem_resolves<CHIP>(cmd, cs, subpass);
4767 
4768    if (cmd->state.tiling->possible)
4769       tu_cond_exec_end(cs);
4770 
4771    /* Handle dependencies for the next subpass */
4772    tu_subpass_barrier(cmd, &cmd->state.subpass->start_barrier, false);
4773 
4774    if (cmd->state.subpass->feedback_invalidate)
4775       cmd->state.renderpass_cache.flush_bits |= TU_CMD_FLAG_CACHE_INVALIDATE;
4776 
4777    tu_emit_subpass_begin<CHIP>(cmd);
4778 }
4779 TU_GENX(tu_CmdNextSubpass2);
4780 
4781 static uint32_t
tu6_user_consts_size(const struct tu_const_state * const_state,bool ldgk,gl_shader_stage type)4782 tu6_user_consts_size(const struct tu_const_state *const_state,
4783                      bool ldgk,
4784                      gl_shader_stage type)
4785 {
4786    uint32_t dwords = 0;
4787 
4788    if (const_state->push_consts.type == IR3_PUSH_CONSTS_PER_STAGE) {
4789       unsigned num_units = const_state->push_consts.dwords;
4790       dwords += 4 + num_units;
4791       assert(num_units > 0);
4792    }
4793 
4794    if (ldgk) {
4795       dwords += 6 + (2 * const_state->num_inline_ubos + 4);
4796    } else {
4797       dwords += 8 * const_state->num_inline_ubos;
4798    }
4799 
4800    return dwords;
4801 }
4802 
4803 static void
tu6_emit_per_stage_push_consts(struct tu_cs * cs,const struct tu_const_state * const_state,gl_shader_stage type,uint32_t * push_constants)4804 tu6_emit_per_stage_push_consts(struct tu_cs *cs,
4805                                const struct tu_const_state *const_state,
4806                                gl_shader_stage type,
4807                                uint32_t *push_constants)
4808 {
4809    if (const_state->push_consts.type == IR3_PUSH_CONSTS_PER_STAGE) {
4810       unsigned num_units = const_state->push_consts.dwords;
4811       unsigned offset = const_state->push_consts.lo;
4812       assert(num_units > 0);
4813 
4814       /* DST_OFF and NUM_UNIT requires vec4 units */
4815       tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3 + num_units);
4816       tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset / 4) |
4817             CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
4818             CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
4819             CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
4820             CP_LOAD_STATE6_0_NUM_UNIT(num_units / 4));
4821       tu_cs_emit(cs, 0);
4822       tu_cs_emit(cs, 0);
4823       for (unsigned i = 0; i < num_units; i++)
4824          tu_cs_emit(cs, push_constants[i + offset]);
4825    }
4826 }
4827 
4828 static void
tu6_emit_inline_ubo(struct tu_cs * cs,const struct tu_const_state * const_state,unsigned constlen,gl_shader_stage type,struct tu_descriptor_state * descriptors)4829 tu6_emit_inline_ubo(struct tu_cs *cs,
4830                     const struct tu_const_state *const_state,
4831                     unsigned constlen,
4832                     gl_shader_stage type,
4833                     struct tu_descriptor_state *descriptors)
4834 {
4835    assert(const_state->num_inline_ubos == 0 || !cs->device->physical_device->info->a7xx.load_shader_consts_via_preamble);
4836 
4837    /* Emit loads of inline uniforms. These load directly from the uniform's
4838     * storage space inside the descriptor set.
4839     */
4840    for (unsigned i = 0; i < const_state->num_inline_ubos; i++) {
4841       const struct tu_inline_ubo *ubo = &const_state->ubos[i];
4842 
4843       if (constlen <= ubo->const_offset_vec4)
4844          continue;
4845 
4846       uint64_t va = descriptors->set_iova[ubo->base] & ~0x3f;
4847 
4848       tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), ubo->push_address ? 7 : 3);
4849       tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(ubo->const_offset_vec4) |
4850             CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
4851             CP_LOAD_STATE6_0_STATE_SRC(ubo->push_address ? SS6_DIRECT : SS6_INDIRECT) |
4852             CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
4853             CP_LOAD_STATE6_0_NUM_UNIT(MIN2(ubo->size_vec4, constlen - ubo->const_offset_vec4)));
4854       if (ubo->push_address) {
4855          tu_cs_emit(cs, 0);
4856          tu_cs_emit(cs, 0);
4857          tu_cs_emit_qw(cs, va + ubo->offset);
4858          tu_cs_emit(cs, 0);
4859          tu_cs_emit(cs, 0);
4860       } else {
4861          tu_cs_emit_qw(cs, va + ubo->offset);
4862       }
4863    }
4864 }
4865 
4866 static void
tu7_emit_inline_ubo(struct tu_cs * cs,const struct tu_const_state * const_state,const struct ir3_const_state * ir_const_state,unsigned constlen,gl_shader_stage type,struct tu_descriptor_state * descriptors)4867 tu7_emit_inline_ubo(struct tu_cs *cs,
4868                     const struct tu_const_state *const_state,
4869                     const struct ir3_const_state *ir_const_state,
4870                     unsigned constlen,
4871                     gl_shader_stage type,
4872                     struct tu_descriptor_state *descriptors)
4873 {
4874    uint64_t addresses[7] = {0};
4875    unsigned offset = const_state->inline_uniforms_ubo.idx;
4876 
4877    if (offset == -1)
4878       return;
4879 
4880    for (unsigned i = 0; i < const_state->num_inline_ubos; i++) {
4881       const struct tu_inline_ubo *ubo = &const_state->ubos[i];
4882 
4883       uint64_t va = descriptors->set_iova[ubo->base] & ~0x3f;
4884       addresses[i] = va + ubo->offset;
4885    }
4886 
4887    /* A7XX TODO: Emit data via sub_cs instead of NOP */
4888    uint64_t iova = tu_cs_emit_data_nop(cs, (uint32_t *)addresses, const_state->num_inline_ubos * 2, 4);
4889 
4890    tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 5);
4891    tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
4892             CP_LOAD_STATE6_0_STATE_TYPE(ST6_UBO) |
4893             CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
4894             CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
4895             CP_LOAD_STATE6_0_NUM_UNIT(1));
4896    tu_cs_emit(cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0));
4897    tu_cs_emit(cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0));
4898    int size_vec4s = DIV_ROUND_UP(const_state->num_inline_ubos * 2, 4);
4899    tu_cs_emit_qw(cs, iova | ((uint64_t)A6XX_UBO_1_SIZE(size_vec4s) << 32));
4900 }
4901 
4902 static void
tu_emit_inline_ubo(struct tu_cs * cs,const struct tu_const_state * const_state,const struct ir3_const_state * ir_const_state,unsigned constlen,gl_shader_stage type,struct tu_descriptor_state * descriptors)4903 tu_emit_inline_ubo(struct tu_cs *cs,
4904                    const struct tu_const_state *const_state,
4905                    const struct ir3_const_state *ir_const_state,
4906                    unsigned constlen,
4907                    gl_shader_stage type,
4908                    struct tu_descriptor_state *descriptors)
4909 {
4910    if (!const_state->num_inline_ubos)
4911       return;
4912 
4913    if (cs->device->physical_device->info->a7xx.load_inline_uniforms_via_preamble_ldgk) {
4914       tu7_emit_inline_ubo(cs, const_state, ir_const_state, constlen, type, descriptors);
4915    } else {
4916       tu6_emit_inline_ubo(cs, const_state, constlen, type, descriptors);
4917    }
4918 }
4919 
4920 static void
tu6_emit_shared_consts(struct tu_cs * cs,const struct tu_push_constant_range * shared_consts,uint32_t * push_constants,bool compute)4921 tu6_emit_shared_consts(struct tu_cs *cs,
4922                        const struct tu_push_constant_range *shared_consts,
4923                        uint32_t *push_constants,
4924                        bool compute)
4925 {
4926    if (shared_consts->dwords > 0) {
4927       /* Offset and num_units for shared consts are in units of dwords. */
4928       unsigned num_units = shared_consts->dwords;
4929       unsigned offset = shared_consts->lo;
4930 
4931       enum a6xx_state_type st = compute ? ST6_UBO : ST6_CONSTANTS;
4932       uint32_t cp_load_state = compute ? CP_LOAD_STATE6_FRAG : CP_LOAD_STATE6;
4933 
4934       tu_cs_emit_pkt7(cs, cp_load_state, 3 + num_units);
4935       tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
4936             CP_LOAD_STATE6_0_STATE_TYPE(st) |
4937             CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
4938             CP_LOAD_STATE6_0_STATE_BLOCK(SB6_IBO) |
4939             CP_LOAD_STATE6_0_NUM_UNIT(num_units));
4940       tu_cs_emit(cs, 0);
4941       tu_cs_emit(cs, 0);
4942 
4943       for (unsigned i = 0; i < num_units; i++)
4944          tu_cs_emit(cs, push_constants[i + offset]);
4945    }
4946 }
4947 
4948 static void
tu7_emit_shared_preamble_consts(struct tu_cs * cs,const struct tu_push_constant_range * shared_consts,uint32_t * push_constants)4949 tu7_emit_shared_preamble_consts(
4950    struct tu_cs *cs,
4951    const struct tu_push_constant_range *shared_consts,
4952    uint32_t *push_constants)
4953 {
4954    tu_cs_emit_pkt4(cs, REG_A7XX_HLSQ_SHARED_CONSTS_IMM(shared_consts->lo),
4955                    shared_consts->dwords);
4956    tu_cs_emit_array(cs, push_constants + shared_consts->lo,
4957                     shared_consts->dwords);
4958 }
4959 
4960 static uint32_t
tu6_const_size(struct tu_cmd_buffer * cmd,const struct tu_push_constant_range * shared_consts,bool compute)4961 tu6_const_size(struct tu_cmd_buffer *cmd,
4962                const struct tu_push_constant_range *shared_consts,
4963                bool compute)
4964 {
4965    uint32_t dwords = 0;
4966 
4967    if (shared_consts->type == IR3_PUSH_CONSTS_SHARED) {
4968       dwords += shared_consts->dwords + 4;
4969    } else if (shared_consts->type == IR3_PUSH_CONSTS_SHARED_PREAMBLE) {
4970       dwords += shared_consts->dwords + 1;
4971    }
4972 
4973    bool ldgk = cmd->device->physical_device->info->a7xx.load_inline_uniforms_via_preamble_ldgk;
4974    if (compute) {
4975       dwords +=
4976          tu6_user_consts_size(&cmd->state.shaders[MESA_SHADER_COMPUTE]->const_state, ldgk, MESA_SHADER_COMPUTE);
4977    } else {
4978       for (uint32_t type = MESA_SHADER_VERTEX; type <= MESA_SHADER_FRAGMENT; type++)
4979          dwords += tu6_user_consts_size(&cmd->state.shaders[type]->const_state, ldgk, (gl_shader_stage) type);
4980    }
4981 
4982    return dwords;
4983 }
4984 
4985 static struct tu_draw_state
tu_emit_consts(struct tu_cmd_buffer * cmd,bool compute)4986 tu_emit_consts(struct tu_cmd_buffer *cmd, bool compute)
4987 {
4988    uint32_t dwords = 0;
4989    const struct tu_push_constant_range *shared_consts =
4990       compute ? &cmd->state.shaders[MESA_SHADER_COMPUTE]->const_state.push_consts :
4991       &cmd->state.program.shared_consts;
4992 
4993    dwords = tu6_const_size(cmd, shared_consts, compute);
4994 
4995    if (dwords == 0)
4996       return (struct tu_draw_state) {};
4997 
4998    struct tu_cs cs;
4999    tu_cs_begin_sub_stream(&cmd->sub_cs, dwords, &cs);
5000 
5001    if (shared_consts->type == IR3_PUSH_CONSTS_SHARED) {
5002       tu6_emit_shared_consts(&cs, shared_consts, cmd->push_constants, compute);
5003    } else if (shared_consts->type == IR3_PUSH_CONSTS_SHARED_PREAMBLE) {
5004       tu7_emit_shared_preamble_consts(&cs, shared_consts, cmd->push_constants);
5005    }
5006 
5007    if (compute) {
5008       tu6_emit_per_stage_push_consts(
5009          &cs, &cmd->state.shaders[MESA_SHADER_COMPUTE]->const_state,
5010          MESA_SHADER_COMPUTE, cmd->push_constants);
5011       tu_emit_inline_ubo(
5012          &cs, &cmd->state.shaders[MESA_SHADER_COMPUTE]->const_state,
5013          cmd->state.shaders[MESA_SHADER_COMPUTE]->variant->const_state,
5014          cmd->state.shaders[MESA_SHADER_COMPUTE]->variant->constlen,
5015          MESA_SHADER_COMPUTE,
5016          tu_get_descriptors_state(cmd, VK_PIPELINE_BIND_POINT_COMPUTE));
5017    } else {
5018       struct tu_descriptor_state *descriptors =
5019          tu_get_descriptors_state(cmd, VK_PIPELINE_BIND_POINT_GRAPHICS);
5020       for (uint32_t type = MESA_SHADER_VERTEX; type <= MESA_SHADER_FRAGMENT; type++) {
5021          const struct tu_program_descriptor_linkage *link =
5022             &cmd->state.program.link[type];
5023          tu6_emit_per_stage_push_consts(&cs, &link->tu_const_state,
5024                                         (gl_shader_stage) type,
5025                                         cmd->push_constants);
5026          tu_emit_inline_ubo(&cs, &link->tu_const_state,
5027                             &link->const_state, link->constlen,
5028                             (gl_shader_stage) type, descriptors);
5029       }
5030    }
5031 
5032    return tu_cs_end_draw_state(&cmd->sub_cs, &cs);
5033 }
5034 
5035 /* Various frontends (ANGLE, zink at least) will enable stencil testing with
5036  * what works out to be no-op writes.  Simplify what they give us into flags
5037  * that LRZ can use.
5038  */
5039 static void
tu6_update_simplified_stencil_state(struct tu_cmd_buffer * cmd)5040 tu6_update_simplified_stencil_state(struct tu_cmd_buffer *cmd)
5041 {
5042    const struct vk_depth_stencil_state *ds =
5043       &cmd->vk.dynamic_graphics_state.ds;
5044    bool stencil_test_enable = ds->stencil.test_enable;
5045 
5046    if (!stencil_test_enable) {
5047       cmd->state.stencil_front_write = false;
5048       cmd->state.stencil_back_write = false;
5049       return;
5050    }
5051 
5052    bool stencil_front_writemask = ds->stencil.front.write_mask;
5053    bool stencil_back_writemask = ds->stencil.back.write_mask;
5054 
5055    VkStencilOp front_fail_op = (VkStencilOp)ds->stencil.front.op.fail;
5056    VkStencilOp front_pass_op = (VkStencilOp)ds->stencil.front.op.pass;
5057    VkStencilOp front_depth_fail_op = (VkStencilOp)ds->stencil.front.op.depth_fail;
5058    VkStencilOp back_fail_op = (VkStencilOp)ds->stencil.back.op.fail;
5059    VkStencilOp back_pass_op = (VkStencilOp)ds->stencil.back.op.pass;
5060    VkStencilOp back_depth_fail_op = (VkStencilOp)ds->stencil.back.op.depth_fail;
5061 
5062    bool stencil_front_op_writes =
5063       front_pass_op != VK_STENCIL_OP_KEEP ||
5064       front_fail_op != VK_STENCIL_OP_KEEP ||
5065       front_depth_fail_op != VK_STENCIL_OP_KEEP;
5066 
5067    bool stencil_back_op_writes =
5068       back_pass_op != VK_STENCIL_OP_KEEP ||
5069       back_fail_op != VK_STENCIL_OP_KEEP ||
5070       back_depth_fail_op != VK_STENCIL_OP_KEEP;
5071 
5072    cmd->state.stencil_front_write =
5073       stencil_front_op_writes && stencil_front_writemask;
5074    cmd->state.stencil_back_write =
5075       stencil_back_op_writes && stencil_back_writemask;
5076 }
5077 
5078 static bool
tu6_writes_depth(struct tu_cmd_buffer * cmd,bool depth_test_enable)5079 tu6_writes_depth(struct tu_cmd_buffer *cmd, bool depth_test_enable)
5080 {
5081    bool depth_write_enable =
5082       cmd->vk.dynamic_graphics_state.ds.depth.write_enable;
5083 
5084    VkCompareOp depth_compare_op = (VkCompareOp)
5085       cmd->vk.dynamic_graphics_state.ds.depth.compare_op;
5086 
5087    bool depth_compare_op_writes = depth_compare_op != VK_COMPARE_OP_NEVER;
5088 
5089    return depth_test_enable && depth_write_enable && depth_compare_op_writes;
5090 }
5091 
5092 static bool
tu6_writes_stencil(struct tu_cmd_buffer * cmd)5093 tu6_writes_stencil(struct tu_cmd_buffer *cmd)
5094 {
5095    return cmd->state.stencil_front_write || cmd->state.stencil_back_write;
5096 }
5097 
5098 static void
tu6_build_depth_plane_z_mode(struct tu_cmd_buffer * cmd,struct tu_cs * cs)5099 tu6_build_depth_plane_z_mode(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
5100 {
5101    enum a6xx_ztest_mode zmode = A6XX_EARLY_Z;
5102    bool depth_test_enable = cmd->vk.dynamic_graphics_state.ds.depth.test_enable;
5103    bool depth_write = tu6_writes_depth(cmd, depth_test_enable);
5104    bool stencil_write = tu6_writes_stencil(cmd);
5105    const struct tu_shader *fs = cmd->state.shaders[MESA_SHADER_FRAGMENT];
5106    const struct tu_render_pass *pass = cmd->state.pass;
5107    const struct tu_subpass *subpass = cmd->state.subpass;
5108 
5109    if ((fs->variant->has_kill ||
5110         (cmd->state.pipeline_feedback_loops & VK_IMAGE_ASPECT_DEPTH_BIT) ||
5111         (cmd->vk.dynamic_graphics_state.feedback_loops &
5112          VK_IMAGE_ASPECT_DEPTH_BIT)) &&
5113        (depth_write || stencil_write)) {
5114       zmode = (cmd->state.lrz.valid && cmd->state.lrz.enabled)
5115                  ? A6XX_EARLY_LRZ_LATE_Z
5116                  : A6XX_LATE_Z;
5117    }
5118 
5119    bool force_late_z =
5120       (subpass->depth_stencil_attachment.attachment != VK_ATTACHMENT_UNUSED &&
5121        pass->attachments[subpass->depth_stencil_attachment.attachment].format
5122        == VK_FORMAT_S8_UINT) ||
5123       fs->fs.lrz.force_late_z ||
5124       /* alpha-to-coverage can behave like a discard. */
5125       cmd->vk.dynamic_graphics_state.ms.alpha_to_coverage_enable;
5126    if ((force_late_z && !fs->variant->fs.early_fragment_tests) ||
5127        !depth_test_enable)
5128       zmode = A6XX_LATE_Z;
5129 
5130    /* User defined early tests take precedence above all else */
5131    if (fs->variant->fs.early_fragment_tests)
5132       zmode = A6XX_EARLY_Z;
5133 
5134    tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SU_DEPTH_PLANE_CNTL, 1);
5135    tu_cs_emit(cs, A6XX_GRAS_SU_DEPTH_PLANE_CNTL_Z_MODE(zmode));
5136 
5137    tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_PLANE_CNTL, 1);
5138    tu_cs_emit(cs, A6XX_RB_DEPTH_PLANE_CNTL_Z_MODE(zmode));
5139 }
5140 
5141 static uint32_t
fs_params_offset(struct tu_cmd_buffer * cmd)5142 fs_params_offset(struct tu_cmd_buffer *cmd)
5143 {
5144    const struct tu_program_descriptor_linkage *link =
5145       &cmd->state.program.link[MESA_SHADER_FRAGMENT];
5146    const struct ir3_const_state *const_state = &link->const_state;
5147 
5148    if (const_state->num_driver_params <= IR3_DP_FS_DYNAMIC)
5149       return 0;
5150 
5151    if (const_state->offsets.driver_param + IR3_DP_FS_DYNAMIC / 4 >= link->constlen)
5152       return 0;
5153 
5154    return const_state->offsets.driver_param + IR3_DP_FS_DYNAMIC / 4;
5155 }
5156 
5157 static uint32_t
fs_params_size(struct tu_cmd_buffer * cmd)5158 fs_params_size(struct tu_cmd_buffer *cmd)
5159 {
5160    const struct tu_program_descriptor_linkage *link =
5161       &cmd->state.program.link[MESA_SHADER_FRAGMENT];
5162    const struct ir3_const_state *const_state = &link->const_state;
5163 
5164    return DIV_ROUND_UP(const_state->num_driver_params - IR3_DP_FS_DYNAMIC, 4);
5165 }
5166 
5167 struct apply_fs_params_state {
5168    unsigned num_consts;
5169 };
5170 
5171 static void
fdm_apply_fs_params(struct tu_cmd_buffer * cmd,struct tu_cs * cs,void * data,VkRect2D bin,unsigned views,VkExtent2D * frag_areas)5172 fdm_apply_fs_params(struct tu_cmd_buffer *cmd,
5173                     struct tu_cs *cs,
5174                     void *data,
5175                     VkRect2D bin,
5176                     unsigned views,
5177                     VkExtent2D *frag_areas)
5178 {
5179    const struct apply_fs_params_state *state =
5180       (const struct apply_fs_params_state *)data;
5181    unsigned num_consts = state->num_consts;
5182 
5183    for (unsigned i = 0; i < num_consts; i++) {
5184       assert(i < views);
5185       VkExtent2D area = frag_areas[i];
5186       VkOffset2D offset = tu_fdm_per_bin_offset(area, bin);
5187 
5188       tu_cs_emit(cs, area.width);
5189       tu_cs_emit(cs, area.height);
5190       tu_cs_emit(cs, fui(offset.x));
5191       tu_cs_emit(cs, fui(offset.y));
5192    }
5193 }
5194 
5195 static void
tu_emit_fdm_params(struct tu_cmd_buffer * cmd,struct tu_cs * cs,struct tu_shader * fs,unsigned num_units)5196 tu_emit_fdm_params(struct tu_cmd_buffer *cmd,
5197                    struct tu_cs *cs, struct tu_shader *fs,
5198                    unsigned num_units)
5199 {
5200    STATIC_ASSERT(IR3_DP_FS_FRAG_INVOCATION_COUNT == IR3_DP_FS_DYNAMIC);
5201    tu_cs_emit(cs, fs->fs.per_samp ?
5202               cmd->vk.dynamic_graphics_state.ms.rasterization_samples : 1);
5203    tu_cs_emit(cs, 0);
5204    tu_cs_emit(cs, 0);
5205    tu_cs_emit(cs, 0);
5206 
5207    STATIC_ASSERT(IR3_DP_FS_FRAG_SIZE == IR3_DP_FS_DYNAMIC + 4);
5208    STATIC_ASSERT(IR3_DP_FS_FRAG_OFFSET == IR3_DP_FS_DYNAMIC + 6);
5209    if (num_units > 1) {
5210       if (fs->fs.has_fdm) {
5211          struct apply_fs_params_state state = {
5212             .num_consts = num_units - 1,
5213          };
5214          tu_create_fdm_bin_patchpoint(cmd, cs, 4 * (num_units - 1),
5215                                       fdm_apply_fs_params, state);
5216       } else {
5217          for (unsigned i = 1; i < num_units; i++) {
5218             tu_cs_emit(cs, 1);
5219             tu_cs_emit(cs, 1);
5220             tu_cs_emit(cs, fui(0.0f));
5221             tu_cs_emit(cs, fui(0.0f));
5222          }
5223       }
5224    }
5225 }
5226 
5227 static void
tu6_emit_fs_params(struct tu_cmd_buffer * cmd)5228 tu6_emit_fs_params(struct tu_cmd_buffer *cmd)
5229 {
5230    uint32_t offset = fs_params_offset(cmd);
5231 
5232    if (offset == 0) {
5233       cmd->state.fs_params = (struct tu_draw_state) {};
5234       return;
5235    }
5236 
5237    struct tu_shader *fs = cmd->state.shaders[MESA_SHADER_FRAGMENT];
5238 
5239    unsigned num_units = fs_params_size(cmd);
5240 
5241    if (fs->fs.has_fdm)
5242       tu_cs_set_writeable(&cmd->sub_cs, true);
5243 
5244    struct tu_cs cs;
5245    VkResult result = tu_cs_begin_sub_stream(&cmd->sub_cs, 4 + 4 * num_units, &cs);
5246    if (result != VK_SUCCESS) {
5247       tu_cs_set_writeable(&cmd->sub_cs, false);
5248       vk_command_buffer_set_error(&cmd->vk, result);
5249       return;
5250    }
5251 
5252    tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_FRAG, 3 + 4 * num_units);
5253    tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
5254          CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
5255          CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
5256          CP_LOAD_STATE6_0_STATE_BLOCK(SB6_FS_SHADER) |
5257          CP_LOAD_STATE6_0_NUM_UNIT(num_units));
5258    tu_cs_emit(&cs, 0);
5259    tu_cs_emit(&cs, 0);
5260 
5261    tu_emit_fdm_params(cmd, &cs, fs, num_units);
5262 
5263    cmd->state.fs_params = tu_cs_end_draw_state(&cmd->sub_cs, &cs);
5264 
5265    if (fs->fs.has_fdm)
5266       tu_cs_set_writeable(&cmd->sub_cs, false);
5267 }
5268 
5269 static void
tu7_emit_fs_params(struct tu_cmd_buffer * cmd)5270 tu7_emit_fs_params(struct tu_cmd_buffer *cmd)
5271 {
5272    struct tu_shader *fs = cmd->state.shaders[MESA_SHADER_FRAGMENT];
5273 
5274    int ubo_offset = fs->const_state.fdm_ubo.idx;
5275    if (ubo_offset < 0) {
5276       cmd->state.fs_params = (struct tu_draw_state) {};
5277       return;
5278    }
5279 
5280    unsigned num_units = DIV_ROUND_UP(fs->const_state.fdm_ubo.size, 4);
5281 
5282    if (fs->fs.has_fdm)
5283       tu_cs_set_writeable(&cmd->sub_cs, true);
5284 
5285    struct tu_cs cs;
5286    VkResult result =
5287       tu_cs_begin_sub_stream_aligned(&cmd->sub_cs, num_units, 4, &cs);
5288    if (result != VK_SUCCESS) {
5289       tu_cs_set_writeable(&cmd->sub_cs, false);
5290       vk_command_buffer_set_error(&cmd->vk, result);
5291       return;
5292    }
5293 
5294    tu_emit_fdm_params(cmd, &cs, fs, num_units);
5295 
5296    struct tu_draw_state fdm_ubo = tu_cs_end_draw_state(&cmd->sub_cs, &cs);
5297 
5298    if (fs->fs.has_fdm)
5299       tu_cs_set_writeable(&cmd->sub_cs, false);
5300 
5301    result = tu_cs_begin_sub_stream(&cmd->sub_cs, 6, &cs);
5302    if (result != VK_SUCCESS) {
5303       vk_command_buffer_set_error(&cmd->vk, result);
5304       return;
5305    }
5306 
5307    tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_FRAG, 5);
5308    tu_cs_emit(&cs,
5309               CP_LOAD_STATE6_0_DST_OFF(ubo_offset) |
5310               CP_LOAD_STATE6_0_STATE_TYPE(ST6_UBO)|
5311               CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
5312               CP_LOAD_STATE6_0_STATE_BLOCK(SB6_FS_SHADER) |
5313               CP_LOAD_STATE6_0_NUM_UNIT(1));
5314    tu_cs_emit(&cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0));
5315    tu_cs_emit(&cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0));
5316    tu_cs_emit_qw(&cs,
5317                  fdm_ubo.iova |
5318                  (uint64_t)A6XX_UBO_1_SIZE(num_units) << 32);
5319 
5320    cmd->state.fs_params = tu_cs_end_draw_state(&cmd->sub_cs, &cs);
5321 }
5322 
5323 static void
tu_emit_fs_params(struct tu_cmd_buffer * cmd)5324 tu_emit_fs_params(struct tu_cmd_buffer *cmd)
5325 {
5326    if (cmd->device->compiler->load_shader_consts_via_preamble)
5327       tu7_emit_fs_params(cmd);
5328    else
5329       tu6_emit_fs_params(cmd);
5330 }
5331 
5332 template <chip CHIP>
5333 static VkResult
tu6_draw_common(struct tu_cmd_buffer * cmd,struct tu_cs * cs,bool indexed,uint32_t draw_count)5334 tu6_draw_common(struct tu_cmd_buffer *cmd,
5335                 struct tu_cs *cs,
5336                 bool indexed,
5337                 /* note: draw_count is 0 for indirect */
5338                 uint32_t draw_count)
5339 {
5340    const struct tu_program_state *program = &cmd->state.program;
5341    struct tu_render_pass_state *rp = &cmd->state.rp;
5342 
5343    /* Emit state first, because it's needed for bandwidth calculations */
5344    uint32_t dynamic_draw_state_dirty = 0;
5345    if (!BITSET_IS_EMPTY(cmd->vk.dynamic_graphics_state.dirty) ||
5346        (cmd->state.dirty & ~TU_CMD_DIRTY_COMPUTE_DESC_SETS)) {
5347       dynamic_draw_state_dirty = tu_emit_draw_state<CHIP>(cmd);
5348    }
5349 
5350    /* Primitive restart value works in non-indexed draws, we have to disable
5351     * prim restart for such draws since we may read stale restart index.
5352     */
5353    if (cmd->state.last_draw_indexed != indexed) {
5354       cmd->state.last_draw_indexed = indexed;
5355       BITSET_SET(cmd->vk.dynamic_graphics_state.dirty,
5356                  MESA_VK_DYNAMIC_IA_PRIMITIVE_RESTART_ENABLE);
5357    }
5358 
5359    /* Fill draw stats for autotuner */
5360    rp->drawcall_count++;
5361 
5362    rp->drawcall_bandwidth_per_sample_sum +=
5363       cmd->state.bandwidth.color_bandwidth_per_sample;
5364 
5365    /* add depth memory bandwidth cost */
5366    const uint32_t depth_bandwidth = cmd->state.bandwidth.depth_cpp_per_sample;
5367    if (cmd->vk.dynamic_graphics_state.ds.depth.write_enable)
5368       rp->drawcall_bandwidth_per_sample_sum += depth_bandwidth;
5369    if (cmd->vk.dynamic_graphics_state.ds.depth.test_enable)
5370       rp->drawcall_bandwidth_per_sample_sum += depth_bandwidth;
5371 
5372    /* add stencil memory bandwidth cost */
5373    const uint32_t stencil_bandwidth =
5374       cmd->state.bandwidth.stencil_cpp_per_sample;
5375    if (cmd->vk.dynamic_graphics_state.ds.stencil.test_enable)
5376       rp->drawcall_bandwidth_per_sample_sum += stencil_bandwidth * 2;
5377 
5378    tu_emit_cache_flush_renderpass<CHIP>(cmd);
5379 
5380   if (BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
5381                   MESA_VK_DYNAMIC_IA_PRIMITIVE_RESTART_ENABLE) ||
5382       BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
5383                   MESA_VK_DYNAMIC_RS_PROVOKING_VERTEX) ||
5384       (cmd->state.dirty & TU_CMD_DIRTY_DRAW_STATE)) {
5385       bool primitive_restart_enabled =
5386          cmd->vk.dynamic_graphics_state.ia.primitive_restart_enable;
5387 
5388       bool primitive_restart = primitive_restart_enabled && indexed;
5389       bool provoking_vtx_last =
5390          cmd->vk.dynamic_graphics_state.rs.provoking_vertex ==
5391          VK_PROVOKING_VERTEX_MODE_LAST_VERTEX_EXT;
5392 
5393       uint32_t primitive_cntl_0 =
5394          A6XX_PC_PRIMITIVE_CNTL_0(.primitive_restart = primitive_restart,
5395                                   .provoking_vtx_last = provoking_vtx_last).value;
5396       tu_cs_emit_regs(cs, A6XX_PC_PRIMITIVE_CNTL_0(.dword = primitive_cntl_0));
5397       if (CHIP == A7XX) {
5398          tu_cs_emit_regs(cs, A7XX_VPC_PRIMITIVE_CNTL_0(.dword = primitive_cntl_0));
5399       }
5400    }
5401 
5402    struct tu_tess_params *tess_params = &cmd->state.tess_params;
5403    if ((cmd->state.dirty & TU_CMD_DIRTY_TESS_PARAMS) ||
5404        BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
5405                    MESA_VK_DYNAMIC_TS_DOMAIN_ORIGIN) ||
5406        (cmd->state.dirty & TU_CMD_DIRTY_DRAW_STATE)) {
5407       bool tess_upper_left_domain_origin =
5408          (VkTessellationDomainOrigin)cmd->vk.dynamic_graphics_state.ts.domain_origin ==
5409          VK_TESSELLATION_DOMAIN_ORIGIN_UPPER_LEFT;
5410       tu_cs_emit_regs(cs, A6XX_PC_TESS_CNTL(
5411             .spacing = tess_params->spacing,
5412             .output = tess_upper_left_domain_origin ?
5413                tess_params->output_upper_left :
5414                tess_params->output_lower_left));
5415    }
5416 
5417    /* Early exit if there is nothing to emit, saves CPU cycles */
5418    uint32_t dirty = cmd->state.dirty;
5419    if (!dynamic_draw_state_dirty && !(dirty & ~TU_CMD_DIRTY_COMPUTE_DESC_SETS))
5420       return VK_SUCCESS;
5421 
5422    bool dirty_lrz =
5423       (dirty & TU_CMD_DIRTY_LRZ) ||
5424       BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
5425                   MESA_VK_DYNAMIC_DS_DEPTH_TEST_ENABLE) ||
5426       BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
5427                   MESA_VK_DYNAMIC_DS_DEPTH_WRITE_ENABLE) ||
5428       BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
5429                   MESA_VK_DYNAMIC_DS_DEPTH_BOUNDS_TEST_ENABLE) ||
5430       BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
5431                   MESA_VK_DYNAMIC_DS_DEPTH_COMPARE_OP) ||
5432       BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
5433                   MESA_VK_DYNAMIC_DS_STENCIL_TEST_ENABLE) ||
5434       BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
5435                   MESA_VK_DYNAMIC_DS_STENCIL_OP) ||
5436       BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
5437                   MESA_VK_DYNAMIC_DS_STENCIL_WRITE_MASK) ||
5438       BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
5439                   MESA_VK_DYNAMIC_MS_ALPHA_TO_COVERAGE_ENABLE) ||
5440       BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
5441                   MESA_VK_DYNAMIC_ATTACHMENT_FEEDBACK_LOOP_ENABLE);
5442 
5443    if (dirty_lrz) {
5444       struct tu_cs cs;
5445       uint32_t size = 8 +
5446                       (cmd->device->physical_device->info->a6xx.lrz_track_quirk ? 2 : 0) +
5447                       (CHIP >= A7XX ? 2 : 0); // A7XX has extra packets from LRZ_CNTL2.
5448 
5449       cmd->state.lrz_and_depth_plane_state =
5450          tu_cs_draw_state(&cmd->sub_cs, &cs, size);
5451       tu6_update_simplified_stencil_state(cmd);
5452       tu6_emit_lrz<CHIP>(cmd, &cs);
5453       tu6_build_depth_plane_z_mode(cmd, &cs);
5454    }
5455 
5456    if (BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
5457                    MESA_VK_DYNAMIC_ATTACHMENT_FEEDBACK_LOOP_ENABLE)) {
5458       if (cmd->vk.dynamic_graphics_state.feedback_loops &&
5459           !cmd->state.rp.disable_gmem) {
5460          perf_debug(
5461             cmd->device,
5462             "Disabling gmem due to VK_EXT_attachment_feedback_loop_layout");
5463          cmd->state.rp.disable_gmem = true;
5464       }
5465    }
5466 
5467    if (BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
5468                    MESA_VK_DYNAMIC_VI_BINDINGS_VALID)) {
5469       cmd->state.vertex_buffers.size =
5470          util_last_bit(cmd->vk.dynamic_graphics_state.vi_bindings_valid) * 4;
5471       dirty |= TU_CMD_DIRTY_VERTEX_BUFFERS;
5472    }
5473 
5474    if (dirty & TU_CMD_DIRTY_SHADER_CONSTS)
5475       cmd->state.shader_const = tu_emit_consts(cmd, false);
5476 
5477    if (dirty & TU_CMD_DIRTY_DESC_SETS)
5478       tu6_emit_descriptor_sets<CHIP>(cmd, VK_PIPELINE_BIND_POINT_GRAPHICS);
5479 
5480    if (BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
5481                    MESA_VK_DYNAMIC_MS_RASTERIZATION_SAMPLES) ||
5482        BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
5483                    MESA_VK_DYNAMIC_IA_PRIMITIVE_TOPOLOGY) ||
5484        BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
5485                    MESA_VK_DYNAMIC_RS_LINE_MODE) ||
5486        (cmd->state.dirty & TU_CMD_DIRTY_TES) ||
5487        (cmd->state.dirty & TU_CMD_DIRTY_DRAW_STATE)) {
5488       tu6_update_msaa_disable(cmd);
5489    }
5490 
5491    if (BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
5492                    MESA_VK_DYNAMIC_MS_RASTERIZATION_SAMPLES) ||
5493        (cmd->state.dirty & TU_CMD_DIRTY_DRAW_STATE)) {
5494       tu6_update_msaa(cmd);
5495    }
5496 
5497    bool dirty_fs_params = false;
5498    if (BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
5499                    MESA_VK_DYNAMIC_MS_RASTERIZATION_SAMPLES) ||
5500        (cmd->state.dirty & (TU_CMD_DIRTY_PROGRAM | TU_CMD_DIRTY_FDM))) {
5501       tu_emit_fs_params(cmd);
5502       dirty_fs_params = true;
5503    }
5504 
5505    /* for the first draw in a renderpass, re-emit all the draw states
5506     *
5507     * and if a draw-state disabling path (CmdClearAttachments 3D fallback) was
5508     * used, then draw states must be re-emitted. note however this only happens
5509     * in the sysmem path, so this can be skipped this for the gmem path (TODO)
5510     *
5511     * the two input attachment states are excluded because secondary command
5512     * buffer doesn't have a state ib to restore it, and not re-emitting them
5513     * is OK since CmdClearAttachments won't disable/overwrite them
5514     */
5515    if (dirty & TU_CMD_DIRTY_DRAW_STATE) {
5516       tu_pipeline_update_rp_state(&cmd->state);
5517 
5518       tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * (TU_DRAW_STATE_COUNT - 2));
5519 
5520       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_PROGRAM_CONFIG, program->config_state);
5521       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS, program->vs_state);
5522       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_BINNING, program->vs_binning_state);
5523       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_HS, program->hs_state);
5524       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DS, program->ds_state);
5525       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_GS, program->gs_state);
5526       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_GS_BINNING, program->gs_binning_state);
5527       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_FS, program->fs_state);
5528       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VPC, program->vpc_state);
5529       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_PRIM_MODE_GMEM, cmd->state.prim_order_gmem);
5530       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_CONST, cmd->state.shader_const);
5531       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DESC_SETS, cmd->state.desc_sets);
5532       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DESC_SETS_LOAD, cmd->state.load_state);
5533       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VB, cmd->state.vertex_buffers);
5534       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_PARAMS, cmd->state.vs_params);
5535       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_FS_PARAMS, cmd->state.fs_params);
5536       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_LRZ_AND_DEPTH_PLANE, cmd->state.lrz_and_depth_plane_state);
5537 
5538       for (uint32_t i = 0; i < ARRAY_SIZE(cmd->state.dynamic_state); i++) {
5539          tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DYNAMIC + i,
5540                                cmd->state.dynamic_state[i]);
5541       }
5542    } else {
5543       /* emit draw states that were just updated */
5544       uint32_t draw_state_count =
5545          util_bitcount(dynamic_draw_state_dirty) +
5546          ((dirty & TU_CMD_DIRTY_SHADER_CONSTS) ? 1 : 0) +
5547          ((dirty & TU_CMD_DIRTY_DESC_SETS) ? 1 : 0) +
5548          ((dirty & TU_CMD_DIRTY_VERTEX_BUFFERS) ? 1 : 0) +
5549          ((dirty & TU_CMD_DIRTY_VS_PARAMS) ? 1 : 0) +
5550          (dirty_fs_params ? 1 : 0) +
5551          (dirty_lrz ? 1 : 0);
5552 
5553       if (draw_state_count > 0)
5554          tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * draw_state_count);
5555 
5556       if (dirty & TU_CMD_DIRTY_SHADER_CONSTS)
5557          tu_cs_emit_draw_state(cs, TU_DRAW_STATE_CONST, cmd->state.shader_const);
5558       if (dirty & TU_CMD_DIRTY_DESC_SETS) {
5559          /* tu6_emit_descriptor_sets emitted the cmd->state.desc_sets draw state. */
5560          tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DESC_SETS_LOAD, cmd->state.load_state);
5561       }
5562       if (dirty & TU_CMD_DIRTY_VERTEX_BUFFERS)
5563          tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VB, cmd->state.vertex_buffers);
5564       u_foreach_bit (i, dynamic_draw_state_dirty) {
5565          tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DYNAMIC + i,
5566                                cmd->state.dynamic_state[i]);
5567       }
5568       if (dirty & TU_CMD_DIRTY_VS_PARAMS)
5569          tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_PARAMS, cmd->state.vs_params);
5570       if (dirty_fs_params)
5571          tu_cs_emit_draw_state(cs, TU_DRAW_STATE_FS_PARAMS, cmd->state.fs_params);
5572       if (dirty_lrz) {
5573          tu_cs_emit_draw_state(cs, TU_DRAW_STATE_LRZ_AND_DEPTH_PLANE, cmd->state.lrz_and_depth_plane_state);
5574       }
5575    }
5576 
5577    tu_cs_sanity_check(cs);
5578 
5579    /* There are too many graphics dirty bits to list here, so just list the
5580     * bits to preserve instead. The only things not emitted here are
5581     * compute-related state.
5582     */
5583    cmd->state.dirty &= TU_CMD_DIRTY_COMPUTE_DESC_SETS;
5584    BITSET_ZERO(cmd->vk.dynamic_graphics_state.dirty);
5585    return VK_SUCCESS;
5586 }
5587 
5588 static uint32_t
tu_draw_initiator(struct tu_cmd_buffer * cmd,enum pc_di_src_sel src_sel)5589 tu_draw_initiator(struct tu_cmd_buffer *cmd, enum pc_di_src_sel src_sel)
5590 {
5591    enum pc_di_primtype primtype =
5592       tu6_primtype((VkPrimitiveTopology)cmd->vk.dynamic_graphics_state.ia.primitive_topology);
5593 
5594    if (primtype == DI_PT_PATCHES0)
5595       primtype = (enum pc_di_primtype) (primtype +
5596                                         cmd->vk.dynamic_graphics_state.ts.patch_control_points);
5597 
5598    uint32_t initiator =
5599       CP_DRAW_INDX_OFFSET_0_PRIM_TYPE(primtype) |
5600       CP_DRAW_INDX_OFFSET_0_SOURCE_SELECT(src_sel) |
5601       CP_DRAW_INDX_OFFSET_0_INDEX_SIZE((enum a4xx_index_size) cmd->state.index_size) |
5602       CP_DRAW_INDX_OFFSET_0_VIS_CULL(USE_VISIBILITY);
5603 
5604    if (cmd->state.shaders[MESA_SHADER_GEOMETRY]->variant)
5605       initiator |= CP_DRAW_INDX_OFFSET_0_GS_ENABLE;
5606 
5607    const struct tu_shader *tes = cmd->state.shaders[MESA_SHADER_TESS_EVAL];
5608    if (tes->variant) {
5609       switch (tes->variant->key.tessellation) {
5610       case IR3_TESS_TRIANGLES:
5611          initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_TRIANGLES) |
5612                       CP_DRAW_INDX_OFFSET_0_TESS_ENABLE;
5613          break;
5614       case IR3_TESS_ISOLINES:
5615          initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_ISOLINES) |
5616                       CP_DRAW_INDX_OFFSET_0_TESS_ENABLE;
5617          break;
5618       case IR3_TESS_QUADS:
5619          initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_QUADS) |
5620                       CP_DRAW_INDX_OFFSET_0_TESS_ENABLE;
5621          break;
5622       }
5623    }
5624    return initiator;
5625 }
5626 
5627 
5628 static uint32_t
vs_params_offset(struct tu_cmd_buffer * cmd)5629 vs_params_offset(struct tu_cmd_buffer *cmd)
5630 {
5631    const struct tu_program_descriptor_linkage *link =
5632       &cmd->state.program.link[MESA_SHADER_VERTEX];
5633    const struct ir3_const_state *const_state = &link->const_state;
5634 
5635    if (const_state->offsets.driver_param >= link->constlen)
5636       return 0;
5637 
5638    /* this layout is required by CP_DRAW_INDIRECT_MULTI */
5639    STATIC_ASSERT(IR3_DP_DRAWID == 0);
5640    STATIC_ASSERT(IR3_DP_VTXID_BASE == 1);
5641    STATIC_ASSERT(IR3_DP_INSTID_BASE == 2);
5642 
5643    /* 0 means disabled for CP_DRAW_INDIRECT_MULTI */
5644    assert(const_state->offsets.driver_param != 0);
5645 
5646    return const_state->offsets.driver_param;
5647 }
5648 
5649 static void
tu6_emit_empty_vs_params(struct tu_cmd_buffer * cmd)5650 tu6_emit_empty_vs_params(struct tu_cmd_buffer *cmd)
5651 {
5652    if (cmd->state.vs_params.iova) {
5653       cmd->state.vs_params = (struct tu_draw_state) {};
5654       cmd->state.dirty |= TU_CMD_DIRTY_VS_PARAMS;
5655    }
5656 }
5657 
5658 static void
tu6_emit_vs_params(struct tu_cmd_buffer * cmd,uint32_t draw_id,uint32_t vertex_offset,uint32_t first_instance)5659 tu6_emit_vs_params(struct tu_cmd_buffer *cmd,
5660                    uint32_t draw_id,
5661                    uint32_t vertex_offset,
5662                    uint32_t first_instance)
5663 {
5664    uint32_t offset = vs_params_offset(cmd);
5665 
5666    /* Beside re-emitting params when they are changed, we should re-emit
5667     * them after constants are invalidated via HLSQ_INVALIDATE_CMD or after we
5668     * emit an empty vs params.
5669     */
5670    if (!(cmd->state.dirty & (TU_CMD_DIRTY_DRAW_STATE | TU_CMD_DIRTY_VS_PARAMS |
5671                              TU_CMD_DIRTY_PROGRAM)) &&
5672        cmd->state.vs_params.iova &&
5673        (offset == 0 || draw_id == cmd->state.last_vs_params.draw_id) &&
5674        vertex_offset == cmd->state.last_vs_params.vertex_offset &&
5675        first_instance == cmd->state.last_vs_params.first_instance) {
5676       return;
5677    }
5678 
5679    uint64_t consts_iova = 0;
5680    if (offset) {
5681       struct tu_cs_memory consts;
5682       VkResult result = tu_cs_alloc(&cmd->sub_cs, 1, 4, &consts);
5683       if (result != VK_SUCCESS) {
5684          vk_command_buffer_set_error(&cmd->vk, result);
5685          return;
5686       }
5687       consts.map[0] = draw_id;
5688       consts.map[1] = vertex_offset;
5689       consts.map[2] = first_instance;
5690       consts.map[3] = 0;
5691 
5692       consts_iova = consts.iova;
5693    }
5694 
5695    struct tu_cs cs;
5696    VkResult result = tu_cs_begin_sub_stream(&cmd->sub_cs, 3 + (offset ? 4 : 0), &cs);
5697    if (result != VK_SUCCESS) {
5698       vk_command_buffer_set_error(&cmd->vk, result);
5699       return;
5700    }
5701 
5702    tu_cs_emit_regs(&cs,
5703                    A6XX_VFD_INDEX_OFFSET(vertex_offset),
5704                    A6XX_VFD_INSTANCE_START_OFFSET(first_instance));
5705 
5706    /* It is implemented as INDIRECT load even on a750+ because with UBO
5707     * lowering it would be tricky to get const offset for to use in multidraw,
5708     * also we would need to ensure the offset is not 0.
5709     * TODO/A7XX: Rework vs params to use UBO lowering.
5710     */
5711    if (offset) {
5712       tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_GEOM, 3);
5713       tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
5714             CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
5715             CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
5716             CP_LOAD_STATE6_0_STATE_BLOCK(SB6_VS_SHADER) |
5717             CP_LOAD_STATE6_0_NUM_UNIT(1));
5718       tu_cs_emit_qw(&cs, consts_iova);
5719    }
5720 
5721    cmd->state.last_vs_params.vertex_offset = vertex_offset;
5722    cmd->state.last_vs_params.first_instance = first_instance;
5723    cmd->state.last_vs_params.draw_id = draw_id;
5724 
5725    struct tu_cs_entry entry = tu_cs_end_sub_stream(&cmd->sub_cs, &cs);
5726    cmd->state.vs_params = (struct tu_draw_state) {entry.bo->iova + entry.offset, entry.size / 4};
5727 
5728    cmd->state.dirty |= TU_CMD_DIRTY_VS_PARAMS;
5729 }
5730 
5731 template <chip CHIP>
5732 VKAPI_ATTR void VKAPI_CALL
tu_CmdDraw(VkCommandBuffer commandBuffer,uint32_t vertexCount,uint32_t instanceCount,uint32_t firstVertex,uint32_t firstInstance)5733 tu_CmdDraw(VkCommandBuffer commandBuffer,
5734            uint32_t vertexCount,
5735            uint32_t instanceCount,
5736            uint32_t firstVertex,
5737            uint32_t firstInstance)
5738 {
5739    VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
5740    struct tu_cs *cs = &cmd->draw_cs;
5741 
5742    tu6_emit_vs_params(cmd, 0, firstVertex, firstInstance);
5743 
5744    tu6_draw_common<CHIP>(cmd, cs, false, vertexCount);
5745 
5746    tu_cs_emit_pkt7(cs, CP_DRAW_INDX_OFFSET, 3);
5747    tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_INDEX));
5748    tu_cs_emit(cs, instanceCount);
5749    tu_cs_emit(cs, vertexCount);
5750 }
5751 TU_GENX(tu_CmdDraw);
5752 
5753 template <chip CHIP>
5754 VKAPI_ATTR void VKAPI_CALL
tu_CmdDrawMultiEXT(VkCommandBuffer commandBuffer,uint32_t drawCount,const VkMultiDrawInfoEXT * pVertexInfo,uint32_t instanceCount,uint32_t firstInstance,uint32_t stride)5755 tu_CmdDrawMultiEXT(VkCommandBuffer commandBuffer,
5756                    uint32_t drawCount,
5757                    const VkMultiDrawInfoEXT *pVertexInfo,
5758                    uint32_t instanceCount,
5759                    uint32_t firstInstance,
5760                    uint32_t stride)
5761 {
5762    VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
5763    struct tu_cs *cs = &cmd->draw_cs;
5764 
5765    if (!drawCount)
5766       return;
5767 
5768    bool has_tess = cmd->state.shaders[MESA_SHADER_TESS_CTRL]->variant;
5769 
5770    uint32_t max_vertex_count = 0;
5771    if (has_tess) {
5772       uint32_t i = 0;
5773       vk_foreach_multi_draw(draw, i, pVertexInfo, drawCount, stride) {
5774          max_vertex_count = MAX2(max_vertex_count, draw->vertexCount);
5775       }
5776    }
5777 
5778    uint32_t i = 0;
5779    vk_foreach_multi_draw(draw, i, pVertexInfo, drawCount, stride) {
5780       tu6_emit_vs_params(cmd, i, draw->firstVertex, firstInstance);
5781 
5782       if (i == 0)
5783          tu6_draw_common<CHIP>(cmd, cs, false, max_vertex_count);
5784 
5785       if (cmd->state.dirty & TU_CMD_DIRTY_VS_PARAMS) {
5786          tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
5787          tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_PARAMS, cmd->state.vs_params);
5788          cmd->state.dirty &= ~TU_CMD_DIRTY_VS_PARAMS;
5789       }
5790 
5791       tu_cs_emit_pkt7(cs, CP_DRAW_INDX_OFFSET, 3);
5792       tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_INDEX));
5793       tu_cs_emit(cs, instanceCount);
5794       tu_cs_emit(cs, draw->vertexCount);
5795    }
5796 }
5797 TU_GENX(tu_CmdDrawMultiEXT);
5798 
5799 template <chip CHIP>
5800 VKAPI_ATTR void VKAPI_CALL
tu_CmdDrawIndexed(VkCommandBuffer commandBuffer,uint32_t indexCount,uint32_t instanceCount,uint32_t firstIndex,int32_t vertexOffset,uint32_t firstInstance)5801 tu_CmdDrawIndexed(VkCommandBuffer commandBuffer,
5802                   uint32_t indexCount,
5803                   uint32_t instanceCount,
5804                   uint32_t firstIndex,
5805                   int32_t vertexOffset,
5806                   uint32_t firstInstance)
5807 {
5808    VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
5809    struct tu_cs *cs = &cmd->draw_cs;
5810 
5811    tu6_emit_vs_params(cmd, 0, vertexOffset, firstInstance);
5812 
5813    tu6_draw_common<CHIP>(cmd, cs, true, indexCount);
5814 
5815    tu_cs_emit_pkt7(cs, CP_DRAW_INDX_OFFSET, 7);
5816    tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_DMA));
5817    tu_cs_emit(cs, instanceCount);
5818    tu_cs_emit(cs, indexCount);
5819    tu_cs_emit(cs, firstIndex);
5820    tu_cs_emit_qw(cs, cmd->state.index_va);
5821    tu_cs_emit(cs, cmd->state.max_index_count);
5822 }
5823 TU_GENX(tu_CmdDrawIndexed);
5824 
5825 template <chip CHIP>
5826 VKAPI_ATTR void VKAPI_CALL
tu_CmdDrawMultiIndexedEXT(VkCommandBuffer commandBuffer,uint32_t drawCount,const VkMultiDrawIndexedInfoEXT * pIndexInfo,uint32_t instanceCount,uint32_t firstInstance,uint32_t stride,const int32_t * pVertexOffset)5827 tu_CmdDrawMultiIndexedEXT(VkCommandBuffer commandBuffer,
5828                           uint32_t drawCount,
5829                           const VkMultiDrawIndexedInfoEXT *pIndexInfo,
5830                           uint32_t instanceCount,
5831                           uint32_t firstInstance,
5832                           uint32_t stride,
5833                           const int32_t *pVertexOffset)
5834 {
5835    VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
5836    struct tu_cs *cs = &cmd->draw_cs;
5837 
5838    if (!drawCount)
5839       return;
5840 
5841    bool has_tess = cmd->state.shaders[MESA_SHADER_TESS_CTRL]->variant;
5842 
5843    uint32_t max_index_count = 0;
5844    if (has_tess) {
5845       uint32_t i = 0;
5846       vk_foreach_multi_draw_indexed(draw, i, pIndexInfo, drawCount, stride) {
5847          max_index_count = MAX2(max_index_count, draw->indexCount);
5848       }
5849    }
5850 
5851    uint32_t i = 0;
5852    vk_foreach_multi_draw_indexed(draw, i, pIndexInfo, drawCount, stride) {
5853       int32_t vertexOffset = pVertexOffset ? *pVertexOffset : draw->vertexOffset;
5854       tu6_emit_vs_params(cmd, i, vertexOffset, firstInstance);
5855 
5856       if (i == 0)
5857          tu6_draw_common<CHIP>(cmd, cs, true, max_index_count);
5858 
5859       if (cmd->state.dirty & TU_CMD_DIRTY_VS_PARAMS) {
5860          tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
5861          tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_PARAMS, cmd->state.vs_params);
5862          cmd->state.dirty &= ~TU_CMD_DIRTY_VS_PARAMS;
5863       }
5864 
5865       tu_cs_emit_pkt7(cs, CP_DRAW_INDX_OFFSET, 7);
5866       tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_DMA));
5867       tu_cs_emit(cs, instanceCount);
5868       tu_cs_emit(cs, draw->indexCount);
5869       tu_cs_emit(cs, draw->firstIndex);
5870       tu_cs_emit_qw(cs, cmd->state.index_va);
5871       tu_cs_emit(cs, cmd->state.max_index_count);
5872    }
5873 }
5874 TU_GENX(tu_CmdDrawMultiIndexedEXT);
5875 
5876 /* Various firmware bugs/inconsistencies mean that some indirect draw opcodes
5877  * do not wait for WFI's to complete before executing. Add a WAIT_FOR_ME if
5878  * pending for these opcodes. This may result in a few extra WAIT_FOR_ME's
5879  * with these opcodes, but the alternative would add unnecessary WAIT_FOR_ME's
5880  * before draw opcodes that don't need it.
5881  */
5882 static void
draw_wfm(struct tu_cmd_buffer * cmd)5883 draw_wfm(struct tu_cmd_buffer *cmd)
5884 {
5885    cmd->state.renderpass_cache.flush_bits |=
5886       cmd->state.renderpass_cache.pending_flush_bits & TU_CMD_FLAG_WAIT_FOR_ME;
5887    cmd->state.renderpass_cache.pending_flush_bits &= ~TU_CMD_FLAG_WAIT_FOR_ME;
5888 }
5889 
5890 template <chip CHIP>
5891 VKAPI_ATTR void VKAPI_CALL
tu_CmdDrawIndirect(VkCommandBuffer commandBuffer,VkBuffer _buffer,VkDeviceSize offset,uint32_t drawCount,uint32_t stride)5892 tu_CmdDrawIndirect(VkCommandBuffer commandBuffer,
5893                    VkBuffer _buffer,
5894                    VkDeviceSize offset,
5895                    uint32_t drawCount,
5896                    uint32_t stride)
5897 {
5898    VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
5899    VK_FROM_HANDLE(tu_buffer, buf, _buffer);
5900    struct tu_cs *cs = &cmd->draw_cs;
5901 
5902    tu6_emit_empty_vs_params(cmd);
5903 
5904    if (cmd->device->physical_device->info->a6xx.indirect_draw_wfm_quirk)
5905       draw_wfm(cmd);
5906 
5907    tu6_draw_common<CHIP>(cmd, cs, false, 0);
5908 
5909    tu_cs_emit_pkt7(cs, CP_DRAW_INDIRECT_MULTI, 6);
5910    tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_INDEX));
5911    tu_cs_emit(cs, A6XX_CP_DRAW_INDIRECT_MULTI_1_OPCODE(INDIRECT_OP_NORMAL) |
5912                   A6XX_CP_DRAW_INDIRECT_MULTI_1_DST_OFF(vs_params_offset(cmd)));
5913    tu_cs_emit(cs, drawCount);
5914    tu_cs_emit_qw(cs, buf->iova + offset);
5915    tu_cs_emit(cs, stride);
5916 }
5917 TU_GENX(tu_CmdDrawIndirect);
5918 
5919 template <chip CHIP>
5920 VKAPI_ATTR void VKAPI_CALL
tu_CmdDrawIndexedIndirect(VkCommandBuffer commandBuffer,VkBuffer _buffer,VkDeviceSize offset,uint32_t drawCount,uint32_t stride)5921 tu_CmdDrawIndexedIndirect(VkCommandBuffer commandBuffer,
5922                           VkBuffer _buffer,
5923                           VkDeviceSize offset,
5924                           uint32_t drawCount,
5925                           uint32_t stride)
5926 {
5927    VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
5928    VK_FROM_HANDLE(tu_buffer, buf, _buffer);
5929    struct tu_cs *cs = &cmd->draw_cs;
5930 
5931    tu6_emit_empty_vs_params(cmd);
5932 
5933    if (cmd->device->physical_device->info->a6xx.indirect_draw_wfm_quirk)
5934       draw_wfm(cmd);
5935 
5936    tu6_draw_common<CHIP>(cmd, cs, true, 0);
5937 
5938    tu_cs_emit_pkt7(cs, CP_DRAW_INDIRECT_MULTI, 9);
5939    tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_DMA));
5940    tu_cs_emit(cs, A6XX_CP_DRAW_INDIRECT_MULTI_1_OPCODE(INDIRECT_OP_INDEXED) |
5941                   A6XX_CP_DRAW_INDIRECT_MULTI_1_DST_OFF(vs_params_offset(cmd)));
5942    tu_cs_emit(cs, drawCount);
5943    tu_cs_emit_qw(cs, cmd->state.index_va);
5944    tu_cs_emit(cs, cmd->state.max_index_count);
5945    tu_cs_emit_qw(cs, buf->iova + offset);
5946    tu_cs_emit(cs, stride);
5947 }
5948 TU_GENX(tu_CmdDrawIndexedIndirect);
5949 
5950 template <chip CHIP>
5951 VKAPI_ATTR void VKAPI_CALL
tu_CmdDrawIndirectCount(VkCommandBuffer commandBuffer,VkBuffer _buffer,VkDeviceSize offset,VkBuffer countBuffer,VkDeviceSize countBufferOffset,uint32_t drawCount,uint32_t stride)5952 tu_CmdDrawIndirectCount(VkCommandBuffer commandBuffer,
5953                         VkBuffer _buffer,
5954                         VkDeviceSize offset,
5955                         VkBuffer countBuffer,
5956                         VkDeviceSize countBufferOffset,
5957                         uint32_t drawCount,
5958                         uint32_t stride)
5959 {
5960    VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
5961    VK_FROM_HANDLE(tu_buffer, buf, _buffer);
5962    VK_FROM_HANDLE(tu_buffer, count_buf, countBuffer);
5963    struct tu_cs *cs = &cmd->draw_cs;
5964 
5965    tu6_emit_empty_vs_params(cmd);
5966 
5967    /* It turns out that the firmware we have for a650 only partially fixed the
5968     * problem with CP_DRAW_INDIRECT_MULTI not waiting for WFI's to complete
5969     * before reading indirect parameters. It waits for WFI's before reading
5970     * the draw parameters, but after reading the indirect count :(.
5971     */
5972    draw_wfm(cmd);
5973 
5974    tu6_draw_common<CHIP>(cmd, cs, false, 0);
5975 
5976    tu_cs_emit_pkt7(cs, CP_DRAW_INDIRECT_MULTI, 8);
5977    tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_INDEX));
5978    tu_cs_emit(cs, A6XX_CP_DRAW_INDIRECT_MULTI_1_OPCODE(INDIRECT_OP_INDIRECT_COUNT) |
5979                   A6XX_CP_DRAW_INDIRECT_MULTI_1_DST_OFF(vs_params_offset(cmd)));
5980    tu_cs_emit(cs, drawCount);
5981    tu_cs_emit_qw(cs, buf->iova + offset);
5982    tu_cs_emit_qw(cs, count_buf->iova + countBufferOffset);
5983    tu_cs_emit(cs, stride);
5984 }
5985 TU_GENX(tu_CmdDrawIndirectCount);
5986 
5987 template <chip CHIP>
5988 VKAPI_ATTR void VKAPI_CALL
tu_CmdDrawIndexedIndirectCount(VkCommandBuffer commandBuffer,VkBuffer _buffer,VkDeviceSize offset,VkBuffer countBuffer,VkDeviceSize countBufferOffset,uint32_t drawCount,uint32_t stride)5989 tu_CmdDrawIndexedIndirectCount(VkCommandBuffer commandBuffer,
5990                                VkBuffer _buffer,
5991                                VkDeviceSize offset,
5992                                VkBuffer countBuffer,
5993                                VkDeviceSize countBufferOffset,
5994                                uint32_t drawCount,
5995                                uint32_t stride)
5996 {
5997    VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
5998    VK_FROM_HANDLE(tu_buffer, buf, _buffer);
5999    VK_FROM_HANDLE(tu_buffer, count_buf, countBuffer);
6000    struct tu_cs *cs = &cmd->draw_cs;
6001 
6002    tu6_emit_empty_vs_params(cmd);
6003 
6004    draw_wfm(cmd);
6005 
6006    tu6_draw_common<CHIP>(cmd, cs, true, 0);
6007 
6008    tu_cs_emit_pkt7(cs, CP_DRAW_INDIRECT_MULTI, 11);
6009    tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_DMA));
6010    tu_cs_emit(cs, A6XX_CP_DRAW_INDIRECT_MULTI_1_OPCODE(INDIRECT_OP_INDIRECT_COUNT_INDEXED) |
6011                   A6XX_CP_DRAW_INDIRECT_MULTI_1_DST_OFF(vs_params_offset(cmd)));
6012    tu_cs_emit(cs, drawCount);
6013    tu_cs_emit_qw(cs, cmd->state.index_va);
6014    tu_cs_emit(cs, cmd->state.max_index_count);
6015    tu_cs_emit_qw(cs, buf->iova + offset);
6016    tu_cs_emit_qw(cs, count_buf->iova + countBufferOffset);
6017    tu_cs_emit(cs, stride);
6018 }
6019 TU_GENX(tu_CmdDrawIndexedIndirectCount);
6020 
6021 template <chip CHIP>
6022 VKAPI_ATTR void VKAPI_CALL
tu_CmdDrawIndirectByteCountEXT(VkCommandBuffer commandBuffer,uint32_t instanceCount,uint32_t firstInstance,VkBuffer _counterBuffer,VkDeviceSize counterBufferOffset,uint32_t counterOffset,uint32_t vertexStride)6023 tu_CmdDrawIndirectByteCountEXT(VkCommandBuffer commandBuffer,
6024                                uint32_t instanceCount,
6025                                uint32_t firstInstance,
6026                                VkBuffer _counterBuffer,
6027                                VkDeviceSize counterBufferOffset,
6028                                uint32_t counterOffset,
6029                                uint32_t vertexStride)
6030 {
6031    VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
6032    VK_FROM_HANDLE(tu_buffer, buf, _counterBuffer);
6033    struct tu_cs *cs = &cmd->draw_cs;
6034 
6035    /* All known firmware versions do not wait for WFI's with CP_DRAW_AUTO.
6036     * Plus, for the common case where the counter buffer is written by
6037     * vkCmdEndTransformFeedback, we need to wait for the CP_WAIT_MEM_WRITES to
6038     * complete which means we need a WAIT_FOR_ME anyway.
6039     */
6040    draw_wfm(cmd);
6041 
6042    tu6_emit_vs_params(cmd, 0, 0, firstInstance);
6043 
6044    tu6_draw_common<CHIP>(cmd, cs, false, 0);
6045 
6046    tu_cs_emit_pkt7(cs, CP_DRAW_AUTO, 6);
6047    if (CHIP == A6XX) {
6048       tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_XFB));
6049    } else {
6050       tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_INDEX));
6051       /* On a7xx the counter value and offset are shifted right by 2, so
6052        * the vertexStride should also be in units of dwords.
6053        */
6054       vertexStride = vertexStride >> 2;
6055    }
6056    tu_cs_emit(cs, instanceCount);
6057    tu_cs_emit_qw(cs, buf->iova + counterBufferOffset);
6058    tu_cs_emit(cs, counterOffset);
6059    tu_cs_emit(cs, vertexStride);
6060 }
6061 TU_GENX(tu_CmdDrawIndirectByteCountEXT);
6062 
6063 struct tu_dispatch_info
6064 {
6065    /**
6066     * Determine the layout of the grid (in block units) to be used.
6067     */
6068    uint32_t blocks[3];
6069 
6070    /**
6071     * A starting offset for the grid. If unaligned is set, the offset
6072     * must still be aligned.
6073     */
6074    uint32_t offsets[3];
6075    /**
6076     * Whether it's an unaligned compute dispatch.
6077     */
6078    bool unaligned;
6079 
6080    /**
6081     * Indirect compute parameters resource.
6082     */
6083    struct tu_buffer *indirect;
6084    uint64_t indirect_offset;
6085 };
6086 
6087 template <chip CHIP>
6088 static void
tu_emit_compute_driver_params(struct tu_cmd_buffer * cmd,struct tu_cs * cs,const struct tu_dispatch_info * info)6089 tu_emit_compute_driver_params(struct tu_cmd_buffer *cmd,
6090                               struct tu_cs *cs,
6091                               const struct tu_dispatch_info *info)
6092 {
6093    gl_shader_stage type = MESA_SHADER_COMPUTE;
6094    const struct tu_shader *shader = cmd->state.shaders[MESA_SHADER_COMPUTE];
6095    const struct ir3_shader_variant *variant = shader->variant;
6096    const struct ir3_const_state *const_state = variant->const_state;
6097    unsigned subgroup_size = variant->info.subgroup_size;
6098    unsigned subgroup_shift = util_logbase2(subgroup_size);
6099 
6100    if (cmd->device->physical_device->info->a7xx.load_shader_consts_via_preamble) {
6101       uint32_t num_consts = const_state->driver_params_ubo.size;
6102       if (num_consts == 0)
6103          return;
6104 
6105       bool direct_indirect_load =
6106          !(info->indirect_offset & 0xf) &&
6107          !(info->indirect && num_consts > IR3_DP_BASE_GROUP_X);
6108 
6109       uint64_t iova = 0;
6110 
6111       if (!info->indirect) {
6112          uint32_t driver_params[12] = {
6113             [IR3_DP_NUM_WORK_GROUPS_X] = info->blocks[0],
6114             [IR3_DP_NUM_WORK_GROUPS_Y] = info->blocks[1],
6115             [IR3_DP_NUM_WORK_GROUPS_Z] = info->blocks[2],
6116             [IR3_DP_WORK_DIM] = 0,
6117             [IR3_DP_BASE_GROUP_X] = info->offsets[0],
6118             [IR3_DP_BASE_GROUP_Y] = info->offsets[1],
6119             [IR3_DP_BASE_GROUP_Z] = info->offsets[2],
6120             [IR3_DP_CS_SUBGROUP_SIZE] = subgroup_size,
6121             [IR3_DP_LOCAL_GROUP_SIZE_X] = 0,
6122             [IR3_DP_LOCAL_GROUP_SIZE_Y] = 0,
6123             [IR3_DP_LOCAL_GROUP_SIZE_Z] = 0,
6124             [IR3_DP_SUBGROUP_ID_SHIFT] = subgroup_shift,
6125          };
6126 
6127          assert(num_consts <= ARRAY_SIZE(driver_params));
6128 
6129          struct tu_cs_memory consts;
6130          uint32_t consts_vec4 = DIV_ROUND_UP(num_consts, 4);
6131          VkResult result = tu_cs_alloc(&cmd->sub_cs, consts_vec4, 4, &consts);
6132          if (result != VK_SUCCESS) {
6133             vk_command_buffer_set_error(&cmd->vk, result);
6134             return;
6135          }
6136          memcpy(consts.map, driver_params, num_consts * sizeof(uint32_t));
6137          iova = consts.iova;
6138       } else if (direct_indirect_load) {
6139          iova = info->indirect->iova + info->indirect_offset;
6140       } else {
6141          /* Vulkan guarantees only 4 byte alignment for indirect_offset.
6142           * However, CP_LOAD_STATE.EXT_SRC_ADDR needs 16 byte alignment.
6143           */
6144 
6145          uint64_t indirect_iova = info->indirect->iova + info->indirect_offset;
6146 
6147          /* Wait for any previous uses to finish. */
6148          tu_cs_emit_wfi(cs);
6149 
6150          for (uint32_t i = 0; i < 3; i++) {
6151             tu_cs_emit_pkt7(cs, CP_MEM_TO_MEM, 5);
6152             tu_cs_emit(cs, 0);
6153             tu_cs_emit_qw(cs, global_iova_arr(cmd, cs_indirect_xyz, i));
6154             tu_cs_emit_qw(cs, indirect_iova + i * sizeof(uint32_t));
6155          }
6156 
6157          /* Fill out IR3_DP_CS_SUBGROUP_SIZE and IR3_DP_SUBGROUP_ID_SHIFT for
6158           * indirect dispatch.
6159           */
6160          if (info->indirect && num_consts > IR3_DP_BASE_GROUP_X) {
6161             uint32_t indirect_driver_params[8] = {
6162                0, 0, 0, subgroup_size,
6163                0, 0, 0, subgroup_shift,
6164             };
6165             bool emit_local = num_consts > IR3_DP_LOCAL_GROUP_SIZE_X;
6166             uint32_t emit_size = emit_local ? 8 : 4;
6167 
6168             tu_cs_emit_pkt7(cs, CP_MEM_WRITE, 2 + emit_size);
6169             tu_cs_emit_qw(cs, global_iova_arr(cmd, cs_indirect_xyz, 0) + 4 * sizeof(uint32_t));
6170             for (uint32_t i = 0; i < emit_size; i++) {
6171                tu_cs_emit(cs, indirect_driver_params[i]);
6172             }
6173          }
6174 
6175          tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0);
6176          tu_emit_event_write<CHIP>(cmd, cs, FD_CACHE_INVALIDATE);
6177          tu_cs_emit_wfi(cs);
6178 
6179          iova = global_iova(cmd, cs_indirect_xyz[0]);
6180       }
6181 
6182       tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 5);
6183       tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(const_state->driver_params_ubo.idx) |
6184                CP_LOAD_STATE6_0_STATE_TYPE(ST6_UBO) |
6185                CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
6186                CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
6187                CP_LOAD_STATE6_0_NUM_UNIT(1));
6188       tu_cs_emit(cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0));
6189       tu_cs_emit(cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0));
6190       int size_vec4s = DIV_ROUND_UP(num_consts, 4);
6191       tu_cs_emit_qw(cs, iova | ((uint64_t)A6XX_UBO_1_SIZE(size_vec4s) << 32));
6192 
6193    } else {
6194       uint32_t offset = const_state->offsets.driver_param;
6195       if (variant->constlen <= offset)
6196          return;
6197 
6198       uint32_t num_consts = MIN2(const_state->num_driver_params,
6199                                  (variant->constlen - offset) * 4);
6200 
6201       if (!info->indirect) {
6202          uint32_t driver_params[12] = {
6203             [IR3_DP_NUM_WORK_GROUPS_X] = info->blocks[0],
6204             [IR3_DP_NUM_WORK_GROUPS_Y] = info->blocks[1],
6205             [IR3_DP_NUM_WORK_GROUPS_Z] = info->blocks[2],
6206             [IR3_DP_WORK_DIM] = 0,
6207             [IR3_DP_BASE_GROUP_X] = info->offsets[0],
6208             [IR3_DP_BASE_GROUP_Y] = info->offsets[1],
6209             [IR3_DP_BASE_GROUP_Z] = info->offsets[2],
6210             [IR3_DP_CS_SUBGROUP_SIZE] = subgroup_size,
6211             [IR3_DP_LOCAL_GROUP_SIZE_X] = 0,
6212             [IR3_DP_LOCAL_GROUP_SIZE_Y] = 0,
6213             [IR3_DP_LOCAL_GROUP_SIZE_Z] = 0,
6214             [IR3_DP_SUBGROUP_ID_SHIFT] = subgroup_shift,
6215          };
6216 
6217          assert(num_consts <= ARRAY_SIZE(driver_params));
6218 
6219          /* push constants */
6220          tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3 + num_consts);
6221          tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
6222                   CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
6223                   CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
6224                   CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
6225                   CP_LOAD_STATE6_0_NUM_UNIT(num_consts / 4));
6226          tu_cs_emit(cs, 0);
6227          tu_cs_emit(cs, 0);
6228          uint32_t i;
6229          for (i = 0; i < num_consts; i++)
6230             tu_cs_emit(cs, driver_params[i]);
6231       } else if (!(info->indirect_offset & 0xf)) {
6232          tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3);
6233          tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
6234                      CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
6235                      CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
6236                      CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
6237                      CP_LOAD_STATE6_0_NUM_UNIT(1));
6238          tu_cs_emit_qw(cs, info->indirect->iova + info->indirect_offset);
6239       } else {
6240          /* Vulkan guarantees only 4 byte alignment for indirect_offset.
6241           * However, CP_LOAD_STATE.EXT_SRC_ADDR needs 16 byte alignment.
6242           */
6243 
6244          uint64_t indirect_iova = info->indirect->iova + info->indirect_offset;
6245 
6246          /* Wait for any previous uses to finish. */
6247          tu_cs_emit_wfi(cs);
6248 
6249          for (uint32_t i = 0; i < 3; i++) {
6250             tu_cs_emit_pkt7(cs, CP_MEM_TO_MEM, 5);
6251             tu_cs_emit(cs, 0);
6252             tu_cs_emit_qw(cs, global_iova_arr(cmd, cs_indirect_xyz, i));
6253             tu_cs_emit_qw(cs, indirect_iova + i * 4);
6254          }
6255 
6256          tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0);
6257          tu_emit_event_write<CHIP>(cmd, cs, FD_CACHE_INVALIDATE);
6258          tu_cs_emit_wfi(cs);
6259 
6260          tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3);
6261          tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
6262                      CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
6263                      CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
6264                      CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
6265                      CP_LOAD_STATE6_0_NUM_UNIT(1));
6266          tu_cs_emit_qw(cs, global_iova(cmd, cs_indirect_xyz[0]));
6267       }
6268 
6269       /* Fill out IR3_DP_CS_SUBGROUP_SIZE and IR3_DP_SUBGROUP_ID_SHIFT for
6270        * indirect dispatch.
6271        */
6272       if (info->indirect && num_consts > IR3_DP_BASE_GROUP_X) {
6273          bool emit_local = num_consts > IR3_DP_LOCAL_GROUP_SIZE_X;
6274          tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 7 + (emit_local ? 4 : 0));
6275          tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset + (IR3_DP_BASE_GROUP_X / 4)) |
6276                   CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
6277                   CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
6278                   CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
6279                   CP_LOAD_STATE6_0_NUM_UNIT((num_consts - IR3_DP_BASE_GROUP_X) / 4));
6280          tu_cs_emit_qw(cs, 0);
6281          tu_cs_emit(cs, 0); /* BASE_GROUP_X */
6282          tu_cs_emit(cs, 0); /* BASE_GROUP_Y */
6283          tu_cs_emit(cs, 0); /* BASE_GROUP_Z */
6284          tu_cs_emit(cs, subgroup_size);
6285          if (emit_local) {
6286             assert(num_consts == align(IR3_DP_SUBGROUP_ID_SHIFT, 4));
6287             tu_cs_emit(cs, 0); /* LOCAL_GROUP_SIZE_X */
6288             tu_cs_emit(cs, 0); /* LOCAL_GROUP_SIZE_Y */
6289             tu_cs_emit(cs, 0); /* LOCAL_GROUP_SIZE_Z */
6290             tu_cs_emit(cs, subgroup_shift);
6291          }
6292       }
6293    }
6294 }
6295 
6296 template <chip CHIP>
6297 static void
tu_dispatch(struct tu_cmd_buffer * cmd,const struct tu_dispatch_info * info)6298 tu_dispatch(struct tu_cmd_buffer *cmd,
6299             const struct tu_dispatch_info *info)
6300 {
6301    if (!info->indirect &&
6302        (info->blocks[0] == 0 || info->blocks[1] == 0 || info->blocks[2] == 0))
6303       return;
6304 
6305    struct tu_cs *cs = &cmd->cs;
6306    struct tu_shader *shader = cmd->state.shaders[MESA_SHADER_COMPUTE];
6307 
6308    bool emit_instrlen_workaround =
6309       shader->variant->instrlen >
6310       cmd->device->physical_device->info->a6xx.instr_cache_size;
6311 
6312    /* We don't use draw states for dispatches, so the bound pipeline
6313     * could be overwritten by reg stomping in a renderpass or blit.
6314     */
6315    if (cmd->device->dbg_renderpass_stomp_cs) {
6316       tu_cs_emit_state_ib(&cmd->cs, shader->state);
6317    }
6318 
6319    /* There appears to be a HW bug where in some rare circumstances it appears
6320     * to accidentally use the FS instrlen instead of the CS instrlen, which
6321     * affects all known gens. Based on various experiments it appears that the
6322     * issue is that when prefetching a branch destination and there is a cache
6323     * miss, when fetching from memory the HW bounds-checks the fetch against
6324     * SP_CS_INSTRLEN, except when one of the two register contexts is active
6325     * it accidentally fetches SP_FS_INSTRLEN from the other (inactive)
6326     * context. To workaround it we set the FS instrlen here and do a dummy
6327     * event to roll the context (because it fetches SP_FS_INSTRLEN from the
6328     * "wrong" context). Because the bug seems to involve cache misses, we
6329     * don't emit this if the entire CS program fits in cache, which will
6330     * hopefully be the majority of cases.
6331     *
6332     * See https://gitlab.freedesktop.org/mesa/mesa/-/issues/5892
6333     */
6334    if (emit_instrlen_workaround) {
6335       tu_cs_emit_regs(cs, A6XX_SP_FS_INSTRLEN(shader->variant->instrlen));
6336       tu_emit_event_write<CHIP>(cmd, cs, FD_LABEL);
6337    }
6338 
6339    /* TODO: We could probably flush less if we add a compute_flush_bits
6340     * bitfield.
6341     */
6342    tu_emit_cache_flush<CHIP>(cmd);
6343 
6344    /* note: no reason to have this in a separate IB */
6345    tu_cs_emit_state_ib(cs, tu_emit_consts(cmd, true));
6346 
6347    tu_emit_compute_driver_params<CHIP>(cmd, cs, info);
6348 
6349    if (cmd->state.dirty & TU_CMD_DIRTY_COMPUTE_DESC_SETS) {
6350       tu6_emit_descriptor_sets<CHIP>(cmd, VK_PIPELINE_BIND_POINT_COMPUTE);
6351       tu_cs_emit_state_ib(cs, cmd->state.compute_load_state);
6352    }
6353 
6354    cmd->state.dirty &= ~TU_CMD_DIRTY_COMPUTE_DESC_SETS;
6355 
6356    tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
6357    tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_COMPUTE));
6358 
6359    const uint16_t *local_size = shader->variant->local_size;
6360    const uint32_t *num_groups = info->blocks;
6361    tu_cs_emit_regs(cs,
6362                    HLSQ_CS_NDRANGE_0(CHIP, .kerneldim = 3,
6363                                            .localsizex = local_size[0] - 1,
6364                                            .localsizey = local_size[1] - 1,
6365                                            .localsizez = local_size[2] - 1),
6366                    HLSQ_CS_NDRANGE_1(CHIP, .globalsize_x = local_size[0] * num_groups[0]),
6367                    HLSQ_CS_NDRANGE_2(CHIP, .globaloff_x = 0),
6368                    HLSQ_CS_NDRANGE_3(CHIP, .globalsize_y = local_size[1] * num_groups[1]),
6369                    HLSQ_CS_NDRANGE_4(CHIP, .globaloff_y = 0),
6370                    HLSQ_CS_NDRANGE_5(CHIP, .globalsize_z = local_size[2] * num_groups[2]),
6371                    HLSQ_CS_NDRANGE_6(CHIP, .globaloff_z = 0));
6372 
6373    tu_cs_emit_regs(cs,
6374                    HLSQ_CS_KERNEL_GROUP_X(CHIP, 1),
6375                    HLSQ_CS_KERNEL_GROUP_Y(CHIP, 1),
6376                    HLSQ_CS_KERNEL_GROUP_Z(CHIP, 1));
6377 
6378    if (info->indirect) {
6379       uint64_t iova = info->indirect->iova + info->indirect_offset;
6380 
6381       trace_start_compute_indirect(&cmd->trace, cs);
6382 
6383       tu_cs_emit_pkt7(cs, CP_EXEC_CS_INDIRECT, 4);
6384       tu_cs_emit(cs, 0x00000000);
6385       tu_cs_emit_qw(cs, iova);
6386       tu_cs_emit(cs,
6387                  A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEX(local_size[0] - 1) |
6388                  A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEY(local_size[1] - 1) |
6389                  A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEZ(local_size[2] - 1));
6390 
6391       trace_end_compute_indirect(&cmd->trace, cs,
6392                                  (struct u_trace_address) {
6393                                     .bo = info->indirect->bo,
6394                                     .offset = info->indirect_offset,
6395                                  });
6396    } else {
6397       trace_start_compute(&cmd->trace, cs, info->indirect != NULL,
6398                           local_size[0], local_size[1], local_size[2],
6399                           info->blocks[0], info->blocks[1], info->blocks[2]);
6400 
6401       tu_cs_emit_pkt7(cs, CP_EXEC_CS, 4);
6402       tu_cs_emit(cs, 0x00000000);
6403       tu_cs_emit(cs, CP_EXEC_CS_1_NGROUPS_X(info->blocks[0]));
6404       tu_cs_emit(cs, CP_EXEC_CS_2_NGROUPS_Y(info->blocks[1]));
6405       tu_cs_emit(cs, CP_EXEC_CS_3_NGROUPS_Z(info->blocks[2]));
6406 
6407       trace_end_compute(&cmd->trace, cs);
6408    }
6409 
6410    /* For the workaround above, because it's using the "wrong" context for
6411     * SP_FS_INSTRLEN we should emit another dummy event write to avoid a
6412     * potential race between writing the register and the CP_EXEC_CS we just
6413     * did. We don't need to reset the register because it will be re-emitted
6414     * anyway when the next renderpass starts.
6415     */
6416    if (emit_instrlen_workaround) {
6417       tu_emit_event_write<CHIP>(cmd, cs, FD_LABEL);
6418    }
6419 }
6420 
6421 template <chip CHIP>
6422 VKAPI_ATTR void VKAPI_CALL
tu_CmdDispatchBase(VkCommandBuffer commandBuffer,uint32_t base_x,uint32_t base_y,uint32_t base_z,uint32_t x,uint32_t y,uint32_t z)6423 tu_CmdDispatchBase(VkCommandBuffer commandBuffer,
6424                    uint32_t base_x,
6425                    uint32_t base_y,
6426                    uint32_t base_z,
6427                    uint32_t x,
6428                    uint32_t y,
6429                    uint32_t z)
6430 {
6431    VK_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
6432    struct tu_dispatch_info info = {};
6433 
6434    info.blocks[0] = x;
6435    info.blocks[1] = y;
6436    info.blocks[2] = z;
6437 
6438    info.offsets[0] = base_x;
6439    info.offsets[1] = base_y;
6440    info.offsets[2] = base_z;
6441    tu_dispatch<CHIP>(cmd_buffer, &info);
6442 }
6443 TU_GENX(tu_CmdDispatchBase);
6444 
6445 template <chip CHIP>
6446 VKAPI_ATTR void VKAPI_CALL
tu_CmdDispatchIndirect(VkCommandBuffer commandBuffer,VkBuffer _buffer,VkDeviceSize offset)6447 tu_CmdDispatchIndirect(VkCommandBuffer commandBuffer,
6448                        VkBuffer _buffer,
6449                        VkDeviceSize offset)
6450 {
6451    VK_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
6452    VK_FROM_HANDLE(tu_buffer, buffer, _buffer);
6453    struct tu_dispatch_info info = {};
6454 
6455    info.indirect = buffer;
6456    info.indirect_offset = offset;
6457 
6458    tu_dispatch<CHIP>(cmd_buffer, &info);
6459 }
6460 TU_GENX(tu_CmdDispatchIndirect);
6461 
6462 VKAPI_ATTR void VKAPI_CALL
tu_CmdEndRenderPass2(VkCommandBuffer commandBuffer,const VkSubpassEndInfo * pSubpassEndInfo)6463 tu_CmdEndRenderPass2(VkCommandBuffer commandBuffer,
6464                      const VkSubpassEndInfo *pSubpassEndInfo)
6465 {
6466    VK_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
6467 
6468    if (TU_DEBUG(DYNAMIC)) {
6469       vk_common_CmdEndRenderPass2(commandBuffer, pSubpassEndInfo);
6470       return;
6471    }
6472 
6473    tu_cs_end(&cmd_buffer->draw_cs);
6474    tu_cs_end(&cmd_buffer->draw_epilogue_cs);
6475    TU_CALLX(cmd_buffer->device, tu_cmd_render)(cmd_buffer);
6476 
6477    cmd_buffer->state.cache.pending_flush_bits |=
6478       cmd_buffer->state.renderpass_cache.pending_flush_bits;
6479    tu_subpass_barrier(cmd_buffer, &cmd_buffer->state.pass->end_barrier, true);
6480 
6481    vk_free(&cmd_buffer->vk.pool->alloc, cmd_buffer->state.attachments);
6482 
6483    tu_reset_render_pass(cmd_buffer);
6484 }
6485 
6486 VKAPI_ATTR void VKAPI_CALL
tu_CmdEndRendering(VkCommandBuffer commandBuffer)6487 tu_CmdEndRendering(VkCommandBuffer commandBuffer)
6488 {
6489    VK_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
6490 
6491    if (cmd_buffer->state.suspending)
6492       cmd_buffer->state.suspended_pass.lrz = cmd_buffer->state.lrz;
6493 
6494    if (!cmd_buffer->state.suspending) {
6495       tu_cs_end(&cmd_buffer->draw_cs);
6496       tu_cs_end(&cmd_buffer->draw_epilogue_cs);
6497 
6498       if (cmd_buffer->state.suspend_resume == SR_IN_PRE_CHAIN) {
6499          cmd_buffer->trace_renderpass_end = u_trace_end_iterator(&cmd_buffer->trace);
6500          tu_save_pre_chain(cmd_buffer);
6501 
6502          /* Even we don't call tu_cmd_render here, renderpass is finished
6503           * and draw states should be disabled.
6504           */
6505          tu_disable_draw_states(cmd_buffer, &cmd_buffer->cs);
6506       } else {
6507          TU_CALLX(cmd_buffer->device, tu_cmd_render)(cmd_buffer);
6508       }
6509 
6510       tu_reset_render_pass(cmd_buffer);
6511    }
6512 
6513    if (cmd_buffer->state.resuming && !cmd_buffer->state.suspending) {
6514       /* exiting suspend/resume chain */
6515       switch (cmd_buffer->state.suspend_resume) {
6516       case SR_IN_CHAIN:
6517          cmd_buffer->state.suspend_resume = SR_NONE;
6518          break;
6519       case SR_IN_PRE_CHAIN:
6520       case SR_IN_CHAIN_AFTER_PRE_CHAIN:
6521          cmd_buffer->state.suspend_resume = SR_AFTER_PRE_CHAIN;
6522          break;
6523       default:
6524          unreachable("suspending render pass not followed by resuming pass");
6525       }
6526    }
6527 }
6528 
6529 void
tu_barrier(struct tu_cmd_buffer * cmd,uint32_t dep_count,const VkDependencyInfo * dep_infos)6530 tu_barrier(struct tu_cmd_buffer *cmd,
6531            uint32_t dep_count,
6532            const VkDependencyInfo *dep_infos)
6533 {
6534    VkPipelineStageFlags2 srcStage = 0;
6535    VkPipelineStageFlags2 dstStage = 0;
6536    BITMASK_ENUM(tu_cmd_access_mask) src_flags = 0;
6537    BITMASK_ENUM(tu_cmd_access_mask) dst_flags = 0;
6538 
6539    /* Inside a renderpass, we don't know yet whether we'll be using sysmem
6540     * so we have to use the sysmem flushes.
6541     */
6542    bool gmem = cmd->state.ccu_state == TU_CMD_CCU_GMEM &&
6543       !cmd->state.pass;
6544 
6545    for (uint32_t dep_idx = 0; dep_idx < dep_count; dep_idx++) {
6546       const VkDependencyInfo *dep_info = &dep_infos[dep_idx];
6547 
6548       for (uint32_t i = 0; i < dep_info->memoryBarrierCount; i++) {
6549          VkPipelineStageFlags2 sanitized_src_stage =
6550             sanitize_src_stage(dep_info->pMemoryBarriers[i].srcStageMask);
6551          VkPipelineStageFlags2 sanitized_dst_stage =
6552             sanitize_dst_stage(dep_info->pMemoryBarriers[i].dstStageMask);
6553          src_flags |= vk2tu_access(dep_info->pMemoryBarriers[i].srcAccessMask,
6554                                    sanitized_src_stage, false, gmem);
6555          dst_flags |= vk2tu_access(dep_info->pMemoryBarriers[i].dstAccessMask,
6556                                    sanitized_dst_stage, false, gmem);
6557          srcStage |= sanitized_src_stage;
6558          dstStage |= sanitized_dst_stage;
6559       }
6560 
6561       for (uint32_t i = 0; i < dep_info->bufferMemoryBarrierCount; i++) {
6562          VkPipelineStageFlags2 sanitized_src_stage =
6563             sanitize_src_stage(dep_info->pBufferMemoryBarriers[i].srcStageMask);
6564          VkPipelineStageFlags2 sanitized_dst_stage =
6565             sanitize_dst_stage(dep_info->pBufferMemoryBarriers[i].dstStageMask);
6566          src_flags |= vk2tu_access(dep_info->pBufferMemoryBarriers[i].srcAccessMask,
6567                                    sanitized_src_stage, false, gmem);
6568          dst_flags |= vk2tu_access(dep_info->pBufferMemoryBarriers[i].dstAccessMask,
6569                                    sanitized_dst_stage, false, gmem);
6570          srcStage |= sanitized_src_stage;
6571          dstStage |= sanitized_dst_stage;
6572       }
6573 
6574       for (uint32_t i = 0; i < dep_info->imageMemoryBarrierCount; i++) {
6575          VkImageLayout old_layout = dep_info->pImageMemoryBarriers[i].oldLayout;
6576          if (old_layout == VK_IMAGE_LAYOUT_UNDEFINED) {
6577             /* The underlying memory for this image may have been used earlier
6578              * within the same queue submission for a different image, which
6579              * means that there may be old, stale cache entries which are in the
6580              * "wrong" location, which could cause problems later after writing
6581              * to the image. We don't want these entries being flushed later and
6582              * overwriting the actual image, so we need to flush the CCU.
6583              */
6584             VK_FROM_HANDLE(tu_image, image, dep_info->pImageMemoryBarriers[i].image);
6585 
6586             if (vk_format_is_depth_or_stencil(image->vk.format)) {
6587                src_flags |= TU_ACCESS_CCU_DEPTH_INCOHERENT_WRITE;
6588             } else {
6589                src_flags |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
6590             }
6591          }
6592          VkPipelineStageFlags2 sanitized_src_stage =
6593             sanitize_src_stage(dep_info->pImageMemoryBarriers[i].srcStageMask);
6594          VkPipelineStageFlags2 sanitized_dst_stage =
6595             sanitize_dst_stage(dep_info->pImageMemoryBarriers[i].dstStageMask);
6596          src_flags |= vk2tu_access(dep_info->pImageMemoryBarriers[i].srcAccessMask,
6597                                    sanitized_src_stage, true, gmem);
6598          dst_flags |= vk2tu_access(dep_info->pImageMemoryBarriers[i].dstAccessMask,
6599                                    sanitized_dst_stage, true, gmem);
6600          srcStage |= sanitized_src_stage;
6601          dstStage |= sanitized_dst_stage;
6602       }
6603    }
6604 
6605    if (cmd->state.pass) {
6606       const VkPipelineStageFlags framebuffer_space_stages =
6607          VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT |
6608          VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT |
6609          VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT |
6610          VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
6611 
6612       /* We cannot have non-by-region "fb-space to fb-space" barriers.
6613        *
6614        * From the Vulkan 1.2.185 spec, section 7.6.1 "Subpass Self-dependency":
6615        *
6616        *    If the source and destination stage masks both include
6617        *    framebuffer-space stages, then dependencyFlags must include
6618        *    VK_DEPENDENCY_BY_REGION_BIT.
6619        *    [...]
6620        *    Each of the synchronization scopes and access scopes of a
6621        *    vkCmdPipelineBarrier2 or vkCmdPipelineBarrier command inside
6622        *    a render pass instance must be a subset of the scopes of one of
6623        *    the self-dependencies for the current subpass.
6624        *
6625        *    If the self-dependency has VK_DEPENDENCY_BY_REGION_BIT or
6626        *    VK_DEPENDENCY_VIEW_LOCAL_BIT set, then so must the pipeline barrier.
6627        *
6628        * By-region barriers are ok for gmem. All other barriers would involve
6629        * vtx stages which are NOT ok for gmem rendering.
6630        * See dep_invalid_for_gmem().
6631        */
6632       if ((srcStage & ~framebuffer_space_stages) ||
6633           (dstStage & ~framebuffer_space_stages)) {
6634          cmd->state.rp.disable_gmem = true;
6635       }
6636    }
6637 
6638    struct tu_cache_state *cache =
6639       cmd->state.pass  ? &cmd->state.renderpass_cache : &cmd->state.cache;
6640 
6641    /* a750 has a HW bug where writing a UBWC compressed image with a compute
6642     * shader followed by reading it as a texture (or readonly image) requires
6643     * a CACHE_CLEAN event. Some notes about this bug:
6644     * - It only happens after a blit happens.
6645     * - It's fast-clear related, it happens when the image is fast cleared
6646     *   before the write and the value read is (incorrectly) the fast clear
6647     *   color.
6648     * - CACHE_FLUSH is supposed to be the same as CACHE_CLEAN +
6649     *   CACHE_INVALIDATE, but it doesn't work whereas CACHE_CLEAN +
6650     *   CACHE_INVALIDATE does.
6651     *
6652     * The srcAccess can be replaced by a OpMemoryBarrier(MakeAvailable), so
6653     * we can't use that to insert the flush. Instead we use the shader source
6654     * stage.
6655     */
6656    if (cmd->device->physical_device->info->a7xx.ubwc_coherency_quirk &&
6657        (srcStage &
6658         (VK_PIPELINE_STAGE_2_VERTEX_SHADER_BIT |
6659          VK_PIPELINE_STAGE_2_TESSELLATION_CONTROL_SHADER_BIT |
6660          VK_PIPELINE_STAGE_2_TESSELLATION_EVALUATION_SHADER_BIT |
6661          VK_PIPELINE_STAGE_2_GEOMETRY_SHADER_BIT |
6662          VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT |
6663          VK_PIPELINE_STAGE_2_COMPUTE_SHADER_BIT |
6664          VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT |
6665          VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT))) {
6666       cache->flush_bits |= TU_CMD_FLAG_CACHE_CLEAN;
6667       cache->pending_flush_bits &= ~TU_CMD_FLAG_CACHE_CLEAN;
6668    }
6669 
6670    tu_flush_for_access(cache, src_flags, dst_flags);
6671 
6672    enum tu_stage src_stage = vk2tu_src_stage(srcStage);
6673    enum tu_stage dst_stage = vk2tu_dst_stage(dstStage);
6674    tu_flush_for_stage(cache, src_stage, dst_stage);
6675 }
6676 
6677 VKAPI_ATTR void VKAPI_CALL
tu_CmdPipelineBarrier2(VkCommandBuffer commandBuffer,const VkDependencyInfo * pDependencyInfo)6678 tu_CmdPipelineBarrier2(VkCommandBuffer commandBuffer,
6679                        const VkDependencyInfo *pDependencyInfo)
6680 {
6681    VK_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
6682 
6683    tu_barrier(cmd_buffer, 1, pDependencyInfo);
6684 }
6685 
6686 template <chip CHIP>
6687 void
tu_write_event(struct tu_cmd_buffer * cmd,struct tu_event * event,VkPipelineStageFlags2 stageMask,unsigned value)6688 tu_write_event(struct tu_cmd_buffer *cmd, struct tu_event *event,
6689                VkPipelineStageFlags2 stageMask, unsigned value)
6690 {
6691    struct tu_cs *cs = &cmd->cs;
6692 
6693    /* vkCmdSetEvent/vkCmdResetEvent cannot be called inside a render pass */
6694    assert(!cmd->state.pass);
6695 
6696    tu_emit_cache_flush<CHIP>(cmd);
6697 
6698    /* Flags that only require a top-of-pipe event. DrawIndirect parameters are
6699     * read by the CP, so the draw indirect stage counts as top-of-pipe too.
6700     */
6701    VkPipelineStageFlags2 top_of_pipe_flags =
6702       VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT |
6703       VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT;
6704 
6705    if (!(stageMask & ~top_of_pipe_flags)) {
6706       tu_cs_emit_pkt7(cs, CP_MEM_WRITE, 3);
6707       tu_cs_emit_qw(cs, event->bo->iova); /* ADDR_LO/HI */
6708       tu_cs_emit(cs, value);
6709    } else {
6710       /* Use a RB_DONE_TS event to wait for everything to complete. */
6711       if (CHIP == A6XX) {
6712          tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 4);
6713          tu_cs_emit(cs, CP_EVENT_WRITE_0_EVENT(RB_DONE_TS));
6714       } else {
6715          tu_cs_emit_pkt7(cs, CP_EVENT_WRITE7, 4);
6716          tu_cs_emit(cs, CP_EVENT_WRITE7_0(.event = RB_DONE_TS,
6717                                           .write_src = EV_WRITE_USER_32B,
6718                                           .write_dst = EV_DST_RAM,
6719                                           .write_enabled = true).value);
6720       }
6721 
6722       tu_cs_emit_qw(cs, event->bo->iova);
6723       tu_cs_emit(cs, value);
6724    }
6725 }
6726 TU_GENX(tu_write_event);
6727 
6728 template <chip CHIP>
6729 VKAPI_ATTR void VKAPI_CALL
tu_CmdBeginConditionalRenderingEXT(VkCommandBuffer commandBuffer,const VkConditionalRenderingBeginInfoEXT * pConditionalRenderingBegin)6730 tu_CmdBeginConditionalRenderingEXT(VkCommandBuffer commandBuffer,
6731                                    const VkConditionalRenderingBeginInfoEXT *pConditionalRenderingBegin)
6732 {
6733    VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
6734 
6735    cmd->state.predication_active = true;
6736 
6737    struct tu_cs *cs = cmd->state.pass ? &cmd->draw_cs : &cmd->cs;
6738 
6739    tu_cs_emit_pkt7(cs, CP_DRAW_PRED_ENABLE_GLOBAL, 1);
6740    tu_cs_emit(cs, 1);
6741 
6742    /* Wait for any writes to the predicate to land */
6743    if (cmd->state.pass)
6744       tu_emit_cache_flush_renderpass<CHIP>(cmd);
6745    else
6746       tu_emit_cache_flush<CHIP>(cmd);
6747 
6748    VK_FROM_HANDLE(tu_buffer, buf, pConditionalRenderingBegin->buffer);
6749    uint64_t iova = buf->iova + pConditionalRenderingBegin->offset;
6750 
6751    /* qcom doesn't support 32-bit reference values, only 64-bit, but Vulkan
6752     * mandates 32-bit comparisons. Our workaround is to copy the the reference
6753     * value to the low 32-bits of a location where the high 32 bits are known
6754     * to be 0 and then compare that.
6755     */
6756    tu_cs_emit_pkt7(cs, CP_MEM_TO_MEM, 5);
6757    tu_cs_emit(cs, 0);
6758    tu_cs_emit_qw(cs, global_iova(cmd, predicate));
6759    tu_cs_emit_qw(cs, iova);
6760 
6761    tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0);
6762    tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
6763 
6764    bool inv = pConditionalRenderingBegin->flags & VK_CONDITIONAL_RENDERING_INVERTED_BIT_EXT;
6765    tu_cs_emit_pkt7(cs, CP_DRAW_PRED_SET, 3);
6766    tu_cs_emit(cs, CP_DRAW_PRED_SET_0_SRC(PRED_SRC_MEM) |
6767                   CP_DRAW_PRED_SET_0_TEST(inv ? EQ_0_PASS : NE_0_PASS));
6768    tu_cs_emit_qw(cs, global_iova(cmd, predicate));
6769 }
6770 TU_GENX(tu_CmdBeginConditionalRenderingEXT);
6771 
6772 VKAPI_ATTR void VKAPI_CALL
tu_CmdEndConditionalRenderingEXT(VkCommandBuffer commandBuffer)6773 tu_CmdEndConditionalRenderingEXT(VkCommandBuffer commandBuffer)
6774 {
6775    VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
6776 
6777    cmd->state.predication_active = false;
6778 
6779    struct tu_cs *cs = cmd->state.pass ? &cmd->draw_cs : &cmd->cs;
6780 
6781    tu_cs_emit_pkt7(cs, CP_DRAW_PRED_ENABLE_GLOBAL, 1);
6782    tu_cs_emit(cs, 0);
6783 }
6784 
6785 template <chip CHIP>
6786 void
tu_CmdWriteBufferMarker2AMD(VkCommandBuffer commandBuffer,VkPipelineStageFlagBits2 pipelineStage,VkBuffer dstBuffer,VkDeviceSize dstOffset,uint32_t marker)6787 tu_CmdWriteBufferMarker2AMD(VkCommandBuffer commandBuffer,
6788                             VkPipelineStageFlagBits2 pipelineStage,
6789                             VkBuffer dstBuffer,
6790                             VkDeviceSize dstOffset,
6791                             uint32_t marker)
6792 {
6793    /* Almost the same as tu_write_event, but also allowed in renderpass */
6794    VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
6795    VK_FROM_HANDLE(tu_buffer, buffer, dstBuffer);
6796 
6797    uint64_t va = buffer->iova + dstOffset;
6798 
6799    struct tu_cs *cs = cmd->state.pass ? &cmd->draw_cs : &cmd->cs;
6800    struct tu_cache_state *cache =
6801       cmd->state.pass ? &cmd->state.renderpass_cache : &cmd->state.cache;
6802 
6803    /* From the Vulkan 1.2.203 spec:
6804     *
6805     *    The access scope for buffer marker writes falls under
6806     *    the VK_ACCESS_TRANSFER_WRITE_BIT, and the pipeline stages for
6807     *    identifying the synchronization scope must include both pipelineStage
6808     *    and VK_PIPELINE_STAGE_TRANSFER_BIT.
6809     *
6810     * Transfer operations use CCU however here we write via CP.
6811     * Flush CCU in order to make the results of previous transfer
6812     * operation visible to CP.
6813     */
6814    tu_flush_for_access(cache, TU_ACCESS_NONE, TU_ACCESS_SYSMEM_WRITE);
6815 
6816    /* Flags that only require a top-of-pipe event. DrawIndirect parameters are
6817     * read by the CP, so the draw indirect stage counts as top-of-pipe too.
6818     */
6819    VkPipelineStageFlags2 top_of_pipe_flags =
6820       VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT |
6821       VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT;
6822 
6823    bool is_top_of_pipe = !(pipelineStage & ~top_of_pipe_flags);
6824 
6825    /* We have to WFI only if we flushed CCU here and are using CP_MEM_WRITE.
6826     * Otherwise:
6827     * - We do CP_EVENT_WRITE(RB_DONE_TS) which should wait for flushes;
6828     * - There was a barrier to synchronize other writes with WriteBufferMarkerAMD
6829     *   and they had to include our pipelineStage which forces the WFI.
6830     */
6831    if (cache->flush_bits && is_top_of_pipe) {
6832       cache->flush_bits |= TU_CMD_FLAG_WAIT_FOR_IDLE;
6833    }
6834 
6835    if (cmd->state.pass) {
6836       tu_emit_cache_flush_renderpass<CHIP>(cmd);
6837    } else {
6838       tu_emit_cache_flush<CHIP>(cmd);
6839    }
6840 
6841    if (is_top_of_pipe) {
6842       tu_cs_emit_pkt7(cs, CP_MEM_WRITE, 3);
6843       tu_cs_emit_qw(cs, va); /* ADDR_LO/HI */
6844       tu_cs_emit(cs, marker);
6845    } else {
6846       /* Use a RB_DONE_TS event to wait for everything to complete. */
6847       if (CHIP == A6XX) {
6848          tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 4);
6849          tu_cs_emit(cs, CP_EVENT_WRITE_0_EVENT(RB_DONE_TS));
6850       } else {
6851          tu_cs_emit_pkt7(cs, CP_EVENT_WRITE7, 4);
6852          tu_cs_emit(cs, CP_EVENT_WRITE7_0(.event = RB_DONE_TS,
6853                                           .write_src = EV_WRITE_USER_32B,
6854                                           .write_dst = EV_DST_RAM,
6855                                           .write_enabled = true).value);
6856       }
6857       tu_cs_emit_qw(cs, va);
6858       tu_cs_emit(cs, marker);
6859    }
6860 
6861    /* Make sure the result of this write is visible to others. */
6862    tu_flush_for_access(cache, TU_ACCESS_CP_WRITE, TU_ACCESS_NONE);
6863 }
6864 TU_GENX(tu_CmdWriteBufferMarker2AMD);
6865