1 // SPDX-License-Identifier: GPL-2.0-only
2 
3 #include <linux/irqchip/arm-gic-v3.h>
4 #include <linux/irq.h>
5 #include <linux/irqdomain.h>
6 #include <linux/kstrtox.h>
7 #include <linux/kvm.h>
8 #include <linux/kvm_host.h>
9 #include <linux/string_choices.h>
10 #include <kvm/arm_vgic.h>
11 #include <asm/kvm_hyp.h>
12 #include <asm/kvm_mmu.h>
13 #include <asm/kvm_asm.h>
14 
15 #include "vgic.h"
16 
17 static bool group0_trap;
18 static bool group1_trap;
19 static bool common_trap;
20 static bool dir_trap;
21 static bool gicv4_enable;
22 
vgic_v3_set_underflow(struct kvm_vcpu * vcpu)23 void vgic_v3_set_underflow(struct kvm_vcpu *vcpu)
24 {
25 	struct vgic_v3_cpu_if *cpuif = &vcpu->arch.vgic_cpu.vgic_v3;
26 
27 	cpuif->vgic_hcr |= ICH_HCR_UIE;
28 }
29 
lr_signals_eoi_mi(u64 lr_val)30 static bool lr_signals_eoi_mi(u64 lr_val)
31 {
32 	return !(lr_val & ICH_LR_STATE) && (lr_val & ICH_LR_EOI) &&
33 	       !(lr_val & ICH_LR_HW);
34 }
35 
vgic_v3_fold_lr_state(struct kvm_vcpu * vcpu)36 void vgic_v3_fold_lr_state(struct kvm_vcpu *vcpu)
37 {
38 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
39 	struct vgic_v3_cpu_if *cpuif = &vgic_cpu->vgic_v3;
40 	u32 model = vcpu->kvm->arch.vgic.vgic_model;
41 	int lr;
42 
43 	DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
44 
45 	cpuif->vgic_hcr &= ~ICH_HCR_UIE;
46 
47 	for (lr = 0; lr < cpuif->used_lrs; lr++) {
48 		u64 val = cpuif->vgic_lr[lr];
49 		u32 intid, cpuid;
50 		struct vgic_irq *irq;
51 		bool is_v2_sgi = false;
52 		bool deactivated;
53 
54 		cpuid = val & GICH_LR_PHYSID_CPUID;
55 		cpuid >>= GICH_LR_PHYSID_CPUID_SHIFT;
56 
57 		if (model == KVM_DEV_TYPE_ARM_VGIC_V3) {
58 			intid = val & ICH_LR_VIRTUAL_ID_MASK;
59 		} else {
60 			intid = val & GICH_LR_VIRTUALID;
61 			is_v2_sgi = vgic_irq_is_sgi(intid);
62 		}
63 
64 		/* Notify fds when the guest EOI'ed a level-triggered IRQ */
65 		if (lr_signals_eoi_mi(val) && vgic_valid_spi(vcpu->kvm, intid))
66 			kvm_notify_acked_irq(vcpu->kvm, 0,
67 					     intid - VGIC_NR_PRIVATE_IRQS);
68 
69 		irq = vgic_get_vcpu_irq(vcpu, intid);
70 		if (!irq)	/* An LPI could have been unmapped. */
71 			continue;
72 
73 		raw_spin_lock(&irq->irq_lock);
74 
75 		/* Always preserve the active bit, note deactivation */
76 		deactivated = irq->active && !(val & ICH_LR_ACTIVE_BIT);
77 		irq->active = !!(val & ICH_LR_ACTIVE_BIT);
78 
79 		if (irq->active && is_v2_sgi)
80 			irq->active_source = cpuid;
81 
82 		/* Edge is the only case where we preserve the pending bit */
83 		if (irq->config == VGIC_CONFIG_EDGE &&
84 		    (val & ICH_LR_PENDING_BIT)) {
85 			irq->pending_latch = true;
86 
87 			if (is_v2_sgi)
88 				irq->source |= (1 << cpuid);
89 		}
90 
91 		/*
92 		 * Clear soft pending state when level irqs have been acked.
93 		 */
94 		if (irq->config == VGIC_CONFIG_LEVEL && !(val & ICH_LR_STATE))
95 			irq->pending_latch = false;
96 
97 		/* Handle resampling for mapped interrupts if required */
98 		vgic_irq_handle_resampling(irq, deactivated, val & ICH_LR_PENDING_BIT);
99 
100 		raw_spin_unlock(&irq->irq_lock);
101 		vgic_put_irq(vcpu->kvm, irq);
102 	}
103 
104 	cpuif->used_lrs = 0;
105 }
106 
107 /* Requires the irq to be locked already */
vgic_v3_populate_lr(struct kvm_vcpu * vcpu,struct vgic_irq * irq,int lr)108 void vgic_v3_populate_lr(struct kvm_vcpu *vcpu, struct vgic_irq *irq, int lr)
109 {
110 	u32 model = vcpu->kvm->arch.vgic.vgic_model;
111 	u64 val = irq->intid;
112 	bool allow_pending = true, is_v2_sgi;
113 
114 	is_v2_sgi = (vgic_irq_is_sgi(irq->intid) &&
115 		     model == KVM_DEV_TYPE_ARM_VGIC_V2);
116 
117 	if (irq->active) {
118 		val |= ICH_LR_ACTIVE_BIT;
119 		if (is_v2_sgi)
120 			val |= irq->active_source << GICH_LR_PHYSID_CPUID_SHIFT;
121 		if (vgic_irq_is_multi_sgi(irq)) {
122 			allow_pending = false;
123 			val |= ICH_LR_EOI;
124 		}
125 	}
126 
127 	if (irq->hw && !vgic_irq_needs_resampling(irq)) {
128 		val |= ICH_LR_HW;
129 		val |= ((u64)irq->hwintid) << ICH_LR_PHYS_ID_SHIFT;
130 		/*
131 		 * Never set pending+active on a HW interrupt, as the
132 		 * pending state is kept at the physical distributor
133 		 * level.
134 		 */
135 		if (irq->active)
136 			allow_pending = false;
137 	} else {
138 		if (irq->config == VGIC_CONFIG_LEVEL) {
139 			val |= ICH_LR_EOI;
140 
141 			/*
142 			 * Software resampling doesn't work very well
143 			 * if we allow P+A, so let's not do that.
144 			 */
145 			if (irq->active)
146 				allow_pending = false;
147 		}
148 	}
149 
150 	if (allow_pending && irq_is_pending(irq)) {
151 		val |= ICH_LR_PENDING_BIT;
152 
153 		if (irq->config == VGIC_CONFIG_EDGE)
154 			irq->pending_latch = false;
155 
156 		if (vgic_irq_is_sgi(irq->intid) &&
157 		    model == KVM_DEV_TYPE_ARM_VGIC_V2) {
158 			u32 src = ffs(irq->source);
159 
160 			if (WARN_RATELIMIT(!src, "No SGI source for INTID %d\n",
161 					   irq->intid))
162 				return;
163 
164 			val |= (src - 1) << GICH_LR_PHYSID_CPUID_SHIFT;
165 			irq->source &= ~(1 << (src - 1));
166 			if (irq->source) {
167 				irq->pending_latch = true;
168 				val |= ICH_LR_EOI;
169 			}
170 		}
171 	}
172 
173 	/*
174 	 * Level-triggered mapped IRQs are special because we only observe
175 	 * rising edges as input to the VGIC.  We therefore lower the line
176 	 * level here, so that we can take new virtual IRQs.  See
177 	 * vgic_v3_fold_lr_state for more info.
178 	 */
179 	if (vgic_irq_is_mapped_level(irq) && (val & ICH_LR_PENDING_BIT))
180 		irq->line_level = false;
181 
182 	if (irq->group)
183 		val |= ICH_LR_GROUP;
184 
185 	val |= (u64)irq->priority << ICH_LR_PRIORITY_SHIFT;
186 
187 	vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = val;
188 }
189 
vgic_v3_clear_lr(struct kvm_vcpu * vcpu,int lr)190 void vgic_v3_clear_lr(struct kvm_vcpu *vcpu, int lr)
191 {
192 	vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = 0;
193 }
194 
vgic_v3_set_vmcr(struct kvm_vcpu * vcpu,struct vgic_vmcr * vmcrp)195 void vgic_v3_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
196 {
197 	struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
198 	u32 model = vcpu->kvm->arch.vgic.vgic_model;
199 	u32 vmcr;
200 
201 	if (model == KVM_DEV_TYPE_ARM_VGIC_V2) {
202 		vmcr = (vmcrp->ackctl << ICH_VMCR_ACK_CTL_SHIFT) &
203 			ICH_VMCR_ACK_CTL_MASK;
204 		vmcr |= (vmcrp->fiqen << ICH_VMCR_FIQ_EN_SHIFT) &
205 			ICH_VMCR_FIQ_EN_MASK;
206 	} else {
207 		/*
208 		 * When emulating GICv3 on GICv3 with SRE=1 on the
209 		 * VFIQEn bit is RES1 and the VAckCtl bit is RES0.
210 		 */
211 		vmcr = ICH_VMCR_FIQ_EN_MASK;
212 	}
213 
214 	vmcr |= (vmcrp->cbpr << ICH_VMCR_CBPR_SHIFT) & ICH_VMCR_CBPR_MASK;
215 	vmcr |= (vmcrp->eoim << ICH_VMCR_EOIM_SHIFT) & ICH_VMCR_EOIM_MASK;
216 	vmcr |= (vmcrp->abpr << ICH_VMCR_BPR1_SHIFT) & ICH_VMCR_BPR1_MASK;
217 	vmcr |= (vmcrp->bpr << ICH_VMCR_BPR0_SHIFT) & ICH_VMCR_BPR0_MASK;
218 	vmcr |= (vmcrp->pmr << ICH_VMCR_PMR_SHIFT) & ICH_VMCR_PMR_MASK;
219 	vmcr |= (vmcrp->grpen0 << ICH_VMCR_ENG0_SHIFT) & ICH_VMCR_ENG0_MASK;
220 	vmcr |= (vmcrp->grpen1 << ICH_VMCR_ENG1_SHIFT) & ICH_VMCR_ENG1_MASK;
221 
222 	cpu_if->vgic_vmcr = vmcr;
223 }
224 
vgic_v3_get_vmcr(struct kvm_vcpu * vcpu,struct vgic_vmcr * vmcrp)225 void vgic_v3_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
226 {
227 	struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
228 	u32 model = vcpu->kvm->arch.vgic.vgic_model;
229 	u32 vmcr;
230 
231 	vmcr = cpu_if->vgic_vmcr;
232 
233 	if (model == KVM_DEV_TYPE_ARM_VGIC_V2) {
234 		vmcrp->ackctl = (vmcr & ICH_VMCR_ACK_CTL_MASK) >>
235 			ICH_VMCR_ACK_CTL_SHIFT;
236 		vmcrp->fiqen = (vmcr & ICH_VMCR_FIQ_EN_MASK) >>
237 			ICH_VMCR_FIQ_EN_SHIFT;
238 	} else {
239 		/*
240 		 * When emulating GICv3 on GICv3 with SRE=1 on the
241 		 * VFIQEn bit is RES1 and the VAckCtl bit is RES0.
242 		 */
243 		vmcrp->fiqen = 1;
244 		vmcrp->ackctl = 0;
245 	}
246 
247 	vmcrp->cbpr = (vmcr & ICH_VMCR_CBPR_MASK) >> ICH_VMCR_CBPR_SHIFT;
248 	vmcrp->eoim = (vmcr & ICH_VMCR_EOIM_MASK) >> ICH_VMCR_EOIM_SHIFT;
249 	vmcrp->abpr = (vmcr & ICH_VMCR_BPR1_MASK) >> ICH_VMCR_BPR1_SHIFT;
250 	vmcrp->bpr  = (vmcr & ICH_VMCR_BPR0_MASK) >> ICH_VMCR_BPR0_SHIFT;
251 	vmcrp->pmr  = (vmcr & ICH_VMCR_PMR_MASK) >> ICH_VMCR_PMR_SHIFT;
252 	vmcrp->grpen0 = (vmcr & ICH_VMCR_ENG0_MASK) >> ICH_VMCR_ENG0_SHIFT;
253 	vmcrp->grpen1 = (vmcr & ICH_VMCR_ENG1_MASK) >> ICH_VMCR_ENG1_SHIFT;
254 }
255 
256 #define INITIAL_PENDBASER_VALUE						  \
257 	(GIC_BASER_CACHEABILITY(GICR_PENDBASER, INNER, RaWb)		| \
258 	GIC_BASER_CACHEABILITY(GICR_PENDBASER, OUTER, SameAsInner)	| \
259 	GIC_BASER_SHAREABILITY(GICR_PENDBASER, InnerShareable))
260 
vgic_v3_enable(struct kvm_vcpu * vcpu)261 void vgic_v3_enable(struct kvm_vcpu *vcpu)
262 {
263 	struct vgic_v3_cpu_if *vgic_v3 = &vcpu->arch.vgic_cpu.vgic_v3;
264 
265 	/*
266 	 * By forcing VMCR to zero, the GIC will restore the binary
267 	 * points to their reset values. Anything else resets to zero
268 	 * anyway.
269 	 */
270 	vgic_v3->vgic_vmcr = 0;
271 
272 	/*
273 	 * If we are emulating a GICv3, we do it in an non-GICv2-compatible
274 	 * way, so we force SRE to 1 to demonstrate this to the guest.
275 	 * Also, we don't support any form of IRQ/FIQ bypass.
276 	 * This goes with the spec allowing the value to be RAO/WI.
277 	 */
278 	if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) {
279 		vgic_v3->vgic_sre = (ICC_SRE_EL1_DIB |
280 				     ICC_SRE_EL1_DFB |
281 				     ICC_SRE_EL1_SRE);
282 		vcpu->arch.vgic_cpu.pendbaser = INITIAL_PENDBASER_VALUE;
283 	} else {
284 		vgic_v3->vgic_sre = 0;
285 	}
286 
287 	vcpu->arch.vgic_cpu.num_id_bits = (kvm_vgic_global_state.ich_vtr_el2 &
288 					   ICH_VTR_ID_BITS_MASK) >>
289 					   ICH_VTR_ID_BITS_SHIFT;
290 	vcpu->arch.vgic_cpu.num_pri_bits = ((kvm_vgic_global_state.ich_vtr_el2 &
291 					    ICH_VTR_PRI_BITS_MASK) >>
292 					    ICH_VTR_PRI_BITS_SHIFT) + 1;
293 
294 	/* Get the show on the road... */
295 	vgic_v3->vgic_hcr = ICH_HCR_EN;
296 }
297 
vcpu_set_ich_hcr(struct kvm_vcpu * vcpu)298 void vcpu_set_ich_hcr(struct kvm_vcpu *vcpu)
299 {
300 	struct vgic_v3_cpu_if *vgic_v3 = &vcpu->arch.vgic_cpu.vgic_v3;
301 
302 	/* Hide GICv3 sysreg if necessary */
303 	if (!kvm_has_gicv3(vcpu->kvm)) {
304 		vgic_v3->vgic_hcr |= ICH_HCR_TALL0 | ICH_HCR_TALL1 | ICH_HCR_TC;
305 		return;
306 	}
307 
308 	if (group0_trap)
309 		vgic_v3->vgic_hcr |= ICH_HCR_TALL0;
310 	if (group1_trap)
311 		vgic_v3->vgic_hcr |= ICH_HCR_TALL1;
312 	if (common_trap)
313 		vgic_v3->vgic_hcr |= ICH_HCR_TC;
314 	if (dir_trap)
315 		vgic_v3->vgic_hcr |= ICH_HCR_TDIR;
316 }
317 
vgic_v3_lpi_sync_pending_status(struct kvm * kvm,struct vgic_irq * irq)318 int vgic_v3_lpi_sync_pending_status(struct kvm *kvm, struct vgic_irq *irq)
319 {
320 	struct kvm_vcpu *vcpu;
321 	int byte_offset, bit_nr;
322 	gpa_t pendbase, ptr;
323 	bool status;
324 	u8 val;
325 	int ret;
326 	unsigned long flags;
327 
328 retry:
329 	vcpu = irq->target_vcpu;
330 	if (!vcpu)
331 		return 0;
332 
333 	pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
334 
335 	byte_offset = irq->intid / BITS_PER_BYTE;
336 	bit_nr = irq->intid % BITS_PER_BYTE;
337 	ptr = pendbase + byte_offset;
338 
339 	ret = kvm_read_guest_lock(kvm, ptr, &val, 1);
340 	if (ret)
341 		return ret;
342 
343 	status = val & (1 << bit_nr);
344 
345 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
346 	if (irq->target_vcpu != vcpu) {
347 		raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
348 		goto retry;
349 	}
350 	irq->pending_latch = status;
351 	vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
352 
353 	if (status) {
354 		/* clear consumed data */
355 		val &= ~(1 << bit_nr);
356 		ret = vgic_write_guest_lock(kvm, ptr, &val, 1);
357 		if (ret)
358 			return ret;
359 	}
360 	return 0;
361 }
362 
363 /*
364  * The deactivation of the doorbell interrupt will trigger the
365  * unmapping of the associated vPE.
366  */
unmap_all_vpes(struct kvm * kvm)367 static void unmap_all_vpes(struct kvm *kvm)
368 {
369 	struct vgic_dist *dist = &kvm->arch.vgic;
370 	int i;
371 
372 	for (i = 0; i < dist->its_vm.nr_vpes; i++)
373 		free_irq(dist->its_vm.vpes[i]->irq, kvm_get_vcpu(kvm, i));
374 }
375 
map_all_vpes(struct kvm * kvm)376 static void map_all_vpes(struct kvm *kvm)
377 {
378 	struct vgic_dist *dist = &kvm->arch.vgic;
379 	int i;
380 
381 	for (i = 0; i < dist->its_vm.nr_vpes; i++)
382 		WARN_ON(vgic_v4_request_vpe_irq(kvm_get_vcpu(kvm, i),
383 						dist->its_vm.vpes[i]->irq));
384 }
385 
386 /*
387  * vgic_v3_save_pending_tables - Save the pending tables into guest RAM
388  * kvm lock and all vcpu lock must be held
389  */
vgic_v3_save_pending_tables(struct kvm * kvm)390 int vgic_v3_save_pending_tables(struct kvm *kvm)
391 {
392 	struct vgic_dist *dist = &kvm->arch.vgic;
393 	struct vgic_irq *irq;
394 	gpa_t last_ptr = ~(gpa_t)0;
395 	bool vlpi_avail = false;
396 	unsigned long index;
397 	int ret = 0;
398 	u8 val;
399 
400 	if (unlikely(!vgic_initialized(kvm)))
401 		return -ENXIO;
402 
403 	/*
404 	 * A preparation for getting any VLPI states.
405 	 * The above vgic initialized check also ensures that the allocation
406 	 * and enabling of the doorbells have already been done.
407 	 */
408 	if (kvm_vgic_global_state.has_gicv4_1) {
409 		unmap_all_vpes(kvm);
410 		vlpi_avail = true;
411 	}
412 
413 	xa_for_each(&dist->lpi_xa, index, irq) {
414 		int byte_offset, bit_nr;
415 		struct kvm_vcpu *vcpu;
416 		gpa_t pendbase, ptr;
417 		bool is_pending;
418 		bool stored;
419 
420 		vcpu = irq->target_vcpu;
421 		if (!vcpu)
422 			continue;
423 
424 		pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
425 
426 		byte_offset = irq->intid / BITS_PER_BYTE;
427 		bit_nr = irq->intid % BITS_PER_BYTE;
428 		ptr = pendbase + byte_offset;
429 
430 		if (ptr != last_ptr) {
431 			ret = kvm_read_guest_lock(kvm, ptr, &val, 1);
432 			if (ret)
433 				goto out;
434 			last_ptr = ptr;
435 		}
436 
437 		stored = val & (1U << bit_nr);
438 
439 		is_pending = irq->pending_latch;
440 
441 		if (irq->hw && vlpi_avail)
442 			vgic_v4_get_vlpi_state(irq, &is_pending);
443 
444 		if (stored == is_pending)
445 			continue;
446 
447 		if (is_pending)
448 			val |= 1 << bit_nr;
449 		else
450 			val &= ~(1 << bit_nr);
451 
452 		ret = vgic_write_guest_lock(kvm, ptr, &val, 1);
453 		if (ret)
454 			goto out;
455 	}
456 
457 out:
458 	if (vlpi_avail)
459 		map_all_vpes(kvm);
460 
461 	return ret;
462 }
463 
464 /**
465  * vgic_v3_rdist_overlap - check if a region overlaps with any
466  * existing redistributor region
467  *
468  * @kvm: kvm handle
469  * @base: base of the region
470  * @size: size of region
471  *
472  * Return: true if there is an overlap
473  */
vgic_v3_rdist_overlap(struct kvm * kvm,gpa_t base,size_t size)474 bool vgic_v3_rdist_overlap(struct kvm *kvm, gpa_t base, size_t size)
475 {
476 	struct vgic_dist *d = &kvm->arch.vgic;
477 	struct vgic_redist_region *rdreg;
478 
479 	list_for_each_entry(rdreg, &d->rd_regions, list) {
480 		if ((base + size > rdreg->base) &&
481 			(base < rdreg->base + vgic_v3_rd_region_size(kvm, rdreg)))
482 			return true;
483 	}
484 	return false;
485 }
486 
487 /*
488  * Check for overlapping regions and for regions crossing the end of memory
489  * for base addresses which have already been set.
490  */
vgic_v3_check_base(struct kvm * kvm)491 bool vgic_v3_check_base(struct kvm *kvm)
492 {
493 	struct vgic_dist *d = &kvm->arch.vgic;
494 	struct vgic_redist_region *rdreg;
495 
496 	if (!IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) &&
497 	    d->vgic_dist_base + KVM_VGIC_V3_DIST_SIZE < d->vgic_dist_base)
498 		return false;
499 
500 	list_for_each_entry(rdreg, &d->rd_regions, list) {
501 		size_t sz = vgic_v3_rd_region_size(kvm, rdreg);
502 
503 		if (vgic_check_iorange(kvm, VGIC_ADDR_UNDEF,
504 				       rdreg->base, SZ_64K, sz))
505 			return false;
506 	}
507 
508 	if (IS_VGIC_ADDR_UNDEF(d->vgic_dist_base))
509 		return true;
510 
511 	return !vgic_v3_rdist_overlap(kvm, d->vgic_dist_base,
512 				      KVM_VGIC_V3_DIST_SIZE);
513 }
514 
515 /**
516  * vgic_v3_rdist_free_slot - Look up registered rdist regions and identify one
517  * which has free space to put a new rdist region.
518  *
519  * @rd_regions: redistributor region list head
520  *
521  * A redistributor regions maps n redistributors, n = region size / (2 x 64kB).
522  * Stride between redistributors is 0 and regions are filled in the index order.
523  *
524  * Return: the redist region handle, if any, that has space to map a new rdist
525  * region.
526  */
vgic_v3_rdist_free_slot(struct list_head * rd_regions)527 struct vgic_redist_region *vgic_v3_rdist_free_slot(struct list_head *rd_regions)
528 {
529 	struct vgic_redist_region *rdreg;
530 
531 	list_for_each_entry(rdreg, rd_regions, list) {
532 		if (!vgic_v3_redist_region_full(rdreg))
533 			return rdreg;
534 	}
535 	return NULL;
536 }
537 
vgic_v3_rdist_region_from_index(struct kvm * kvm,u32 index)538 struct vgic_redist_region *vgic_v3_rdist_region_from_index(struct kvm *kvm,
539 							   u32 index)
540 {
541 	struct list_head *rd_regions = &kvm->arch.vgic.rd_regions;
542 	struct vgic_redist_region *rdreg;
543 
544 	list_for_each_entry(rdreg, rd_regions, list) {
545 		if (rdreg->index == index)
546 			return rdreg;
547 	}
548 	return NULL;
549 }
550 
551 
vgic_v3_map_resources(struct kvm * kvm)552 int vgic_v3_map_resources(struct kvm *kvm)
553 {
554 	struct vgic_dist *dist = &kvm->arch.vgic;
555 	struct kvm_vcpu *vcpu;
556 	unsigned long c;
557 
558 	kvm_for_each_vcpu(c, vcpu, kvm) {
559 		struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
560 
561 		if (IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr)) {
562 			kvm_debug("vcpu %ld redistributor base not set\n", c);
563 			return -ENXIO;
564 		}
565 	}
566 
567 	if (IS_VGIC_ADDR_UNDEF(dist->vgic_dist_base)) {
568 		kvm_debug("Need to set vgic distributor addresses first\n");
569 		return -ENXIO;
570 	}
571 
572 	if (!vgic_v3_check_base(kvm)) {
573 		kvm_debug("VGIC redist and dist frames overlap\n");
574 		return -EINVAL;
575 	}
576 
577 	/*
578 	 * For a VGICv3 we require the userland to explicitly initialize
579 	 * the VGIC before we need to use it.
580 	 */
581 	if (!vgic_initialized(kvm)) {
582 		return -EBUSY;
583 	}
584 
585 	if (kvm_vgic_global_state.has_gicv4_1)
586 		vgic_v4_configure_vsgis(kvm);
587 
588 	return 0;
589 }
590 
591 DEFINE_STATIC_KEY_FALSE(vgic_v3_cpuif_trap);
592 
early_group0_trap_cfg(char * buf)593 static int __init early_group0_trap_cfg(char *buf)
594 {
595 	return kstrtobool(buf, &group0_trap);
596 }
597 early_param("kvm-arm.vgic_v3_group0_trap", early_group0_trap_cfg);
598 
early_group1_trap_cfg(char * buf)599 static int __init early_group1_trap_cfg(char *buf)
600 {
601 	return kstrtobool(buf, &group1_trap);
602 }
603 early_param("kvm-arm.vgic_v3_group1_trap", early_group1_trap_cfg);
604 
early_common_trap_cfg(char * buf)605 static int __init early_common_trap_cfg(char *buf)
606 {
607 	return kstrtobool(buf, &common_trap);
608 }
609 early_param("kvm-arm.vgic_v3_common_trap", early_common_trap_cfg);
610 
early_gicv4_enable(char * buf)611 static int __init early_gicv4_enable(char *buf)
612 {
613 	return kstrtobool(buf, &gicv4_enable);
614 }
615 early_param("kvm-arm.vgic_v4_enable", early_gicv4_enable);
616 
617 static const struct midr_range broken_seis[] = {
618 	MIDR_ALL_VERSIONS(MIDR_APPLE_M1_ICESTORM),
619 	MIDR_ALL_VERSIONS(MIDR_APPLE_M1_FIRESTORM),
620 	MIDR_ALL_VERSIONS(MIDR_APPLE_M1_ICESTORM_PRO),
621 	MIDR_ALL_VERSIONS(MIDR_APPLE_M1_FIRESTORM_PRO),
622 	MIDR_ALL_VERSIONS(MIDR_APPLE_M1_ICESTORM_MAX),
623 	MIDR_ALL_VERSIONS(MIDR_APPLE_M1_FIRESTORM_MAX),
624 	MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD),
625 	MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE),
626 	MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD_PRO),
627 	MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE_PRO),
628 	MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD_MAX),
629 	MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE_MAX),
630 	{},
631 };
632 
vgic_v3_broken_seis(void)633 static bool vgic_v3_broken_seis(void)
634 {
635 	return ((kvm_vgic_global_state.ich_vtr_el2 & ICH_VTR_SEIS_MASK) &&
636 		is_midr_in_range_list(read_cpuid_id(), broken_seis));
637 }
638 
639 /**
640  * vgic_v3_probe - probe for a VGICv3 compatible interrupt controller
641  * @info:	pointer to the GIC description
642  *
643  * Returns 0 if the VGICv3 has been probed successfully, returns an error code
644  * otherwise
645  */
vgic_v3_probe(const struct gic_kvm_info * info)646 int vgic_v3_probe(const struct gic_kvm_info *info)
647 {
648 	u64 ich_vtr_el2 = kvm_call_hyp_ret(__vgic_v3_get_gic_config);
649 	bool has_v2;
650 	int ret;
651 
652 	has_v2 = ich_vtr_el2 >> 63;
653 	ich_vtr_el2 = (u32)ich_vtr_el2;
654 
655 	/*
656 	 * The ListRegs field is 5 bits, but there is an architectural
657 	 * maximum of 16 list registers. Just ignore bit 4...
658 	 */
659 	kvm_vgic_global_state.nr_lr = (ich_vtr_el2 & 0xf) + 1;
660 	kvm_vgic_global_state.can_emulate_gicv2 = false;
661 	kvm_vgic_global_state.ich_vtr_el2 = ich_vtr_el2;
662 
663 	/* GICv4 support? */
664 	if (info->has_v4) {
665 		kvm_vgic_global_state.has_gicv4 = gicv4_enable;
666 		kvm_vgic_global_state.has_gicv4_1 = info->has_v4_1 && gicv4_enable;
667 		kvm_info("GICv4%s support %s\n",
668 			 kvm_vgic_global_state.has_gicv4_1 ? ".1" : "",
669 			 str_enabled_disabled(gicv4_enable));
670 	}
671 
672 	kvm_vgic_global_state.vcpu_base = 0;
673 
674 	if (!info->vcpu.start) {
675 		kvm_info("GICv3: no GICV resource entry\n");
676 	} else if (!has_v2) {
677 		pr_warn(FW_BUG "CPU interface incapable of MMIO access\n");
678 	} else if (!PAGE_ALIGNED(info->vcpu.start)) {
679 		pr_warn("GICV physical address 0x%llx not page aligned\n",
680 			(unsigned long long)info->vcpu.start);
681 	} else if (kvm_get_mode() != KVM_MODE_PROTECTED) {
682 		kvm_vgic_global_state.vcpu_base = info->vcpu.start;
683 		kvm_vgic_global_state.can_emulate_gicv2 = true;
684 		ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V2);
685 		if (ret) {
686 			kvm_err("Cannot register GICv2 KVM device.\n");
687 			return ret;
688 		}
689 		kvm_info("vgic-v2@%llx\n", info->vcpu.start);
690 	}
691 	ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V3);
692 	if (ret) {
693 		kvm_err("Cannot register GICv3 KVM device.\n");
694 		kvm_unregister_device_ops(KVM_DEV_TYPE_ARM_VGIC_V2);
695 		return ret;
696 	}
697 
698 	if (kvm_vgic_global_state.vcpu_base == 0)
699 		kvm_info("disabling GICv2 emulation\n");
700 
701 	if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_30115)) {
702 		group0_trap = true;
703 		group1_trap = true;
704 	}
705 
706 	if (vgic_v3_broken_seis()) {
707 		kvm_info("GICv3 with broken locally generated SEI\n");
708 
709 		kvm_vgic_global_state.ich_vtr_el2 &= ~ICH_VTR_SEIS_MASK;
710 		group0_trap = true;
711 		group1_trap = true;
712 		if (ich_vtr_el2 & ICH_VTR_TDS_MASK)
713 			dir_trap = true;
714 		else
715 			common_trap = true;
716 	}
717 
718 	if (group0_trap || group1_trap || common_trap | dir_trap) {
719 		kvm_info("GICv3 sysreg trapping enabled ([%s%s%s%s], reduced performance)\n",
720 			 group0_trap ? "G0" : "",
721 			 group1_trap ? "G1" : "",
722 			 common_trap ? "C"  : "",
723 			 dir_trap    ? "D"  : "");
724 		static_branch_enable(&vgic_v3_cpuif_trap);
725 	}
726 
727 	kvm_vgic_global_state.vctrl_base = NULL;
728 	kvm_vgic_global_state.type = VGIC_V3;
729 	kvm_vgic_global_state.max_gic_vcpus = VGIC_V3_MAX_CPUS;
730 
731 	return 0;
732 }
733 
vgic_v3_load(struct kvm_vcpu * vcpu)734 void vgic_v3_load(struct kvm_vcpu *vcpu)
735 {
736 	struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
737 
738 	if (likely(!is_protected_kvm_enabled()))
739 		kvm_call_hyp(__vgic_v3_restore_vmcr_aprs, cpu_if);
740 
741 	if (has_vhe())
742 		__vgic_v3_activate_traps(cpu_if);
743 
744 	WARN_ON(vgic_v4_load(vcpu));
745 }
746 
vgic_v3_put(struct kvm_vcpu * vcpu)747 void vgic_v3_put(struct kvm_vcpu *vcpu)
748 {
749 	struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
750 
751 	if (likely(!is_protected_kvm_enabled()))
752 		kvm_call_hyp(__vgic_v3_save_vmcr_aprs, cpu_if);
753 	WARN_ON(vgic_v4_put(vcpu));
754 
755 	if (has_vhe())
756 		__vgic_v3_deactivate_traps(cpu_if);
757 }
758