xref: /aosp_15_r20/external/mesa3d/src/freedreno/vulkan/tu_descriptor_set.cc (revision 6104692788411f58d303aa86923a9ff6ecaded22)
1 /*
2  * Copyright © 2016 Red Hat.
3  * Copyright © 2016 Bas Nieuwenhuizen
4  * SPDX-License-Identifier: MIT
5  */
6 
7 /**
8  * @file
9  *
10  * We use the bindless descriptor model, which maps fairly closely to how
11  * Vulkan descriptor sets work. The two exceptions are input attachments and
12  * dynamic descriptors, which have to be patched when recording command
13  * buffers. We reserve an extra descriptor set for these. This descriptor set
14  * contains all the input attachments in the pipeline, in order, and then all
15  * the dynamic descriptors. The dynamic descriptors are stored in the CPU-side
16  * datastructure for each tu_descriptor_set, and then combined into one big
17  * descriptor set at CmdBindDescriptors time/draw time.
18  */
19 
20 #include "tu_descriptor_set.h"
21 
22 #include <fcntl.h>
23 
24 #include "vulkan/vulkan_android.h"
25 
26 #include "util/mesa-sha1.h"
27 #include "vk_descriptors.h"
28 #include "vk_util.h"
29 
30 #include "tu_buffer.h"
31 #include "tu_buffer_view.h"
32 #include "tu_device.h"
33 #include "tu_image.h"
34 #include "tu_formats.h"
35 #include "tu_rmv.h"
36 
37 static inline uint8_t *
pool_base(struct tu_descriptor_pool * pool)38 pool_base(struct tu_descriptor_pool *pool)
39 {
40    return pool->host_bo ?: (uint8_t *) pool->bo->map;
41 }
42 
43 static uint32_t
descriptor_size(struct tu_device * dev,const VkDescriptorSetLayoutBinding * binding,VkDescriptorType type)44 descriptor_size(struct tu_device *dev,
45                 const VkDescriptorSetLayoutBinding *binding,
46                 VkDescriptorType type)
47 {
48    switch (type) {
49    case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
50       if (TU_DEBUG(DYNAMIC))
51          return A6XX_TEX_CONST_DWORDS * 4;
52 
53       /* Input attachment doesn't use descriptor sets at all */
54       return 0;
55    case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
56       /* We make offsets and sizes all 16 dwords, to match how the hardware
57        * interprets indices passed to sample/load/store instructions in
58        * multiples of 16 dwords.  This means that "normal" descriptors are all
59        * of size 16, with padding for smaller descriptors like uniform storage
60        * descriptors which are less than 16 dwords. However combined images
61        * and samplers are actually two descriptors, so they have size 2.
62        */
63       return A6XX_TEX_CONST_DWORDS * 4 * 2;
64    case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
65    case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
66       /* isam.v allows using a single 16-bit descriptor for both 16-bit and
67        * 32-bit loads. If not available but 16-bit storage is still supported,
68        * two separate descriptors are required.
69        */
70       return A6XX_TEX_CONST_DWORDS * 4 * (1 +
71          COND(dev->physical_device->info->a6xx.storage_16bit &&
72               !dev->physical_device->info->a6xx.has_isam_v, 1) +
73          COND(dev->physical_device->info->a7xx.storage_8bit, 1));
74    case VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK:
75       return binding->descriptorCount;
76    default:
77       return A6XX_TEX_CONST_DWORDS * 4;
78    }
79 }
80 
81 static bool
is_dynamic(VkDescriptorType type)82 is_dynamic(VkDescriptorType type)
83 {
84    return type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC ||
85           type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC;
86 }
87 
88 static uint32_t
mutable_descriptor_size(struct tu_device * dev,const VkMutableDescriptorTypeListEXT * list)89 mutable_descriptor_size(struct tu_device *dev,
90                         const VkMutableDescriptorTypeListEXT *list)
91 {
92    uint32_t max_size = 0;
93 
94    for (uint32_t i = 0; i < list->descriptorTypeCount; i++) {
95       uint32_t size = descriptor_size(dev, NULL, list->pDescriptorTypes[i]);
96       max_size = MAX2(max_size, size);
97    }
98 
99    return max_size;
100 }
101 
102 static void
tu_descriptor_set_layout_destroy(struct vk_device * vk_dev,struct vk_descriptor_set_layout * vk_layout)103 tu_descriptor_set_layout_destroy(struct vk_device *vk_dev,
104                                  struct vk_descriptor_set_layout *vk_layout)
105 {
106    struct tu_device *dev = container_of(vk_dev, struct tu_device, vk);
107    struct tu_descriptor_set_layout *layout =
108       container_of(vk_layout, struct tu_descriptor_set_layout, vk);
109 
110    if (layout->embedded_samplers)
111       tu_bo_finish(dev, layout->embedded_samplers);
112    vk_descriptor_set_layout_destroy(vk_dev, vk_layout);
113 }
114 
115 VKAPI_ATTR VkResult VKAPI_CALL
tu_CreateDescriptorSetLayout(VkDevice _device,const VkDescriptorSetLayoutCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkDescriptorSetLayout * pSetLayout)116 tu_CreateDescriptorSetLayout(
117    VkDevice _device,
118    const VkDescriptorSetLayoutCreateInfo *pCreateInfo,
119    const VkAllocationCallbacks *pAllocator,
120    VkDescriptorSetLayout *pSetLayout)
121 {
122    VK_FROM_HANDLE(tu_device, device, _device);
123    struct tu_descriptor_set_layout *set_layout;
124 
125    assert(pCreateInfo->sType ==
126           VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO);
127    const VkDescriptorSetLayoutBindingFlagsCreateInfo *variable_flags =
128       vk_find_struct_const(
129          pCreateInfo->pNext,
130          DESCRIPTOR_SET_LAYOUT_BINDING_FLAGS_CREATE_INFO);
131    const VkMutableDescriptorTypeCreateInfoEXT *mutable_info =
132       vk_find_struct_const(
133          pCreateInfo->pNext,
134          MUTABLE_DESCRIPTOR_TYPE_CREATE_INFO_EXT);
135 
136    uint32_t num_bindings = 0;
137    uint32_t immutable_sampler_count = 0;
138    uint32_t ycbcr_sampler_count = 0;
139    for (uint32_t j = 0; j < pCreateInfo->bindingCount; j++) {
140       num_bindings = MAX2(num_bindings, pCreateInfo->pBindings[j].binding + 1);
141       if ((pCreateInfo->pBindings[j].descriptorType == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER ||
142            pCreateInfo->pBindings[j].descriptorType == VK_DESCRIPTOR_TYPE_SAMPLER) &&
143            pCreateInfo->pBindings[j].pImmutableSamplers) {
144          immutable_sampler_count += pCreateInfo->pBindings[j].descriptorCount;
145 
146          bool has_ycbcr_sampler = false;
147          for (unsigned i = 0; i < pCreateInfo->pBindings[j].descriptorCount; ++i) {
148             if (tu_sampler_from_handle(pCreateInfo->pBindings[j].pImmutableSamplers[i])->vk.ycbcr_conversion)
149                has_ycbcr_sampler = true;
150          }
151 
152          if (has_ycbcr_sampler)
153             ycbcr_sampler_count += pCreateInfo->pBindings[j].descriptorCount;
154       }
155    }
156 
157    uint32_t samplers_offset =
158       offsetof_arr(struct tu_descriptor_set_layout, binding, num_bindings);
159 
160    /* note: only need to store TEX_SAMP_DWORDS for immutable samples,
161     * but using struct tu_sampler makes things simpler */
162    uint32_t size = samplers_offset +
163       immutable_sampler_count * sizeof(struct tu_sampler) +
164       ycbcr_sampler_count * sizeof(struct vk_ycbcr_conversion);
165 
166    set_layout =
167       (struct tu_descriptor_set_layout *) vk_descriptor_set_layout_zalloc(
168          &device->vk, size);
169    if (!set_layout)
170       return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
171 
172    set_layout->flags = pCreateInfo->flags;
173    set_layout->vk.destroy = tu_descriptor_set_layout_destroy;
174 
175    /* We just allocate all the immutable samplers at the end of the struct */
176    struct tu_sampler *samplers =
177       (struct tu_sampler *) &set_layout->binding[num_bindings];
178    struct vk_ycbcr_conversion_state *ycbcr_samplers =
179       (struct vk_ycbcr_conversion_state *) &samplers[immutable_sampler_count];
180 
181    VkDescriptorSetLayoutBinding *bindings = NULL;
182    VkResult result = vk_create_sorted_bindings(
183       pCreateInfo->pBindings, pCreateInfo->bindingCount, &bindings);
184    if (result != VK_SUCCESS) {
185       vk_object_free(&device->vk, pAllocator, set_layout);
186       return vk_error(device, result);
187    }
188 
189    set_layout->binding_count = num_bindings;
190    set_layout->shader_stages = 0;
191    set_layout->has_immutable_samplers = false;
192    set_layout->has_inline_uniforms = false;
193    set_layout->size = 0;
194 
195    uint32_t dynamic_offset_size = 0;
196 
197    for (uint32_t j = 0; j < pCreateInfo->bindingCount; j++) {
198       const VkDescriptorSetLayoutBinding *binding = bindings + j;
199       uint32_t b = binding->binding;
200 
201       set_layout->binding[b].type = binding->descriptorType;
202       set_layout->binding[b].array_size =
203          binding->descriptorType == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK ?
204          1 : binding->descriptorCount;
205       set_layout->binding[b].offset = set_layout->size;
206       set_layout->binding[b].dynamic_offset_offset = dynamic_offset_size;
207       set_layout->binding[b].shader_stages = binding->stageFlags;
208 
209       if (binding->descriptorType == VK_DESCRIPTOR_TYPE_MUTABLE_EXT) {
210          /* For mutable descriptor types we must allocate a size that fits the
211           * largest descriptor type that the binding can mutate to.
212           */
213          set_layout->binding[b].size =
214             mutable_descriptor_size(device, &mutable_info->pMutableDescriptorTypeLists[j]);
215       } else {
216          set_layout->binding[b].size =
217             descriptor_size(device, binding, binding->descriptorType);
218       }
219 
220       if (binding->descriptorType == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK)
221          set_layout->has_inline_uniforms = true;
222 
223       if (variable_flags && binding->binding < variable_flags->bindingCount &&
224           (variable_flags->pBindingFlags[binding->binding] &
225            VK_DESCRIPTOR_BINDING_VARIABLE_DESCRIPTOR_COUNT_BIT)) {
226          assert(!binding->pImmutableSamplers); /* Terribly ill defined  how
227                                                   many samplers are valid */
228          assert(binding->binding == num_bindings - 1);
229 
230          set_layout->has_variable_descriptors = true;
231       }
232 
233       if ((binding->descriptorType == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER ||
234            binding->descriptorType == VK_DESCRIPTOR_TYPE_SAMPLER) &&
235           binding->pImmutableSamplers) {
236          set_layout->binding[b].immutable_samplers_offset = samplers_offset;
237          set_layout->has_immutable_samplers = true;
238 
239          for (uint32_t i = 0; i < binding->descriptorCount; i++)
240             samplers[i] = *tu_sampler_from_handle(binding->pImmutableSamplers[i]);
241 
242          samplers += binding->descriptorCount;
243          samplers_offset += sizeof(struct tu_sampler) * binding->descriptorCount;
244 
245          bool has_ycbcr_sampler = false;
246          for (unsigned i = 0; i < pCreateInfo->pBindings[j].descriptorCount; ++i) {
247             if (tu_sampler_from_handle(binding->pImmutableSamplers[i])->vk.ycbcr_conversion)
248                has_ycbcr_sampler = true;
249          }
250 
251          if (has_ycbcr_sampler) {
252             set_layout->binding[b].ycbcr_samplers_offset =
253                (const char*)ycbcr_samplers - (const char*)set_layout;
254             for (uint32_t i = 0; i < binding->descriptorCount; i++) {
255                struct tu_sampler *sampler = tu_sampler_from_handle(binding->pImmutableSamplers[i]);
256                if (sampler->vk.ycbcr_conversion)
257                   ycbcr_samplers[i] = sampler->vk.ycbcr_conversion->state;
258                else
259                   ycbcr_samplers[i].ycbcr_model = VK_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY;
260             }
261             ycbcr_samplers += binding->descriptorCount;
262          } else {
263             set_layout->binding[b].ycbcr_samplers_offset = 0;
264          }
265       }
266 
267       uint32_t size =
268          ALIGN_POT(set_layout->binding[b].array_size * set_layout->binding[b].size, 4 * A6XX_TEX_CONST_DWORDS);
269       if (is_dynamic(binding->descriptorType)) {
270          dynamic_offset_size += size;
271       } else {
272          set_layout->size += size;
273       }
274 
275       set_layout->shader_stages |= binding->stageFlags;
276    }
277 
278    free(bindings);
279 
280    set_layout->dynamic_offset_size = dynamic_offset_size;
281 
282    if (pCreateInfo->flags &
283        VK_DESCRIPTOR_SET_LAYOUT_CREATE_EMBEDDED_IMMUTABLE_SAMPLERS_BIT_EXT) {
284       result = tu_bo_init_new(device, &set_layout->vk.base,
285                               &set_layout->embedded_samplers, set_layout->size,
286                               (enum tu_bo_alloc_flags) (TU_BO_ALLOC_ALLOW_DUMP |
287                                                         TU_BO_ALLOC_INTERNAL_RESOURCE),
288                               "embedded samplers");
289       if (result != VK_SUCCESS) {
290          vk_object_free(&device->vk, pAllocator, set_layout);
291          return vk_error(device, result);
292       }
293 
294       result = tu_bo_map(device, set_layout->embedded_samplers, NULL);
295       if (result != VK_SUCCESS) {
296          tu_bo_finish(device, set_layout->embedded_samplers);
297          vk_object_free(&device->vk, pAllocator, set_layout);
298          return vk_error(device, result);
299       }
300 
301       char *map = (char *) set_layout->embedded_samplers->map;
302       for (unsigned i = 0; i < set_layout->binding_count; i++) {
303          if (!set_layout->binding[i].immutable_samplers_offset)
304             continue;
305 
306          unsigned offset = set_layout->binding[i].offset;
307          const struct tu_sampler *sampler =
308             (const struct tu_sampler *)((const char *)set_layout +
309                                set_layout->binding[i].immutable_samplers_offset);
310          assert(set_layout->binding[i].array_size == 1);
311          memcpy(map + offset, sampler->descriptor,
312                 sizeof(sampler->descriptor));
313       }
314    }
315 
316    *pSetLayout = tu_descriptor_set_layout_to_handle(set_layout);
317 
318    return VK_SUCCESS;
319 }
320 
321 VKAPI_ATTR void VKAPI_CALL
tu_GetDescriptorSetLayoutSupport(VkDevice _device,const VkDescriptorSetLayoutCreateInfo * pCreateInfo,VkDescriptorSetLayoutSupport * pSupport)322 tu_GetDescriptorSetLayoutSupport(
323    VkDevice _device,
324    const VkDescriptorSetLayoutCreateInfo *pCreateInfo,
325    VkDescriptorSetLayoutSupport *pSupport)
326 {
327    VK_FROM_HANDLE(tu_device, device, _device);
328 
329    VkDescriptorSetLayoutBinding *bindings = NULL;
330    VkResult result = vk_create_sorted_bindings(
331       pCreateInfo->pBindings, pCreateInfo->bindingCount, &bindings);
332    if (result != VK_SUCCESS) {
333       pSupport->supported = false;
334       return;
335    }
336 
337    const VkDescriptorSetLayoutBindingFlagsCreateInfo *variable_flags =
338       vk_find_struct_const(
339          pCreateInfo->pNext,
340          DESCRIPTOR_SET_LAYOUT_BINDING_FLAGS_CREATE_INFO);
341    VkDescriptorSetVariableDescriptorCountLayoutSupport *variable_count =
342       vk_find_struct(
343          pSupport->pNext,
344          DESCRIPTOR_SET_VARIABLE_DESCRIPTOR_COUNT_LAYOUT_SUPPORT);
345    const VkMutableDescriptorTypeCreateInfoEXT *mutable_info =
346       vk_find_struct_const(
347          pCreateInfo->pNext,
348          MUTABLE_DESCRIPTOR_TYPE_CREATE_INFO_EXT);
349 
350    if (variable_count) {
351       variable_count->maxVariableDescriptorCount = 0;
352    }
353 
354    bool supported = true;
355    uint64_t size = 0;
356    for (uint32_t i = 0; i < pCreateInfo->bindingCount; i++) {
357       const VkDescriptorSetLayoutBinding *binding = bindings + i;
358 
359       uint64_t descriptor_sz;
360 
361       if (is_dynamic(binding->descriptorType)) {
362          descriptor_sz = 0;
363       } else if (binding->descriptorType == VK_DESCRIPTOR_TYPE_MUTABLE_EXT) {
364          const VkMutableDescriptorTypeListEXT *list =
365             &mutable_info->pMutableDescriptorTypeLists[i];
366 
367          for (uint32_t j = 0; j < list->descriptorTypeCount; j++) {
368             /* Don't support the input attachement and combined image sampler type
369              * for mutable descriptors */
370             if (list->pDescriptorTypes[j] == VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT ||
371                 list->pDescriptorTypes[j] == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER ||
372                 list->pDescriptorTypes[j] == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK) {
373                supported = false;
374                goto out;
375             }
376          }
377 
378          descriptor_sz =
379             mutable_descriptor_size(device, &mutable_info->pMutableDescriptorTypeLists[i]);
380       } else {
381          descriptor_sz = descriptor_size(device, binding, binding->descriptorType);
382       }
383       uint64_t descriptor_alignment = 4 * A6XX_TEX_CONST_DWORDS;
384 
385       if (size && !ALIGN_POT(size, descriptor_alignment)) {
386          supported = false;
387       }
388       size = ALIGN_POT(size, descriptor_alignment);
389 
390       uint64_t max_count = MAX_SET_SIZE;
391       unsigned descriptor_count = binding->descriptorCount;
392       if (binding->descriptorType == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK) {
393          max_count = MAX_SET_SIZE - size;
394          descriptor_count = descriptor_sz;
395          descriptor_sz = 1;
396       } else if (descriptor_sz) {
397          max_count = (MAX_SET_SIZE - size) / descriptor_sz;
398       }
399 
400       if (max_count < descriptor_count) {
401          supported = false;
402       }
403 
404       if (variable_flags && binding->binding < variable_flags->bindingCount &&
405           variable_count &&
406           (variable_flags->pBindingFlags[binding->binding] &
407            VK_DESCRIPTOR_BINDING_VARIABLE_DESCRIPTOR_COUNT_BIT)) {
408          variable_count->maxVariableDescriptorCount =
409             MIN2(UINT32_MAX, max_count);
410       }
411       size += descriptor_count * descriptor_sz;
412    }
413 
414 out:
415    free(bindings);
416 
417    pSupport->supported = supported;
418 }
419 
420 VKAPI_ATTR void VKAPI_CALL
tu_GetDescriptorSetLayoutSizeEXT(VkDevice _device,VkDescriptorSetLayout _layout,VkDeviceSize * pLayoutSizeInBytes)421 tu_GetDescriptorSetLayoutSizeEXT(
422    VkDevice _device,
423    VkDescriptorSetLayout _layout,
424    VkDeviceSize *pLayoutSizeInBytes)
425 {
426    VK_FROM_HANDLE(tu_descriptor_set_layout, layout, _layout);
427 
428    *pLayoutSizeInBytes = layout->size;
429 }
430 
431 VKAPI_ATTR void VKAPI_CALL
tu_GetDescriptorSetLayoutBindingOffsetEXT(VkDevice _device,VkDescriptorSetLayout _layout,uint32_t binding,VkDeviceSize * pOffset)432 tu_GetDescriptorSetLayoutBindingOffsetEXT(
433    VkDevice _device,
434    VkDescriptorSetLayout _layout,
435    uint32_t binding,
436    VkDeviceSize *pOffset)
437 {
438    VK_FROM_HANDLE(tu_descriptor_set_layout, layout, _layout);
439 
440    assert(binding < layout->binding_count);
441    *pOffset = layout->binding[binding].offset;
442 }
443 
444 /* Note: we must hash any values used in tu_lower_io(). */
445 
446 #define SHA1_UPDATE_VALUE(ctx, x) _mesa_sha1_update(ctx, &(x), sizeof(x));
447 
448 static void
sha1_update_ycbcr_sampler(struct mesa_sha1 * ctx,const struct vk_ycbcr_conversion_state * sampler)449 sha1_update_ycbcr_sampler(struct mesa_sha1 *ctx,
450                           const struct vk_ycbcr_conversion_state *sampler)
451 {
452    SHA1_UPDATE_VALUE(ctx, sampler->ycbcr_model);
453    SHA1_UPDATE_VALUE(ctx, sampler->ycbcr_range);
454    SHA1_UPDATE_VALUE(ctx, sampler->format);
455 }
456 
457 static void
sha1_update_descriptor_set_binding_layout(struct mesa_sha1 * ctx,const struct tu_descriptor_set_binding_layout * layout,const struct tu_descriptor_set_layout * set_layout)458 sha1_update_descriptor_set_binding_layout(struct mesa_sha1 *ctx,
459    const struct tu_descriptor_set_binding_layout *layout,
460    const struct tu_descriptor_set_layout *set_layout)
461 {
462    SHA1_UPDATE_VALUE(ctx, layout->type);
463    SHA1_UPDATE_VALUE(ctx, layout->offset);
464    SHA1_UPDATE_VALUE(ctx, layout->size);
465    SHA1_UPDATE_VALUE(ctx, layout->array_size);
466    SHA1_UPDATE_VALUE(ctx, layout->dynamic_offset_offset);
467    SHA1_UPDATE_VALUE(ctx, layout->immutable_samplers_offset);
468 
469    const struct vk_ycbcr_conversion_state *ycbcr_samplers =
470       tu_immutable_ycbcr_samplers(set_layout, layout);
471 
472    if (ycbcr_samplers) {
473       for (unsigned i = 0; i < layout->array_size; i++)
474          sha1_update_ycbcr_sampler(ctx, ycbcr_samplers + i);
475    }
476 }
477 
478 
479 static void
sha1_update_descriptor_set_layout(struct mesa_sha1 * ctx,const struct tu_descriptor_set_layout * layout)480 sha1_update_descriptor_set_layout(struct mesa_sha1 *ctx,
481                                   const struct tu_descriptor_set_layout *layout)
482 {
483    SHA1_UPDATE_VALUE(ctx, layout->has_variable_descriptors);
484 
485    for (uint16_t i = 0; i < layout->binding_count; i++)
486       sha1_update_descriptor_set_binding_layout(ctx, &layout->binding[i],
487                                                 layout);
488 }
489 
490 /*
491  * Pipeline layouts.  These have nothing to do with the pipeline.  They are
492  * just multiple descriptor set layouts pasted together.
493  */
494 
495 void
tu_pipeline_layout_init(struct tu_pipeline_layout * layout)496 tu_pipeline_layout_init(struct tu_pipeline_layout *layout)
497 {
498    struct mesa_sha1 ctx;
499    _mesa_sha1_init(&ctx);
500    for (unsigned s = 0; s < layout->num_sets; s++) {
501       if (layout->set[s].layout)
502          sha1_update_descriptor_set_layout(&ctx, layout->set[s].layout);
503    }
504    _mesa_sha1_update(&ctx, &layout->num_sets, sizeof(layout->num_sets));
505    _mesa_sha1_update(&ctx, &layout->push_constant_size,
506                      sizeof(layout->push_constant_size));
507    _mesa_sha1_final(&ctx, layout->sha1);
508 }
509 
510 VKAPI_ATTR VkResult VKAPI_CALL
tu_CreatePipelineLayout(VkDevice _device,const VkPipelineLayoutCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkPipelineLayout * pPipelineLayout)511 tu_CreatePipelineLayout(VkDevice _device,
512                         const VkPipelineLayoutCreateInfo *pCreateInfo,
513                         const VkAllocationCallbacks *pAllocator,
514                         VkPipelineLayout *pPipelineLayout)
515 {
516    VK_FROM_HANDLE(tu_device, device, _device);
517    struct tu_pipeline_layout *layout;
518 
519    assert(pCreateInfo->sType ==
520           VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO);
521 
522    layout = (struct tu_pipeline_layout *) vk_object_alloc(
523       &device->vk, pAllocator, sizeof(*layout),
524       VK_OBJECT_TYPE_PIPELINE_LAYOUT);
525    if (layout == NULL)
526       return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
527 
528    layout->num_sets = pCreateInfo->setLayoutCount;
529    for (uint32_t set = 0; set < pCreateInfo->setLayoutCount; set++) {
530       VK_FROM_HANDLE(tu_descriptor_set_layout, set_layout,
531                      pCreateInfo->pSetLayouts[set]);
532 
533       assert(set < device->physical_device->usable_sets);
534       layout->set[set].layout = set_layout;
535       if (set_layout)
536          vk_descriptor_set_layout_ref(&set_layout->vk);
537    }
538 
539    layout->push_constant_size = 0;
540 
541    for (unsigned i = 0; i < pCreateInfo->pushConstantRangeCount; ++i) {
542       const VkPushConstantRange *range = pCreateInfo->pPushConstantRanges + i;
543       layout->push_constant_size =
544          MAX2(layout->push_constant_size, range->offset + range->size);
545    }
546 
547    layout->push_constant_size = align(layout->push_constant_size, 16);
548 
549    tu_pipeline_layout_init(layout);
550 
551    *pPipelineLayout = tu_pipeline_layout_to_handle(layout);
552 
553    return VK_SUCCESS;
554 }
555 
556 VKAPI_ATTR void VKAPI_CALL
tu_DestroyPipelineLayout(VkDevice _device,VkPipelineLayout _pipelineLayout,const VkAllocationCallbacks * pAllocator)557 tu_DestroyPipelineLayout(VkDevice _device,
558                          VkPipelineLayout _pipelineLayout,
559                          const VkAllocationCallbacks *pAllocator)
560 {
561    VK_FROM_HANDLE(tu_device, device, _device);
562    VK_FROM_HANDLE(tu_pipeline_layout, pipeline_layout, _pipelineLayout);
563 
564    if (!pipeline_layout)
565       return;
566 
567    for (uint32_t i = 0; i < pipeline_layout->num_sets; i++) {
568       if (pipeline_layout->set[i].layout)
569          vk_descriptor_set_layout_unref(&device->vk, &pipeline_layout->set[i].layout->vk);
570    }
571 
572    vk_object_free(&device->vk, pAllocator, pipeline_layout);
573 }
574 
575 #define EMPTY 1
576 
577 static VkResult
tu_descriptor_set_create(struct tu_device * device,struct tu_descriptor_pool * pool,struct tu_descriptor_set_layout * layout,uint32_t variable_count,struct tu_descriptor_set ** out_set)578 tu_descriptor_set_create(struct tu_device *device,
579             struct tu_descriptor_pool *pool,
580             struct tu_descriptor_set_layout *layout,
581             uint32_t variable_count,
582             struct tu_descriptor_set **out_set)
583 {
584    struct tu_descriptor_set *set;
585    unsigned dynamic_offset = sizeof(struct tu_descriptor_set);
586    unsigned mem_size = dynamic_offset + layout->dynamic_offset_size;
587 
588    if (pool->host_memory_base) {
589       if (pool->host_memory_end - pool->host_memory_ptr < mem_size)
590          return vk_error(device, VK_ERROR_OUT_OF_POOL_MEMORY);
591 
592       set = (struct tu_descriptor_set*)pool->host_memory_ptr;
593       pool->host_memory_ptr += mem_size;
594    } else {
595       set = (struct tu_descriptor_set *) vk_alloc2(
596          &device->vk.alloc, NULL, mem_size, 8,
597          VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
598 
599       if (!set)
600          return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
601    }
602 
603    memset(set, 0, mem_size);
604    vk_object_base_init(&device->vk, &set->base, VK_OBJECT_TYPE_DESCRIPTOR_SET);
605 
606    if (layout->dynamic_offset_size) {
607       set->dynamic_descriptors = (uint32_t *)((uint8_t*)set + dynamic_offset);
608    }
609 
610    set->layout = layout;
611    set->pool = pool;
612    uint32_t layout_size = layout->size;
613    if (layout->has_variable_descriptors) {
614       struct tu_descriptor_set_binding_layout *binding =
615          &layout->binding[layout->binding_count - 1];
616       if (binding->type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK) {
617          layout_size = binding->offset +
618             ALIGN(variable_count, 4 * A6XX_TEX_CONST_DWORDS);
619       } else {
620          uint32_t stride = binding->size;
621          layout_size = binding->offset + variable_count * stride;
622       }
623    }
624 
625    if (layout_size) {
626       set->size = layout_size;
627 
628       if (!pool->host_memory_base && pool->entry_count == pool->max_entry_count) {
629          vk_object_free(&device->vk, NULL, set);
630          return vk_error(device, VK_ERROR_OUT_OF_POOL_MEMORY);
631       }
632 
633       /* try to allocate linearly first, so that we don't spend
634        * time looking for gaps if the app only allocates &
635        * resets via the pool. */
636       if (pool->current_offset + layout_size <= pool->size) {
637          set->mapped_ptr = (uint32_t*)(pool_base(pool) + pool->current_offset);
638          set->va = pool->host_bo ? 0 : pool->bo->iova + pool->current_offset;
639 
640          if (!pool->host_memory_base) {
641             pool->entries[pool->entry_count].offset = pool->current_offset;
642             pool->entries[pool->entry_count].size = layout_size;
643             pool->entries[pool->entry_count].set = set;
644             pool->entry_count++;
645          }
646          pool->current_offset += layout_size;
647       } else if (!pool->host_memory_base) {
648          uint64_t offset = 0;
649          int index;
650 
651          for (index = 0; index < pool->entry_count; ++index) {
652             if (pool->entries[index].offset - offset >= layout_size)
653                break;
654             offset = pool->entries[index].offset + pool->entries[index].size;
655          }
656 
657          if (pool->size - offset < layout_size) {
658             vk_object_free(&device->vk, NULL, set);
659             return vk_error(device, VK_ERROR_OUT_OF_POOL_MEMORY);
660          }
661 
662          set->mapped_ptr = (uint32_t*)(pool_base(pool) + offset);
663          set->va = pool->host_bo ? 0 : pool->bo->iova + offset;
664 
665          memmove(&pool->entries[index + 1], &pool->entries[index],
666             sizeof(pool->entries[0]) * (pool->entry_count - index));
667          pool->entries[index].offset = offset;
668          pool->entries[index].size = layout_size;
669          pool->entries[index].set = set;
670          pool->entry_count++;
671       } else
672          return vk_error(device, VK_ERROR_OUT_OF_POOL_MEMORY);
673    }
674 
675    if (layout->has_immutable_samplers) {
676       for (unsigned i = 0; i < layout->binding_count; ++i) {
677          if (!layout->binding[i].immutable_samplers_offset)
678             continue;
679 
680          unsigned offset = layout->binding[i].offset / 4;
681          if (layout->binding[i].type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
682             offset += A6XX_TEX_CONST_DWORDS;
683 
684          const struct tu_sampler *samplers =
685             (const struct tu_sampler *)((const char *)layout +
686                                layout->binding[i].immutable_samplers_offset);
687          for (unsigned j = 0; j < layout->binding[i].array_size; ++j) {
688             memcpy(set->mapped_ptr + offset, samplers[j].descriptor,
689                    sizeof(samplers[j].descriptor));
690             offset += layout->binding[i].size / 4;
691          }
692       }
693    }
694 
695    vk_descriptor_set_layout_ref(&layout->vk);
696    list_addtail(&set->pool_link, &pool->desc_sets);
697 
698    *out_set = set;
699    return VK_SUCCESS;
700 }
701 
702 static void
tu_descriptor_set_destroy(struct tu_device * device,struct tu_descriptor_pool * pool,struct tu_descriptor_set * set,bool free_bo)703 tu_descriptor_set_destroy(struct tu_device *device,
704              struct tu_descriptor_pool *pool,
705              struct tu_descriptor_set *set,
706              bool free_bo)
707 {
708    assert(!pool->host_memory_base);
709 
710    if (free_bo && set->size && !pool->host_memory_base) {
711       uint32_t offset = (uint8_t*)set->mapped_ptr - pool_base(pool);
712 
713       for (int i = 0; i < pool->entry_count; ++i) {
714          if (pool->entries[i].offset == offset) {
715             memmove(&pool->entries[i], &pool->entries[i+1],
716                sizeof(pool->entries[i]) * (pool->entry_count - i - 1));
717             --pool->entry_count;
718             break;
719          }
720       }
721    }
722 
723    vk_object_free(&device->vk, NULL, set);
724 }
725 
726 VKAPI_ATTR VkResult VKAPI_CALL
tu_CreateDescriptorPool(VkDevice _device,const VkDescriptorPoolCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkDescriptorPool * pDescriptorPool)727 tu_CreateDescriptorPool(VkDevice _device,
728                         const VkDescriptorPoolCreateInfo *pCreateInfo,
729                         const VkAllocationCallbacks *pAllocator,
730                         VkDescriptorPool *pDescriptorPool)
731 {
732    VK_FROM_HANDLE(tu_device, device, _device);
733    struct tu_descriptor_pool *pool;
734    uint64_t size = sizeof(struct tu_descriptor_pool);
735    uint64_t bo_size = 0, dynamic_size = 0;
736    VkResult ret;
737 
738    const VkMutableDescriptorTypeCreateInfoEXT *mutable_info =
739       vk_find_struct_const( pCreateInfo->pNext,
740          MUTABLE_DESCRIPTOR_TYPE_CREATE_INFO_EXT);
741 
742    const VkDescriptorPoolInlineUniformBlockCreateInfo *inline_info =
743       vk_find_struct_const(pCreateInfo->pNext,
744                            DESCRIPTOR_POOL_INLINE_UNIFORM_BLOCK_CREATE_INFO);
745 
746    if (inline_info) {
747       /* We have to factor in the padding for each binding. The sizes are 4
748        * aligned but we have to align to 4 * A6XX_TEX_CONST_DWORDS bytes, and in
749        * the worst case each inline binding has a size of 4 bytes and we have
750        * to pad each one out.
751        */
752       bo_size += (4 * A6XX_TEX_CONST_DWORDS - 4) *
753          inline_info->maxInlineUniformBlockBindings;
754    }
755 
756    for (unsigned i = 0; i < pCreateInfo->poolSizeCount; ++i) {
757       const VkDescriptorPoolSize *pool_size = &pCreateInfo->pPoolSizes[i];
758 
759       switch (pool_size->type) {
760       case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
761       case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
762          dynamic_size += descriptor_size(device, NULL, pool_size->type) *
763             pool_size->descriptorCount;
764          break;
765       case VK_DESCRIPTOR_TYPE_MUTABLE_EXT:
766          if (mutable_info && i < mutable_info->mutableDescriptorTypeListCount &&
767              mutable_info->pMutableDescriptorTypeLists[i].descriptorTypeCount > 0) {
768             bo_size +=
769                mutable_descriptor_size(device, &mutable_info->pMutableDescriptorTypeLists[i]) *
770                   pool_size->descriptorCount;
771          } else {
772             /* Allocate the maximum size possible. */
773             bo_size += 2 * A6XX_TEX_CONST_DWORDS * 4 *
774                   pool_size->descriptorCount;
775          }
776          break;
777       case VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK:
778          bo_size += pool_size->descriptorCount;
779          break;
780       default:
781          bo_size += descriptor_size(device, NULL, pool_size->type) *
782                               pool_size->descriptorCount;
783          break;
784       }
785    }
786 
787    if (!(pCreateInfo->flags & VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT)) {
788       uint64_t host_size = pCreateInfo->maxSets * sizeof(struct tu_descriptor_set);
789       host_size += dynamic_size;
790       size += host_size;
791    } else {
792       size += sizeof(struct tu_descriptor_pool_entry) * pCreateInfo->maxSets;
793    }
794 
795    pool = (struct tu_descriptor_pool *) vk_object_zalloc(
796       &device->vk, pAllocator, size, VK_OBJECT_TYPE_DESCRIPTOR_POOL);
797    if (!pool)
798       return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
799 
800    if (!(pCreateInfo->flags & VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT)) {
801       pool->host_memory_base = (uint8_t*)pool + sizeof(struct tu_descriptor_pool);
802       pool->host_memory_ptr = pool->host_memory_base;
803       pool->host_memory_end = (uint8_t*)pool + size;
804    }
805 
806    if (bo_size) {
807       if (!(pCreateInfo->flags & VK_DESCRIPTOR_POOL_CREATE_HOST_ONLY_BIT_EXT)) {
808          ret = tu_bo_init_new(device, &pool->base, &pool->bo, bo_size,
809                               TU_BO_ALLOC_ALLOW_DUMP, "descriptor pool");
810          if (ret)
811             goto fail_alloc;
812 
813          ret = tu_bo_map(device, pool->bo, NULL);
814          if (ret)
815             goto fail_map;
816       } else {
817          pool->host_bo =
818             (uint8_t *) vk_alloc2(&device->vk.alloc, pAllocator, bo_size, 8,
819                                   VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
820          if (!pool->host_bo) {
821             ret = VK_ERROR_OUT_OF_HOST_MEMORY;
822             goto fail_alloc;
823          }
824       }
825    }
826    pool->size = bo_size;
827    pool->max_entry_count = pCreateInfo->maxSets;
828 
829    list_inithead(&pool->desc_sets);
830 
831    TU_RMV(descriptor_pool_create, device, pCreateInfo, pool);
832 
833    *pDescriptorPool = tu_descriptor_pool_to_handle(pool);
834    return VK_SUCCESS;
835 
836 fail_map:
837    tu_bo_finish(device, pool->bo);
838 fail_alloc:
839    vk_object_free(&device->vk, pAllocator, pool);
840    return ret;
841 }
842 
843 VKAPI_ATTR void VKAPI_CALL
tu_DestroyDescriptorPool(VkDevice _device,VkDescriptorPool _pool,const VkAllocationCallbacks * pAllocator)844 tu_DestroyDescriptorPool(VkDevice _device,
845                          VkDescriptorPool _pool,
846                          const VkAllocationCallbacks *pAllocator)
847 {
848    VK_FROM_HANDLE(tu_device, device, _device);
849    VK_FROM_HANDLE(tu_descriptor_pool, pool, _pool);
850 
851    if (!pool)
852       return;
853 
854    TU_RMV(resource_destroy, device, pool);
855 
856    list_for_each_entry_safe(struct tu_descriptor_set, set,
857                             &pool->desc_sets, pool_link) {
858       vk_descriptor_set_layout_unref(&device->vk, &set->layout->vk);
859    }
860 
861    if (!pool->host_memory_base) {
862       for(int i = 0; i < pool->entry_count; ++i) {
863          tu_descriptor_set_destroy(device, pool, pool->entries[i].set, false);
864       }
865    }
866 
867    if (pool->size) {
868       if (pool->host_bo)
869          vk_free2(&device->vk.alloc, pAllocator, pool->host_bo);
870       else
871          tu_bo_finish(device, pool->bo);
872    }
873 
874    vk_object_free(&device->vk, pAllocator, pool);
875 }
876 
877 VKAPI_ATTR VkResult VKAPI_CALL
tu_ResetDescriptorPool(VkDevice _device,VkDescriptorPool descriptorPool,VkDescriptorPoolResetFlags flags)878 tu_ResetDescriptorPool(VkDevice _device,
879                        VkDescriptorPool descriptorPool,
880                        VkDescriptorPoolResetFlags flags)
881 {
882    VK_FROM_HANDLE(tu_device, device, _device);
883    VK_FROM_HANDLE(tu_descriptor_pool, pool, descriptorPool);
884 
885    list_for_each_entry_safe(struct tu_descriptor_set, set,
886                             &pool->desc_sets, pool_link) {
887       vk_descriptor_set_layout_unref(&device->vk, &set->layout->vk);
888    }
889    list_inithead(&pool->desc_sets);
890 
891    if (!pool->host_memory_base) {
892       for(int i = 0; i < pool->entry_count; ++i) {
893          tu_descriptor_set_destroy(device, pool, pool->entries[i].set, false);
894       }
895       pool->entry_count = 0;
896    }
897 
898    pool->current_offset = 0;
899    pool->host_memory_ptr = pool->host_memory_base;
900 
901    return VK_SUCCESS;
902 }
903 
904 VKAPI_ATTR VkResult VKAPI_CALL
tu_AllocateDescriptorSets(VkDevice _device,const VkDescriptorSetAllocateInfo * pAllocateInfo,VkDescriptorSet * pDescriptorSets)905 tu_AllocateDescriptorSets(VkDevice _device,
906                           const VkDescriptorSetAllocateInfo *pAllocateInfo,
907                           VkDescriptorSet *pDescriptorSets)
908 {
909    VK_FROM_HANDLE(tu_device, device, _device);
910    VK_FROM_HANDLE(tu_descriptor_pool, pool, pAllocateInfo->descriptorPool);
911 
912    VkResult result = VK_SUCCESS;
913    uint32_t i;
914    struct tu_descriptor_set *set = NULL;
915 
916    const VkDescriptorSetVariableDescriptorCountAllocateInfo *variable_counts =
917       vk_find_struct_const(pAllocateInfo->pNext, DESCRIPTOR_SET_VARIABLE_DESCRIPTOR_COUNT_ALLOCATE_INFO);
918    if (variable_counts && !variable_counts->descriptorSetCount)
919       variable_counts = NULL;
920 
921    /* allocate a set of buffers for each shader to contain descriptors */
922    for (i = 0; i < pAllocateInfo->descriptorSetCount; i++) {
923       VK_FROM_HANDLE(tu_descriptor_set_layout, layout,
924              pAllocateInfo->pSetLayouts[i]);
925 
926       assert(!(layout->flags & VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR));
927 
928       result = tu_descriptor_set_create(
929          device, pool, layout,
930          variable_counts ? variable_counts->pDescriptorCounts[i] : 0, &set);
931       if (result != VK_SUCCESS)
932          break;
933 
934       pDescriptorSets[i] = tu_descriptor_set_to_handle(set);
935    }
936 
937    if (result != VK_SUCCESS) {
938       tu_FreeDescriptorSets(_device, pAllocateInfo->descriptorPool,
939                i, pDescriptorSets);
940       for (i = 0; i < pAllocateInfo->descriptorSetCount; i++) {
941          pDescriptorSets[i] = VK_NULL_HANDLE;
942       }
943    }
944    return result;
945 }
946 
947 VKAPI_ATTR VkResult VKAPI_CALL
tu_FreeDescriptorSets(VkDevice _device,VkDescriptorPool descriptorPool,uint32_t count,const VkDescriptorSet * pDescriptorSets)948 tu_FreeDescriptorSets(VkDevice _device,
949                       VkDescriptorPool descriptorPool,
950                       uint32_t count,
951                       const VkDescriptorSet *pDescriptorSets)
952 {
953    VK_FROM_HANDLE(tu_device, device, _device);
954    VK_FROM_HANDLE(tu_descriptor_pool, pool, descriptorPool);
955 
956    for (uint32_t i = 0; i < count; i++) {
957       VK_FROM_HANDLE(tu_descriptor_set, set, pDescriptorSets[i]);
958 
959       if (set) {
960          vk_descriptor_set_layout_unref(&device->vk, &set->layout->vk);
961          list_del(&set->pool_link);
962       }
963 
964       if (set && !pool->host_memory_base)
965          tu_descriptor_set_destroy(device, pool, set, true);
966    }
967    return VK_SUCCESS;
968 }
969 
970 static void
write_texel_buffer_descriptor_addr(uint32_t * dst,const VkDescriptorAddressInfoEXT * buffer_info)971 write_texel_buffer_descriptor_addr(uint32_t *dst,
972                                    const VkDescriptorAddressInfoEXT *buffer_info)
973 {
974    if (!buffer_info || buffer_info->address == 0) {
975       memset(dst, 0, A6XX_TEX_CONST_DWORDS * sizeof(uint32_t));
976    } else {
977       uint8_t swiz[4] = { PIPE_SWIZZLE_X, PIPE_SWIZZLE_Y, PIPE_SWIZZLE_Z,
978                           PIPE_SWIZZLE_W };
979       fdl6_buffer_view_init(dst,
980                             vk_format_to_pipe_format(buffer_info->format),
981                             swiz, buffer_info->address, buffer_info->range);
982    }
983 }
984 
985 static void
write_texel_buffer_descriptor(uint32_t * dst,const VkBufferView buffer_view)986 write_texel_buffer_descriptor(uint32_t *dst, const VkBufferView buffer_view)
987 {
988    if (buffer_view == VK_NULL_HANDLE) {
989       memset(dst, 0, A6XX_TEX_CONST_DWORDS * sizeof(uint32_t));
990    } else {
991       VK_FROM_HANDLE(tu_buffer_view, view, buffer_view);
992 
993       memcpy(dst, view->descriptor, sizeof(view->descriptor));
994    }
995 }
996 
997 static VkDescriptorAddressInfoEXT
buffer_info_to_address(const VkDescriptorBufferInfo * buffer_info)998 buffer_info_to_address(const VkDescriptorBufferInfo *buffer_info)
999 {
1000    VK_FROM_HANDLE(tu_buffer, buffer, buffer_info->buffer);
1001 
1002    uint32_t range = buffer ? vk_buffer_range(&buffer->vk, buffer_info->offset, buffer_info->range) : 0;
1003    uint64_t va = buffer ? buffer->iova + buffer_info->offset : 0;
1004 
1005    return (VkDescriptorAddressInfoEXT) {
1006       .address = va,
1007       .range = range,
1008    };
1009 }
1010 
1011 static void
write_buffer_descriptor_addr(const struct tu_device * device,uint32_t * dst,const VkDescriptorAddressInfoEXT * buffer_info)1012 write_buffer_descriptor_addr(const struct tu_device *device,
1013                              uint32_t *dst,
1014                              const VkDescriptorAddressInfoEXT *buffer_info)
1015 {
1016    const struct fd_dev_info *info = device->physical_device->info;
1017    /* This prevents any misconfiguration, but 16-bit descriptor capable of both
1018     * 16-bit and 32-bit access through isam.v will of course only be functional
1019     * when 16-bit storage is supported. */
1020    assert(!info->a6xx.has_isam_v || info->a6xx.storage_16bit);
1021    /* Any configuration enabling 8-bit storage support will also provide 16-bit
1022     * storage support and 16-bit descriptors capable of 32-bit isam loads. This
1023     * indirectly ensures we won't need more than two descriptors for access of
1024     * any size.
1025     */
1026    assert(!info->a7xx.storage_8bit || (info->a6xx.storage_16bit &&
1027                                        info->a6xx.has_isam_v));
1028 
1029    unsigned num_descriptors = 1 +
1030       COND(info->a6xx.storage_16bit && !info->a6xx.has_isam_v, 1) +
1031       COND(info->a7xx.storage_8bit, 1);
1032    memset(dst, 0, num_descriptors * A6XX_TEX_CONST_DWORDS * sizeof(uint32_t));
1033 
1034    if (!buffer_info || buffer_info->address == 0)
1035       return;
1036 
1037    uint64_t va = buffer_info->address;
1038    uint64_t base_va = va & ~0x3full;
1039    unsigned offset = va & 0x3f;
1040    uint32_t range = buffer_info->range;
1041 
1042    if (info->a6xx.storage_16bit) {
1043       dst[0] = A6XX_TEX_CONST_0_TILE_MODE(TILE6_LINEAR) | A6XX_TEX_CONST_0_FMT(FMT6_16_UINT);
1044       dst[1] = DIV_ROUND_UP(range, 2);
1045       dst[2] =
1046          A6XX_TEX_CONST_2_STRUCTSIZETEXELS(1) |
1047          A6XX_TEX_CONST_2_STARTOFFSETTEXELS(offset / 2) |
1048          A6XX_TEX_CONST_2_TYPE(A6XX_TEX_BUFFER);
1049       dst[4] = A6XX_TEX_CONST_4_BASE_LO(base_va);
1050       dst[5] = A6XX_TEX_CONST_5_BASE_HI(base_va >> 32);
1051       dst += A6XX_TEX_CONST_DWORDS;
1052    }
1053 
1054    /* Set up the 32-bit descriptor when 16-bit storage isn't supported or the
1055     * 16-bit descriptor cannot be used for 32-bit loads through isam.v.
1056     */
1057    if (!info->a6xx.storage_16bit || !info->a6xx.has_isam_v) {
1058       dst[0] = A6XX_TEX_CONST_0_TILE_MODE(TILE6_LINEAR) | A6XX_TEX_CONST_0_FMT(FMT6_32_UINT);
1059       dst[1] = DIV_ROUND_UP(range, 4);
1060       dst[2] =
1061          A6XX_TEX_CONST_2_STRUCTSIZETEXELS(1) |
1062          A6XX_TEX_CONST_2_STARTOFFSETTEXELS(offset / 4) |
1063          A6XX_TEX_CONST_2_TYPE(A6XX_TEX_BUFFER);
1064       dst[4] = A6XX_TEX_CONST_4_BASE_LO(base_va);
1065       dst[5] = A6XX_TEX_CONST_5_BASE_HI(base_va >> 32);
1066       dst += A6XX_TEX_CONST_DWORDS;
1067    }
1068 
1069    if (info->a7xx.storage_8bit) {
1070       dst[0] = A6XX_TEX_CONST_0_TILE_MODE(TILE6_LINEAR) | A6XX_TEX_CONST_0_FMT(FMT6_8_UINT);
1071       dst[1] = range;
1072       dst[2] =
1073          A6XX_TEX_CONST_2_STRUCTSIZETEXELS(1) |
1074          A6XX_TEX_CONST_2_STARTOFFSETTEXELS(offset) |
1075          A6XX_TEX_CONST_2_TYPE(A6XX_TEX_BUFFER);
1076       dst[4] = A6XX_TEX_CONST_4_BASE_LO(base_va);
1077       dst[5] = A6XX_TEX_CONST_5_BASE_HI(base_va >> 32);
1078    }
1079 }
1080 
1081 static void
write_buffer_descriptor(const struct tu_device * device,uint32_t * dst,const VkDescriptorBufferInfo * buffer_info)1082 write_buffer_descriptor(const struct tu_device *device,
1083                         uint32_t *dst,
1084                         const VkDescriptorBufferInfo *buffer_info)
1085 {
1086    VkDescriptorAddressInfoEXT addr = buffer_info_to_address(buffer_info);
1087    write_buffer_descriptor_addr(device, dst, &addr);
1088 }
1089 
1090 static void
write_ubo_descriptor_addr(uint32_t * dst,const VkDescriptorAddressInfoEXT * buffer_info)1091 write_ubo_descriptor_addr(uint32_t *dst,
1092                           const VkDescriptorAddressInfoEXT *buffer_info)
1093 {
1094    if (!buffer_info) {
1095       dst[0] = dst[1] = 0;
1096       return;
1097    }
1098 
1099    uint64_t va = buffer_info->address;
1100    /* The HW range is in vec4 units */
1101    uint32_t range = va ? DIV_ROUND_UP(buffer_info->range, 16) : 0;
1102    dst[0] = A6XX_UBO_0_BASE_LO(va);
1103    dst[1] = A6XX_UBO_1_BASE_HI(va >> 32) | A6XX_UBO_1_SIZE(range);
1104 }
1105 
1106 static void
write_ubo_descriptor(uint32_t * dst,const VkDescriptorBufferInfo * buffer_info)1107 write_ubo_descriptor(uint32_t *dst, const VkDescriptorBufferInfo *buffer_info)
1108 {
1109    VkDescriptorAddressInfoEXT addr = buffer_info_to_address(buffer_info);
1110    write_ubo_descriptor_addr(dst, &addr);
1111 }
1112 
1113 static void
write_image_descriptor(uint32_t * dst,VkDescriptorType descriptor_type,const VkDescriptorImageInfo * image_info)1114 write_image_descriptor(uint32_t *dst,
1115                        VkDescriptorType descriptor_type,
1116                        const VkDescriptorImageInfo *image_info)
1117 {
1118    if (!image_info || image_info->imageView == VK_NULL_HANDLE) {
1119       memset(dst, 0, A6XX_TEX_CONST_DWORDS * sizeof(uint32_t));
1120       return;
1121    }
1122 
1123    VK_FROM_HANDLE(tu_image_view, iview, image_info->imageView);
1124 
1125    if (descriptor_type == VK_DESCRIPTOR_TYPE_STORAGE_IMAGE) {
1126       memcpy(dst, iview->view.storage_descriptor, sizeof(iview->view.storage_descriptor));
1127    } else {
1128       memcpy(dst, iview->view.descriptor, sizeof(iview->view.descriptor));
1129    }
1130 }
1131 
1132 static void
write_combined_image_sampler_descriptor(uint32_t * dst,VkDescriptorType descriptor_type,const VkDescriptorImageInfo * image_info,bool has_sampler)1133 write_combined_image_sampler_descriptor(uint32_t *dst,
1134                                         VkDescriptorType descriptor_type,
1135                                         const VkDescriptorImageInfo *image_info,
1136                                         bool has_sampler)
1137 {
1138    write_image_descriptor(dst, descriptor_type, image_info);
1139    /* copy over sampler state */
1140    if (has_sampler) {
1141       VK_FROM_HANDLE(tu_sampler, sampler, image_info->sampler);
1142 
1143       memcpy(dst + A6XX_TEX_CONST_DWORDS, sampler->descriptor, sizeof(sampler->descriptor));
1144    }
1145 }
1146 
1147 static void
write_sampler_descriptor(uint32_t * dst,VkSampler _sampler)1148 write_sampler_descriptor(uint32_t *dst, VkSampler _sampler)
1149 {
1150    VK_FROM_HANDLE(tu_sampler, sampler, _sampler);
1151 
1152    memcpy(dst, sampler->descriptor, sizeof(sampler->descriptor));
1153 }
1154 
1155 /* note: this is used with immutable samplers in push descriptors */
1156 static void
write_sampler_push(uint32_t * dst,const struct tu_sampler * sampler)1157 write_sampler_push(uint32_t *dst, const struct tu_sampler *sampler)
1158 {
1159    memcpy(dst, sampler->descriptor, sizeof(sampler->descriptor));
1160 }
1161 
1162 VKAPI_ATTR void VKAPI_CALL
tu_GetDescriptorEXT(VkDevice _device,const VkDescriptorGetInfoEXT * pDescriptorInfo,size_t dataSize,void * pDescriptor)1163 tu_GetDescriptorEXT(
1164    VkDevice _device,
1165    const VkDescriptorGetInfoEXT *pDescriptorInfo,
1166    size_t dataSize,
1167    void *pDescriptor)
1168 {
1169    VK_FROM_HANDLE(tu_device, device, _device);
1170    uint32_t *dest = (uint32_t *) pDescriptor;
1171 
1172    switch (pDescriptorInfo->type) {
1173    case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
1174       write_ubo_descriptor_addr(dest, pDescriptorInfo->data.pUniformBuffer);
1175       break;
1176    case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
1177       write_buffer_descriptor_addr(device, dest, pDescriptorInfo->data.pStorageBuffer);
1178       break;
1179    case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
1180       write_texel_buffer_descriptor_addr(dest, pDescriptorInfo->data.pUniformTexelBuffer);
1181       break;
1182    case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
1183       write_texel_buffer_descriptor_addr(dest, pDescriptorInfo->data.pStorageTexelBuffer);
1184       break;
1185    case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
1186       write_image_descriptor(dest, VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
1187                              pDescriptorInfo->data.pSampledImage);
1188       break;
1189    case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
1190       write_image_descriptor(dest, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
1191                              pDescriptorInfo->data.pStorageImage);
1192       break;
1193    case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
1194       write_combined_image_sampler_descriptor(dest,
1195                                               VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
1196                                               pDescriptorInfo->data.pCombinedImageSampler,
1197                                               true);
1198       break;
1199    case VK_DESCRIPTOR_TYPE_SAMPLER:
1200       write_sampler_descriptor(dest, *pDescriptorInfo->data.pSampler);
1201       break;
1202    case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
1203       /* nothing in descriptor set - framebuffer state is used instead */
1204       if (TU_DEBUG(DYNAMIC)) {
1205          write_image_descriptor(dest, VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT,
1206                                 pDescriptorInfo->data.pInputAttachmentImage);
1207       }
1208       break;
1209    default:
1210       unreachable("unimplemented descriptor type");
1211       break;
1212    }
1213 }
1214 
1215 void
tu_update_descriptor_sets(const struct tu_device * device,VkDescriptorSet dstSetOverride,uint32_t descriptorWriteCount,const VkWriteDescriptorSet * pDescriptorWrites,uint32_t descriptorCopyCount,const VkCopyDescriptorSet * pDescriptorCopies)1216 tu_update_descriptor_sets(const struct tu_device *device,
1217                           VkDescriptorSet dstSetOverride,
1218                           uint32_t descriptorWriteCount,
1219                           const VkWriteDescriptorSet *pDescriptorWrites,
1220                           uint32_t descriptorCopyCount,
1221                           const VkCopyDescriptorSet *pDescriptorCopies)
1222 {
1223    uint32_t i, j;
1224    for (i = 0; i < descriptorWriteCount; i++) {
1225       const VkWriteDescriptorSet *writeset = &pDescriptorWrites[i];
1226       VK_FROM_HANDLE(tu_descriptor_set, set, dstSetOverride ?: writeset->dstSet);
1227       const struct tu_descriptor_set_binding_layout *binding_layout =
1228          set->layout->binding + writeset->dstBinding;
1229       uint32_t *ptr = set->mapped_ptr;
1230       if (writeset->descriptorType == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
1231           writeset->descriptorType == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
1232          ptr = set->dynamic_descriptors;
1233          ptr += binding_layout->dynamic_offset_offset / 4;
1234       } else {
1235          ptr = set->mapped_ptr;
1236          ptr += binding_layout->offset / 4;
1237       }
1238 
1239       /* for immutable samplers with push descriptors: */
1240       const bool copy_immutable_samplers =
1241          dstSetOverride && binding_layout->immutable_samplers_offset;
1242       const struct tu_sampler *samplers =
1243          tu_immutable_samplers(set->layout, binding_layout);
1244 
1245       if (writeset->descriptorType == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK) {
1246          /* We need to respect this note:
1247           *
1248           *    The same behavior applies to bindings with a descriptor type of
1249           *    VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK where descriptorCount
1250           *    specifies the number of bytes to update while dstArrayElement
1251           *    specifies the starting byte offset, thus in this case if the
1252           *    dstBinding has a smaller byte size than the sum of
1253           *    dstArrayElement and descriptorCount, then the remainder will be
1254           *    used to update the subsequent binding - dstBinding+1 starting
1255           *    at offset zero. This falls out as a special case of the above
1256           *    rule.
1257           *
1258           * This means we can't just do a straight memcpy, because due to
1259           * alignment padding there are gaps between sequential bindings. We
1260           * have to loop over each binding updated.
1261           */
1262          const VkWriteDescriptorSetInlineUniformBlock *inline_write =
1263             vk_find_struct_const(writeset->pNext,
1264                                  WRITE_DESCRIPTOR_SET_INLINE_UNIFORM_BLOCK);
1265          uint32_t remaining = inline_write->dataSize;
1266          const uint8_t *src = (const uint8_t *) inline_write->pData;
1267          uint32_t dst_offset = writeset->dstArrayElement;
1268          do {
1269             uint8_t *dst = (uint8_t *)(ptr) + dst_offset;
1270             uint32_t binding_size = binding_layout->size - dst_offset;
1271             uint32_t to_write = MIN2(remaining, binding_size);
1272             memcpy(dst, src, to_write);
1273 
1274             binding_layout++;
1275             ptr = set->mapped_ptr + binding_layout->offset / 4;
1276             dst_offset = 0;
1277             src += to_write;
1278             remaining -= to_write;
1279          } while (remaining > 0);
1280 
1281          continue;
1282       }
1283 
1284       ptr += binding_layout->size / 4 * writeset->dstArrayElement;
1285       for (j = 0; j < writeset->descriptorCount; ++j) {
1286          switch(writeset->descriptorType) {
1287          case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
1288          case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
1289             write_ubo_descriptor(ptr, writeset->pBufferInfo + j);
1290             break;
1291          case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
1292          case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
1293             write_buffer_descriptor(device, ptr, writeset->pBufferInfo + j);
1294             break;
1295          case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
1296          case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
1297             write_texel_buffer_descriptor(ptr, writeset->pTexelBufferView[j]);
1298             break;
1299          case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
1300          case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
1301             write_image_descriptor(ptr, writeset->descriptorType, writeset->pImageInfo + j);
1302             break;
1303          case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
1304             write_combined_image_sampler_descriptor(ptr,
1305                                                     writeset->descriptorType,
1306                                                     writeset->pImageInfo + j,
1307                                                     !binding_layout->immutable_samplers_offset);
1308 
1309             if (copy_immutable_samplers)
1310                write_sampler_push(ptr + A6XX_TEX_CONST_DWORDS, &samplers[writeset->dstArrayElement + j]);
1311             break;
1312          case VK_DESCRIPTOR_TYPE_SAMPLER:
1313             if (!binding_layout->immutable_samplers_offset)
1314                write_sampler_descriptor(ptr, writeset->pImageInfo[j].sampler);
1315             else if (copy_immutable_samplers)
1316                write_sampler_push(ptr, &samplers[writeset->dstArrayElement + j]);
1317             break;
1318          case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
1319             /* nothing in descriptor set - framebuffer state is used instead */
1320             if (TU_DEBUG(DYNAMIC))
1321                write_image_descriptor(ptr, writeset->descriptorType, writeset->pImageInfo + j);
1322             break;
1323          default:
1324             unreachable("unimplemented descriptor type");
1325             break;
1326          }
1327          ptr += binding_layout->size / 4;
1328       }
1329    }
1330 
1331    for (i = 0; i < descriptorCopyCount; i++) {
1332       const VkCopyDescriptorSet *copyset = &pDescriptorCopies[i];
1333       VK_FROM_HANDLE(tu_descriptor_set, src_set,
1334                        copyset->srcSet);
1335       VK_FROM_HANDLE(tu_descriptor_set, dst_set,
1336                        copyset->dstSet);
1337       const struct tu_descriptor_set_binding_layout *src_binding_layout =
1338          src_set->layout->binding + copyset->srcBinding;
1339       const struct tu_descriptor_set_binding_layout *dst_binding_layout =
1340          dst_set->layout->binding + copyset->dstBinding;
1341       uint32_t *src_ptr = src_set->mapped_ptr;
1342       uint32_t *dst_ptr = dst_set->mapped_ptr;
1343       if (src_binding_layout->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
1344           src_binding_layout->type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
1345          src_ptr = src_set->dynamic_descriptors;
1346          dst_ptr = dst_set->dynamic_descriptors;
1347          src_ptr += src_binding_layout->dynamic_offset_offset / 4;
1348          dst_ptr += dst_binding_layout->dynamic_offset_offset / 4;
1349       } else {
1350          src_ptr = src_set->mapped_ptr;
1351          dst_ptr = dst_set->mapped_ptr;
1352          src_ptr += src_binding_layout->offset / 4;
1353          dst_ptr += dst_binding_layout->offset / 4;
1354       }
1355 
1356       if (src_binding_layout->type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK) {
1357          uint32_t remaining = copyset->descriptorCount;
1358          uint32_t src_start = copyset->srcArrayElement;
1359          uint32_t dst_start = copyset->dstArrayElement;
1360          uint8_t *src = (uint8_t *)(src_ptr) + src_start;
1361          uint8_t *dst = (uint8_t *)(dst_ptr) + dst_start;
1362          uint32_t src_remaining =
1363             src_binding_layout->size - src_start;
1364          uint32_t dst_remaining =
1365             dst_binding_layout->size - dst_start;
1366          do {
1367             uint32_t to_write = MIN3(remaining, src_remaining, dst_remaining);
1368             memcpy(dst, src, to_write);
1369 
1370             src += to_write;
1371             dst += to_write;
1372             src_remaining -= to_write;
1373             dst_remaining -= to_write;
1374             remaining -= to_write;
1375 
1376             if (src_remaining == 0) {
1377                src_binding_layout++;
1378                src_ptr = src_set->mapped_ptr + src_binding_layout->offset / 4;
1379                src = (uint8_t *)(src_ptr + A6XX_TEX_CONST_DWORDS);
1380                src_remaining = src_binding_layout->size - 4 * A6XX_TEX_CONST_DWORDS;
1381             }
1382 
1383             if (dst_remaining == 0) {
1384                dst_binding_layout++;
1385                dst_ptr = dst_set->mapped_ptr + dst_binding_layout->offset / 4;
1386                dst = (uint8_t *)(dst_ptr + A6XX_TEX_CONST_DWORDS);
1387                dst_remaining = dst_binding_layout->size - 4 * A6XX_TEX_CONST_DWORDS;
1388             }
1389          } while (remaining > 0);
1390 
1391          continue;
1392       }
1393 
1394       src_ptr += src_binding_layout->size * copyset->srcArrayElement / 4;
1395       dst_ptr += dst_binding_layout->size * copyset->dstArrayElement / 4;
1396 
1397       /* In case of copies between mutable descriptor types
1398        * and non-mutable descriptor types.
1399        */
1400       uint32_t copy_size = MIN2(src_binding_layout->size, dst_binding_layout->size);
1401 
1402       for (j = 0; j < copyset->descriptorCount; ++j) {
1403          memcpy(dst_ptr, src_ptr, copy_size);
1404 
1405          src_ptr += src_binding_layout->size / 4;
1406          dst_ptr += dst_binding_layout->size / 4;
1407       }
1408    }
1409 }
1410 
1411 VKAPI_ATTR void VKAPI_CALL
tu_UpdateDescriptorSets(VkDevice _device,uint32_t descriptorWriteCount,const VkWriteDescriptorSet * pDescriptorWrites,uint32_t descriptorCopyCount,const VkCopyDescriptorSet * pDescriptorCopies)1412 tu_UpdateDescriptorSets(VkDevice _device,
1413                         uint32_t descriptorWriteCount,
1414                         const VkWriteDescriptorSet *pDescriptorWrites,
1415                         uint32_t descriptorCopyCount,
1416                         const VkCopyDescriptorSet *pDescriptorCopies)
1417 {
1418    VK_FROM_HANDLE(tu_device, device, _device);
1419    tu_update_descriptor_sets(device, VK_NULL_HANDLE,
1420                              descriptorWriteCount, pDescriptorWrites,
1421                              descriptorCopyCount, pDescriptorCopies);
1422 }
1423 
1424 VKAPI_ATTR VkResult VKAPI_CALL
tu_CreateDescriptorUpdateTemplate(VkDevice _device,const VkDescriptorUpdateTemplateCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkDescriptorUpdateTemplate * pDescriptorUpdateTemplate)1425 tu_CreateDescriptorUpdateTemplate(
1426    VkDevice _device,
1427    const VkDescriptorUpdateTemplateCreateInfo *pCreateInfo,
1428    const VkAllocationCallbacks *pAllocator,
1429    VkDescriptorUpdateTemplate *pDescriptorUpdateTemplate)
1430 {
1431    VK_FROM_HANDLE(tu_device, device, _device);
1432    struct tu_descriptor_set_layout *set_layout = NULL;
1433    const uint32_t entry_count = pCreateInfo->descriptorUpdateEntryCount;
1434    uint32_t dst_entry_count = 0;
1435 
1436    if (pCreateInfo->templateType == VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_PUSH_DESCRIPTORS_KHR) {
1437       VK_FROM_HANDLE(tu_pipeline_layout, pipeline_layout, pCreateInfo->pipelineLayout);
1438 
1439       /* descriptorSetLayout should be ignored for push descriptors
1440        * and instead it refers to pipelineLayout and set.
1441        */
1442       assert(pCreateInfo->set < device->physical_device->usable_sets);
1443       set_layout = pipeline_layout->set[pCreateInfo->set].layout;
1444    } else {
1445       VK_FROM_HANDLE(tu_descriptor_set_layout, _set_layout,
1446                      pCreateInfo->descriptorSetLayout);
1447       set_layout = _set_layout;
1448    }
1449 
1450    for (uint32_t i = 0; i < entry_count; i++) {
1451       const VkDescriptorUpdateTemplateEntry *entry = &pCreateInfo->pDescriptorUpdateEntries[i];
1452       if (entry->descriptorType != VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK) {
1453          dst_entry_count++;
1454          continue;
1455       }
1456 
1457       /* Calculate how many bindings this update steps over, so we can split
1458        * up the template entry. This lets the actual update be a simple
1459        * memcpy.
1460        */
1461       uint32_t remaining = entry->descriptorCount;
1462       const struct tu_descriptor_set_binding_layout *binding_layout =
1463          set_layout->binding + entry->dstBinding;
1464       uint32_t dst_start = entry->dstArrayElement;
1465       do {
1466          uint32_t size = binding_layout->size;
1467          uint32_t count = MIN2(remaining, size - dst_start);
1468          remaining -= count;
1469          binding_layout++;
1470          dst_entry_count++;
1471          dst_start = 0;
1472       } while (remaining > 0);
1473    }
1474 
1475    const size_t size =
1476       sizeof(struct tu_descriptor_update_template) +
1477       sizeof(struct tu_descriptor_update_template_entry) * dst_entry_count;
1478    struct tu_descriptor_update_template *templ;
1479 
1480    templ = (struct tu_descriptor_update_template *) vk_object_alloc(
1481       &device->vk, pAllocator, size,
1482       VK_OBJECT_TYPE_DESCRIPTOR_UPDATE_TEMPLATE);
1483    if (!templ)
1484       return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
1485 
1486    templ->entry_count = dst_entry_count;
1487 
1488    if (pCreateInfo->templateType == VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_PUSH_DESCRIPTORS_KHR) {
1489       templ->bind_point = pCreateInfo->pipelineBindPoint;
1490    }
1491 
1492    uint32_t j = 0;
1493    for (uint32_t i = 0; i < entry_count; i++) {
1494       const VkDescriptorUpdateTemplateEntry *entry = &pCreateInfo->pDescriptorUpdateEntries[i];
1495 
1496       const struct tu_descriptor_set_binding_layout *binding_layout =
1497          set_layout->binding + entry->dstBinding;
1498       uint32_t dst_offset, dst_stride;
1499       const struct tu_sampler *immutable_samplers = NULL;
1500 
1501       /* dst_offset is an offset into dynamic_descriptors when the descriptor
1502        * is dynamic, and an offset into mapped_ptr otherwise.
1503        */
1504       switch (entry->descriptorType) {
1505       case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
1506       case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
1507          dst_offset = binding_layout->dynamic_offset_offset / 4;
1508          break;
1509       case VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK: {
1510          uint32_t remaining = entry->descriptorCount;
1511          uint32_t dst_start = entry->dstArrayElement;
1512          uint32_t src_offset = entry->offset;
1513          /* See comment in update_descriptor_sets() */
1514          do {
1515             dst_offset =
1516                binding_layout->offset + dst_start;
1517             uint32_t size = binding_layout->size;
1518             uint32_t count = MIN2(remaining, size - dst_start);
1519             templ->entry[j++] = (struct tu_descriptor_update_template_entry) {
1520                .descriptor_type = entry->descriptorType,
1521                .descriptor_count = count,
1522                .dst_offset = dst_offset,
1523                .src_offset = src_offset,
1524             };
1525             remaining -= count;
1526             src_offset += count;
1527             binding_layout++;
1528             dst_start = 0;
1529          } while (remaining > 0);
1530 
1531          continue;
1532       }
1533       case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
1534       case VK_DESCRIPTOR_TYPE_SAMPLER:
1535          if (pCreateInfo->templateType == VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_PUSH_DESCRIPTORS_KHR &&
1536              binding_layout->immutable_samplers_offset) {
1537             immutable_samplers =
1538                tu_immutable_samplers(set_layout, binding_layout) + entry->dstArrayElement;
1539          }
1540          FALLTHROUGH;
1541       default:
1542          dst_offset = binding_layout->offset / 4;
1543       }
1544 
1545       dst_offset += (binding_layout->size * entry->dstArrayElement) / 4;
1546       dst_stride = binding_layout->size / 4;
1547 
1548       templ->entry[j++] = (struct tu_descriptor_update_template_entry) {
1549          .descriptor_type = entry->descriptorType,
1550          .descriptor_count = entry->descriptorCount,
1551          .dst_offset = dst_offset,
1552          .dst_stride = dst_stride,
1553          .has_sampler = !binding_layout->immutable_samplers_offset,
1554          .src_offset = entry->offset,
1555          .src_stride = entry->stride,
1556          .immutable_samplers = immutable_samplers,
1557       };
1558    }
1559 
1560    assert(j == dst_entry_count);
1561 
1562    *pDescriptorUpdateTemplate =
1563       tu_descriptor_update_template_to_handle(templ);
1564 
1565    return VK_SUCCESS;
1566 }
1567 
1568 VKAPI_ATTR void VKAPI_CALL
tu_DestroyDescriptorUpdateTemplate(VkDevice _device,VkDescriptorUpdateTemplate descriptorUpdateTemplate,const VkAllocationCallbacks * pAllocator)1569 tu_DestroyDescriptorUpdateTemplate(
1570    VkDevice _device,
1571    VkDescriptorUpdateTemplate descriptorUpdateTemplate,
1572    const VkAllocationCallbacks *pAllocator)
1573 {
1574    VK_FROM_HANDLE(tu_device, device, _device);
1575    VK_FROM_HANDLE(tu_descriptor_update_template, templ,
1576                   descriptorUpdateTemplate);
1577 
1578    if (!templ)
1579       return;
1580 
1581    vk_object_free(&device->vk, pAllocator, templ);
1582 }
1583 
1584 void
tu_update_descriptor_set_with_template(const struct tu_device * device,struct tu_descriptor_set * set,VkDescriptorUpdateTemplate descriptorUpdateTemplate,const void * pData)1585 tu_update_descriptor_set_with_template(
1586    const struct tu_device *device,
1587    struct tu_descriptor_set *set,
1588    VkDescriptorUpdateTemplate descriptorUpdateTemplate,
1589    const void *pData)
1590 {
1591    VK_FROM_HANDLE(tu_descriptor_update_template, templ,
1592                   descriptorUpdateTemplate);
1593 
1594    for (uint32_t i = 0; i < templ->entry_count; i++) {
1595       uint32_t *ptr = set->mapped_ptr;
1596       const void *src = ((const char *) pData) + templ->entry[i].src_offset;
1597       const struct tu_sampler *samplers = templ->entry[i].immutable_samplers;
1598 
1599       if (templ->entry[i].descriptor_type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK) {
1600          memcpy(((uint8_t *) ptr) + templ->entry[i].dst_offset, src,
1601                 templ->entry[i].descriptor_count);
1602          continue;
1603       }
1604 
1605       ptr += templ->entry[i].dst_offset;
1606       unsigned dst_offset = templ->entry[i].dst_offset;
1607       for (unsigned j = 0; j < templ->entry[i].descriptor_count; ++j) {
1608          switch(templ->entry[i].descriptor_type) {
1609          case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC: {
1610             assert(!(set->layout->flags & VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR));
1611             write_ubo_descriptor(set->dynamic_descriptors + dst_offset,
1612                                  (const VkDescriptorBufferInfo *) src);
1613             break;
1614          }
1615          case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
1616             write_ubo_descriptor(ptr, (const VkDescriptorBufferInfo *) src);
1617             break;
1618          case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: {
1619             assert(!(set->layout->flags & VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR));
1620             write_buffer_descriptor(device,
1621                                     set->dynamic_descriptors + dst_offset,
1622                                     (const VkDescriptorBufferInfo *) src);
1623             break;
1624          }
1625          case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
1626             write_buffer_descriptor(device, ptr,
1627                                     (const VkDescriptorBufferInfo *) src);
1628             break;
1629          case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
1630          case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
1631             write_texel_buffer_descriptor(ptr, *(VkBufferView *) src);
1632             break;
1633          case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
1634          case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: {
1635             write_image_descriptor(ptr, templ->entry[i].descriptor_type,
1636                                    (const VkDescriptorImageInfo *) src);
1637             break;
1638          }
1639          case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
1640             write_combined_image_sampler_descriptor(ptr,
1641                                                     templ->entry[i].descriptor_type,
1642                                                     (const VkDescriptorImageInfo *) src,
1643                                                     templ->entry[i].has_sampler);
1644             if (samplers)
1645                write_sampler_push(ptr + A6XX_TEX_CONST_DWORDS, &samplers[j]);
1646             break;
1647          case VK_DESCRIPTOR_TYPE_SAMPLER:
1648             if (templ->entry[i].has_sampler)
1649                write_sampler_descriptor(ptr, ((const VkDescriptorImageInfo *)src)->sampler);
1650             else if (samplers)
1651                write_sampler_push(ptr, &samplers[j]);
1652             break;
1653          case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
1654             /* nothing in descriptor set - framebuffer state is used instead */
1655             if (TU_DEBUG(DYNAMIC))
1656                write_image_descriptor(ptr, templ->entry[i].descriptor_type,
1657                                       (const VkDescriptorImageInfo *) src);
1658             break;
1659          default:
1660             unreachable("unimplemented descriptor type");
1661             break;
1662          }
1663          src = (char *) src + templ->entry[i].src_stride;
1664          ptr += templ->entry[i].dst_stride;
1665          dst_offset += templ->entry[i].dst_stride;
1666       }
1667    }
1668 }
1669 
1670 VKAPI_ATTR void VKAPI_CALL
tu_UpdateDescriptorSetWithTemplate(VkDevice _device,VkDescriptorSet descriptorSet,VkDescriptorUpdateTemplate descriptorUpdateTemplate,const void * pData)1671 tu_UpdateDescriptorSetWithTemplate(
1672    VkDevice _device,
1673    VkDescriptorSet descriptorSet,
1674    VkDescriptorUpdateTemplate descriptorUpdateTemplate,
1675    const void *pData)
1676 {
1677    VK_FROM_HANDLE(tu_device, device, _device);
1678    VK_FROM_HANDLE(tu_descriptor_set, set, descriptorSet);
1679 
1680    tu_update_descriptor_set_with_template(device, set, descriptorUpdateTemplate, pData);
1681 }
1682