1 /*
2 * Copyright 2022 Google LLC
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "src/gpu/graphite/ClipStack_graphite.h"
9
10 #include "include/core/SkMatrix.h"
11 #include "include/core/SkShader.h"
12 #include "include/core/SkStrokeRec.h"
13 #include "src/base/SkTLazy.h"
14 #include "src/core/SkPathPriv.h"
15 #include "src/core/SkRRectPriv.h"
16 #include "src/core/SkRectPriv.h"
17 #include "src/gpu/graphite/Device.h"
18 #include "src/gpu/graphite/DrawParams.h"
19 #include "src/gpu/graphite/geom/BoundsManager.h"
20 #include "src/gpu/graphite/geom/Geometry.h"
21
22 namespace skgpu::graphite {
23
24 namespace {
25
subtract(const Rect & a,const Rect & b,bool exact)26 Rect subtract(const Rect& a, const Rect& b, bool exact) {
27 SkRect diff;
28 if (SkRectPriv::Subtract(a.asSkRect(), b.asSkRect(), &diff) || !exact) {
29 // Either A-B is exactly the rectangle stored in diff, or we don't need an exact answer
30 // and can settle for the subrect of A excluded from B (which is also 'diff')
31 return Rect{diff};
32 } else {
33 // For our purposes, we want the original A when A-B cannot be exactly represented
34 return a;
35 }
36 }
37
oriented_bbox_intersection(const Rect & a,const Transform & aXform,const Rect & b,const Transform & bXform)38 bool oriented_bbox_intersection(const Rect& a, const Transform& aXform,
39 const Rect& b, const Transform& bXform) {
40 // NOTE: We intentionally exclude projected bounds for two reasons:
41 // 1. We can skip the division by w and worring about clipping to w = 0.
42 // 2. W/o the projective case, the separating axes are simpler to compute (see below).
43 SkASSERT(aXform.type() != Transform::Type::kPerspective &&
44 bXform.type() != Transform::Type::kPerspective);
45 SkV4 quadA[4], quadB[4];
46
47 aXform.mapPoints(a, quadA);
48 bXform.mapPoints(b, quadB);
49
50 // There are 4 separating axes, defined by the two normals from quadA and from quadB, but
51 // since they were produced by transforming a rectangle by an affine transform, we know the
52 // normals are orthoganal to the basis vectors of upper 2x2 of their two transforms.
53 auto axesX = skvx::float4(-aXform.matrix().rc(1,0), -aXform.matrix().rc(1,1),
54 -bXform.matrix().rc(1,0), -bXform.matrix().rc(1,1));
55 auto axesY = skvx::float4(aXform.matrix().rc(0,0), aXform.matrix().rc(0,1),
56 bXform.matrix().rc(0,0), bXform.matrix().rc(0,1));
57
58 // Projections of the 4 corners of each quadrilateral vs. the 4 axes. For orthonormal
59 // transforms, the projections of a quad's corners to its own normal axes should work out
60 // to the original dimensions of the rectangle, but this code handles skew and scale factors
61 // without branching.
62 auto aProj0 = quadA[0].x * axesX + quadA[0].y * axesY;
63 auto aProj1 = quadA[1].x * axesX + quadA[1].y * axesY;
64 auto aProj2 = quadA[2].x * axesX + quadA[2].y * axesY;
65 auto aProj3 = quadA[3].x * axesX + quadA[3].y * axesY;
66
67 auto bProj0 = quadB[0].x * axesX + quadB[0].y * axesY;
68 auto bProj1 = quadB[1].x * axesX + quadB[1].y * axesY;
69 auto bProj2 = quadB[2].x * axesX + quadB[2].y * axesY;
70 auto bProj3 = quadB[3].x * axesX + quadB[3].y * axesY;
71
72 // Minimum and maximum projected values against the 4 axes, for both quadA and quadB, which
73 // gives us four pairs of intervals to test for separation.
74 auto minA = min(min(aProj0, aProj1), min(aProj2, aProj3));
75 auto maxA = max(max(aProj0, aProj1), max(aProj2, aProj3));
76 auto minB = min(min(bProj0, bProj1), min(bProj2, bProj3));
77 auto maxB = max(max(bProj0, bProj1), max(bProj2, bProj3));
78
79 auto overlaps = (minB <= maxA) & (minA <= maxB);
80 return all(overlaps); // any non-overlapping interval would imply no intersection
81 }
82
83 static constexpr Transform kIdentity = Transform::Identity();
84
85 } // anonymous namespace
86
87 ///////////////////////////////////////////////////////////////////////////////
88 // ClipStack::TransformedShape
89
90 // A flyweight object describing geometry, subject to a local-to-device transform.
91 // This can be used by SaveRecords, Elements, and draws to determine how two shape operations
92 // interact with each other, without needing to share a base class, friend each other, or have a
93 // template for each combination of two types.
94 struct ClipStack::TransformedShape {
95 const Transform& fLocalToDevice;
96 const Shape& fShape;
97 const Rect& fOuterBounds;
98 const Rect& fInnerBounds;
99
100 SkClipOp fOp;
101
102 // contains() performs a fair amount of work to be as accurate as possible since it can mean
103 // greatly simplifying the clip stack. However, in some contexts this isn't worth doing because
104 // the actual shape is only an approximation (save records), or there's no current way to take
105 // advantage of knowing this shape contains another (draws containing a clip hypothetically
106 // could replace their geometry to draw the clip directly, but that isn't implemented now).
107 bool fContainsChecksOnlyBounds = false;
108
109 bool intersects(const TransformedShape&) const;
110 bool contains(const TransformedShape&) const;
111 };
112
intersects(const TransformedShape & o) const113 bool ClipStack::TransformedShape::intersects(const TransformedShape& o) const {
114 if (!fOuterBounds.intersects(o.fOuterBounds)) {
115 return false;
116 }
117
118 if (fLocalToDevice.type() <= Transform::Type::kRectStaysRect &&
119 o.fLocalToDevice.type() <= Transform::Type::kRectStaysRect) {
120 // The two shape's coordinate spaces are different but both rect-stays-rect or simpler.
121 // This means, though, that their outer bounds approximations are tight to their transormed
122 // shape bounds. There's no point to do further tests given that and that we already found
123 // that these outer bounds *do* intersect.
124 return true;
125 } else if (fLocalToDevice == o.fLocalToDevice) {
126 // Since the two shape's local coordinate spaces are the same, we can compare shape
127 // bounds directly for a more accurate intersection test. We intentionally do not go
128 // further and do shape-specific intersection tests since these could have unknown
129 // complexity (for paths) and limited utility (e.g. two round rects that are disjoint
130 // solely from their corner curves).
131 return fShape.bounds().intersects(o.fShape.bounds());
132 } else if (fLocalToDevice.type() != Transform::Type::kPerspective &&
133 o.fLocalToDevice.type() != Transform::Type::kPerspective) {
134 // The shapes don't share the same coordinate system, and their approximate 'outer'
135 // bounds in device space could have substantial outsetting to contain the transformed
136 // shape (e.g. 45 degree rotation). Perform a more detailed check on their oriented
137 // bounding boxes.
138 return oriented_bbox_intersection(fShape.bounds(), fLocalToDevice,
139 o.fShape.bounds(), o.fLocalToDevice);
140 }
141 // Else multiple perspective transforms are involved, so assume intersection and allow the
142 // rasterizer to handle perspective clipping.
143 return true;
144 }
145
contains(const TransformedShape & o) const146 bool ClipStack::TransformedShape::contains(const TransformedShape& o) const {
147 if (fInnerBounds.contains(o.fOuterBounds)) {
148 return true;
149 }
150 // Skip more expensive contains() checks if configured not to, or if the extent of 'o' exceeds
151 // this shape's outer bounds. When that happens there must be some part of 'o' that cannot be
152 // contained in this shape.
153 if (fContainsChecksOnlyBounds || !fOuterBounds.contains(o.fOuterBounds)) {
154 return false;
155 }
156
157 if (fContainsChecksOnlyBounds) {
158 return false; // don't do any more work
159 }
160
161 if (fLocalToDevice == o.fLocalToDevice) {
162 // Test the shapes directly against each other, with a special check for a rrect+rrect
163 // containment (a intersect b == a implies b contains a) and paths (same gen ID, or same
164 // path for small paths means they contain each other).
165 static constexpr int kMaxPathComparePoints = 16;
166 if (fShape.isRRect() && o.fShape.isRRect()) {
167 return SkRRectPriv::ConservativeIntersect(fShape.rrect(), o.fShape.rrect())
168 == o.fShape.rrect();
169 } else if (fShape.isPath() && o.fShape.isPath()) {
170 // TODO: Is this worth doing still if clips only cost as much as a single draw?
171 return (fShape.path().getGenerationID() == o.fShape.path().getGenerationID()) ||
172 (fShape.path().countPoints() <= kMaxPathComparePoints &&
173 fShape.path() == o.fShape.path());
174 } else {
175 return fShape.conservativeContains(o.fShape.bounds());
176 }
177 } else if (fLocalToDevice.type() <= Transform::Type::kRectStaysRect &&
178 o.fLocalToDevice.type() <= Transform::Type::kRectStaysRect) {
179 // Optimize the common case where o's bounds can be mapped tightly into this coordinate
180 // space and then tested against our shape.
181 Rect localBounds = fLocalToDevice.inverseMapRect(
182 o.fLocalToDevice.mapRect(o.fShape.bounds()));
183 return fShape.conservativeContains(localBounds);
184 } else if (fShape.convex()) {
185 // Since this shape is convex, if all four corners of o's bounding box are inside it
186 // then the entirety of o is also guaranteed to be inside it.
187 SkV4 deviceQuad[4];
188 o.fLocalToDevice.mapPoints(o.fShape.bounds(), deviceQuad);
189 SkV4 localQuad[4];
190 fLocalToDevice.inverseMapPoints(deviceQuad, localQuad, 4);
191 for (int i = 0; i < 4; ++i) {
192 // TODO: Would be nice to make this consistent with how the GPU clips NDC w.
193 if (deviceQuad[i].w < SkPathPriv::kW0PlaneDistance ||
194 localQuad[i].w < SkPathPriv::kW0PlaneDistance) {
195 // Something in O actually projects behind the W = 0 plane and would be clipped
196 // to infinity, so it's extremely unlikely that this contains O.
197 return false;
198 }
199 if (!fShape.conservativeContains(skvx::float2::Load(localQuad + i) / localQuad[i].w)) {
200 return false;
201 }
202 }
203 return true;
204 }
205
206 // Else not an easily comparable pair of shapes so assume this doesn't contain O
207 return false;
208 }
209
Simplify(const TransformedShape & a,const TransformedShape & b)210 ClipStack::SimplifyResult ClipStack::Simplify(const TransformedShape& a,
211 const TransformedShape& b) {
212 enum class ClipCombo {
213 kDD = 0b00,
214 kDI = 0b01,
215 kID = 0b10,
216 kII = 0b11
217 };
218
219 switch(static_cast<ClipCombo>(((int) a.fOp << 1) | (int) b.fOp)) {
220 case ClipCombo::kII:
221 // Intersect (A) + Intersect (B)
222 if (!a.intersects(b)) {
223 // Regions with non-zero coverage are disjoint, so intersection = empty
224 return SimplifyResult::kEmpty;
225 } else if (b.contains(a)) {
226 // B's full coverage region contains entirety of A, so intersection = A
227 return SimplifyResult::kAOnly;
228 } else if (a.contains(b)) {
229 // A's full coverage region contains entirety of B, so intersection = B
230 return SimplifyResult::kBOnly;
231 } else {
232 // The shapes intersect in some non-trivial manner
233 return SimplifyResult::kBoth;
234 }
235 case ClipCombo::kID:
236 // Intersect (A) + Difference (B)
237 if (!a.intersects(b)) {
238 // A only intersects B's full coverage region, so intersection = A
239 return SimplifyResult::kAOnly;
240 } else if (b.contains(a)) {
241 // B's zero coverage region completely contains A, so intersection = empty
242 return SimplifyResult::kEmpty;
243 } else {
244 // Intersection cannot be simplified. Note that the combination of a intersect
245 // and difference op in this order cannot produce kBOnly
246 return SimplifyResult::kBoth;
247 }
248 case ClipCombo::kDI:
249 // Difference (A) + Intersect (B) - the mirror of Intersect(A) + Difference(B),
250 // but combining is commutative so this is equivalent barring naming.
251 if (!b.intersects(a)) {
252 // B only intersects A's full coverage region, so intersection = B
253 return SimplifyResult::kBOnly;
254 } else if (a.contains(b)) {
255 // A's zero coverage region completely contains B, so intersection = empty
256 return SimplifyResult::kEmpty;
257 } else {
258 // Cannot be simplified
259 return SimplifyResult::kBoth;
260 }
261 case ClipCombo::kDD:
262 // Difference (A) + Difference (B)
263 if (a.contains(b)) {
264 // A's zero coverage region contains B, so B doesn't remove any extra
265 // coverage from their intersection.
266 return SimplifyResult::kAOnly;
267 } else if (b.contains(a)) {
268 // Mirror of the above case, intersection = B instead
269 return SimplifyResult::kBOnly;
270 } else {
271 // Intersection of the two differences cannot be simplified. Note that for
272 // this op combination it is not possible to produce kEmpty.
273 return SimplifyResult::kBoth;
274 }
275 }
276 SkUNREACHABLE;
277 }
278
279 ///////////////////////////////////////////////////////////////////////////////
280 // ClipStack::Element
281
RawElement(const Rect & deviceBounds,const Transform & localToDevice,const Shape & shape,SkClipOp op,PixelSnapping snapping)282 ClipStack::RawElement::RawElement(const Rect& deviceBounds,
283 const Transform& localToDevice,
284 const Shape& shape,
285 SkClipOp op,
286 PixelSnapping snapping)
287 : Element{shape, localToDevice, op}
288 , fUsageBounds{Rect::InfiniteInverted()}
289 , fOrder(DrawOrder::kNoIntersection)
290 , fMaxZ(DrawOrder::kClearDepth)
291 , fInvalidatedByIndex(-1) {
292 // Discard shapes that don't have any area (including when a transform can't be inverted, since
293 // it means the two dimensions are collapsed to 0 or 1 dimension in device space).
294 if (fShape.isLine() || !localToDevice.valid()) {
295 fShape.reset();
296 }
297 // Make sure the shape is not inverted. An inverted shape is equivalent to a non-inverted shape
298 // with the clip op toggled.
299 if (fShape.inverted()) {
300 fOp = (fOp == SkClipOp::kIntersect) ? SkClipOp::kDifference : SkClipOp::kIntersect;
301 }
302
303 fOuterBounds = fLocalToDevice.mapRect(fShape.bounds()).makeIntersect(deviceBounds);
304 fInnerBounds = Rect::InfiniteInverted();
305
306 // Apply rect-stays-rect transforms to rects and round rects to reduce the number of unique
307 // local coordinate systems that are in play.
308 if (!fOuterBounds.isEmptyNegativeOrNaN() &&
309 fLocalToDevice.type() <= Transform::Type::kRectStaysRect) {
310 if (fShape.isRect()) {
311 // The actual geometry can be updated to the device-intersected bounds and we know the
312 // inner bounds are equal to the outer.
313 if (snapping == PixelSnapping::kYes) {
314 fOuterBounds.round();
315 }
316 fShape.setRect(fOuterBounds);
317 fLocalToDevice = kIdentity;
318 fInnerBounds = fOuterBounds;
319 } else if (fShape.isRRect()) {
320 // Can't transform in place and must still check transform result since some very
321 // ill-formed scale+translate matrices can cause invalid rrect radii.
322 SkRRect xformed;
323 if (fShape.rrect().transform(fLocalToDevice, &xformed)) {
324 if (snapping == PixelSnapping::kYes) {
325 // The rounded corners will still be anti-aliased, but snap the horizontal and
326 // vertical edges to pixel values.
327 xformed.setRectRadii(SkRect::Make(xformed.rect().round()),
328 xformed.radii().data());
329 }
330 fShape.setRRect(xformed);
331 fLocalToDevice = kIdentity;
332 // Refresh outer bounds to match the transformed round rect in case
333 // SkRRect::transform produces slightly different results from Transform::mapRect.
334 fOuterBounds = fShape.bounds().makeIntersect(deviceBounds);
335 fInnerBounds = Rect{SkRRectPriv::InnerBounds(xformed)}.makeIntersect(fOuterBounds);
336 }
337 }
338 }
339
340 if (fOuterBounds.isEmptyNegativeOrNaN()) {
341 // Either was already an empty shape or a non-empty shape is offscreen, so treat it as such.
342 fShape.reset();
343 fInnerBounds = Rect::InfiniteInverted();
344 }
345
346 // Now that fOp and fShape are canonical, set the shape's fill type to match how it needs to be
347 // drawn as a depth-only shape everywhere that is clipped out (intersect is thus inverse-filled)
348 fShape.setInverted(fOp == SkClipOp::kIntersect);
349
350 // Post-conditions on inner and outer bounds
351 SkASSERT(fShape.isEmpty() || deviceBounds.contains(fOuterBounds));
352 this->validate();
353 }
354
operator ClipStack::TransformedShape() const355 ClipStack::RawElement::operator ClipStack::TransformedShape() const {
356 return {fLocalToDevice, fShape, fOuterBounds, fInnerBounds, fOp};
357 }
358
drawClip(Device * device)359 void ClipStack::RawElement::drawClip(Device* device) {
360 this->validate();
361
362 // Skip elements that have not affected any draws
363 if (!this->hasPendingDraw()) {
364 SkASSERT(fUsageBounds.isEmptyNegativeOrNaN());
365 return;
366 }
367
368 SkASSERT(!fUsageBounds.isEmptyNegativeOrNaN());
369 // For clip draws, the usage bounds is the scissor.
370 Rect scissor = fUsageBounds.makeRoundOut();
371 Rect drawBounds = fOuterBounds.makeIntersect(scissor);
372 if (!drawBounds.isEmptyNegativeOrNaN()) {
373 // Although we are recording this clip draw after all the draws it affects, 'fOrder' was
374 // determined at the first usage, so after sorting by DrawOrder the clip draw will be in the
375 // right place. Unlike regular draws that use their own "Z", by writing (1 + max Z this clip
376 // affects), it will cause those draws to fail either GREATER and GEQUAL depth tests where
377 // they need to be clipped.
378 DrawOrder order{fMaxZ.next(), fOrder};
379 // An element's clip op is encoded in the shape's fill type. Inverse fills are intersect ops
380 // and regular fills are difference ops. This means fShape is already in the right state to
381 // draw directly.
382 SkASSERT((fOp == SkClipOp::kDifference && !fShape.inverted()) ||
383 (fOp == SkClipOp::kIntersect && fShape.inverted()));
384 device->drawClipShape(fLocalToDevice,
385 fShape,
386 Clip{drawBounds, drawBounds, scissor.asSkIRect(),
387 /* analyticClip= */ {}, /* shader= */ nullptr},
388 order);
389 }
390
391 // After the clip shape is drawn, reset its state. If the clip element is being popped off the
392 // stack or overwritten because a new clip invalidated it, this won't matter. But if the clips
393 // were drawn because the Device had to flush pending work while the clip stack was not empty,
394 // subsequent draws will still need to be clipped to the elements. In this case, the usage
395 // accumulation process will begin again and automatically use the Device's post-flush Z values
396 // and BoundsManager state.
397 fUsageBounds = Rect::InfiniteInverted();
398 fOrder = DrawOrder::kNoIntersection;
399 fMaxZ = DrawOrder::kClearDepth;
400 }
401
validate() const402 void ClipStack::RawElement::validate() const {
403 // If the shape type isn't empty, the outer bounds shouldn't be empty; if the inner bounds are
404 // not empty, they must be contained in outer.
405 SkASSERT((fShape.isEmpty() || !fOuterBounds.isEmptyNegativeOrNaN()) &&
406 (fInnerBounds.isEmptyNegativeOrNaN() || fOuterBounds.contains(fInnerBounds)));
407 SkASSERT((fOp == SkClipOp::kDifference && !fShape.inverted()) ||
408 (fOp == SkClipOp::kIntersect && fShape.inverted()));
409 SkASSERT(!this->hasPendingDraw() || !fUsageBounds.isEmptyNegativeOrNaN());
410 }
411
markInvalid(const SaveRecord & current)412 void ClipStack::RawElement::markInvalid(const SaveRecord& current) {
413 SkASSERT(!this->isInvalid());
414 fInvalidatedByIndex = current.firstActiveElementIndex();
415 // NOTE: We don't draw the accumulated clip usage when the element is marked invalid. Some
416 // invalidated elements are part of earlier save records so can become re-active after a restore
417 // in which case they should continue to accumulate. Invalidated elements that are part of the
418 // active save record are removed at the end of the stack modification, which is when they are
419 // explicitly drawn.
420 }
421
restoreValid(const SaveRecord & current)422 void ClipStack::RawElement::restoreValid(const SaveRecord& current) {
423 if (current.firstActiveElementIndex() < fInvalidatedByIndex) {
424 fInvalidatedByIndex = -1;
425 }
426 }
427
combine(const RawElement & other,const SaveRecord & current)428 bool ClipStack::RawElement::combine(const RawElement& other, const SaveRecord& current) {
429 // Don't combine elements that have collected draw usage, since that changes their geometry.
430 if (this->hasPendingDraw() || other.hasPendingDraw()) {
431 return false;
432 }
433 // To reduce the number of possibilities, only consider intersect+intersect. Difference and
434 // mixed op cases could be analyzed to simplify one of the shapes, but that is a rare
435 // occurrence and the math is much more complicated.
436 if (other.fOp != SkClipOp::kIntersect || fOp != SkClipOp::kIntersect) {
437 return false;
438 }
439
440 // At the moment, only rect+rect or rrect+rrect are supported (although rect+rrect is
441 // treated as a degenerate case of rrect+rrect).
442 bool shapeUpdated = false;
443 if (fShape.isRect() && other.fShape.isRect()) {
444 if (fLocalToDevice == other.fLocalToDevice) {
445 Rect intersection = fShape.rect().makeIntersect(other.fShape.rect());
446 // Simplify() should have caught this case
447 SkASSERT(!intersection.isEmptyNegativeOrNaN());
448 fShape.setRect(intersection);
449 shapeUpdated = true;
450 }
451 } else if ((fShape.isRect() || fShape.isRRect()) &&
452 (other.fShape.isRect() || other.fShape.isRRect())) {
453 if (fLocalToDevice == other.fLocalToDevice) {
454 // Treat rrect+rect intersections as rrect+rrect
455 SkRRect a = fShape.isRect() ? SkRRect::MakeRect(fShape.rect().asSkRect())
456 : fShape.rrect();
457 SkRRect b = other.fShape.isRect() ? SkRRect::MakeRect(other.fShape.rect().asSkRect())
458 : other.fShape.rrect();
459
460 SkRRect joined = SkRRectPriv::ConservativeIntersect(a, b);
461 if (!joined.isEmpty()) {
462 // Can reduce to a single element
463 if (joined.isRect()) {
464 // And with a simplified type
465 fShape.setRect(joined.rect());
466 } else {
467 fShape.setRRect(joined);
468 }
469 shapeUpdated = true;
470 }
471 // else the intersection isn't representable as a rrect, or doesn't actually intersect.
472 // ConservativeIntersect doesn't disambiguate those two cases, and just testing bounding
473 // boxes for non-intersection would have already been caught by Simplify(), so
474 // just don't combine the two elements and let rasterization resolve the combination.
475 }
476 }
477
478 if (shapeUpdated) {
479 // This logic works under the assumption that both combined elements were intersect.
480 SkASSERT(fOp == SkClipOp::kIntersect && other.fOp == SkClipOp::kIntersect);
481 fOuterBounds.intersect(other.fOuterBounds);
482 fInnerBounds.intersect(other.fInnerBounds);
483 // Inner bounds can become empty, but outer bounds should not be able to.
484 SkASSERT(!fOuterBounds.isEmptyNegativeOrNaN());
485 fShape.setInverted(true); // the setR[R]ect operations reset to non-inverse
486 this->validate();
487 return true;
488 } else {
489 return false;
490 }
491 }
492
updateForElement(RawElement * added,const SaveRecord & current)493 void ClipStack::RawElement::updateForElement(RawElement* added, const SaveRecord& current) {
494 if (this->isInvalid()) {
495 // Already doesn't do anything, so skip this element
496 return;
497 }
498
499 // 'A' refers to this element, 'B' refers to 'added'.
500 switch (Simplify(*this, *added)) {
501 case SimplifyResult::kEmpty:
502 // Mark both elements as invalid to signal that the clip is fully empty
503 this->markInvalid(current);
504 added->markInvalid(current);
505 break;
506
507 case SimplifyResult::kAOnly:
508 // This element already clips more than 'added', so mark 'added' is invalid to skip it
509 added->markInvalid(current);
510 break;
511
512 case SimplifyResult::kBOnly:
513 // 'added' clips more than this element, so mark this as invalid
514 this->markInvalid(current);
515 break;
516
517 case SimplifyResult::kBoth:
518 // Else the bounds checks think we need to keep both, but depending on the combination
519 // of the ops and shape kinds, we may be able to do better.
520 if (added->combine(*this, current)) {
521 // 'added' now fully represents the combination of the two elements
522 this->markInvalid(current);
523 }
524 break;
525 }
526 }
527
528 ClipStack::RawElement::DrawInfluence
testForDraw(const TransformedShape & draw) const529 ClipStack::RawElement::testForDraw(const TransformedShape& draw) const {
530 if (this->isInvalid()) {
531 // Cannot affect the draw
532 return DrawInfluence::kNone;
533 }
534
535 // For this analysis, A refers to the Element and B refers to the draw
536 switch(Simplify(*this, draw)) {
537 case SimplifyResult::kEmpty:
538 // The more detailed per-element checks have determined the draw is clipped out.
539 return DrawInfluence::kClipOut;
540
541 case SimplifyResult::kBOnly:
542 // This element does not affect the draw
543 return DrawInfluence::kNone;
544
545 case SimplifyResult::kAOnly:
546 // If this were the only element, we could replace the draw's geometry but that only
547 // gives us a win if we know that the clip element would only be used by this draw.
548 // For now, just fall through to regular clip handling.
549 [[fallthrough]];
550
551 case SimplifyResult::kBoth:
552 return DrawInfluence::kIntersect;
553 }
554
555 SkUNREACHABLE;
556 }
557
updateForDraw(const BoundsManager * boundsManager,const Rect & drawBounds,PaintersDepth drawZ)558 CompressedPaintersOrder ClipStack::RawElement::updateForDraw(const BoundsManager* boundsManager,
559 const Rect& drawBounds,
560 PaintersDepth drawZ) {
561 SkASSERT(!this->isInvalid());
562 SkASSERT(!drawBounds.isEmptyNegativeOrNaN());
563
564 if (!this->hasPendingDraw()) {
565 // No usage yet so we need an order that we will use when drawing to just the depth
566 // attachment. It is sufficient to use the next CompressedPaintersOrder after the
567 // most recent draw under this clip's outer bounds. It is necessary to use the
568 // entire clip's outer bounds because the order has to be determined before the
569 // final usage bounds are known and a subsequent draw could require a completely
570 // different portion of the clip than this triggering draw.
571 //
572 // Lazily determining the order has several benefits to computing it when the clip
573 // element was first created:
574 // - Elements that are invalidated by nested clips before draws are made do not
575 // waste time in the BoundsManager.
576 // - Elements that never actually modify a draw (e.g. a defensive clip) do not
577 // waste time in the BoundsManager.
578 // - A draw that triggers clip usage on multiple elements will more likely assign
579 // the same order to those elements, meaning their depth-only draws are more
580 // likely to batch in the final DrawPass.
581 //
582 // However, it does mean that clip elements can have the same order as each other,
583 // or as later draws (e.g. after the clip has been popped off the stack). Any
584 // overlap between clips or draws is addressed when the clip is drawn by selecting
585 // an appropriate DisjointStencilIndex value. Stencil-aside, this order assignment
586 // logic, max Z tracking, and the depth test during rasterization are able to
587 // resolve everything correctly even if clips have the same order value.
588 // See go/clip-stack-order for a detailed analysis of why this works.
589 fOrder = boundsManager->getMostRecentDraw(fOuterBounds).next();
590 fUsageBounds = drawBounds;
591 fMaxZ = drawZ;
592 } else {
593 // Earlier draws have already used this element so we cannot change where the
594 // depth-only draw will be sorted to, but we need to ensure we cover the new draw's
595 // bounds and use a Z value that will clip out its pixels as appropriate.
596 fUsageBounds.join(drawBounds);
597 if (drawZ > fMaxZ) {
598 fMaxZ = drawZ;
599 }
600 }
601
602 return fOrder;
603 }
604
clipType() const605 ClipStack::ClipState ClipStack::RawElement::clipType() const {
606 // Map from the internal shape kind to the clip state enum
607 switch (fShape.type()) {
608 case Shape::Type::kEmpty:
609 return ClipState::kEmpty;
610
611 case Shape::Type::kRect:
612 return fOp == SkClipOp::kIntersect &&
613 fLocalToDevice.type() == Transform::Type::kIdentity
614 ? ClipState::kDeviceRect : ClipState::kComplex;
615
616 case Shape::Type::kRRect:
617 return fOp == SkClipOp::kIntersect &&
618 fLocalToDevice.type() == Transform::Type::kIdentity
619 ? ClipState::kDeviceRRect : ClipState::kComplex;
620
621 case Shape::Type::kArc:
622 case Shape::Type::kLine:
623 // These types should never become RawElements, but call them kComplex in release builds
624 SkASSERT(false);
625 [[fallthrough]];
626
627 case Shape::Type::kPath:
628 return ClipState::kComplex;
629 }
630 SkUNREACHABLE;
631 }
632
633 ///////////////////////////////////////////////////////////////////////////////
634 // ClipStack::SaveRecord
635
SaveRecord(const Rect & deviceBounds)636 ClipStack::SaveRecord::SaveRecord(const Rect& deviceBounds)
637 : fInnerBounds(deviceBounds)
638 , fOuterBounds(deviceBounds)
639 , fShader(nullptr)
640 , fStartingElementIndex(0)
641 , fOldestValidIndex(0)
642 , fDeferredSaveCount(0)
643 , fStackOp(SkClipOp::kIntersect)
644 , fState(ClipState::kWideOpen) {}
645
SaveRecord(const SaveRecord & prior,int startingElementIndex)646 ClipStack::SaveRecord::SaveRecord(const SaveRecord& prior,
647 int startingElementIndex)
648 : fInnerBounds(prior.fInnerBounds)
649 , fOuterBounds(prior.fOuterBounds)
650 , fShader(prior.fShader)
651 , fStartingElementIndex(startingElementIndex)
652 , fOldestValidIndex(prior.fOldestValidIndex)
653 , fDeferredSaveCount(0)
654 , fStackOp(prior.fStackOp)
655 , fState(prior.fState) {
656 // If the prior record added an element, this one will insert into the same index
657 // (that's okay since we'll remove it when this record is popped off the stack).
658 SkASSERT(startingElementIndex >= prior.fStartingElementIndex);
659 }
660
state() const661 ClipStack::ClipState ClipStack::SaveRecord::state() const {
662 if (fShader && fState != ClipState::kEmpty) {
663 return ClipState::kComplex;
664 } else {
665 return fState;
666 }
667 }
668
scissor(const Rect & deviceBounds,const Rect & drawBounds) const669 Rect ClipStack::SaveRecord::scissor(const Rect& deviceBounds, const Rect& drawBounds) const {
670 // This should only be called when the clip stack actually has something non-trivial to evaluate
671 // It is effectively a reduced version of Simplify() dealing only with device-space bounds and
672 // returning the intersection results.
673 SkASSERT(this->state() != ClipState::kEmpty && this->state() != ClipState::kWideOpen);
674 SkASSERT(deviceBounds.contains(drawBounds)); // This should have already been handled.
675
676 if (fStackOp == SkClipOp::kDifference) {
677 // kDifference nominally uses the draw's bounds minus the save record's inner bounds as the
678 // scissor. However, if the draw doesn't intersect the clip at all then it doesn't have any
679 // visual effect and we can switch to the device bounds as the canonical scissor.
680 if (!fOuterBounds.intersects(drawBounds)) {
681 return deviceBounds;
682 } else {
683 // This automatically detects the case where the draw is contained in inner bounds and
684 // would be entirely clipped out.
685 return subtract(drawBounds, fInnerBounds, /*exact=*/true);
686 }
687 } else {
688 // kIntersect nominally uses the save record's outer bounds as the scissor. However, if the
689 // draw is contained entirely within those bounds, it doesn't have any visual effect so
690 // switch to using the device bounds as the canonical scissor to minimize state changes.
691 if (fOuterBounds.contains(drawBounds)) {
692 return deviceBounds;
693 } else {
694 // This automatically detects the case where the draw does not intersect the clip.
695 return fOuterBounds;
696 }
697 }
698 }
699
removeElements(RawElement::Stack * elements,Device * device)700 void ClipStack::SaveRecord::removeElements(RawElement::Stack* elements, Device* device) {
701 while (elements->count() > fStartingElementIndex) {
702 // Since the element is being deleted now, it won't be in the ClipStack when the Device
703 // calls recordDeferredClipDraws(). Record the clip's draw now (if it needs it).
704 elements->back().drawClip(device);
705 elements->pop_back();
706 }
707 }
708
restoreElements(RawElement::Stack * elements)709 void ClipStack::SaveRecord::restoreElements(RawElement::Stack* elements) {
710 // Presumably this SaveRecord is the new top of the stack, and so it owns the elements
711 // from its starting index to restoreCount - 1. Elements from the old save record have
712 // been destroyed already, so their indices would have been >= restoreCount, and any
713 // still-present element can be un-invalidated based on that.
714 int i = elements->count() - 1;
715 for (RawElement& e : elements->ritems()) {
716 if (i < fOldestValidIndex) {
717 break;
718 }
719 e.restoreValid(*this);
720 --i;
721 }
722 }
723
addShader(sk_sp<SkShader> shader)724 void ClipStack::SaveRecord::addShader(sk_sp<SkShader> shader) {
725 SkASSERT(shader);
726 SkASSERT(this->canBeUpdated());
727 if (!fShader) {
728 fShader = std::move(shader);
729 } else {
730 // The total coverage is computed by multiplying the coverage from each element (shape or
731 // shader), but since multiplication is associative, we can use kSrcIn blending to make
732 // a new shader that represents 'shader' * 'fShader'
733 fShader = SkShaders::Blend(SkBlendMode::kSrcIn, std::move(shader), fShader);
734 }
735 }
736
addElement(RawElement && toAdd,RawElement::Stack * elements,Device * device)737 bool ClipStack::SaveRecord::addElement(RawElement&& toAdd,
738 RawElement::Stack* elements,
739 Device* device) {
740 // Validity check the element's state first
741 toAdd.validate();
742
743 // And we shouldn't be adding an element if we have a deferred save
744 SkASSERT(this->canBeUpdated());
745
746 if (fState == ClipState::kEmpty) {
747 // The clip is already empty, and we only shrink, so there's no need to record this element.
748 return false;
749 } else if (toAdd.shape().isEmpty()) {
750 // An empty difference op should have been detected earlier, since it's a no-op
751 SkASSERT(toAdd.op() == SkClipOp::kIntersect);
752 fState = ClipState::kEmpty;
753 this->removeElements(elements, device);
754 return true;
755 }
756
757 // Here we treat the SaveRecord as a "TransformedShape" with the identity transform, and a shape
758 // equal to its outer bounds. This lets us get accurate intersection tests against the new
759 // element, but we pass true to skip more detailed contains checks because the SaveRecord's
760 // shape is potentially very different from its aggregate outer bounds.
761 Shape outerSaveBounds{fOuterBounds};
762 TransformedShape save{kIdentity, outerSaveBounds, fOuterBounds, fInnerBounds, fStackOp,
763 /*containsChecksOnlyBounds=*/true};
764
765 // In this invocation, 'A' refers to the existing stack's bounds and 'B' refers to the new
766 // element.
767 switch (Simplify(save, toAdd)) {
768 case SimplifyResult::kEmpty:
769 // The combination results in an empty clip
770 fState = ClipState::kEmpty;
771 this->removeElements(elements, device);
772 return true;
773
774 case SimplifyResult::kAOnly:
775 // The combination would not be any different than the existing clip
776 return false;
777
778 case SimplifyResult::kBOnly:
779 // The combination would invalidate the entire existing stack and can be replaced with
780 // just the new element.
781 this->replaceWithElement(std::move(toAdd), elements, device);
782 return true;
783
784 case SimplifyResult::kBoth:
785 // The new element combines in a complex manner, so update the stack's bounds based on
786 // the combination of its and the new element's ops (handled below)
787 break;
788 }
789
790 if (fState == ClipState::kWideOpen) {
791 // When the stack was wide open and the clip effect was kBoth, the "complex" manner is
792 // simply to keep the element and update the stack bounds to be the element's intersected
793 // with the device.
794 this->replaceWithElement(std::move(toAdd), elements, device);
795 return true;
796 }
797
798 // Some form of actual clip element(s) to combine with.
799 if (fStackOp == SkClipOp::kIntersect) {
800 if (toAdd.op() == SkClipOp::kIntersect) {
801 // Intersect (stack) + Intersect (toAdd)
802 // - Bounds updates is simply the paired intersections of outer and inner.
803 fOuterBounds.intersect(toAdd.outerBounds());
804 fInnerBounds.intersect(toAdd.innerBounds());
805 // Outer should not have become empty, but is allowed to if there's no intersection.
806 SkASSERT(!fOuterBounds.isEmptyNegativeOrNaN());
807 } else {
808 // Intersect (stack) + Difference (toAdd)
809 // - Shrink the stack's outer bounds if the difference op's inner bounds completely
810 // cuts off an edge.
811 // - Shrink the stack's inner bounds to completely exclude the op's outer bounds.
812 fOuterBounds = subtract(fOuterBounds, toAdd.innerBounds(), /* exact */ true);
813 fInnerBounds = subtract(fInnerBounds, toAdd.outerBounds(), /* exact */ false);
814 }
815 } else {
816 if (toAdd.op() == SkClipOp::kIntersect) {
817 // Difference (stack) + Intersect (toAdd)
818 // - Bounds updates are just the mirror of Intersect(stack) + Difference(toAdd)
819 Rect oldOuter = fOuterBounds;
820 fOuterBounds = subtract(toAdd.outerBounds(), fInnerBounds, /* exact */ true);
821 fInnerBounds = subtract(toAdd.innerBounds(), oldOuter, /* exact */ false);
822 } else {
823 // Difference (stack) + Difference (toAdd)
824 // - The updated outer bounds is the union of outer bounds and the inner becomes the
825 // largest of the two possible inner bounds
826 fOuterBounds.join(toAdd.outerBounds());
827 if (toAdd.innerBounds().area() > fInnerBounds.area()) {
828 fInnerBounds = toAdd.innerBounds();
829 }
830 }
831 }
832
833 // If we get here, we're keeping the new element and the stack's bounds have been updated.
834 // We ought to have caught the cases where the stack bounds resemble an empty or wide open
835 // clip, so assert that's the case.
836 SkASSERT(!fOuterBounds.isEmptyNegativeOrNaN() &&
837 (fInnerBounds.isEmptyNegativeOrNaN() || fOuterBounds.contains(fInnerBounds)));
838
839 return this->appendElement(std::move(toAdd), elements, device);
840 }
841
appendElement(RawElement && toAdd,RawElement::Stack * elements,Device * device)842 bool ClipStack::SaveRecord::appendElement(RawElement&& toAdd,
843 RawElement::Stack* elements,
844 Device* device) {
845 // Update past elements to account for the new element
846 int i = elements->count() - 1;
847
848 // After the loop, elements between [max(youngestValid, startingIndex)+1, count-1] can be
849 // removed from the stack (these are the active elements that have been invalidated by the
850 // newest element; since it's the active part of the stack, no restore() can bring them back).
851 int youngestValid = fStartingElementIndex - 1;
852 // After the loop, elements between [0, oldestValid-1] are all invalid. The value of oldestValid
853 // becomes the save record's new fLastValidIndex value.
854 int oldestValid = elements->count();
855 // After the loop, this is the earliest active element that was invalidated. It may be
856 // older in the stack than earliestValid, so cannot be popped off, but can be used to store
857 // the new element instead of allocating more.
858 RawElement* oldestActiveInvalid = nullptr;
859 int oldestActiveInvalidIndex = elements->count();
860
861 for (RawElement& existing : elements->ritems()) {
862 if (i < fOldestValidIndex) {
863 break;
864 }
865 // We don't need to pass the actual index that toAdd will be saved to; just the minimum
866 // index of this save record, since that will result in the same restoration behavior later.
867 existing.updateForElement(&toAdd, *this);
868
869 if (toAdd.isInvalid()) {
870 if (existing.isInvalid()) {
871 // Both new and old invalid implies the entire clip becomes empty
872 fState = ClipState::kEmpty;
873 return true;
874 } else {
875 // The new element doesn't change the clip beyond what the old element already does
876 return false;
877 }
878 } else if (existing.isInvalid()) {
879 // The new element cancels out the old element. The new element may have been modified
880 // to account for the old element's geometry.
881 if (i >= fStartingElementIndex) {
882 // Still active, so the invalidated index could be used to store the new element
883 oldestActiveInvalid = &existing;
884 oldestActiveInvalidIndex = i;
885 }
886 } else {
887 // Keep both new and old elements
888 oldestValid = i;
889 if (i > youngestValid) {
890 youngestValid = i;
891 }
892 }
893
894 --i;
895 }
896
897 // Post-iteration validity check
898 SkASSERT(oldestValid == elements->count() ||
899 (oldestValid >= fOldestValidIndex && oldestValid < elements->count()));
900 SkASSERT(youngestValid == fStartingElementIndex - 1 ||
901 (youngestValid >= fStartingElementIndex && youngestValid < elements->count()));
902 SkASSERT((oldestActiveInvalid && oldestActiveInvalidIndex >= fStartingElementIndex &&
903 oldestActiveInvalidIndex < elements->count()) || !oldestActiveInvalid);
904
905 // Update final state
906 SkASSERT(oldestValid >= fOldestValidIndex);
907 fOldestValidIndex = std::min(oldestValid, oldestActiveInvalidIndex);
908 fState = oldestValid == elements->count() ? toAdd.clipType() : ClipState::kComplex;
909 if (fStackOp == SkClipOp::kDifference && toAdd.op() == SkClipOp::kIntersect) {
910 // The stack remains in difference mode only as long as all elements are difference
911 fStackOp = SkClipOp::kIntersect;
912 }
913
914 int targetCount = youngestValid + 1;
915 if (!oldestActiveInvalid || oldestActiveInvalidIndex >= targetCount) {
916 // toAdd will be stored right after youngestValid
917 targetCount++;
918 oldestActiveInvalid = nullptr;
919 }
920 while (elements->count() > targetCount) {
921 SkASSERT(oldestActiveInvalid != &elements->back()); // shouldn't delete what we'll reuse
922 elements->back().drawClip(device);
923 elements->pop_back();
924 }
925 if (oldestActiveInvalid) {
926 oldestActiveInvalid->drawClip(device);
927 *oldestActiveInvalid = std::move(toAdd);
928 } else if (elements->count() < targetCount) {
929 elements->push_back(std::move(toAdd));
930 } else {
931 elements->back().drawClip(device);
932 elements->back() = std::move(toAdd);
933 }
934
935 return true;
936 }
937
replaceWithElement(RawElement && toAdd,RawElement::Stack * elements,Device * device)938 void ClipStack::SaveRecord::replaceWithElement(RawElement&& toAdd,
939 RawElement::Stack* elements,
940 Device* device) {
941 // The aggregate state of the save record mirrors the element
942 fInnerBounds = toAdd.innerBounds();
943 fOuterBounds = toAdd.outerBounds();
944 fStackOp = toAdd.op();
945 fState = toAdd.clipType();
946
947 // All prior active element can be removed from the stack: [startingIndex, count - 1]
948 int targetCount = fStartingElementIndex + 1;
949 while (elements->count() > targetCount) {
950 elements->back().drawClip(device);
951 elements->pop_back();
952 }
953 if (elements->count() < targetCount) {
954 elements->push_back(std::move(toAdd));
955 } else {
956 elements->back().drawClip(device);
957 elements->back() = std::move(toAdd);
958 }
959
960 SkASSERT(elements->count() == fStartingElementIndex + 1);
961
962 // This invalidates all older elements that are owned by save records lower in the clip stack.
963 fOldestValidIndex = fStartingElementIndex;
964 }
965
966 ///////////////////////////////////////////////////////////////////////////////
967 // ClipStack
968
969 // NOTE: Based on draw calls in all GMs, SKPs, and SVGs as of 08/20, 98% use a clip stack with
970 // one Element and up to two SaveRecords, thus the inline size for RawElement::Stack and
971 // SaveRecord::Stack (this conveniently keeps the size of ClipStack manageable). The max
972 // encountered element stack depth was 5 and the max save depth was 6. Using an increment of 8 for
973 // these stacks means that clip management will incur a single allocation for the remaining 2%
974 // of the draws, with extra head room for more complex clips encountered in the wild.
975 static constexpr int kElementStackIncrement = 8;
976 static constexpr int kSaveStackIncrement = 8;
977
ClipStack(Device * owningDevice)978 ClipStack::ClipStack(Device* owningDevice)
979 : fElements(kElementStackIncrement)
980 , fSaves(kSaveStackIncrement)
981 , fDevice(owningDevice) {
982 // Start with a save record that is wide open
983 fSaves.emplace_back(this->deviceBounds());
984 }
985
986 ClipStack::~ClipStack() = default;
987
save()988 void ClipStack::save() {
989 SkASSERT(!fSaves.empty());
990 fSaves.back().pushSave();
991 }
992
restore()993 void ClipStack::restore() {
994 SkASSERT(!fSaves.empty());
995 SaveRecord& current = fSaves.back();
996 if (current.popSave()) {
997 // This was just a deferred save being undone, so the record doesn't need to be removed yet
998 return;
999 }
1000
1001 // When we remove a save record, we delete all elements >= its starting index and any masks
1002 // that were rasterized for it.
1003 current.removeElements(&fElements, fDevice);
1004
1005 fSaves.pop_back();
1006 // Restore any remaining elements that were only invalidated by the now-removed save record.
1007 fSaves.back().restoreElements(&fElements);
1008 }
1009
deviceBounds() const1010 Rect ClipStack::deviceBounds() const {
1011 return Rect::WH(fDevice->width(), fDevice->height());
1012 }
1013
conservativeBounds() const1014 Rect ClipStack::conservativeBounds() const {
1015 const SaveRecord& current = this->currentSaveRecord();
1016 if (current.state() == ClipState::kEmpty) {
1017 return Rect::InfiniteInverted();
1018 } else if (current.state() == ClipState::kWideOpen) {
1019 return this->deviceBounds();
1020 } else {
1021 if (current.op() == SkClipOp::kDifference) {
1022 // The outer/inner bounds represent what's cut out, so full bounds remains the device
1023 // bounds, minus any fully clipped content that spans the device edge.
1024 return subtract(this->deviceBounds(), current.innerBounds(), /* exact */ true);
1025 } else {
1026 SkASSERT(this->deviceBounds().contains(current.outerBounds()));
1027 return current.outerBounds();
1028 }
1029 }
1030 }
1031
writableSaveRecord(bool * wasDeferred)1032 ClipStack::SaveRecord& ClipStack::writableSaveRecord(bool* wasDeferred) {
1033 SaveRecord& current = fSaves.back();
1034 if (current.canBeUpdated()) {
1035 // Current record is still open, so it can be modified directly
1036 *wasDeferred = false;
1037 return current;
1038 } else {
1039 // Must undefer the save to get a new record.
1040 SkAssertResult(current.popSave());
1041 *wasDeferred = true;
1042 return fSaves.emplace_back(current, fElements.count());
1043 }
1044 }
1045
clipShader(sk_sp<SkShader> shader)1046 void ClipStack::clipShader(sk_sp<SkShader> shader) {
1047 // Shaders can't bring additional coverage
1048 if (this->currentSaveRecord().state() == ClipState::kEmpty) {
1049 return;
1050 }
1051
1052 bool wasDeferred;
1053 this->writableSaveRecord(&wasDeferred).addShader(std::move(shader));
1054 // Geometry elements are not invalidated by updating the clip shader
1055 // TODO(b/238763003): Integrating clipShader into graphite needs more thought, particularly how
1056 // to handle the shader explosion and where to put the effects in the GraphicsPipelineDesc.
1057 // One idea is to use sample locations and draw the clipShader into the depth buffer.
1058 // Another is resolve the clip shader into an alpha mask image that is sampled by the draw.
1059 }
1060
clipShape(const Transform & localToDevice,const Shape & shape,SkClipOp op,PixelSnapping snapping)1061 void ClipStack::clipShape(const Transform& localToDevice,
1062 const Shape& shape,
1063 SkClipOp op,
1064 PixelSnapping snapping) {
1065 if (this->currentSaveRecord().state() == ClipState::kEmpty) {
1066 return;
1067 }
1068
1069 // This will apply the transform if it's shape-type preserving, and clip the element's bounds
1070 // to the device bounds (NOT the conservative clip bounds, since those are based on the net
1071 // effect of all elements while device bounds clipping happens implicitly. During addElement,
1072 // we may still be able to invalidate some older elements).
1073 // NOTE: Does not try to simplify the shape type by inspecting the SkPath.
1074 RawElement element{this->deviceBounds(), localToDevice, shape, op, snapping};
1075
1076 // An empty op means do nothing (for difference), or close the save record, so we try and detect
1077 // that early before doing additional unnecessary save record allocation.
1078 if (element.shape().isEmpty()) {
1079 if (element.op() == SkClipOp::kDifference) {
1080 // If the shape is empty and we're subtracting, this has no effect on the clip
1081 return;
1082 }
1083 // else we will make the clip empty, but we need a new save record to record that change
1084 // in the clip state; fall through to below and updateForElement() will handle it.
1085 }
1086
1087 bool wasDeferred;
1088 SaveRecord& save = this->writableSaveRecord(&wasDeferred);
1089 SkDEBUGCODE(int elementCount = fElements.count();)
1090 if (!save.addElement(std::move(element), &fElements, fDevice)) {
1091 if (wasDeferred) {
1092 // We made a new save record, but ended up not adding an element to the stack.
1093 // So instead of keeping an empty save record around, pop it off and restore the counter
1094 SkASSERT(elementCount == fElements.count());
1095 fSaves.pop_back();
1096 fSaves.back().pushSave();
1097 }
1098 }
1099 }
1100
1101 // Decide whether we can use this shape to do analytic clipping. Only rects and certain
1102 // rrects are supported. We assume these have been pre-transformed by the RawElement
1103 // constructor, so only identity transforms are allowed.
1104 namespace {
can_apply_analytic_clip(const Shape & shape,const Transform & localToDevice)1105 CircularRRectClip can_apply_analytic_clip(const Shape& shape,
1106 const Transform& localToDevice) {
1107 if (localToDevice.type() != Transform::Type::kIdentity) {
1108 return {};
1109 }
1110
1111 // The circular rrect clip only handles rrect radii >= kRadiusMin.
1112 static constexpr SkScalar kRadiusMin = SK_ScalarHalf;
1113
1114 // Can handle Rect directly.
1115 if (shape.isRect()) {
1116 return {shape.rect(), kRadiusMin, CircularRRectClip::kNone_EdgeFlag, shape.inverted()};
1117 }
1118
1119 // Otherwise we only handle certain kinds of RRects.
1120 if (!shape.isRRect()) {
1121 return {};
1122 }
1123
1124 const SkRRect& rrect = shape.rrect();
1125 if (rrect.isOval() || rrect.isSimple()) {
1126 SkVector radii = SkRRectPriv::GetSimpleRadii(rrect);
1127 if (radii.fX < kRadiusMin || radii.fY < kRadiusMin) {
1128 // In this case the corners are extremely close to rectangular and we collapse the
1129 // clip to a rectangular clip.
1130 return {rrect.rect(), kRadiusMin, CircularRRectClip::kNone_EdgeFlag, shape.inverted()};
1131 }
1132 if (SkScalarNearlyEqual(radii.fX, radii.fY)) {
1133 return {rrect.rect(), radii.fX, CircularRRectClip::kAll_EdgeFlag, shape.inverted()};
1134 } else {
1135 return {};
1136 }
1137 }
1138
1139 if (rrect.isComplex() || rrect.isNinePatch()) {
1140 // Check for the "tab" cases - two adjacent circular corners and two square corners.
1141 constexpr uint32_t kCornerFlags[4] = {
1142 CircularRRectClip::kTop_EdgeFlag | CircularRRectClip::kLeft_EdgeFlag,
1143 CircularRRectClip::kTop_EdgeFlag | CircularRRectClip::kRight_EdgeFlag,
1144 CircularRRectClip::kBottom_EdgeFlag | CircularRRectClip::kRight_EdgeFlag,
1145 CircularRRectClip::kBottom_EdgeFlag | CircularRRectClip::kLeft_EdgeFlag,
1146 };
1147 SkScalar circularRadius = 0;
1148 uint32_t edgeFlags = 0;
1149 for (int corner = 0; corner < 4; ++corner) {
1150 SkVector radii = rrect.radii((SkRRect::Corner)corner);
1151 // Can only handle circular radii.
1152 // Also applies to corners with both zero and non-zero radii.
1153 if (!SkScalarNearlyEqual(radii.fX, radii.fY)) {
1154 return {};
1155 }
1156 if (radii.fX < kRadiusMin || radii.fY < kRadiusMin) {
1157 // The corner is square, so no need to flag as circular.
1158 continue;
1159 }
1160 // First circular corner seen
1161 if (!edgeFlags) {
1162 circularRadius = radii.fX;
1163 } else if (!SkScalarNearlyEqual(radii.fX, circularRadius)) {
1164 // Radius doesn't match previously seen circular radius
1165 return {};
1166 }
1167 edgeFlags |= kCornerFlags[corner];
1168 }
1169
1170 if (edgeFlags == CircularRRectClip::kNone_EdgeFlag) {
1171 // It's a rect
1172 return {rrect.rect(), kRadiusMin, edgeFlags, shape.inverted()};
1173 } else {
1174 // If any rounded corner pairs are non-adjacent or if there are three rounded
1175 // corners all edge flags will be set, which is not valid.
1176 if (edgeFlags == CircularRRectClip::kAll_EdgeFlag) {
1177 return {};
1178 // At least one corner is rounded, or two adjacent corners are rounded.
1179 } else {
1180 return {rrect.rect(), circularRadius, edgeFlags, shape.inverted()};
1181 }
1182 }
1183 }
1184
1185 return {};
1186 }
1187 } // anonymous namespace
1188
visitClipStackForDraw(const Transform & localToDevice,const Geometry & geometry,const SkStrokeRec & style,bool outsetBoundsForAA,ClipStack::ElementList * outEffectiveElements) const1189 Clip ClipStack::visitClipStackForDraw(const Transform& localToDevice,
1190 const Geometry& geometry,
1191 const SkStrokeRec& style,
1192 bool outsetBoundsForAA,
1193 ClipStack::ElementList* outEffectiveElements) const {
1194 static const Clip kClippedOut = {
1195 Rect::InfiniteInverted(), Rect::InfiniteInverted(), SkIRect::MakeEmpty(),
1196 /* analyticClip= */ {}, /* shader= */ nullptr};
1197
1198 const SaveRecord& cs = this->currentSaveRecord();
1199 if (cs.state() == ClipState::kEmpty) {
1200 // We know the draw is clipped out so don't bother computing the base draw bounds.
1201 return kClippedOut;
1202 }
1203 // Compute draw bounds, clipped only to our device bounds since we need to return that even if
1204 // the clip stack is known to be wide-open.
1205 const Rect deviceBounds = this->deviceBounds();
1206
1207 // When 'style' isn't fill, 'shape' describes the pre-stroke shape so we can't use it to check
1208 // against clip elements and so 'styledShape' will be set to the bounds post-stroking.
1209 SkTCopyOnFirstWrite<Shape> styledShape;
1210 if (geometry.isShape()) {
1211 styledShape.init(geometry.shape());
1212 } else {
1213 // The geometry is something special like text or vertices, in which case it's definitely
1214 // not a shape that could simplify cleanly with the clip stack.
1215 styledShape.initIfNeeded(geometry.bounds());
1216 }
1217
1218 auto origSize = geometry.bounds().size();
1219 if (!SkIsFinite(origSize.x(), origSize.y())) {
1220 // Discard all non-finite geometry as if it were clipped out
1221 return kClippedOut;
1222 }
1223
1224 // Inverse-filled shapes always fill the entire device (restricted to the clip).
1225 // Query the invertedness of the shape before any of the `setRect` calls below, which can
1226 // modify it.
1227 bool infiniteBounds = styledShape->inverted();
1228
1229 // Discard fills and strokes that cannot produce any coverage: an empty fill, or a
1230 // zero-length stroke that has butt caps. Otherwise the stroke style applies to a vertical
1231 // or horizontal line (making it non-empty), or it's a zero-length path segment that
1232 // must produce round or square caps (making it non-empty):
1233 // https://www.w3.org/TR/SVG11/implnote.html#PathElementImplementationNotes
1234 if (!infiniteBounds && (styledShape->isLine() || any(origSize == 0.f))) {
1235 if (style.isFillStyle() || (style.getCap() == SkPaint::kButt_Cap && all(origSize == 0.f))) {
1236 return kClippedOut;
1237 }
1238 }
1239
1240 Rect transformedShapeBounds;
1241 bool shapeInDeviceSpace = false;
1242
1243 // Some renderers make the drawn area larger than the geometry for anti-aliasing
1244 float rendererOutset = outsetBoundsForAA ? localToDevice.localAARadius(styledShape->bounds())
1245 : 0.f;
1246 if (!SkIsFinite(rendererOutset)) {
1247 transformedShapeBounds = deviceBounds;
1248 infiniteBounds = true;
1249 } else {
1250 // Will be in device space once style/AA outsets and the localToDevice transform are
1251 // applied.
1252 transformedShapeBounds = styledShape->bounds();
1253
1254 // Regular filled shapes and strokes get larger based on style and transform
1255 if (!style.isHairlineStyle() || rendererOutset != 0.0f) {
1256 float localStyleOutset = style.getInflationRadius() + rendererOutset;
1257 transformedShapeBounds.outset(localStyleOutset);
1258
1259 if (!style.isFillStyle() || rendererOutset != 0.0f) {
1260 // While this loses any shape type, the bounds remain local so hopefully tests are
1261 // fairly accurate.
1262 styledShape.writable()->setRect(transformedShapeBounds);
1263 }
1264 }
1265
1266 transformedShapeBounds = localToDevice.mapRect(transformedShapeBounds);
1267
1268 // Hairlines get an extra pixel *after* transforming to device space, unless the renderer
1269 // has already defined an outset
1270 if (style.isHairlineStyle() && rendererOutset == 0.0f) {
1271 transformedShapeBounds.outset(0.5f);
1272 // and the associated transform must be kIdentity since the bounds have been mapped by
1273 // localToDevice already.
1274 styledShape.writable()->setRect(transformedShapeBounds);
1275 shapeInDeviceSpace = true;
1276 }
1277
1278 // Restrict bounds to the device limits.
1279 transformedShapeBounds.intersect(deviceBounds);
1280 }
1281
1282 Rect drawBounds; // defined in device space
1283 if (infiniteBounds) {
1284 drawBounds = deviceBounds;
1285 styledShape.writable()->setRect(drawBounds);
1286 shapeInDeviceSpace = true;
1287 } else {
1288 drawBounds = transformedShapeBounds;
1289 }
1290
1291 if (drawBounds.isEmptyNegativeOrNaN() || cs.state() == ClipState::kWideOpen) {
1292 // Either the draw is off screen, so it's clipped out regardless of the state of the
1293 // SaveRecord, or there are no elements to apply to the draw. In both cases, 'drawBounds'
1294 // has the correct value, the scissor is the device bounds (ignored if clipped-out).
1295 return Clip(drawBounds, transformedShapeBounds, deviceBounds.asSkIRect(), {}, cs.shader());
1296 }
1297
1298 // We don't evaluate Simplify() on the SaveRecord and the draw because a reduced version of
1299 // Simplify is effectively performed in computing the scissor rect.
1300 // Given that, we can skip iterating over the clip elements when:
1301 // - the draw's *scissored* bounds are empty, which happens when the draw was clipped out.
1302 // - the scissored bounds are contained in our inner bounds, which happens if all we need to
1303 // apply to the draw is the computed scissor rect.
1304 // TODO: The Clip's scissor is defined in terms of integer pixel coords, but if we move to
1305 // clip plane distances in the vertex shader, it can be defined in terms of the original float
1306 // coordinates.
1307 Rect scissor = cs.scissor(deviceBounds, drawBounds).makeRoundOut();
1308 drawBounds.intersect(scissor);
1309 transformedShapeBounds.intersect(scissor);
1310 if (drawBounds.isEmptyNegativeOrNaN() || cs.innerBounds().contains(drawBounds)) {
1311 // Like above, in both cases drawBounds holds the right value.
1312 return Clip(drawBounds, transformedShapeBounds, scissor.asSkIRect(), {}, cs.shader());
1313 }
1314
1315 // If we made it here, the clip stack affects the draw in a complex way so iterate each element.
1316 // A draw is a transformed shape that "intersects" the clip. We use empty inner bounds because
1317 // there's currently no way to re-write the draw as the clip's geometry, so there's no need to
1318 // check if the draw contains the clip (vice versa is still checked and represents an unclipped
1319 // draw so is very useful to identify).
1320 TransformedShape draw{shapeInDeviceSpace ? kIdentity : localToDevice,
1321 *styledShape,
1322 /*outerBounds=*/drawBounds,
1323 /*innerBounds=*/Rect::InfiniteInverted(),
1324 /*op=*/SkClipOp::kIntersect,
1325 /*containsChecksOnlyBounds=*/true};
1326
1327 SkASSERT(outEffectiveElements);
1328 SkASSERT(outEffectiveElements->empty());
1329 int i = fElements.count();
1330 CircularRRectClip analyticClip;
1331 for (const RawElement& e : fElements.ritems()) {
1332 --i;
1333 if (i < cs.oldestElementIndex()) {
1334 // All earlier elements have been invalidated by elements already processed so the draw
1335 // can't be affected by them and cannot contribute to their usage bounds.
1336 break;
1337 }
1338
1339 auto influence = e.testForDraw(draw);
1340 if (influence == RawElement::DrawInfluence::kClipOut) {
1341 outEffectiveElements->clear();
1342 return kClippedOut;
1343 }
1344 if (influence == RawElement::DrawInfluence::kIntersect) {
1345 if (analyticClip.isEmpty()) {
1346 analyticClip = can_apply_analytic_clip(e.shape(), e.localToDevice());
1347 if (!analyticClip.isEmpty()) {
1348 continue;
1349 }
1350 }
1351 outEffectiveElements->push_back(&e);
1352 }
1353 }
1354
1355 return Clip(drawBounds, transformedShapeBounds, scissor.asSkIRect(), analyticClip, cs.shader());
1356 }
1357
updateClipStateForDraw(const Clip & clip,const ElementList & effectiveElements,const BoundsManager * boundsManager,PaintersDepth z)1358 CompressedPaintersOrder ClipStack::updateClipStateForDraw(const Clip& clip,
1359 const ElementList& effectiveElements,
1360 const BoundsManager* boundsManager,
1361 PaintersDepth z) {
1362 if (clip.isClippedOut()) {
1363 return DrawOrder::kNoIntersection;
1364 }
1365
1366 SkDEBUGCODE(const SaveRecord& cs = this->currentSaveRecord();)
1367 SkASSERT(cs.state() != ClipState::kEmpty);
1368
1369 CompressedPaintersOrder maxClipOrder = DrawOrder::kNoIntersection;
1370 for (int i = 0; i < effectiveElements.size(); ++i) {
1371 // ClipStack owns the elements in the `clipState` so it's OK to downcast and cast away
1372 // const.
1373 // TODO: Enforce the ownership? In debug builds we could invalidate a `ClipStateForDraw` if
1374 // its element pointers become dangling and assert validity here.
1375 const RawElement* e = static_cast<const RawElement*>(effectiveElements[i]);
1376 CompressedPaintersOrder order =
1377 const_cast<RawElement*>(e)->updateForDraw(boundsManager, clip.drawBounds(), z);
1378 maxClipOrder = std::max(order, maxClipOrder);
1379 }
1380
1381 return maxClipOrder;
1382 }
1383
recordDeferredClipDraws()1384 void ClipStack::recordDeferredClipDraws() {
1385 for (auto& e : fElements.items()) {
1386 // When a Device requires all clip elements to be recorded, we have to iterate all elements,
1387 // and will draw clip shapes for elements that are still marked as invalid from the clip
1388 // stack, including those that are older than the current save record's oldest valid index,
1389 // because they could have accumulated draw usage prior to being invalidated, but weren't
1390 // flushed when they were invalidated because of an intervening save.
1391 e.drawClip(fDevice);
1392 }
1393 }
1394
1395 } // namespace skgpu::graphite
1396