1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/perf_event.h>
3 #include <linux/types.h>
4
5 #include <asm/cpu_device_id.h>
6 #include <asm/perf_event.h>
7 #include <asm/msr.h>
8
9 #include "../perf_event.h"
10
11 /*
12 * Intel LBR_SELECT bits
13 * Intel Vol3a, April 2011, Section 16.7 Table 16-10
14 *
15 * Hardware branch filter (not available on all CPUs)
16 */
17 #define LBR_KERNEL_BIT 0 /* do not capture at ring0 */
18 #define LBR_USER_BIT 1 /* do not capture at ring > 0 */
19 #define LBR_JCC_BIT 2 /* do not capture conditional branches */
20 #define LBR_REL_CALL_BIT 3 /* do not capture relative calls */
21 #define LBR_IND_CALL_BIT 4 /* do not capture indirect calls */
22 #define LBR_RETURN_BIT 5 /* do not capture near returns */
23 #define LBR_IND_JMP_BIT 6 /* do not capture indirect jumps */
24 #define LBR_REL_JMP_BIT 7 /* do not capture relative jumps */
25 #define LBR_FAR_BIT 8 /* do not capture far branches */
26 #define LBR_CALL_STACK_BIT 9 /* enable call stack */
27
28 /*
29 * Following bit only exists in Linux; we mask it out before writing it to
30 * the actual MSR. But it helps the constraint perf code to understand
31 * that this is a separate configuration.
32 */
33 #define LBR_NO_INFO_BIT 63 /* don't read LBR_INFO. */
34
35 #define LBR_KERNEL (1 << LBR_KERNEL_BIT)
36 #define LBR_USER (1 << LBR_USER_BIT)
37 #define LBR_JCC (1 << LBR_JCC_BIT)
38 #define LBR_REL_CALL (1 << LBR_REL_CALL_BIT)
39 #define LBR_IND_CALL (1 << LBR_IND_CALL_BIT)
40 #define LBR_RETURN (1 << LBR_RETURN_BIT)
41 #define LBR_REL_JMP (1 << LBR_REL_JMP_BIT)
42 #define LBR_IND_JMP (1 << LBR_IND_JMP_BIT)
43 #define LBR_FAR (1 << LBR_FAR_BIT)
44 #define LBR_CALL_STACK (1 << LBR_CALL_STACK_BIT)
45 #define LBR_NO_INFO (1ULL << LBR_NO_INFO_BIT)
46
47 #define LBR_PLM (LBR_KERNEL | LBR_USER)
48
49 #define LBR_SEL_MASK 0x3ff /* valid bits in LBR_SELECT */
50 #define LBR_NOT_SUPP -1 /* LBR filter not supported */
51 #define LBR_IGN 0 /* ignored */
52
53 #define LBR_ANY \
54 (LBR_JCC |\
55 LBR_REL_CALL |\
56 LBR_IND_CALL |\
57 LBR_RETURN |\
58 LBR_REL_JMP |\
59 LBR_IND_JMP |\
60 LBR_FAR)
61
62 #define LBR_FROM_FLAG_MISPRED BIT_ULL(63)
63 #define LBR_FROM_FLAG_IN_TX BIT_ULL(62)
64 #define LBR_FROM_FLAG_ABORT BIT_ULL(61)
65
66 #define LBR_FROM_SIGNEXT_2MSB (BIT_ULL(60) | BIT_ULL(59))
67
68 /*
69 * Intel LBR_CTL bits
70 *
71 * Hardware branch filter for Arch LBR
72 */
73 #define ARCH_LBR_KERNEL_BIT 1 /* capture at ring0 */
74 #define ARCH_LBR_USER_BIT 2 /* capture at ring > 0 */
75 #define ARCH_LBR_CALL_STACK_BIT 3 /* enable call stack */
76 #define ARCH_LBR_JCC_BIT 16 /* capture conditional branches */
77 #define ARCH_LBR_REL_JMP_BIT 17 /* capture relative jumps */
78 #define ARCH_LBR_IND_JMP_BIT 18 /* capture indirect jumps */
79 #define ARCH_LBR_REL_CALL_BIT 19 /* capture relative calls */
80 #define ARCH_LBR_IND_CALL_BIT 20 /* capture indirect calls */
81 #define ARCH_LBR_RETURN_BIT 21 /* capture near returns */
82 #define ARCH_LBR_OTHER_BRANCH_BIT 22 /* capture other branches */
83
84 #define ARCH_LBR_KERNEL (1ULL << ARCH_LBR_KERNEL_BIT)
85 #define ARCH_LBR_USER (1ULL << ARCH_LBR_USER_BIT)
86 #define ARCH_LBR_CALL_STACK (1ULL << ARCH_LBR_CALL_STACK_BIT)
87 #define ARCH_LBR_JCC (1ULL << ARCH_LBR_JCC_BIT)
88 #define ARCH_LBR_REL_JMP (1ULL << ARCH_LBR_REL_JMP_BIT)
89 #define ARCH_LBR_IND_JMP (1ULL << ARCH_LBR_IND_JMP_BIT)
90 #define ARCH_LBR_REL_CALL (1ULL << ARCH_LBR_REL_CALL_BIT)
91 #define ARCH_LBR_IND_CALL (1ULL << ARCH_LBR_IND_CALL_BIT)
92 #define ARCH_LBR_RETURN (1ULL << ARCH_LBR_RETURN_BIT)
93 #define ARCH_LBR_OTHER_BRANCH (1ULL << ARCH_LBR_OTHER_BRANCH_BIT)
94
95 #define ARCH_LBR_ANY \
96 (ARCH_LBR_JCC |\
97 ARCH_LBR_REL_JMP |\
98 ARCH_LBR_IND_JMP |\
99 ARCH_LBR_REL_CALL |\
100 ARCH_LBR_IND_CALL |\
101 ARCH_LBR_RETURN |\
102 ARCH_LBR_OTHER_BRANCH)
103
104 #define ARCH_LBR_CTL_MASK 0x7f000e
105
106 static void intel_pmu_lbr_filter(struct cpu_hw_events *cpuc);
107
is_lbr_call_stack_bit_set(u64 config)108 static __always_inline bool is_lbr_call_stack_bit_set(u64 config)
109 {
110 if (static_cpu_has(X86_FEATURE_ARCH_LBR))
111 return !!(config & ARCH_LBR_CALL_STACK);
112
113 return !!(config & LBR_CALL_STACK);
114 }
115
116 /*
117 * We only support LBR implementations that have FREEZE_LBRS_ON_PMI
118 * otherwise it becomes near impossible to get a reliable stack.
119 */
120
__intel_pmu_lbr_enable(bool pmi)121 static void __intel_pmu_lbr_enable(bool pmi)
122 {
123 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
124 u64 debugctl, lbr_select = 0, orig_debugctl;
125
126 /*
127 * No need to unfreeze manually, as v4 can do that as part
128 * of the GLOBAL_STATUS ack.
129 */
130 if (pmi && x86_pmu.version >= 4)
131 return;
132
133 /*
134 * No need to reprogram LBR_SELECT in a PMI, as it
135 * did not change.
136 */
137 if (cpuc->lbr_sel)
138 lbr_select = cpuc->lbr_sel->config & x86_pmu.lbr_sel_mask;
139 if (!static_cpu_has(X86_FEATURE_ARCH_LBR) && !pmi && cpuc->lbr_sel)
140 wrmsrl(MSR_LBR_SELECT, lbr_select);
141
142 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
143 orig_debugctl = debugctl;
144
145 if (!static_cpu_has(X86_FEATURE_ARCH_LBR))
146 debugctl |= DEBUGCTLMSR_LBR;
147 /*
148 * LBR callstack does not work well with FREEZE_LBRS_ON_PMI.
149 * If FREEZE_LBRS_ON_PMI is set, PMI near call/return instructions
150 * may cause superfluous increase/decrease of LBR_TOS.
151 */
152 if (is_lbr_call_stack_bit_set(lbr_select))
153 debugctl &= ~DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
154 else
155 debugctl |= DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
156
157 if (orig_debugctl != debugctl)
158 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
159
160 if (static_cpu_has(X86_FEATURE_ARCH_LBR))
161 wrmsrl(MSR_ARCH_LBR_CTL, lbr_select | ARCH_LBR_CTL_LBREN);
162 }
163
intel_pmu_lbr_reset_32(void)164 void intel_pmu_lbr_reset_32(void)
165 {
166 int i;
167
168 for (i = 0; i < x86_pmu.lbr_nr; i++)
169 wrmsrl(x86_pmu.lbr_from + i, 0);
170 }
171
intel_pmu_lbr_reset_64(void)172 void intel_pmu_lbr_reset_64(void)
173 {
174 int i;
175
176 for (i = 0; i < x86_pmu.lbr_nr; i++) {
177 wrmsrl(x86_pmu.lbr_from + i, 0);
178 wrmsrl(x86_pmu.lbr_to + i, 0);
179 if (x86_pmu.lbr_has_info)
180 wrmsrl(x86_pmu.lbr_info + i, 0);
181 }
182 }
183
intel_pmu_arch_lbr_reset(void)184 static void intel_pmu_arch_lbr_reset(void)
185 {
186 /* Write to ARCH_LBR_DEPTH MSR, all LBR entries are reset to 0 */
187 wrmsrl(MSR_ARCH_LBR_DEPTH, x86_pmu.lbr_nr);
188 }
189
intel_pmu_lbr_reset(void)190 void intel_pmu_lbr_reset(void)
191 {
192 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
193
194 if (!x86_pmu.lbr_nr)
195 return;
196
197 x86_pmu.lbr_reset();
198
199 cpuc->last_task_ctx = NULL;
200 cpuc->last_log_id = 0;
201 if (!static_cpu_has(X86_FEATURE_ARCH_LBR) && cpuc->lbr_select)
202 wrmsrl(MSR_LBR_SELECT, 0);
203 }
204
205 /*
206 * TOS = most recently recorded branch
207 */
intel_pmu_lbr_tos(void)208 static inline u64 intel_pmu_lbr_tos(void)
209 {
210 u64 tos;
211
212 rdmsrl(x86_pmu.lbr_tos, tos);
213 return tos;
214 }
215
216 enum {
217 LBR_NONE,
218 LBR_VALID,
219 };
220
221 /*
222 * For format LBR_FORMAT_EIP_FLAGS2, bits 61:62 in MSR_LAST_BRANCH_FROM_x
223 * are the TSX flags when TSX is supported, but when TSX is not supported
224 * they have no consistent behavior:
225 *
226 * - For wrmsr(), bits 61:62 are considered part of the sign extension.
227 * - For HW updates (branch captures) bits 61:62 are always OFF and are not
228 * part of the sign extension.
229 *
230 * Therefore, if:
231 *
232 * 1) LBR format LBR_FORMAT_EIP_FLAGS2
233 * 2) CPU has no TSX support enabled
234 *
235 * ... then any value passed to wrmsr() must be sign extended to 63 bits and any
236 * value from rdmsr() must be converted to have a 61 bits sign extension,
237 * ignoring the TSX flags.
238 */
lbr_from_signext_quirk_needed(void)239 static inline bool lbr_from_signext_quirk_needed(void)
240 {
241 bool tsx_support = boot_cpu_has(X86_FEATURE_HLE) ||
242 boot_cpu_has(X86_FEATURE_RTM);
243
244 return !tsx_support;
245 }
246
247 static DEFINE_STATIC_KEY_FALSE(lbr_from_quirk_key);
248
249 /* If quirk is enabled, ensure sign extension is 63 bits: */
lbr_from_signext_quirk_wr(u64 val)250 inline u64 lbr_from_signext_quirk_wr(u64 val)
251 {
252 if (static_branch_unlikely(&lbr_from_quirk_key)) {
253 /*
254 * Sign extend into bits 61:62 while preserving bit 63.
255 *
256 * Quirk is enabled when TSX is disabled. Therefore TSX bits
257 * in val are always OFF and must be changed to be sign
258 * extension bits. Since bits 59:60 are guaranteed to be
259 * part of the sign extension bits, we can just copy them
260 * to 61:62.
261 */
262 val |= (LBR_FROM_SIGNEXT_2MSB & val) << 2;
263 }
264 return val;
265 }
266
267 /*
268 * If quirk is needed, ensure sign extension is 61 bits:
269 */
lbr_from_signext_quirk_rd(u64 val)270 static u64 lbr_from_signext_quirk_rd(u64 val)
271 {
272 if (static_branch_unlikely(&lbr_from_quirk_key)) {
273 /*
274 * Quirk is on when TSX is not enabled. Therefore TSX
275 * flags must be read as OFF.
276 */
277 val &= ~(LBR_FROM_FLAG_IN_TX | LBR_FROM_FLAG_ABORT);
278 }
279 return val;
280 }
281
wrlbr_from(unsigned int idx,u64 val)282 static __always_inline void wrlbr_from(unsigned int idx, u64 val)
283 {
284 val = lbr_from_signext_quirk_wr(val);
285 wrmsrl(x86_pmu.lbr_from + idx, val);
286 }
287
wrlbr_to(unsigned int idx,u64 val)288 static __always_inline void wrlbr_to(unsigned int idx, u64 val)
289 {
290 wrmsrl(x86_pmu.lbr_to + idx, val);
291 }
292
wrlbr_info(unsigned int idx,u64 val)293 static __always_inline void wrlbr_info(unsigned int idx, u64 val)
294 {
295 wrmsrl(x86_pmu.lbr_info + idx, val);
296 }
297
rdlbr_from(unsigned int idx,struct lbr_entry * lbr)298 static __always_inline u64 rdlbr_from(unsigned int idx, struct lbr_entry *lbr)
299 {
300 u64 val;
301
302 if (lbr)
303 return lbr->from;
304
305 rdmsrl(x86_pmu.lbr_from + idx, val);
306
307 return lbr_from_signext_quirk_rd(val);
308 }
309
rdlbr_to(unsigned int idx,struct lbr_entry * lbr)310 static __always_inline u64 rdlbr_to(unsigned int idx, struct lbr_entry *lbr)
311 {
312 u64 val;
313
314 if (lbr)
315 return lbr->to;
316
317 rdmsrl(x86_pmu.lbr_to + idx, val);
318
319 return val;
320 }
321
rdlbr_info(unsigned int idx,struct lbr_entry * lbr)322 static __always_inline u64 rdlbr_info(unsigned int idx, struct lbr_entry *lbr)
323 {
324 u64 val;
325
326 if (lbr)
327 return lbr->info;
328
329 rdmsrl(x86_pmu.lbr_info + idx, val);
330
331 return val;
332 }
333
334 static inline void
wrlbr_all(struct lbr_entry * lbr,unsigned int idx,bool need_info)335 wrlbr_all(struct lbr_entry *lbr, unsigned int idx, bool need_info)
336 {
337 wrlbr_from(idx, lbr->from);
338 wrlbr_to(idx, lbr->to);
339 if (need_info)
340 wrlbr_info(idx, lbr->info);
341 }
342
343 static inline bool
rdlbr_all(struct lbr_entry * lbr,unsigned int idx,bool need_info)344 rdlbr_all(struct lbr_entry *lbr, unsigned int idx, bool need_info)
345 {
346 u64 from = rdlbr_from(idx, NULL);
347
348 /* Don't read invalid entry */
349 if (!from)
350 return false;
351
352 lbr->from = from;
353 lbr->to = rdlbr_to(idx, NULL);
354 if (need_info)
355 lbr->info = rdlbr_info(idx, NULL);
356
357 return true;
358 }
359
intel_pmu_lbr_restore(void * ctx)360 void intel_pmu_lbr_restore(void *ctx)
361 {
362 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
363 struct x86_perf_task_context *task_ctx = ctx;
364 bool need_info = x86_pmu.lbr_has_info;
365 u64 tos = task_ctx->tos;
366 unsigned lbr_idx, mask;
367 int i;
368
369 mask = x86_pmu.lbr_nr - 1;
370 for (i = 0; i < task_ctx->valid_lbrs; i++) {
371 lbr_idx = (tos - i) & mask;
372 wrlbr_all(&task_ctx->lbr[i], lbr_idx, need_info);
373 }
374
375 for (; i < x86_pmu.lbr_nr; i++) {
376 lbr_idx = (tos - i) & mask;
377 wrlbr_from(lbr_idx, 0);
378 wrlbr_to(lbr_idx, 0);
379 if (need_info)
380 wrlbr_info(lbr_idx, 0);
381 }
382
383 wrmsrl(x86_pmu.lbr_tos, tos);
384
385 if (cpuc->lbr_select)
386 wrmsrl(MSR_LBR_SELECT, task_ctx->lbr_sel);
387 }
388
intel_pmu_arch_lbr_restore(void * ctx)389 static void intel_pmu_arch_lbr_restore(void *ctx)
390 {
391 struct x86_perf_task_context_arch_lbr *task_ctx = ctx;
392 struct lbr_entry *entries = task_ctx->entries;
393 int i;
394
395 /* Fast reset the LBRs before restore if the call stack is not full. */
396 if (!entries[x86_pmu.lbr_nr - 1].from)
397 intel_pmu_arch_lbr_reset();
398
399 for (i = 0; i < x86_pmu.lbr_nr; i++) {
400 if (!entries[i].from)
401 break;
402 wrlbr_all(&entries[i], i, true);
403 }
404 }
405
406 /*
407 * Restore the Architecture LBR state from the xsave area in the perf
408 * context data for the task via the XRSTORS instruction.
409 */
intel_pmu_arch_lbr_xrstors(void * ctx)410 static void intel_pmu_arch_lbr_xrstors(void *ctx)
411 {
412 struct x86_perf_task_context_arch_lbr_xsave *task_ctx = ctx;
413
414 xrstors(&task_ctx->xsave, XFEATURE_MASK_LBR);
415 }
416
lbr_is_reset_in_cstate(void * ctx)417 static __always_inline bool lbr_is_reset_in_cstate(void *ctx)
418 {
419 if (static_cpu_has(X86_FEATURE_ARCH_LBR))
420 return x86_pmu.lbr_deep_c_reset && !rdlbr_from(0, NULL);
421
422 return !rdlbr_from(((struct x86_perf_task_context *)ctx)->tos, NULL);
423 }
424
has_lbr_callstack_users(void * ctx)425 static inline bool has_lbr_callstack_users(void *ctx)
426 {
427 return task_context_opt(ctx)->lbr_callstack_users ||
428 x86_pmu.lbr_callstack_users;
429 }
430
__intel_pmu_lbr_restore(void * ctx)431 static void __intel_pmu_lbr_restore(void *ctx)
432 {
433 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
434
435 if (!has_lbr_callstack_users(ctx) ||
436 task_context_opt(ctx)->lbr_stack_state == LBR_NONE) {
437 intel_pmu_lbr_reset();
438 return;
439 }
440
441 /*
442 * Does not restore the LBR registers, if
443 * - No one else touched them, and
444 * - Was not cleared in Cstate
445 */
446 if ((ctx == cpuc->last_task_ctx) &&
447 (task_context_opt(ctx)->log_id == cpuc->last_log_id) &&
448 !lbr_is_reset_in_cstate(ctx)) {
449 task_context_opt(ctx)->lbr_stack_state = LBR_NONE;
450 return;
451 }
452
453 x86_pmu.lbr_restore(ctx);
454
455 task_context_opt(ctx)->lbr_stack_state = LBR_NONE;
456 }
457
intel_pmu_lbr_save(void * ctx)458 void intel_pmu_lbr_save(void *ctx)
459 {
460 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
461 struct x86_perf_task_context *task_ctx = ctx;
462 bool need_info = x86_pmu.lbr_has_info;
463 unsigned lbr_idx, mask;
464 u64 tos;
465 int i;
466
467 mask = x86_pmu.lbr_nr - 1;
468 tos = intel_pmu_lbr_tos();
469 for (i = 0; i < x86_pmu.lbr_nr; i++) {
470 lbr_idx = (tos - i) & mask;
471 if (!rdlbr_all(&task_ctx->lbr[i], lbr_idx, need_info))
472 break;
473 }
474 task_ctx->valid_lbrs = i;
475 task_ctx->tos = tos;
476
477 if (cpuc->lbr_select)
478 rdmsrl(MSR_LBR_SELECT, task_ctx->lbr_sel);
479 }
480
intel_pmu_arch_lbr_save(void * ctx)481 static void intel_pmu_arch_lbr_save(void *ctx)
482 {
483 struct x86_perf_task_context_arch_lbr *task_ctx = ctx;
484 struct lbr_entry *entries = task_ctx->entries;
485 int i;
486
487 for (i = 0; i < x86_pmu.lbr_nr; i++) {
488 if (!rdlbr_all(&entries[i], i, true))
489 break;
490 }
491
492 /* LBR call stack is not full. Reset is required in restore. */
493 if (i < x86_pmu.lbr_nr)
494 entries[x86_pmu.lbr_nr - 1].from = 0;
495 }
496
497 /*
498 * Save the Architecture LBR state to the xsave area in the perf
499 * context data for the task via the XSAVES instruction.
500 */
intel_pmu_arch_lbr_xsaves(void * ctx)501 static void intel_pmu_arch_lbr_xsaves(void *ctx)
502 {
503 struct x86_perf_task_context_arch_lbr_xsave *task_ctx = ctx;
504
505 xsaves(&task_ctx->xsave, XFEATURE_MASK_LBR);
506 }
507
__intel_pmu_lbr_save(void * ctx)508 static void __intel_pmu_lbr_save(void *ctx)
509 {
510 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
511
512 if (!has_lbr_callstack_users(ctx)) {
513 task_context_opt(ctx)->lbr_stack_state = LBR_NONE;
514 return;
515 }
516
517 x86_pmu.lbr_save(ctx);
518
519 task_context_opt(ctx)->lbr_stack_state = LBR_VALID;
520
521 cpuc->last_task_ctx = ctx;
522 cpuc->last_log_id = ++task_context_opt(ctx)->log_id;
523 }
524
intel_pmu_lbr_swap_task_ctx(struct perf_event_pmu_context * prev_epc,struct perf_event_pmu_context * next_epc)525 void intel_pmu_lbr_swap_task_ctx(struct perf_event_pmu_context *prev_epc,
526 struct perf_event_pmu_context *next_epc)
527 {
528 void *prev_ctx_data, *next_ctx_data;
529
530 swap(prev_epc->task_ctx_data, next_epc->task_ctx_data);
531
532 /*
533 * Architecture specific synchronization makes sense in case
534 * both prev_epc->task_ctx_data and next_epc->task_ctx_data
535 * pointers are allocated.
536 */
537
538 prev_ctx_data = next_epc->task_ctx_data;
539 next_ctx_data = prev_epc->task_ctx_data;
540
541 if (!prev_ctx_data || !next_ctx_data)
542 return;
543
544 swap(task_context_opt(prev_ctx_data)->lbr_callstack_users,
545 task_context_opt(next_ctx_data)->lbr_callstack_users);
546 }
547
intel_pmu_lbr_sched_task(struct perf_event_pmu_context * pmu_ctx,struct task_struct * task,bool sched_in)548 void intel_pmu_lbr_sched_task(struct perf_event_pmu_context *pmu_ctx,
549 struct task_struct *task, bool sched_in)
550 {
551 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
552 struct perf_ctx_data *ctx_data;
553 void *task_ctx;
554
555 if (!cpuc->lbr_users)
556 return;
557
558 /*
559 * If LBR callstack feature is enabled and the stack was saved when
560 * the task was scheduled out, restore the stack. Otherwise flush
561 * the LBR stack.
562 */
563 rcu_read_lock();
564 ctx_data = rcu_dereference(task->perf_ctx_data);
565 task_ctx = ctx_data ? ctx_data->data : NULL;
566 if (task_ctx) {
567 if (sched_in)
568 __intel_pmu_lbr_restore(task_ctx);
569 else
570 __intel_pmu_lbr_save(task_ctx);
571 rcu_read_unlock();
572 return;
573 }
574 rcu_read_unlock();
575
576 /*
577 * Since a context switch can flip the address space and LBR entries
578 * are not tagged with an identifier, we need to wipe the LBR, even for
579 * per-cpu events. You simply cannot resolve the branches from the old
580 * address space.
581 */
582 if (sched_in)
583 intel_pmu_lbr_reset();
584 }
585
branch_user_callstack(unsigned br_sel)586 static inline bool branch_user_callstack(unsigned br_sel)
587 {
588 return (br_sel & X86_BR_USER) && (br_sel & X86_BR_CALL_STACK);
589 }
590
intel_pmu_lbr_add(struct perf_event * event)591 void intel_pmu_lbr_add(struct perf_event *event)
592 {
593 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
594
595 if (!x86_pmu.lbr_nr)
596 return;
597
598 if (event->hw.flags & PERF_X86_EVENT_LBR_SELECT)
599 cpuc->lbr_select = 1;
600
601 cpuc->br_sel = event->hw.branch_reg.reg;
602
603 if (branch_user_callstack(cpuc->br_sel)) {
604 if (event->attach_state & PERF_ATTACH_TASK) {
605 struct task_struct *task = event->hw.target;
606 struct perf_ctx_data *ctx_data;
607
608 rcu_read_lock();
609 ctx_data = rcu_dereference(task->perf_ctx_data);
610 if (ctx_data)
611 task_context_opt(ctx_data->data)->lbr_callstack_users++;
612 rcu_read_unlock();
613 } else
614 x86_pmu.lbr_callstack_users++;
615 }
616 /*
617 * Request pmu::sched_task() callback, which will fire inside the
618 * regular perf event scheduling, so that call will:
619 *
620 * - restore or wipe; when LBR-callstack,
621 * - wipe; otherwise,
622 *
623 * when this is from __perf_event_task_sched_in().
624 *
625 * However, if this is from perf_install_in_context(), no such callback
626 * will follow and we'll need to reset the LBR here if this is the
627 * first LBR event.
628 *
629 * The problem is, we cannot tell these cases apart... but we can
630 * exclude the biggest chunk of cases by looking at
631 * event->total_time_running. An event that has accrued runtime cannot
632 * be 'new'. Conversely, a new event can get installed through the
633 * context switch path for the first time.
634 */
635 if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip > 0)
636 cpuc->lbr_pebs_users++;
637 perf_sched_cb_inc(event->pmu);
638 if (!cpuc->lbr_users++ && !event->total_time_running)
639 intel_pmu_lbr_reset();
640 }
641
release_lbr_buffers(void)642 void release_lbr_buffers(void)
643 {
644 struct kmem_cache *kmem_cache;
645 struct cpu_hw_events *cpuc;
646 int cpu;
647
648 if (!static_cpu_has(X86_FEATURE_ARCH_LBR))
649 return;
650
651 for_each_possible_cpu(cpu) {
652 cpuc = per_cpu_ptr(&cpu_hw_events, cpu);
653 kmem_cache = x86_get_pmu(cpu)->task_ctx_cache;
654 if (kmem_cache && cpuc->lbr_xsave) {
655 kmem_cache_free(kmem_cache, cpuc->lbr_xsave);
656 cpuc->lbr_xsave = NULL;
657 }
658 }
659 }
660
reserve_lbr_buffers(void)661 void reserve_lbr_buffers(void)
662 {
663 struct kmem_cache *kmem_cache;
664 struct cpu_hw_events *cpuc;
665 int cpu;
666
667 if (!static_cpu_has(X86_FEATURE_ARCH_LBR))
668 return;
669
670 for_each_possible_cpu(cpu) {
671 cpuc = per_cpu_ptr(&cpu_hw_events, cpu);
672 kmem_cache = x86_get_pmu(cpu)->task_ctx_cache;
673 if (!kmem_cache || cpuc->lbr_xsave)
674 continue;
675
676 cpuc->lbr_xsave = kmem_cache_alloc_node(kmem_cache,
677 GFP_KERNEL | __GFP_ZERO,
678 cpu_to_node(cpu));
679 }
680 }
681
intel_pmu_lbr_del(struct perf_event * event)682 void intel_pmu_lbr_del(struct perf_event *event)
683 {
684 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
685
686 if (!x86_pmu.lbr_nr)
687 return;
688
689 if (branch_user_callstack(cpuc->br_sel)) {
690 if (event->attach_state & PERF_ATTACH_TASK) {
691 struct task_struct *task = event->hw.target;
692 struct perf_ctx_data *ctx_data;
693
694 rcu_read_lock();
695 ctx_data = rcu_dereference(task->perf_ctx_data);
696 if (ctx_data)
697 task_context_opt(ctx_data->data)->lbr_callstack_users--;
698 rcu_read_unlock();
699 } else
700 x86_pmu.lbr_callstack_users--;
701 }
702
703 if (event->hw.flags & PERF_X86_EVENT_LBR_SELECT)
704 cpuc->lbr_select = 0;
705
706 if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip > 0)
707 cpuc->lbr_pebs_users--;
708 cpuc->lbr_users--;
709 WARN_ON_ONCE(cpuc->lbr_users < 0);
710 WARN_ON_ONCE(cpuc->lbr_pebs_users < 0);
711 perf_sched_cb_dec(event->pmu);
712
713 /*
714 * The logged occurrences information is only valid for the
715 * current LBR group. If another LBR group is scheduled in
716 * later, the information from the stale LBRs will be wrongly
717 * interpreted. Reset the LBRs here.
718 *
719 * Only clear once for a branch counter group with the leader
720 * event. Because
721 * - Cannot simply reset the LBRs with the !cpuc->lbr_users.
722 * Because it's possible that the last LBR user is not in a
723 * branch counter group, e.g., a branch_counters group +
724 * several normal LBR events.
725 * - The LBR reset can be done with any one of the events in a
726 * branch counter group, since they are always scheduled together.
727 * It's easy to force the leader event an LBR event.
728 */
729 if (is_branch_counters_group(event) && event == event->group_leader)
730 intel_pmu_lbr_reset();
731 }
732
vlbr_exclude_host(void)733 static inline bool vlbr_exclude_host(void)
734 {
735 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
736
737 return test_bit(INTEL_PMC_IDX_FIXED_VLBR,
738 (unsigned long *)&cpuc->intel_ctrl_guest_mask);
739 }
740
intel_pmu_lbr_enable_all(bool pmi)741 void intel_pmu_lbr_enable_all(bool pmi)
742 {
743 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
744
745 if (cpuc->lbr_users && !vlbr_exclude_host())
746 __intel_pmu_lbr_enable(pmi);
747 }
748
intel_pmu_lbr_disable_all(void)749 void intel_pmu_lbr_disable_all(void)
750 {
751 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
752
753 if (cpuc->lbr_users && !vlbr_exclude_host()) {
754 if (static_cpu_has(X86_FEATURE_ARCH_LBR))
755 return __intel_pmu_arch_lbr_disable();
756
757 __intel_pmu_lbr_disable();
758 }
759 }
760
intel_pmu_lbr_read_32(struct cpu_hw_events * cpuc)761 void intel_pmu_lbr_read_32(struct cpu_hw_events *cpuc)
762 {
763 unsigned long mask = x86_pmu.lbr_nr - 1;
764 struct perf_branch_entry *br = cpuc->lbr_entries;
765 u64 tos = intel_pmu_lbr_tos();
766 int i;
767
768 for (i = 0; i < x86_pmu.lbr_nr; i++) {
769 unsigned long lbr_idx = (tos - i) & mask;
770 union {
771 struct {
772 u32 from;
773 u32 to;
774 };
775 u64 lbr;
776 } msr_lastbranch;
777
778 rdmsrl(x86_pmu.lbr_from + lbr_idx, msr_lastbranch.lbr);
779
780 perf_clear_branch_entry_bitfields(br);
781
782 br->from = msr_lastbranch.from;
783 br->to = msr_lastbranch.to;
784 br++;
785 }
786 cpuc->lbr_stack.nr = i;
787 cpuc->lbr_stack.hw_idx = tos;
788 }
789
790 /*
791 * Due to lack of segmentation in Linux the effective address (offset)
792 * is the same as the linear address, allowing us to merge the LIP and EIP
793 * LBR formats.
794 */
intel_pmu_lbr_read_64(struct cpu_hw_events * cpuc)795 void intel_pmu_lbr_read_64(struct cpu_hw_events *cpuc)
796 {
797 bool need_info = false, call_stack = false;
798 unsigned long mask = x86_pmu.lbr_nr - 1;
799 struct perf_branch_entry *br = cpuc->lbr_entries;
800 u64 tos = intel_pmu_lbr_tos();
801 int i;
802 int out = 0;
803 int num = x86_pmu.lbr_nr;
804
805 if (cpuc->lbr_sel) {
806 need_info = !(cpuc->lbr_sel->config & LBR_NO_INFO);
807 if (cpuc->lbr_sel->config & LBR_CALL_STACK)
808 call_stack = true;
809 }
810
811 for (i = 0; i < num; i++) {
812 unsigned long lbr_idx = (tos - i) & mask;
813 u64 from, to, mis = 0, pred = 0, in_tx = 0, abort = 0;
814 u16 cycles = 0;
815
816 from = rdlbr_from(lbr_idx, NULL);
817 to = rdlbr_to(lbr_idx, NULL);
818
819 /*
820 * Read LBR call stack entries
821 * until invalid entry (0s) is detected.
822 */
823 if (call_stack && !from)
824 break;
825
826 if (x86_pmu.lbr_has_info) {
827 if (need_info) {
828 u64 info;
829
830 info = rdlbr_info(lbr_idx, NULL);
831 mis = !!(info & LBR_INFO_MISPRED);
832 pred = !mis;
833 cycles = (info & LBR_INFO_CYCLES);
834 if (x86_pmu.lbr_has_tsx) {
835 in_tx = !!(info & LBR_INFO_IN_TX);
836 abort = !!(info & LBR_INFO_ABORT);
837 }
838 }
839 } else {
840 int skip = 0;
841
842 if (x86_pmu.lbr_from_flags) {
843 mis = !!(from & LBR_FROM_FLAG_MISPRED);
844 pred = !mis;
845 skip = 1;
846 }
847 if (x86_pmu.lbr_has_tsx) {
848 in_tx = !!(from & LBR_FROM_FLAG_IN_TX);
849 abort = !!(from & LBR_FROM_FLAG_ABORT);
850 skip = 3;
851 }
852 from = (u64)((((s64)from) << skip) >> skip);
853
854 if (x86_pmu.lbr_to_cycles) {
855 cycles = ((to >> 48) & LBR_INFO_CYCLES);
856 to = (u64)((((s64)to) << 16) >> 16);
857 }
858 }
859
860 /*
861 * Some CPUs report duplicated abort records,
862 * with the second entry not having an abort bit set.
863 * Skip them here. This loop runs backwards,
864 * so we need to undo the previous record.
865 * If the abort just happened outside the window
866 * the extra entry cannot be removed.
867 */
868 if (abort && x86_pmu.lbr_double_abort && out > 0)
869 out--;
870
871 perf_clear_branch_entry_bitfields(br+out);
872 br[out].from = from;
873 br[out].to = to;
874 br[out].mispred = mis;
875 br[out].predicted = pred;
876 br[out].in_tx = in_tx;
877 br[out].abort = abort;
878 br[out].cycles = cycles;
879 out++;
880 }
881 cpuc->lbr_stack.nr = out;
882 cpuc->lbr_stack.hw_idx = tos;
883 }
884
885 static DEFINE_STATIC_KEY_FALSE(x86_lbr_mispred);
886 static DEFINE_STATIC_KEY_FALSE(x86_lbr_cycles);
887 static DEFINE_STATIC_KEY_FALSE(x86_lbr_type);
888
get_lbr_br_type(u64 info)889 static __always_inline int get_lbr_br_type(u64 info)
890 {
891 int type = 0;
892
893 if (static_branch_likely(&x86_lbr_type))
894 type = (info & LBR_INFO_BR_TYPE) >> LBR_INFO_BR_TYPE_OFFSET;
895
896 return type;
897 }
898
get_lbr_mispred(u64 info)899 static __always_inline bool get_lbr_mispred(u64 info)
900 {
901 bool mispred = 0;
902
903 if (static_branch_likely(&x86_lbr_mispred))
904 mispred = !!(info & LBR_INFO_MISPRED);
905
906 return mispred;
907 }
908
get_lbr_cycles(u64 info)909 static __always_inline u16 get_lbr_cycles(u64 info)
910 {
911 u16 cycles = info & LBR_INFO_CYCLES;
912
913 if (static_cpu_has(X86_FEATURE_ARCH_LBR) &&
914 (!static_branch_likely(&x86_lbr_cycles) ||
915 !(info & LBR_INFO_CYC_CNT_VALID)))
916 cycles = 0;
917
918 return cycles;
919 }
920
921 static_assert((64 - PERF_BRANCH_ENTRY_INFO_BITS_MAX) > LBR_INFO_BR_CNTR_NUM * LBR_INFO_BR_CNTR_BITS);
922
intel_pmu_store_lbr(struct cpu_hw_events * cpuc,struct lbr_entry * entries)923 static void intel_pmu_store_lbr(struct cpu_hw_events *cpuc,
924 struct lbr_entry *entries)
925 {
926 struct perf_branch_entry *e;
927 struct lbr_entry *lbr;
928 u64 from, to, info;
929 int i;
930
931 for (i = 0; i < x86_pmu.lbr_nr; i++) {
932 lbr = entries ? &entries[i] : NULL;
933 e = &cpuc->lbr_entries[i];
934
935 from = rdlbr_from(i, lbr);
936 /*
937 * Read LBR entries until invalid entry (0s) is detected.
938 */
939 if (!from)
940 break;
941
942 to = rdlbr_to(i, lbr);
943 info = rdlbr_info(i, lbr);
944
945 perf_clear_branch_entry_bitfields(e);
946
947 e->from = from;
948 e->to = to;
949 e->mispred = get_lbr_mispred(info);
950 e->predicted = !e->mispred;
951 e->in_tx = !!(info & LBR_INFO_IN_TX);
952 e->abort = !!(info & LBR_INFO_ABORT);
953 e->cycles = get_lbr_cycles(info);
954 e->type = get_lbr_br_type(info);
955
956 /*
957 * Leverage the reserved field of cpuc->lbr_entries[i] to
958 * temporarily store the branch counters information.
959 * The later code will decide what content can be disclosed
960 * to the perf tool. Pleae see intel_pmu_lbr_counters_reorder().
961 */
962 e->reserved = (info >> LBR_INFO_BR_CNTR_OFFSET) & LBR_INFO_BR_CNTR_FULL_MASK;
963 }
964
965 cpuc->lbr_stack.nr = i;
966 }
967
968 /*
969 * The enabled order may be different from the counter order.
970 * Update the lbr_counters with the enabled order.
971 */
intel_pmu_lbr_counters_reorder(struct cpu_hw_events * cpuc,struct perf_event * event)972 static void intel_pmu_lbr_counters_reorder(struct cpu_hw_events *cpuc,
973 struct perf_event *event)
974 {
975 int i, j, pos = 0, order[X86_PMC_IDX_MAX];
976 struct perf_event *leader, *sibling;
977 u64 src, dst, cnt;
978
979 leader = event->group_leader;
980 if (branch_sample_counters(leader))
981 order[pos++] = leader->hw.idx;
982
983 for_each_sibling_event(sibling, leader) {
984 if (!branch_sample_counters(sibling))
985 continue;
986 order[pos++] = sibling->hw.idx;
987 }
988
989 WARN_ON_ONCE(!pos);
990
991 for (i = 0; i < cpuc->lbr_stack.nr; i++) {
992 src = cpuc->lbr_entries[i].reserved;
993 dst = 0;
994 for (j = 0; j < pos; j++) {
995 cnt = (src >> (order[j] * LBR_INFO_BR_CNTR_BITS)) & LBR_INFO_BR_CNTR_MASK;
996 dst |= cnt << j * LBR_INFO_BR_CNTR_BITS;
997 }
998 cpuc->lbr_counters[i] = dst;
999 cpuc->lbr_entries[i].reserved = 0;
1000 }
1001 }
1002
intel_pmu_lbr_save_brstack(struct perf_sample_data * data,struct cpu_hw_events * cpuc,struct perf_event * event)1003 void intel_pmu_lbr_save_brstack(struct perf_sample_data *data,
1004 struct cpu_hw_events *cpuc,
1005 struct perf_event *event)
1006 {
1007 if (is_branch_counters_group(event)) {
1008 intel_pmu_lbr_counters_reorder(cpuc, event);
1009 perf_sample_save_brstack(data, event, &cpuc->lbr_stack, cpuc->lbr_counters);
1010 return;
1011 }
1012
1013 perf_sample_save_brstack(data, event, &cpuc->lbr_stack, NULL);
1014 }
1015
intel_pmu_arch_lbr_read(struct cpu_hw_events * cpuc)1016 static void intel_pmu_arch_lbr_read(struct cpu_hw_events *cpuc)
1017 {
1018 intel_pmu_store_lbr(cpuc, NULL);
1019 }
1020
intel_pmu_arch_lbr_read_xsave(struct cpu_hw_events * cpuc)1021 static void intel_pmu_arch_lbr_read_xsave(struct cpu_hw_events *cpuc)
1022 {
1023 struct x86_perf_task_context_arch_lbr_xsave *xsave = cpuc->lbr_xsave;
1024
1025 if (!xsave) {
1026 intel_pmu_store_lbr(cpuc, NULL);
1027 return;
1028 }
1029 xsaves(&xsave->xsave, XFEATURE_MASK_LBR);
1030
1031 intel_pmu_store_lbr(cpuc, xsave->lbr.entries);
1032 }
1033
intel_pmu_lbr_read(void)1034 void intel_pmu_lbr_read(void)
1035 {
1036 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1037
1038 /*
1039 * Don't read when all LBRs users are using adaptive PEBS.
1040 *
1041 * This could be smarter and actually check the event,
1042 * but this simple approach seems to work for now.
1043 */
1044 if (!cpuc->lbr_users || vlbr_exclude_host() ||
1045 cpuc->lbr_users == cpuc->lbr_pebs_users)
1046 return;
1047
1048 x86_pmu.lbr_read(cpuc);
1049
1050 intel_pmu_lbr_filter(cpuc);
1051 }
1052
1053 /*
1054 * SW filter is used:
1055 * - in case there is no HW filter
1056 * - in case the HW filter has errata or limitations
1057 */
intel_pmu_setup_sw_lbr_filter(struct perf_event * event)1058 static int intel_pmu_setup_sw_lbr_filter(struct perf_event *event)
1059 {
1060 u64 br_type = event->attr.branch_sample_type;
1061 int mask = 0;
1062
1063 if (br_type & PERF_SAMPLE_BRANCH_USER)
1064 mask |= X86_BR_USER;
1065
1066 if (br_type & PERF_SAMPLE_BRANCH_KERNEL)
1067 mask |= X86_BR_KERNEL;
1068
1069 /* we ignore BRANCH_HV here */
1070
1071 if (br_type & PERF_SAMPLE_BRANCH_ANY)
1072 mask |= X86_BR_ANY;
1073
1074 if (br_type & PERF_SAMPLE_BRANCH_ANY_CALL)
1075 mask |= X86_BR_ANY_CALL;
1076
1077 if (br_type & PERF_SAMPLE_BRANCH_ANY_RETURN)
1078 mask |= X86_BR_RET | X86_BR_IRET | X86_BR_SYSRET;
1079
1080 if (br_type & PERF_SAMPLE_BRANCH_IND_CALL)
1081 mask |= X86_BR_IND_CALL;
1082
1083 if (br_type & PERF_SAMPLE_BRANCH_ABORT_TX)
1084 mask |= X86_BR_ABORT;
1085
1086 if (br_type & PERF_SAMPLE_BRANCH_IN_TX)
1087 mask |= X86_BR_IN_TX;
1088
1089 if (br_type & PERF_SAMPLE_BRANCH_NO_TX)
1090 mask |= X86_BR_NO_TX;
1091
1092 if (br_type & PERF_SAMPLE_BRANCH_COND)
1093 mask |= X86_BR_JCC;
1094
1095 if (br_type & PERF_SAMPLE_BRANCH_CALL_STACK) {
1096 if (!x86_pmu_has_lbr_callstack())
1097 return -EOPNOTSUPP;
1098 if (mask & ~(X86_BR_USER | X86_BR_KERNEL))
1099 return -EINVAL;
1100 mask |= X86_BR_CALL | X86_BR_IND_CALL | X86_BR_RET |
1101 X86_BR_CALL_STACK;
1102 }
1103
1104 if (br_type & PERF_SAMPLE_BRANCH_IND_JUMP)
1105 mask |= X86_BR_IND_JMP;
1106
1107 if (br_type & PERF_SAMPLE_BRANCH_CALL)
1108 mask |= X86_BR_CALL | X86_BR_ZERO_CALL;
1109
1110 if (br_type & PERF_SAMPLE_BRANCH_TYPE_SAVE)
1111 mask |= X86_BR_TYPE_SAVE;
1112
1113 /*
1114 * stash actual user request into reg, it may
1115 * be used by fixup code for some CPU
1116 */
1117 event->hw.branch_reg.reg = mask;
1118 return 0;
1119 }
1120
1121 /*
1122 * setup the HW LBR filter
1123 * Used only when available, may not be enough to disambiguate
1124 * all branches, may need the help of the SW filter
1125 */
intel_pmu_setup_hw_lbr_filter(struct perf_event * event)1126 static int intel_pmu_setup_hw_lbr_filter(struct perf_event *event)
1127 {
1128 struct hw_perf_event_extra *reg;
1129 u64 br_type = event->attr.branch_sample_type;
1130 u64 mask = 0, v;
1131 int i;
1132
1133 for (i = 0; i < PERF_SAMPLE_BRANCH_MAX_SHIFT; i++) {
1134 if (!(br_type & (1ULL << i)))
1135 continue;
1136
1137 v = x86_pmu.lbr_sel_map[i];
1138 if (v == LBR_NOT_SUPP)
1139 return -EOPNOTSUPP;
1140
1141 if (v != LBR_IGN)
1142 mask |= v;
1143 }
1144
1145 reg = &event->hw.branch_reg;
1146 reg->idx = EXTRA_REG_LBR;
1147
1148 if (static_cpu_has(X86_FEATURE_ARCH_LBR)) {
1149 reg->config = mask;
1150
1151 /*
1152 * The Arch LBR HW can retrieve the common branch types
1153 * from the LBR_INFO. It doesn't require the high overhead
1154 * SW disassemble.
1155 * Enable the branch type by default for the Arch LBR.
1156 */
1157 reg->reg |= X86_BR_TYPE_SAVE;
1158 return 0;
1159 }
1160
1161 /*
1162 * The first 9 bits (LBR_SEL_MASK) in LBR_SELECT operate
1163 * in suppress mode. So LBR_SELECT should be set to
1164 * (~mask & LBR_SEL_MASK) | (mask & ~LBR_SEL_MASK)
1165 * But the 10th bit LBR_CALL_STACK does not operate
1166 * in suppress mode.
1167 */
1168 reg->config = mask ^ (x86_pmu.lbr_sel_mask & ~LBR_CALL_STACK);
1169
1170 if ((br_type & PERF_SAMPLE_BRANCH_NO_CYCLES) &&
1171 (br_type & PERF_SAMPLE_BRANCH_NO_FLAGS) &&
1172 x86_pmu.lbr_has_info)
1173 reg->config |= LBR_NO_INFO;
1174
1175 return 0;
1176 }
1177
intel_pmu_setup_lbr_filter(struct perf_event * event)1178 int intel_pmu_setup_lbr_filter(struct perf_event *event)
1179 {
1180 int ret = 0;
1181
1182 /*
1183 * no LBR on this PMU
1184 */
1185 if (!x86_pmu.lbr_nr)
1186 return -EOPNOTSUPP;
1187
1188 /*
1189 * setup SW LBR filter
1190 */
1191 ret = intel_pmu_setup_sw_lbr_filter(event);
1192 if (ret)
1193 return ret;
1194
1195 /*
1196 * setup HW LBR filter, if any
1197 */
1198 if (x86_pmu.lbr_sel_map)
1199 ret = intel_pmu_setup_hw_lbr_filter(event);
1200
1201 return ret;
1202 }
1203
1204 enum {
1205 ARCH_LBR_BR_TYPE_JCC = 0,
1206 ARCH_LBR_BR_TYPE_NEAR_IND_JMP = 1,
1207 ARCH_LBR_BR_TYPE_NEAR_REL_JMP = 2,
1208 ARCH_LBR_BR_TYPE_NEAR_IND_CALL = 3,
1209 ARCH_LBR_BR_TYPE_NEAR_REL_CALL = 4,
1210 ARCH_LBR_BR_TYPE_NEAR_RET = 5,
1211 ARCH_LBR_BR_TYPE_KNOWN_MAX = ARCH_LBR_BR_TYPE_NEAR_RET,
1212
1213 ARCH_LBR_BR_TYPE_MAP_MAX = 16,
1214 };
1215
1216 static const int arch_lbr_br_type_map[ARCH_LBR_BR_TYPE_MAP_MAX] = {
1217 [ARCH_LBR_BR_TYPE_JCC] = X86_BR_JCC,
1218 [ARCH_LBR_BR_TYPE_NEAR_IND_JMP] = X86_BR_IND_JMP,
1219 [ARCH_LBR_BR_TYPE_NEAR_REL_JMP] = X86_BR_JMP,
1220 [ARCH_LBR_BR_TYPE_NEAR_IND_CALL] = X86_BR_IND_CALL,
1221 [ARCH_LBR_BR_TYPE_NEAR_REL_CALL] = X86_BR_CALL,
1222 [ARCH_LBR_BR_TYPE_NEAR_RET] = X86_BR_RET,
1223 };
1224
1225 /*
1226 * implement actual branch filter based on user demand.
1227 * Hardware may not exactly satisfy that request, thus
1228 * we need to inspect opcodes. Mismatched branches are
1229 * discarded. Therefore, the number of branches returned
1230 * in PERF_SAMPLE_BRANCH_STACK sample may vary.
1231 */
1232 static void
intel_pmu_lbr_filter(struct cpu_hw_events * cpuc)1233 intel_pmu_lbr_filter(struct cpu_hw_events *cpuc)
1234 {
1235 u64 from, to;
1236 int br_sel = cpuc->br_sel;
1237 int i, j, type, to_plm;
1238 bool compress = false;
1239
1240 /* if sampling all branches, then nothing to filter */
1241 if (((br_sel & X86_BR_ALL) == X86_BR_ALL) &&
1242 ((br_sel & X86_BR_TYPE_SAVE) != X86_BR_TYPE_SAVE))
1243 return;
1244
1245 for (i = 0; i < cpuc->lbr_stack.nr; i++) {
1246
1247 from = cpuc->lbr_entries[i].from;
1248 to = cpuc->lbr_entries[i].to;
1249 type = cpuc->lbr_entries[i].type;
1250
1251 /*
1252 * Parse the branch type recorded in LBR_x_INFO MSR.
1253 * Doesn't support OTHER_BRANCH decoding for now.
1254 * OTHER_BRANCH branch type still rely on software decoding.
1255 */
1256 if (static_cpu_has(X86_FEATURE_ARCH_LBR) &&
1257 type <= ARCH_LBR_BR_TYPE_KNOWN_MAX) {
1258 to_plm = kernel_ip(to) ? X86_BR_KERNEL : X86_BR_USER;
1259 type = arch_lbr_br_type_map[type] | to_plm;
1260 } else
1261 type = branch_type(from, to, cpuc->lbr_entries[i].abort);
1262 if (type != X86_BR_NONE && (br_sel & X86_BR_ANYTX)) {
1263 if (cpuc->lbr_entries[i].in_tx)
1264 type |= X86_BR_IN_TX;
1265 else
1266 type |= X86_BR_NO_TX;
1267 }
1268
1269 /* if type does not correspond, then discard */
1270 if (type == X86_BR_NONE || (br_sel & type) != type) {
1271 cpuc->lbr_entries[i].from = 0;
1272 compress = true;
1273 }
1274
1275 if ((br_sel & X86_BR_TYPE_SAVE) == X86_BR_TYPE_SAVE)
1276 cpuc->lbr_entries[i].type = common_branch_type(type);
1277 }
1278
1279 if (!compress)
1280 return;
1281
1282 /* remove all entries with from=0 */
1283 for (i = 0; i < cpuc->lbr_stack.nr; ) {
1284 if (!cpuc->lbr_entries[i].from) {
1285 j = i;
1286 while (++j < cpuc->lbr_stack.nr) {
1287 cpuc->lbr_entries[j-1] = cpuc->lbr_entries[j];
1288 cpuc->lbr_counters[j-1] = cpuc->lbr_counters[j];
1289 }
1290 cpuc->lbr_stack.nr--;
1291 if (!cpuc->lbr_entries[i].from)
1292 continue;
1293 }
1294 i++;
1295 }
1296 }
1297
intel_pmu_store_pebs_lbrs(struct lbr_entry * lbr)1298 void intel_pmu_store_pebs_lbrs(struct lbr_entry *lbr)
1299 {
1300 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1301
1302 /* Cannot get TOS for large PEBS and Arch LBR */
1303 if (static_cpu_has(X86_FEATURE_ARCH_LBR) ||
1304 (cpuc->n_pebs == cpuc->n_large_pebs))
1305 cpuc->lbr_stack.hw_idx = -1ULL;
1306 else
1307 cpuc->lbr_stack.hw_idx = intel_pmu_lbr_tos();
1308
1309 intel_pmu_store_lbr(cpuc, lbr);
1310 intel_pmu_lbr_filter(cpuc);
1311 }
1312
1313 /*
1314 * Map interface branch filters onto LBR filters
1315 */
1316 static const int nhm_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
1317 [PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_ANY,
1318 [PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_USER,
1319 [PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_KERNEL,
1320 [PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN,
1321 [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_RETURN | LBR_REL_JMP
1322 | LBR_IND_JMP | LBR_FAR,
1323 /*
1324 * NHM/WSM erratum: must include REL_JMP+IND_JMP to get CALL branches
1325 */
1326 [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] =
1327 LBR_REL_CALL | LBR_IND_CALL | LBR_REL_JMP | LBR_IND_JMP | LBR_FAR,
1328 /*
1329 * NHM/WSM erratum: must include IND_JMP to capture IND_CALL
1330 */
1331 [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL | LBR_IND_JMP,
1332 [PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_JCC,
1333 [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP,
1334 };
1335
1336 static const int snb_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
1337 [PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_ANY,
1338 [PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_USER,
1339 [PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_KERNEL,
1340 [PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN,
1341 [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_RETURN | LBR_FAR,
1342 [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = LBR_REL_CALL | LBR_IND_CALL
1343 | LBR_FAR,
1344 [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL,
1345 [PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_JCC,
1346 [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP,
1347 [PERF_SAMPLE_BRANCH_CALL_SHIFT] = LBR_REL_CALL,
1348 };
1349
1350 static const int hsw_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
1351 [PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_ANY,
1352 [PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_USER,
1353 [PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_KERNEL,
1354 [PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN,
1355 [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_RETURN | LBR_FAR,
1356 [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = LBR_REL_CALL | LBR_IND_CALL
1357 | LBR_FAR,
1358 [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL,
1359 [PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_JCC,
1360 [PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT] = LBR_REL_CALL | LBR_IND_CALL
1361 | LBR_RETURN | LBR_CALL_STACK,
1362 [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP,
1363 [PERF_SAMPLE_BRANCH_CALL_SHIFT] = LBR_REL_CALL,
1364 };
1365
1366 static int arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
1367 [PERF_SAMPLE_BRANCH_ANY_SHIFT] = ARCH_LBR_ANY,
1368 [PERF_SAMPLE_BRANCH_USER_SHIFT] = ARCH_LBR_USER,
1369 [PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = ARCH_LBR_KERNEL,
1370 [PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN,
1371 [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = ARCH_LBR_RETURN |
1372 ARCH_LBR_OTHER_BRANCH,
1373 [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = ARCH_LBR_REL_CALL |
1374 ARCH_LBR_IND_CALL |
1375 ARCH_LBR_OTHER_BRANCH,
1376 [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = ARCH_LBR_IND_CALL,
1377 [PERF_SAMPLE_BRANCH_COND_SHIFT] = ARCH_LBR_JCC,
1378 [PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT] = ARCH_LBR_REL_CALL |
1379 ARCH_LBR_IND_CALL |
1380 ARCH_LBR_RETURN |
1381 ARCH_LBR_CALL_STACK,
1382 [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = ARCH_LBR_IND_JMP,
1383 [PERF_SAMPLE_BRANCH_CALL_SHIFT] = ARCH_LBR_REL_CALL,
1384 };
1385
1386 /* core */
intel_pmu_lbr_init_core(void)1387 void __init intel_pmu_lbr_init_core(void)
1388 {
1389 x86_pmu.lbr_nr = 4;
1390 x86_pmu.lbr_tos = MSR_LBR_TOS;
1391 x86_pmu.lbr_from = MSR_LBR_CORE_FROM;
1392 x86_pmu.lbr_to = MSR_LBR_CORE_TO;
1393
1394 /*
1395 * SW branch filter usage:
1396 * - compensate for lack of HW filter
1397 */
1398 }
1399
1400 /* nehalem/westmere */
intel_pmu_lbr_init_nhm(void)1401 void __init intel_pmu_lbr_init_nhm(void)
1402 {
1403 x86_pmu.lbr_nr = 16;
1404 x86_pmu.lbr_tos = MSR_LBR_TOS;
1405 x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
1406 x86_pmu.lbr_to = MSR_LBR_NHM_TO;
1407
1408 x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1409 x86_pmu.lbr_sel_map = nhm_lbr_sel_map;
1410
1411 /*
1412 * SW branch filter usage:
1413 * - workaround LBR_SEL errata (see above)
1414 * - support syscall, sysret capture.
1415 * That requires LBR_FAR but that means far
1416 * jmp need to be filtered out
1417 */
1418 }
1419
1420 /* sandy bridge */
intel_pmu_lbr_init_snb(void)1421 void __init intel_pmu_lbr_init_snb(void)
1422 {
1423 x86_pmu.lbr_nr = 16;
1424 x86_pmu.lbr_tos = MSR_LBR_TOS;
1425 x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
1426 x86_pmu.lbr_to = MSR_LBR_NHM_TO;
1427
1428 x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1429 x86_pmu.lbr_sel_map = snb_lbr_sel_map;
1430
1431 /*
1432 * SW branch filter usage:
1433 * - support syscall, sysret capture.
1434 * That requires LBR_FAR but that means far
1435 * jmp need to be filtered out
1436 */
1437 }
1438
1439 static inline struct kmem_cache *
create_lbr_kmem_cache(size_t size,size_t align)1440 create_lbr_kmem_cache(size_t size, size_t align)
1441 {
1442 return kmem_cache_create("x86_lbr", size, align, 0, NULL);
1443 }
1444
1445 /* haswell */
intel_pmu_lbr_init_hsw(void)1446 void intel_pmu_lbr_init_hsw(void)
1447 {
1448 size_t size = sizeof(struct x86_perf_task_context);
1449
1450 x86_pmu.lbr_nr = 16;
1451 x86_pmu.lbr_tos = MSR_LBR_TOS;
1452 x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
1453 x86_pmu.lbr_to = MSR_LBR_NHM_TO;
1454
1455 x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1456 x86_pmu.lbr_sel_map = hsw_lbr_sel_map;
1457
1458 x86_get_pmu(smp_processor_id())->task_ctx_cache = create_lbr_kmem_cache(size, 0);
1459 }
1460
1461 /* skylake */
intel_pmu_lbr_init_skl(void)1462 __init void intel_pmu_lbr_init_skl(void)
1463 {
1464 size_t size = sizeof(struct x86_perf_task_context);
1465
1466 x86_pmu.lbr_nr = 32;
1467 x86_pmu.lbr_tos = MSR_LBR_TOS;
1468 x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
1469 x86_pmu.lbr_to = MSR_LBR_NHM_TO;
1470 x86_pmu.lbr_info = MSR_LBR_INFO_0;
1471
1472 x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1473 x86_pmu.lbr_sel_map = hsw_lbr_sel_map;
1474
1475 x86_get_pmu(smp_processor_id())->task_ctx_cache = create_lbr_kmem_cache(size, 0);
1476
1477 /*
1478 * SW branch filter usage:
1479 * - support syscall, sysret capture.
1480 * That requires LBR_FAR but that means far
1481 * jmp need to be filtered out
1482 */
1483 }
1484
1485 /* atom */
intel_pmu_lbr_init_atom(void)1486 void __init intel_pmu_lbr_init_atom(void)
1487 {
1488 /*
1489 * only models starting at stepping 10 seems
1490 * to have an operational LBR which can freeze
1491 * on PMU interrupt
1492 */
1493 if (boot_cpu_data.x86_vfm == INTEL_ATOM_BONNELL
1494 && boot_cpu_data.x86_stepping < 10) {
1495 pr_cont("LBR disabled due to erratum");
1496 return;
1497 }
1498
1499 x86_pmu.lbr_nr = 8;
1500 x86_pmu.lbr_tos = MSR_LBR_TOS;
1501 x86_pmu.lbr_from = MSR_LBR_CORE_FROM;
1502 x86_pmu.lbr_to = MSR_LBR_CORE_TO;
1503
1504 /*
1505 * SW branch filter usage:
1506 * - compensate for lack of HW filter
1507 */
1508 }
1509
1510 /* slm */
intel_pmu_lbr_init_slm(void)1511 void __init intel_pmu_lbr_init_slm(void)
1512 {
1513 x86_pmu.lbr_nr = 8;
1514 x86_pmu.lbr_tos = MSR_LBR_TOS;
1515 x86_pmu.lbr_from = MSR_LBR_CORE_FROM;
1516 x86_pmu.lbr_to = MSR_LBR_CORE_TO;
1517
1518 x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1519 x86_pmu.lbr_sel_map = nhm_lbr_sel_map;
1520
1521 /*
1522 * SW branch filter usage:
1523 * - compensate for lack of HW filter
1524 */
1525 pr_cont("8-deep LBR, ");
1526 }
1527
1528 /* Knights Landing */
intel_pmu_lbr_init_knl(void)1529 void intel_pmu_lbr_init_knl(void)
1530 {
1531 x86_pmu.lbr_nr = 8;
1532 x86_pmu.lbr_tos = MSR_LBR_TOS;
1533 x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
1534 x86_pmu.lbr_to = MSR_LBR_NHM_TO;
1535
1536 x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1537 x86_pmu.lbr_sel_map = snb_lbr_sel_map;
1538
1539 /* Knights Landing does have MISPREDICT bit */
1540 if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_LIP)
1541 x86_pmu.intel_cap.lbr_format = LBR_FORMAT_EIP_FLAGS;
1542 }
1543
intel_pmu_lbr_init(void)1544 void intel_pmu_lbr_init(void)
1545 {
1546 switch (x86_pmu.intel_cap.lbr_format) {
1547 case LBR_FORMAT_EIP_FLAGS2:
1548 x86_pmu.lbr_has_tsx = 1;
1549 x86_pmu.lbr_from_flags = 1;
1550 if (lbr_from_signext_quirk_needed())
1551 static_branch_enable(&lbr_from_quirk_key);
1552 break;
1553
1554 case LBR_FORMAT_EIP_FLAGS:
1555 x86_pmu.lbr_from_flags = 1;
1556 break;
1557
1558 case LBR_FORMAT_INFO:
1559 x86_pmu.lbr_has_tsx = 1;
1560 fallthrough;
1561 case LBR_FORMAT_INFO2:
1562 x86_pmu.lbr_has_info = 1;
1563 break;
1564
1565 case LBR_FORMAT_TIME:
1566 x86_pmu.lbr_from_flags = 1;
1567 x86_pmu.lbr_to_cycles = 1;
1568 break;
1569 }
1570
1571 if (x86_pmu.lbr_has_info) {
1572 /*
1573 * Only used in combination with baseline pebs.
1574 */
1575 static_branch_enable(&x86_lbr_mispred);
1576 static_branch_enable(&x86_lbr_cycles);
1577 }
1578 }
1579
1580 /*
1581 * LBR state size is variable based on the max number of registers.
1582 * This calculates the expected state size, which should match
1583 * what the hardware enumerates for the size of XFEATURE_LBR.
1584 */
get_lbr_state_size(void)1585 static inline unsigned int get_lbr_state_size(void)
1586 {
1587 return sizeof(struct arch_lbr_state) +
1588 x86_pmu.lbr_nr * sizeof(struct lbr_entry);
1589 }
1590
is_arch_lbr_xsave_available(void)1591 static bool is_arch_lbr_xsave_available(void)
1592 {
1593 if (!boot_cpu_has(X86_FEATURE_XSAVES))
1594 return false;
1595
1596 /*
1597 * Check the LBR state with the corresponding software structure.
1598 * Disable LBR XSAVES support if the size doesn't match.
1599 */
1600 if (xfeature_size(XFEATURE_LBR) == 0)
1601 return false;
1602
1603 if (WARN_ON(xfeature_size(XFEATURE_LBR) != get_lbr_state_size()))
1604 return false;
1605
1606 return true;
1607 }
1608
intel_pmu_arch_lbr_init(void)1609 void __init intel_pmu_arch_lbr_init(void)
1610 {
1611 struct pmu *pmu = x86_get_pmu(smp_processor_id());
1612 union cpuid28_eax eax;
1613 union cpuid28_ebx ebx;
1614 union cpuid28_ecx ecx;
1615 unsigned int unused_edx;
1616 bool arch_lbr_xsave;
1617 size_t size;
1618 u64 lbr_nr;
1619
1620 /* Arch LBR Capabilities */
1621 cpuid(28, &eax.full, &ebx.full, &ecx.full, &unused_edx);
1622
1623 lbr_nr = fls(eax.split.lbr_depth_mask) * 8;
1624 if (!lbr_nr)
1625 goto clear_arch_lbr;
1626
1627 /* Apply the max depth of Arch LBR */
1628 if (wrmsrl_safe(MSR_ARCH_LBR_DEPTH, lbr_nr))
1629 goto clear_arch_lbr;
1630
1631 x86_pmu.lbr_depth_mask = eax.split.lbr_depth_mask;
1632 x86_pmu.lbr_deep_c_reset = eax.split.lbr_deep_c_reset;
1633 x86_pmu.lbr_lip = eax.split.lbr_lip;
1634 x86_pmu.lbr_cpl = ebx.split.lbr_cpl;
1635 x86_pmu.lbr_filter = ebx.split.lbr_filter;
1636 x86_pmu.lbr_call_stack = ebx.split.lbr_call_stack;
1637 x86_pmu.lbr_mispred = ecx.split.lbr_mispred;
1638 x86_pmu.lbr_timed_lbr = ecx.split.lbr_timed_lbr;
1639 x86_pmu.lbr_br_type = ecx.split.lbr_br_type;
1640 x86_pmu.lbr_counters = ecx.split.lbr_counters;
1641 x86_pmu.lbr_nr = lbr_nr;
1642
1643 if (!!x86_pmu.lbr_counters)
1644 x86_pmu.flags |= PMU_FL_BR_CNTR;
1645
1646 if (x86_pmu.lbr_mispred)
1647 static_branch_enable(&x86_lbr_mispred);
1648 if (x86_pmu.lbr_timed_lbr)
1649 static_branch_enable(&x86_lbr_cycles);
1650 if (x86_pmu.lbr_br_type)
1651 static_branch_enable(&x86_lbr_type);
1652
1653 arch_lbr_xsave = is_arch_lbr_xsave_available();
1654 if (arch_lbr_xsave) {
1655 size = sizeof(struct x86_perf_task_context_arch_lbr_xsave) +
1656 get_lbr_state_size();
1657 pmu->task_ctx_cache = create_lbr_kmem_cache(size,
1658 XSAVE_ALIGNMENT);
1659 }
1660
1661 if (!pmu->task_ctx_cache) {
1662 arch_lbr_xsave = false;
1663
1664 size = sizeof(struct x86_perf_task_context_arch_lbr) +
1665 lbr_nr * sizeof(struct lbr_entry);
1666 pmu->task_ctx_cache = create_lbr_kmem_cache(size, 0);
1667 }
1668
1669 x86_pmu.lbr_from = MSR_ARCH_LBR_FROM_0;
1670 x86_pmu.lbr_to = MSR_ARCH_LBR_TO_0;
1671 x86_pmu.lbr_info = MSR_ARCH_LBR_INFO_0;
1672
1673 /* LBR callstack requires both CPL and Branch Filtering support */
1674 if (!x86_pmu.lbr_cpl ||
1675 !x86_pmu.lbr_filter ||
1676 !x86_pmu.lbr_call_stack)
1677 arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT] = LBR_NOT_SUPP;
1678
1679 if (!x86_pmu.lbr_cpl) {
1680 arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_NOT_SUPP;
1681 arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_NOT_SUPP;
1682 } else if (!x86_pmu.lbr_filter) {
1683 arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_NOT_SUPP;
1684 arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_NOT_SUPP;
1685 arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = LBR_NOT_SUPP;
1686 arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_NOT_SUPP;
1687 arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_NOT_SUPP;
1688 arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_NOT_SUPP;
1689 arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_CALL_SHIFT] = LBR_NOT_SUPP;
1690 }
1691
1692 x86_pmu.lbr_ctl_mask = ARCH_LBR_CTL_MASK;
1693 x86_pmu.lbr_ctl_map = arch_lbr_ctl_map;
1694
1695 if (!x86_pmu.lbr_cpl && !x86_pmu.lbr_filter)
1696 x86_pmu.lbr_ctl_map = NULL;
1697
1698 x86_pmu.lbr_reset = intel_pmu_arch_lbr_reset;
1699 if (arch_lbr_xsave) {
1700 x86_pmu.lbr_save = intel_pmu_arch_lbr_xsaves;
1701 x86_pmu.lbr_restore = intel_pmu_arch_lbr_xrstors;
1702 x86_pmu.lbr_read = intel_pmu_arch_lbr_read_xsave;
1703 pr_cont("XSAVE ");
1704 } else {
1705 x86_pmu.lbr_save = intel_pmu_arch_lbr_save;
1706 x86_pmu.lbr_restore = intel_pmu_arch_lbr_restore;
1707 x86_pmu.lbr_read = intel_pmu_arch_lbr_read;
1708 }
1709
1710 pr_cont("Architectural LBR, ");
1711
1712 return;
1713
1714 clear_arch_lbr:
1715 setup_clear_cpu_cap(X86_FEATURE_ARCH_LBR);
1716 }
1717
1718 /**
1719 * x86_perf_get_lbr - get the LBR records information
1720 *
1721 * @lbr: the caller's memory to store the LBR records information
1722 */
x86_perf_get_lbr(struct x86_pmu_lbr * lbr)1723 void x86_perf_get_lbr(struct x86_pmu_lbr *lbr)
1724 {
1725 lbr->nr = x86_pmu.lbr_nr;
1726 lbr->from = x86_pmu.lbr_from;
1727 lbr->to = x86_pmu.lbr_to;
1728 lbr->info = x86_pmu.lbr_info;
1729 lbr->has_callstack = x86_pmu_has_lbr_callstack();
1730 }
1731 EXPORT_SYMBOL_GPL(x86_perf_get_lbr);
1732
1733 struct event_constraint vlbr_constraint =
1734 __EVENT_CONSTRAINT(INTEL_FIXED_VLBR_EVENT, (1ULL << INTEL_PMC_IDX_FIXED_VLBR),
1735 FIXED_EVENT_FLAGS, 1, 0, PERF_X86_EVENT_LBR_SELECT);
1736