1 /*
2 * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include <float.h>
12 #include <limits.h>
13 #include <math.h>
14 #include <stdio.h>
15
16 #include "./vp9_rtcd.h"
17 #include "./vpx_dsp_rtcd.h"
18 #include "./vpx_config.h"
19
20 #include "vpx_dsp/vpx_dsp_common.h"
21 #include "vpx_ports/mem.h"
22 #include "vpx_ports/vpx_timer.h"
23 #include "vpx_ports/system_state.h"
24 #include "vpx_util/vpx_pthread.h"
25 #if CONFIG_MISMATCH_DEBUG
26 #include "vpx_util/vpx_debug_util.h"
27 #endif // CONFIG_MISMATCH_DEBUG
28
29 #include "vp9/common/vp9_common.h"
30 #include "vp9/common/vp9_entropy.h"
31 #include "vp9/common/vp9_entropymode.h"
32 #include "vp9/common/vp9_idct.h"
33 #include "vp9/common/vp9_mvref_common.h"
34 #include "vp9/common/vp9_pred_common.h"
35 #include "vp9/common/vp9_quant_common.h"
36 #include "vp9/common/vp9_reconintra.h"
37 #include "vp9/common/vp9_reconinter.h"
38 #include "vp9/common/vp9_seg_common.h"
39 #include "vp9/common/vp9_tile_common.h"
40 #if !CONFIG_REALTIME_ONLY
41 #include "vp9/encoder/vp9_aq_360.h"
42 #include "vp9/encoder/vp9_aq_complexity.h"
43 #endif
44 #include "vp9/encoder/vp9_aq_cyclicrefresh.h"
45 #if !CONFIG_REALTIME_ONLY
46 #include "vp9/encoder/vp9_aq_variance.h"
47 #endif
48 #include "vp9/encoder/vp9_encodeframe.h"
49 #include "vp9/encoder/vp9_encodemb.h"
50 #include "vp9/encoder/vp9_encodemv.h"
51 #include "vp9/encoder/vp9_encoder.h"
52 #include "vp9/encoder/vp9_ethread.h"
53 #include "vp9/encoder/vp9_extend.h"
54 #include "vp9/encoder/vp9_multi_thread.h"
55 #include "vp9/encoder/vp9_partition_models.h"
56 #include "vp9/encoder/vp9_pickmode.h"
57 #include "vp9/encoder/vp9_rd.h"
58 #include "vp9/encoder/vp9_rdopt.h"
59 #include "vp9/encoder/vp9_segmentation.h"
60 #include "vp9/encoder/vp9_tokenize.h"
61
62 static void encode_superblock(VP9_COMP *cpi, ThreadData *td, TOKENEXTRA **t,
63 int output_enabled, int mi_row, int mi_col,
64 BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx);
65
66 // This is used as a reference when computing the source variance for the
67 // purpose of activity masking.
68 // Eventually this should be replaced by custom no-reference routines,
69 // which will be faster.
70 static const uint8_t VP9_VAR_OFFS[64] = {
71 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
72 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
73 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
74 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
75 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128
76 };
77
78 #if CONFIG_VP9_HIGHBITDEPTH
79 static const uint16_t VP9_HIGH_VAR_OFFS_8[64] = {
80 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
81 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
82 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
83 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
84 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128
85 };
86
87 static const uint16_t VP9_HIGH_VAR_OFFS_10[64] = {
88 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
89 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
90 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
91 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
92 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
93 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
94 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
95 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4
96 };
97
98 static const uint16_t VP9_HIGH_VAR_OFFS_12[64] = {
99 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
100 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
101 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
102 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
103 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
104 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
105 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
106 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
107 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
108 128 * 16
109 };
110 #endif // CONFIG_VP9_HIGHBITDEPTH
111
vp9_get_sby_variance(VP9_COMP * cpi,const struct buf_2d * ref,BLOCK_SIZE bs)112 unsigned int vp9_get_sby_variance(VP9_COMP *cpi, const struct buf_2d *ref,
113 BLOCK_SIZE bs) {
114 unsigned int sse;
115 const unsigned int var =
116 cpi->fn_ptr[bs].vf(ref->buf, ref->stride, VP9_VAR_OFFS, 0, &sse);
117 return var;
118 }
119
120 #if CONFIG_VP9_HIGHBITDEPTH
vp9_high_get_sby_variance(VP9_COMP * cpi,const struct buf_2d * ref,BLOCK_SIZE bs,int bd)121 unsigned int vp9_high_get_sby_variance(VP9_COMP *cpi, const struct buf_2d *ref,
122 BLOCK_SIZE bs, int bd) {
123 unsigned int var, sse;
124 switch (bd) {
125 case 10:
126 var =
127 cpi->fn_ptr[bs].vf(ref->buf, ref->stride,
128 CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_10), 0, &sse);
129 break;
130 case 12:
131 var =
132 cpi->fn_ptr[bs].vf(ref->buf, ref->stride,
133 CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_12), 0, &sse);
134 break;
135 case 8:
136 default:
137 var =
138 cpi->fn_ptr[bs].vf(ref->buf, ref->stride,
139 CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_8), 0, &sse);
140 break;
141 }
142 return var;
143 }
144 #endif // CONFIG_VP9_HIGHBITDEPTH
145
vp9_get_sby_perpixel_variance(VP9_COMP * cpi,const struct buf_2d * ref,BLOCK_SIZE bs)146 unsigned int vp9_get_sby_perpixel_variance(VP9_COMP *cpi,
147 const struct buf_2d *ref,
148 BLOCK_SIZE bs) {
149 return ROUND_POWER_OF_TWO(vp9_get_sby_variance(cpi, ref, bs),
150 num_pels_log2_lookup[bs]);
151 }
152
153 #if CONFIG_VP9_HIGHBITDEPTH
vp9_high_get_sby_perpixel_variance(VP9_COMP * cpi,const struct buf_2d * ref,BLOCK_SIZE bs,int bd)154 unsigned int vp9_high_get_sby_perpixel_variance(VP9_COMP *cpi,
155 const struct buf_2d *ref,
156 BLOCK_SIZE bs, int bd) {
157 return (unsigned int)ROUND64_POWER_OF_TWO(
158 (int64_t)vp9_high_get_sby_variance(cpi, ref, bs, bd),
159 num_pels_log2_lookup[bs]);
160 }
161 #endif // CONFIG_VP9_HIGHBITDEPTH
162
set_segment_index(VP9_COMP * cpi,MACROBLOCK * const x,int mi_row,int mi_col,BLOCK_SIZE bsize,int segment_index)163 static void set_segment_index(VP9_COMP *cpi, MACROBLOCK *const x, int mi_row,
164 int mi_col, BLOCK_SIZE bsize, int segment_index) {
165 VP9_COMMON *const cm = &cpi->common;
166 const struct segmentation *const seg = &cm->seg;
167 MACROBLOCKD *const xd = &x->e_mbd;
168 MODE_INFO *mi = xd->mi[0];
169
170 const AQ_MODE aq_mode = cpi->oxcf.aq_mode;
171 const uint8_t *const map =
172 seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map;
173
174 // Initialize the segmentation index as 0.
175 mi->segment_id = 0;
176
177 // Skip the rest if AQ mode is disabled.
178 if (!seg->enabled) return;
179
180 switch (aq_mode) {
181 case CYCLIC_REFRESH_AQ:
182 mi->segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col);
183 break;
184 #if !CONFIG_REALTIME_ONLY
185 case VARIANCE_AQ:
186 if (cm->frame_type == KEY_FRAME || cpi->refresh_alt_ref_frame ||
187 cpi->force_update_segmentation ||
188 (cpi->refresh_golden_frame && !cpi->rc.is_src_frame_alt_ref)) {
189 int min_energy;
190 int max_energy;
191 // Get sub block energy range
192 if (bsize >= BLOCK_32X32) {
193 vp9_get_sub_block_energy(cpi, x, mi_row, mi_col, bsize, &min_energy,
194 &max_energy);
195 } else {
196 min_energy = bsize <= BLOCK_16X16 ? x->mb_energy
197 : vp9_block_energy(cpi, x, bsize);
198 }
199 mi->segment_id = vp9_vaq_segment_id(min_energy);
200 } else {
201 mi->segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col);
202 }
203 break;
204 case EQUATOR360_AQ:
205 if (cm->frame_type == KEY_FRAME || cpi->force_update_segmentation)
206 mi->segment_id = vp9_360aq_segment_id(mi_row, cm->mi_rows);
207 else
208 mi->segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col);
209 break;
210 #endif
211 case LOOKAHEAD_AQ:
212 mi->segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col);
213 break;
214 case PSNR_AQ: mi->segment_id = segment_index; break;
215 case PERCEPTUAL_AQ: mi->segment_id = x->segment_id; break;
216 default:
217 // NO_AQ or PSNR_AQ
218 break;
219 }
220
221 // Set segment index if ROI map or active_map is enabled.
222 if (cpi->roi.enabled || cpi->active_map.enabled)
223 mi->segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col);
224
225 vp9_init_plane_quantizers(cpi, x);
226 }
227
228 // Lighter version of set_offsets that only sets the mode info
229 // pointers.
set_mode_info_offsets(VP9_COMMON * const cm,MACROBLOCK * const x,MACROBLOCKD * const xd,int mi_row,int mi_col)230 static INLINE void set_mode_info_offsets(VP9_COMMON *const cm,
231 MACROBLOCK *const x,
232 MACROBLOCKD *const xd, int mi_row,
233 int mi_col) {
234 const int idx_str = xd->mi_stride * mi_row + mi_col;
235 xd->mi = cm->mi_grid_visible + idx_str;
236 xd->mi[0] = cm->mi + idx_str;
237 x->mbmi_ext = x->mbmi_ext_base + (mi_row * cm->mi_cols + mi_col);
238 }
239
set_ssim_rdmult(VP9_COMP * const cpi,MACROBLOCK * const x,const BLOCK_SIZE bsize,const int mi_row,const int mi_col,int * const rdmult)240 static void set_ssim_rdmult(VP9_COMP *const cpi, MACROBLOCK *const x,
241 const BLOCK_SIZE bsize, const int mi_row,
242 const int mi_col, int *const rdmult) {
243 const VP9_COMMON *const cm = &cpi->common;
244
245 const int bsize_base = BLOCK_16X16;
246 const int num_8x8_w = num_8x8_blocks_wide_lookup[bsize_base];
247 const int num_8x8_h = num_8x8_blocks_high_lookup[bsize_base];
248 const int num_cols = (cm->mi_cols + num_8x8_w - 1) / num_8x8_w;
249 const int num_rows = (cm->mi_rows + num_8x8_h - 1) / num_8x8_h;
250 const int num_bcols =
251 (num_8x8_blocks_wide_lookup[bsize] + num_8x8_w - 1) / num_8x8_w;
252 const int num_brows =
253 (num_8x8_blocks_high_lookup[bsize] + num_8x8_h - 1) / num_8x8_h;
254 int row, col;
255 double num_of_mi = 0.0;
256 double geom_mean_of_scale = 0.0;
257
258 assert(cpi->oxcf.tuning == VP8_TUNE_SSIM);
259
260 for (row = mi_row / num_8x8_w;
261 row < num_rows && row < mi_row / num_8x8_w + num_brows; ++row) {
262 for (col = mi_col / num_8x8_h;
263 col < num_cols && col < mi_col / num_8x8_h + num_bcols; ++col) {
264 const int index = row * num_cols + col;
265 geom_mean_of_scale += log(cpi->mi_ssim_rdmult_scaling_factors[index]);
266 num_of_mi += 1.0;
267 }
268 }
269 geom_mean_of_scale = exp(geom_mean_of_scale / num_of_mi);
270
271 *rdmult = (int)((double)(*rdmult) * geom_mean_of_scale);
272 *rdmult = VPXMAX(*rdmult, 0);
273 set_error_per_bit(x, *rdmult);
274 vpx_clear_system_state();
275 }
276
set_offsets(VP9_COMP * cpi,const TileInfo * const tile,MACROBLOCK * const x,int mi_row,int mi_col,BLOCK_SIZE bsize)277 static void set_offsets(VP9_COMP *cpi, const TileInfo *const tile,
278 MACROBLOCK *const x, int mi_row, int mi_col,
279 BLOCK_SIZE bsize) {
280 VP9_COMMON *const cm = &cpi->common;
281 const VP9EncoderConfig *const oxcf = &cpi->oxcf;
282 MACROBLOCKD *const xd = &x->e_mbd;
283 const int mi_width = num_8x8_blocks_wide_lookup[bsize];
284 const int mi_height = num_8x8_blocks_high_lookup[bsize];
285 MvLimits *const mv_limits = &x->mv_limits;
286
287 set_skip_context(xd, mi_row, mi_col);
288
289 set_mode_info_offsets(cm, x, xd, mi_row, mi_col);
290
291 // Set up destination pointers.
292 vp9_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col);
293
294 // Set up limit values for MV components.
295 // Mv beyond the range do not produce new/different prediction block.
296 mv_limits->row_min = -(((mi_row + mi_height) * MI_SIZE) + VP9_INTERP_EXTEND);
297 mv_limits->col_min = -(((mi_col + mi_width) * MI_SIZE) + VP9_INTERP_EXTEND);
298 mv_limits->row_max = (cm->mi_rows - mi_row) * MI_SIZE + VP9_INTERP_EXTEND;
299 mv_limits->col_max = (cm->mi_cols - mi_col) * MI_SIZE + VP9_INTERP_EXTEND;
300
301 // Set up distance of MB to edge of frame in 1/8th pel units.
302 assert(!(mi_col & (mi_width - 1)) && !(mi_row & (mi_height - 1)));
303 set_mi_row_col(xd, tile, mi_row, mi_height, mi_col, mi_width, cm->mi_rows,
304 cm->mi_cols);
305
306 // Set up source buffers.
307 vp9_setup_src_planes(x, cpi->Source, mi_row, mi_col);
308
309 // R/D setup.
310 x->rddiv = cpi->rd.RDDIV;
311 x->rdmult = cpi->rd.RDMULT;
312 if (oxcf->tuning == VP8_TUNE_SSIM) {
313 set_ssim_rdmult(cpi, x, bsize, mi_row, mi_col, &x->rdmult);
314 }
315
316 // required by vp9_append_sub8x8_mvs_for_idx() and vp9_find_best_ref_mvs()
317 xd->tile = *tile;
318 }
319
duplicate_mode_info_in_sb(VP9_COMMON * cm,MACROBLOCKD * xd,int mi_row,int mi_col,BLOCK_SIZE bsize)320 static void duplicate_mode_info_in_sb(VP9_COMMON *cm, MACROBLOCKD *xd,
321 int mi_row, int mi_col,
322 BLOCK_SIZE bsize) {
323 const int block_width =
324 VPXMIN(num_8x8_blocks_wide_lookup[bsize], cm->mi_cols - mi_col);
325 const int block_height =
326 VPXMIN(num_8x8_blocks_high_lookup[bsize], cm->mi_rows - mi_row);
327 const int mi_stride = xd->mi_stride;
328 MODE_INFO *const src_mi = xd->mi[0];
329 int i, j;
330
331 for (j = 0; j < block_height; ++j)
332 for (i = 0; i < block_width; ++i) xd->mi[j * mi_stride + i] = src_mi;
333 }
334
set_block_size(VP9_COMP * const cpi,MACROBLOCK * const x,MACROBLOCKD * const xd,int mi_row,int mi_col,BLOCK_SIZE bsize)335 static void set_block_size(VP9_COMP *const cpi, MACROBLOCK *const x,
336 MACROBLOCKD *const xd, int mi_row, int mi_col,
337 BLOCK_SIZE bsize) {
338 if (cpi->common.mi_cols > mi_col && cpi->common.mi_rows > mi_row) {
339 set_mode_info_offsets(&cpi->common, x, xd, mi_row, mi_col);
340 xd->mi[0]->sb_type = bsize;
341 }
342 }
343
344 typedef struct {
345 // This struct is used for computing variance in choose_partitioning(), where
346 // the max number of samples within a superblock is 16x16 (with 4x4 avg). Even
347 // in high bitdepth, uint32_t is enough for sum_square_error (2^12 * 2^12 * 16
348 // * 16 = 2^32).
349 uint32_t sum_square_error;
350 int32_t sum_error;
351 int log2_count;
352 int variance;
353 } Var;
354
355 typedef struct {
356 Var none;
357 Var horz[2];
358 Var vert[2];
359 } partition_variance;
360
361 typedef struct {
362 partition_variance part_variances;
363 Var split[4];
364 } v4x4;
365
366 typedef struct {
367 partition_variance part_variances;
368 v4x4 split[4];
369 } v8x8;
370
371 typedef struct {
372 partition_variance part_variances;
373 v8x8 split[4];
374 } v16x16;
375
376 typedef struct {
377 partition_variance part_variances;
378 v16x16 split[4];
379 } v32x32;
380
381 typedef struct {
382 partition_variance part_variances;
383 v32x32 split[4];
384 } v64x64;
385
386 typedef struct {
387 partition_variance *part_variances;
388 Var *split[4];
389 } variance_node;
390
391 typedef enum {
392 V16X16,
393 V32X32,
394 V64X64,
395 } TREE_LEVEL;
396
tree_to_node(void * data,BLOCK_SIZE bsize,variance_node * node)397 static void tree_to_node(void *data, BLOCK_SIZE bsize, variance_node *node) {
398 int i;
399 node->part_variances = NULL;
400 switch (bsize) {
401 case BLOCK_64X64: {
402 v64x64 *vt = (v64x64 *)data;
403 node->part_variances = &vt->part_variances;
404 for (i = 0; i < 4; i++)
405 node->split[i] = &vt->split[i].part_variances.none;
406 break;
407 }
408 case BLOCK_32X32: {
409 v32x32 *vt = (v32x32 *)data;
410 node->part_variances = &vt->part_variances;
411 for (i = 0; i < 4; i++)
412 node->split[i] = &vt->split[i].part_variances.none;
413 break;
414 }
415 case BLOCK_16X16: {
416 v16x16 *vt = (v16x16 *)data;
417 node->part_variances = &vt->part_variances;
418 for (i = 0; i < 4; i++)
419 node->split[i] = &vt->split[i].part_variances.none;
420 break;
421 }
422 case BLOCK_8X8: {
423 v8x8 *vt = (v8x8 *)data;
424 node->part_variances = &vt->part_variances;
425 for (i = 0; i < 4; i++)
426 node->split[i] = &vt->split[i].part_variances.none;
427 break;
428 }
429 default: {
430 v4x4 *vt = (v4x4 *)data;
431 assert(bsize == BLOCK_4X4);
432 node->part_variances = &vt->part_variances;
433 for (i = 0; i < 4; i++) node->split[i] = &vt->split[i];
434 break;
435 }
436 }
437 }
438
439 // Set variance values given sum square error, sum error, count.
fill_variance(uint32_t s2,int32_t s,int c,Var * v)440 static void fill_variance(uint32_t s2, int32_t s, int c, Var *v) {
441 v->sum_square_error = s2;
442 v->sum_error = s;
443 v->log2_count = c;
444 }
445
get_variance(Var * v)446 static void get_variance(Var *v) {
447 v->variance =
448 (int)(256 * (v->sum_square_error -
449 (uint32_t)(((int64_t)v->sum_error * v->sum_error) >>
450 v->log2_count)) >>
451 v->log2_count);
452 }
453
sum_2_variances(const Var * a,const Var * b,Var * r)454 static void sum_2_variances(const Var *a, const Var *b, Var *r) {
455 assert(a->log2_count == b->log2_count);
456 fill_variance(a->sum_square_error + b->sum_square_error,
457 a->sum_error + b->sum_error, a->log2_count + 1, r);
458 }
459
fill_variance_tree(void * data,BLOCK_SIZE bsize)460 static void fill_variance_tree(void *data, BLOCK_SIZE bsize) {
461 variance_node node;
462 memset(&node, 0, sizeof(node));
463 tree_to_node(data, bsize, &node);
464 sum_2_variances(node.split[0], node.split[1], &node.part_variances->horz[0]);
465 sum_2_variances(node.split[2], node.split[3], &node.part_variances->horz[1]);
466 sum_2_variances(node.split[0], node.split[2], &node.part_variances->vert[0]);
467 sum_2_variances(node.split[1], node.split[3], &node.part_variances->vert[1]);
468 sum_2_variances(&node.part_variances->vert[0], &node.part_variances->vert[1],
469 &node.part_variances->none);
470 }
471
set_vt_partitioning(VP9_COMP * cpi,MACROBLOCK * const x,MACROBLOCKD * const xd,void * data,BLOCK_SIZE bsize,int mi_row,int mi_col,int64_t threshold,BLOCK_SIZE bsize_min,int force_split)472 static int set_vt_partitioning(VP9_COMP *cpi, MACROBLOCK *const x,
473 MACROBLOCKD *const xd, void *data,
474 BLOCK_SIZE bsize, int mi_row, int mi_col,
475 int64_t threshold, BLOCK_SIZE bsize_min,
476 int force_split) {
477 VP9_COMMON *const cm = &cpi->common;
478 variance_node vt;
479 const int block_width = num_8x8_blocks_wide_lookup[bsize];
480 const int block_height = num_8x8_blocks_high_lookup[bsize];
481
482 assert(block_height == block_width);
483 tree_to_node(data, bsize, &vt);
484
485 if (force_split == 1) return 0;
486
487 // For bsize=bsize_min (16x16/8x8 for 8x8/4x4 downsampling), select if
488 // variance is below threshold, otherwise split will be selected.
489 // No check for vert/horiz split as too few samples for variance.
490 if (bsize == bsize_min) {
491 // Variance already computed to set the force_split.
492 if (frame_is_intra_only(cm)) get_variance(&vt.part_variances->none);
493 if (mi_col + block_width / 2 < cm->mi_cols &&
494 mi_row + block_height / 2 < cm->mi_rows &&
495 vt.part_variances->none.variance < threshold) {
496 set_block_size(cpi, x, xd, mi_row, mi_col, bsize);
497 return 1;
498 }
499 return 0;
500 } else if (bsize > bsize_min) {
501 // Variance already computed to set the force_split.
502 if (frame_is_intra_only(cm)) get_variance(&vt.part_variances->none);
503 // For key frame: take split for bsize above 32X32 or very high variance.
504 if (frame_is_intra_only(cm) &&
505 (bsize > BLOCK_32X32 ||
506 vt.part_variances->none.variance > (threshold << 4))) {
507 return 0;
508 }
509 // If variance is low, take the bsize (no split).
510 if (mi_col + block_width / 2 < cm->mi_cols &&
511 mi_row + block_height / 2 < cm->mi_rows &&
512 vt.part_variances->none.variance < threshold) {
513 set_block_size(cpi, x, xd, mi_row, mi_col, bsize);
514 return 1;
515 }
516
517 // Check vertical split.
518 if (mi_row + block_height / 2 < cm->mi_rows) {
519 BLOCK_SIZE subsize = get_subsize(bsize, PARTITION_VERT);
520 get_variance(&vt.part_variances->vert[0]);
521 get_variance(&vt.part_variances->vert[1]);
522 if (vt.part_variances->vert[0].variance < threshold &&
523 vt.part_variances->vert[1].variance < threshold &&
524 get_plane_block_size(subsize, &xd->plane[1]) < BLOCK_INVALID) {
525 set_block_size(cpi, x, xd, mi_row, mi_col, subsize);
526 set_block_size(cpi, x, xd, mi_row, mi_col + block_width / 2, subsize);
527 return 1;
528 }
529 }
530 // Check horizontal split.
531 if (mi_col + block_width / 2 < cm->mi_cols) {
532 BLOCK_SIZE subsize = get_subsize(bsize, PARTITION_HORZ);
533 get_variance(&vt.part_variances->horz[0]);
534 get_variance(&vt.part_variances->horz[1]);
535 if (vt.part_variances->horz[0].variance < threshold &&
536 vt.part_variances->horz[1].variance < threshold &&
537 get_plane_block_size(subsize, &xd->plane[1]) < BLOCK_INVALID) {
538 set_block_size(cpi, x, xd, mi_row, mi_col, subsize);
539 set_block_size(cpi, x, xd, mi_row + block_height / 2, mi_col, subsize);
540 return 1;
541 }
542 }
543
544 return 0;
545 }
546 return 0;
547 }
548
scale_part_thresh_sumdiff(int64_t threshold_base,int speed,int width,int height,int content_state)549 static int64_t scale_part_thresh_sumdiff(int64_t threshold_base, int speed,
550 int width, int height,
551 int content_state) {
552 if (speed >= 8) {
553 if (width <= 640 && height <= 480)
554 return (5 * threshold_base) >> 2;
555 else if ((content_state == kLowSadLowSumdiff) ||
556 (content_state == kHighSadLowSumdiff) ||
557 (content_state == kLowVarHighSumdiff))
558 return (5 * threshold_base) >> 2;
559 } else if (speed == 7) {
560 if ((content_state == kLowSadLowSumdiff) ||
561 (content_state == kHighSadLowSumdiff) ||
562 (content_state == kLowVarHighSumdiff)) {
563 return (5 * threshold_base) >> 2;
564 }
565 }
566 return threshold_base;
567 }
568
569 // Set the variance split thresholds for following the block sizes:
570 // 0 - threshold_64x64, 1 - threshold_32x32, 2 - threshold_16x16,
571 // 3 - vbp_threshold_8x8. vbp_threshold_8x8 (to split to 4x4 partition) is
572 // currently only used on key frame.
set_vbp_thresholds(VP9_COMP * cpi,int64_t thresholds[],int q,int content_state)573 static void set_vbp_thresholds(VP9_COMP *cpi, int64_t thresholds[], int q,
574 int content_state) {
575 VP9_COMMON *const cm = &cpi->common;
576 const int is_key_frame = frame_is_intra_only(cm);
577 const int threshold_multiplier =
578 is_key_frame ? 20 : cpi->sf.variance_part_thresh_mult;
579 int64_t threshold_base =
580 (int64_t)(threshold_multiplier * cpi->y_dequant[q][1]);
581
582 if (is_key_frame) {
583 thresholds[0] = threshold_base;
584 thresholds[1] = threshold_base >> 2;
585 thresholds[2] = threshold_base >> 2;
586 thresholds[3] = threshold_base << 2;
587 } else {
588 // Increase base variance threshold based on estimated noise level.
589 if (cpi->noise_estimate.enabled && cm->width >= 640 && cm->height >= 480) {
590 NOISE_LEVEL noise_level =
591 vp9_noise_estimate_extract_level(&cpi->noise_estimate);
592 if (noise_level == kHigh)
593 threshold_base = 3 * threshold_base;
594 else if (noise_level == kMedium)
595 threshold_base = threshold_base << 1;
596 else if (noise_level < kLow)
597 threshold_base = (7 * threshold_base) >> 3;
598 }
599 #if CONFIG_VP9_TEMPORAL_DENOISING
600 if (cpi->oxcf.noise_sensitivity > 0 && denoise_svc(cpi) &&
601 cpi->oxcf.speed > 5 && cpi->denoiser.denoising_level >= kDenLow)
602 threshold_base =
603 vp9_scale_part_thresh(threshold_base, cpi->denoiser.denoising_level,
604 content_state, cpi->svc.temporal_layer_id);
605 else
606 threshold_base =
607 scale_part_thresh_sumdiff(threshold_base, cpi->oxcf.speed, cm->width,
608 cm->height, content_state);
609 #else
610 // Increase base variance threshold based on content_state/sum_diff level.
611 threshold_base = scale_part_thresh_sumdiff(
612 threshold_base, cpi->oxcf.speed, cm->width, cm->height, content_state);
613 #endif
614 thresholds[0] = threshold_base;
615 thresholds[2] = threshold_base << cpi->oxcf.speed;
616 if (cm->width >= 1280 && cm->height >= 720 && cpi->oxcf.speed < 7)
617 thresholds[2] = thresholds[2] << 1;
618 if (cm->width <= 352 && cm->height <= 288) {
619 thresholds[0] = threshold_base >> 3;
620 thresholds[1] = threshold_base >> 1;
621 thresholds[2] = threshold_base << 3;
622 if (cpi->rc.avg_frame_qindex[INTER_FRAME] > 220)
623 thresholds[2] = thresholds[2] << 2;
624 else if (cpi->rc.avg_frame_qindex[INTER_FRAME] > 200)
625 thresholds[2] = thresholds[2] << 1;
626 } else if (cm->width < 1280 && cm->height < 720) {
627 thresholds[1] = (5 * threshold_base) >> 2;
628 } else if (cm->width < 1920 && cm->height < 1080) {
629 thresholds[1] = threshold_base << 1;
630 } else {
631 thresholds[1] = (5 * threshold_base) >> 1;
632 }
633 if (cpi->sf.disable_16x16part_nonkey) thresholds[2] = INT64_MAX;
634 }
635 }
636
vp9_set_variance_partition_thresholds(VP9_COMP * cpi,int q,int content_state)637 void vp9_set_variance_partition_thresholds(VP9_COMP *cpi, int q,
638 int content_state) {
639 VP9_COMMON *const cm = &cpi->common;
640 SPEED_FEATURES *const sf = &cpi->sf;
641 const int is_key_frame = frame_is_intra_only(cm);
642 if (sf->partition_search_type != VAR_BASED_PARTITION &&
643 sf->partition_search_type != REFERENCE_PARTITION) {
644 return;
645 } else {
646 set_vbp_thresholds(cpi, cpi->vbp_thresholds, q, content_state);
647 // The thresholds below are not changed locally.
648 if (is_key_frame) {
649 cpi->vbp_threshold_sad = 0;
650 cpi->vbp_threshold_copy = 0;
651 cpi->vbp_bsize_min = BLOCK_8X8;
652 } else {
653 if (cm->width <= 352 && cm->height <= 288)
654 cpi->vbp_threshold_sad = 10;
655 else
656 cpi->vbp_threshold_sad = (cpi->y_dequant[q][1] << 1) > 1000
657 ? (cpi->y_dequant[q][1] << 1)
658 : 1000;
659 cpi->vbp_bsize_min = BLOCK_16X16;
660 if (cm->width <= 352 && cm->height <= 288)
661 cpi->vbp_threshold_copy = 4000;
662 else if (cm->width <= 640 && cm->height <= 360)
663 cpi->vbp_threshold_copy = 8000;
664 else
665 cpi->vbp_threshold_copy = (cpi->y_dequant[q][1] << 3) > 8000
666 ? (cpi->y_dequant[q][1] << 3)
667 : 8000;
668 if (cpi->rc.high_source_sad ||
669 (cpi->use_svc && cpi->svc.high_source_sad_superframe)) {
670 cpi->vbp_threshold_sad = 0;
671 cpi->vbp_threshold_copy = 0;
672 }
673 }
674 cpi->vbp_threshold_minmax = 15 + (q >> 3);
675 }
676 }
677
678 // Compute the minmax over the 8x8 subblocks.
compute_minmax_8x8(const uint8_t * s,int sp,const uint8_t * d,int dp,int x16_idx,int y16_idx,int highbd_flag,int pixels_wide,int pixels_high)679 static int compute_minmax_8x8(const uint8_t *s, int sp, const uint8_t *d,
680 int dp, int x16_idx, int y16_idx,
681 #if CONFIG_VP9_HIGHBITDEPTH
682 int highbd_flag,
683 #endif
684 int pixels_wide, int pixels_high) {
685 int k;
686 int minmax_max = 0;
687 int minmax_min = 255;
688 // Loop over the 4 8x8 subblocks.
689 for (k = 0; k < 4; k++) {
690 int x8_idx = x16_idx + ((k & 1) << 3);
691 int y8_idx = y16_idx + ((k >> 1) << 3);
692 int min = 0;
693 int max = 0;
694 if (x8_idx < pixels_wide && y8_idx < pixels_high) {
695 #if CONFIG_VP9_HIGHBITDEPTH
696 if (highbd_flag & YV12_FLAG_HIGHBITDEPTH) {
697 vpx_highbd_minmax_8x8(s + y8_idx * sp + x8_idx, sp,
698 d + y8_idx * dp + x8_idx, dp, &min, &max);
699 } else {
700 vpx_minmax_8x8(s + y8_idx * sp + x8_idx, sp, d + y8_idx * dp + x8_idx,
701 dp, &min, &max);
702 }
703 #else
704 vpx_minmax_8x8(s + y8_idx * sp + x8_idx, sp, d + y8_idx * dp + x8_idx, dp,
705 &min, &max);
706 #endif
707 if ((max - min) > minmax_max) minmax_max = (max - min);
708 if ((max - min) < minmax_min) minmax_min = (max - min);
709 }
710 }
711 return (minmax_max - minmax_min);
712 }
713
fill_variance_4x4avg(const uint8_t * s,int sp,const uint8_t * d,int dp,int x8_idx,int y8_idx,v8x8 * vst,int highbd_flag,int pixels_wide,int pixels_high,int is_key_frame)714 static void fill_variance_4x4avg(const uint8_t *s, int sp, const uint8_t *d,
715 int dp, int x8_idx, int y8_idx, v8x8 *vst,
716 #if CONFIG_VP9_HIGHBITDEPTH
717 int highbd_flag,
718 #endif
719 int pixels_wide, int pixels_high,
720 int is_key_frame) {
721 int k;
722 for (k = 0; k < 4; k++) {
723 int x4_idx = x8_idx + ((k & 1) << 2);
724 int y4_idx = y8_idx + ((k >> 1) << 2);
725 unsigned int sse = 0;
726 int sum = 0;
727 if (x4_idx < pixels_wide && y4_idx < pixels_high) {
728 int s_avg;
729 int d_avg = 128;
730 #if CONFIG_VP9_HIGHBITDEPTH
731 if (highbd_flag & YV12_FLAG_HIGHBITDEPTH) {
732 s_avg = vpx_highbd_avg_4x4(s + y4_idx * sp + x4_idx, sp);
733 if (!is_key_frame)
734 d_avg = vpx_highbd_avg_4x4(d + y4_idx * dp + x4_idx, dp);
735 } else {
736 s_avg = vpx_avg_4x4(s + y4_idx * sp + x4_idx, sp);
737 if (!is_key_frame) d_avg = vpx_avg_4x4(d + y4_idx * dp + x4_idx, dp);
738 }
739 #else
740 s_avg = vpx_avg_4x4(s + y4_idx * sp + x4_idx, sp);
741 if (!is_key_frame) d_avg = vpx_avg_4x4(d + y4_idx * dp + x4_idx, dp);
742 #endif
743 sum = s_avg - d_avg;
744 sse = sum * sum;
745 }
746 fill_variance(sse, sum, 0, &vst->split[k].part_variances.none);
747 }
748 }
749
fill_variance_8x8avg(const uint8_t * s,int sp,const uint8_t * d,int dp,int x16_idx,int y16_idx,v16x16 * vst,int highbd_flag,int pixels_wide,int pixels_high,int is_key_frame)750 static void fill_variance_8x8avg(const uint8_t *s, int sp, const uint8_t *d,
751 int dp, int x16_idx, int y16_idx, v16x16 *vst,
752 #if CONFIG_VP9_HIGHBITDEPTH
753 int highbd_flag,
754 #endif
755 int pixels_wide, int pixels_high,
756 int is_key_frame) {
757 int k;
758 for (k = 0; k < 4; k++) {
759 int x8_idx = x16_idx + ((k & 1) << 3);
760 int y8_idx = y16_idx + ((k >> 1) << 3);
761 unsigned int sse = 0;
762 int sum = 0;
763 if (x8_idx < pixels_wide && y8_idx < pixels_high) {
764 int s_avg;
765 int d_avg = 128;
766 #if CONFIG_VP9_HIGHBITDEPTH
767 if (highbd_flag & YV12_FLAG_HIGHBITDEPTH) {
768 s_avg = vpx_highbd_avg_8x8(s + y8_idx * sp + x8_idx, sp);
769 if (!is_key_frame)
770 d_avg = vpx_highbd_avg_8x8(d + y8_idx * dp + x8_idx, dp);
771 } else {
772 s_avg = vpx_avg_8x8(s + y8_idx * sp + x8_idx, sp);
773 if (!is_key_frame) d_avg = vpx_avg_8x8(d + y8_idx * dp + x8_idx, dp);
774 }
775 #else
776 s_avg = vpx_avg_8x8(s + y8_idx * sp + x8_idx, sp);
777 if (!is_key_frame) d_avg = vpx_avg_8x8(d + y8_idx * dp + x8_idx, dp);
778 #endif
779 sum = s_avg - d_avg;
780 sse = sum * sum;
781 }
782 fill_variance(sse, sum, 0, &vst->split[k].part_variances.none);
783 }
784 }
785
786 // Check if most of the superblock is skin content, and if so, force split to
787 // 32x32, and set x->sb_is_skin for use in mode selection.
skin_sb_split(VP9_COMP * cpi,const int low_res,int mi_row,int mi_col,int * force_split)788 static int skin_sb_split(VP9_COMP *cpi, const int low_res, int mi_row,
789 int mi_col, int *force_split) {
790 VP9_COMMON *const cm = &cpi->common;
791 #if CONFIG_VP9_HIGHBITDEPTH
792 if (cm->use_highbitdepth) return 0;
793 #endif
794 // Avoid checking superblocks on/near boundary and avoid low resolutions.
795 // Note superblock may still pick 64X64 if y_sad is very small
796 // (i.e., y_sad < cpi->vbp_threshold_sad) below. For now leave this as is.
797 if (!low_res && (mi_col >= 8 && mi_col + 8 < cm->mi_cols && mi_row >= 8 &&
798 mi_row + 8 < cm->mi_rows)) {
799 int num_16x16_skin = 0;
800 int num_16x16_nonskin = 0;
801 const int block_index = mi_row * cm->mi_cols + mi_col;
802 const int bw = num_8x8_blocks_wide_lookup[BLOCK_64X64];
803 const int bh = num_8x8_blocks_high_lookup[BLOCK_64X64];
804 const int xmis = VPXMIN(cm->mi_cols - mi_col, bw);
805 const int ymis = VPXMIN(cm->mi_rows - mi_row, bh);
806 // Loop through the 16x16 sub-blocks.
807 int i, j;
808 for (i = 0; i < ymis; i += 2) {
809 for (j = 0; j < xmis; j += 2) {
810 int bl_index = block_index + i * cm->mi_cols + j;
811 int is_skin = cpi->skin_map[bl_index];
812 num_16x16_skin += is_skin;
813 num_16x16_nonskin += (1 - is_skin);
814 if (num_16x16_nonskin > 3) {
815 // Exit loop if at least 4 of the 16x16 blocks are not skin.
816 i = ymis;
817 break;
818 }
819 }
820 }
821 if (num_16x16_skin > 12) {
822 *force_split = 1;
823 return 1;
824 }
825 }
826 return 0;
827 }
828
set_low_temp_var_flag(VP9_COMP * cpi,MACROBLOCK * x,MACROBLOCKD * xd,v64x64 * vt,int64_t thresholds[],MV_REFERENCE_FRAME ref_frame_partition,int mi_col,int mi_row)829 static void set_low_temp_var_flag(VP9_COMP *cpi, MACROBLOCK *x, MACROBLOCKD *xd,
830 v64x64 *vt, int64_t thresholds[],
831 MV_REFERENCE_FRAME ref_frame_partition,
832 int mi_col, int mi_row) {
833 int i, j;
834 VP9_COMMON *const cm = &cpi->common;
835 const int mv_thr = cm->width > 640 ? 8 : 4;
836 // Check temporal variance for bsize >= 16x16, if LAST_FRAME was selected and
837 // int_pro mv is small. If the temporal variance is small set the flag
838 // variance_low for the block. The variance threshold can be adjusted, the
839 // higher the more aggressive.
840 if (ref_frame_partition == LAST_FRAME &&
841 (cpi->sf.short_circuit_low_temp_var == 1 ||
842 (xd->mi[0]->mv[0].as_mv.col < mv_thr &&
843 xd->mi[0]->mv[0].as_mv.col > -mv_thr &&
844 xd->mi[0]->mv[0].as_mv.row < mv_thr &&
845 xd->mi[0]->mv[0].as_mv.row > -mv_thr))) {
846 if (xd->mi[0]->sb_type == BLOCK_64X64) {
847 if ((vt->part_variances).none.variance < (thresholds[0] >> 1))
848 x->variance_low[0] = 1;
849 } else if (xd->mi[0]->sb_type == BLOCK_64X32) {
850 for (i = 0; i < 2; i++) {
851 if (vt->part_variances.horz[i].variance < (thresholds[0] >> 2))
852 x->variance_low[i + 1] = 1;
853 }
854 } else if (xd->mi[0]->sb_type == BLOCK_32X64) {
855 for (i = 0; i < 2; i++) {
856 if (vt->part_variances.vert[i].variance < (thresholds[0] >> 2))
857 x->variance_low[i + 3] = 1;
858 }
859 } else {
860 for (i = 0; i < 4; i++) {
861 const int idx[4][2] = { { 0, 0 }, { 0, 4 }, { 4, 0 }, { 4, 4 } };
862 const int idx_str =
863 cm->mi_stride * (mi_row + idx[i][0]) + mi_col + idx[i][1];
864 MODE_INFO **this_mi = cm->mi_grid_visible + idx_str;
865
866 if (cm->mi_cols <= mi_col + idx[i][1] ||
867 cm->mi_rows <= mi_row + idx[i][0])
868 continue;
869
870 if ((*this_mi)->sb_type == BLOCK_32X32) {
871 int64_t threshold_32x32 = (cpi->sf.short_circuit_low_temp_var == 1 ||
872 cpi->sf.short_circuit_low_temp_var == 3)
873 ? ((5 * thresholds[1]) >> 3)
874 : (thresholds[1] >> 1);
875 if (vt->split[i].part_variances.none.variance < threshold_32x32)
876 x->variance_low[i + 5] = 1;
877 } else if (cpi->sf.short_circuit_low_temp_var >= 2) {
878 // For 32x16 and 16x32 blocks, the flag is set on each 16x16 block
879 // inside.
880 if ((*this_mi)->sb_type == BLOCK_16X16 ||
881 (*this_mi)->sb_type == BLOCK_32X16 ||
882 (*this_mi)->sb_type == BLOCK_16X32) {
883 for (j = 0; j < 4; j++) {
884 if (vt->split[i].split[j].part_variances.none.variance <
885 (thresholds[2] >> 8))
886 x->variance_low[(i << 2) + j + 9] = 1;
887 }
888 }
889 }
890 }
891 }
892 }
893 }
894
copy_partitioning_helper(VP9_COMP * cpi,MACROBLOCK * x,MACROBLOCKD * xd,BLOCK_SIZE bsize,int mi_row,int mi_col)895 static void copy_partitioning_helper(VP9_COMP *cpi, MACROBLOCK *x,
896 MACROBLOCKD *xd, BLOCK_SIZE bsize,
897 int mi_row, int mi_col) {
898 VP9_COMMON *const cm = &cpi->common;
899 BLOCK_SIZE *prev_part = cpi->prev_partition;
900 int start_pos = mi_row * cm->mi_stride + mi_col;
901
902 const int bsl = b_width_log2_lookup[bsize];
903 const int bs = (1 << bsl) >> 2;
904 BLOCK_SIZE subsize;
905 PARTITION_TYPE partition;
906
907 if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
908
909 partition = partition_lookup[bsl][prev_part[start_pos]];
910 subsize = get_subsize(bsize, partition);
911
912 if (subsize < BLOCK_8X8) {
913 set_block_size(cpi, x, xd, mi_row, mi_col, bsize);
914 } else {
915 switch (partition) {
916 case PARTITION_NONE:
917 set_block_size(cpi, x, xd, mi_row, mi_col, bsize);
918 break;
919 case PARTITION_HORZ:
920 set_block_size(cpi, x, xd, mi_row, mi_col, subsize);
921 set_block_size(cpi, x, xd, mi_row + bs, mi_col, subsize);
922 break;
923 case PARTITION_VERT:
924 set_block_size(cpi, x, xd, mi_row, mi_col, subsize);
925 set_block_size(cpi, x, xd, mi_row, mi_col + bs, subsize);
926 break;
927 default:
928 assert(partition == PARTITION_SPLIT);
929 copy_partitioning_helper(cpi, x, xd, subsize, mi_row, mi_col);
930 copy_partitioning_helper(cpi, x, xd, subsize, mi_row + bs, mi_col);
931 copy_partitioning_helper(cpi, x, xd, subsize, mi_row, mi_col + bs);
932 copy_partitioning_helper(cpi, x, xd, subsize, mi_row + bs, mi_col + bs);
933 break;
934 }
935 }
936 }
937
copy_partitioning(VP9_COMP * cpi,MACROBLOCK * x,MACROBLOCKD * xd,int mi_row,int mi_col,int segment_id,int sb_offset)938 static int copy_partitioning(VP9_COMP *cpi, MACROBLOCK *x, MACROBLOCKD *xd,
939 int mi_row, int mi_col, int segment_id,
940 int sb_offset) {
941 int svc_copy_allowed = 1;
942 int frames_since_key_thresh = 1;
943 if (cpi->use_svc) {
944 // For SVC, don't allow copy if base spatial layer is key frame, or if
945 // frame is not a temporal enhancement layer frame.
946 int layer = LAYER_IDS_TO_IDX(0, cpi->svc.temporal_layer_id,
947 cpi->svc.number_temporal_layers);
948 const LAYER_CONTEXT *lc = &cpi->svc.layer_context[layer];
949 if (lc->is_key_frame || !cpi->svc.non_reference_frame) svc_copy_allowed = 0;
950 frames_since_key_thresh = cpi->svc.number_spatial_layers << 1;
951 }
952 if (cpi->rc.frames_since_key > frames_since_key_thresh && svc_copy_allowed &&
953 !cpi->resize_pending && segment_id == CR_SEGMENT_ID_BASE &&
954 cpi->prev_segment_id[sb_offset] == CR_SEGMENT_ID_BASE &&
955 cpi->copied_frame_cnt[sb_offset] < cpi->max_copied_frame) {
956 if (cpi->prev_partition != NULL) {
957 copy_partitioning_helper(cpi, x, xd, BLOCK_64X64, mi_row, mi_col);
958 cpi->copied_frame_cnt[sb_offset] += 1;
959 memcpy(x->variance_low, &(cpi->prev_variance_low[sb_offset * 25]),
960 sizeof(x->variance_low));
961 return 1;
962 }
963 }
964
965 return 0;
966 }
967
scale_partitioning_svc(VP9_COMP * cpi,MACROBLOCK * x,MACROBLOCKD * xd,BLOCK_SIZE bsize,int mi_row,int mi_col,int mi_row_high,int mi_col_high)968 static int scale_partitioning_svc(VP9_COMP *cpi, MACROBLOCK *x, MACROBLOCKD *xd,
969 BLOCK_SIZE bsize, int mi_row, int mi_col,
970 int mi_row_high, int mi_col_high) {
971 VP9_COMMON *const cm = &cpi->common;
972 SVC *const svc = &cpi->svc;
973 BLOCK_SIZE *prev_part = svc->prev_partition_svc;
974 // Variables with _high are for higher resolution.
975 int bsize_high = 0;
976 int subsize_high = 0;
977 const int bsl_high = b_width_log2_lookup[bsize];
978 const int bs_high = (1 << bsl_high) >> 2;
979 const int has_rows = (mi_row_high + bs_high) < cm->mi_rows;
980 const int has_cols = (mi_col_high + bs_high) < cm->mi_cols;
981
982 const int row_boundary_block_scale_factor[BLOCK_SIZES] = { 13, 13, 13, 1, 0,
983 1, 1, 0, 1, 1,
984 0, 1, 0 };
985 const int col_boundary_block_scale_factor[BLOCK_SIZES] = { 13, 13, 13, 2, 2,
986 0, 2, 2, 0, 2,
987 2, 0, 0 };
988 int start_pos;
989 BLOCK_SIZE bsize_low;
990 PARTITION_TYPE partition_high;
991
992 if (mi_row_high >= cm->mi_rows || mi_col_high >= cm->mi_cols) return 0;
993 if (mi_row >= svc->mi_rows[svc->spatial_layer_id - 1] ||
994 mi_col >= svc->mi_cols[svc->spatial_layer_id - 1])
995 return 0;
996
997 // Find corresponding (mi_col/mi_row) block down-scaled by 2x2.
998 start_pos = mi_row * (svc->mi_stride[svc->spatial_layer_id - 1]) + mi_col;
999 bsize_low = prev_part[start_pos];
1000 // The block size is too big for boundaries. Do variance based partitioning.
1001 if ((!has_rows || !has_cols) && bsize_low > BLOCK_16X16) return 1;
1002
1003 // For reference frames: return 1 (do variance-based partitioning) if the
1004 // superblock is not low source sad and lower-resoln bsize is below 32x32.
1005 if (!cpi->svc.non_reference_frame && !x->skip_low_source_sad &&
1006 bsize_low < BLOCK_32X32)
1007 return 1;
1008
1009 // Scale up block size by 2x2. Force 64x64 for size larger than 32x32.
1010 if (bsize_low < BLOCK_32X32) {
1011 bsize_high = bsize_low + 3;
1012 } else if (bsize_low >= BLOCK_32X32) {
1013 bsize_high = BLOCK_64X64;
1014 }
1015 // Scale up blocks on boundary.
1016 if (!has_cols && has_rows) {
1017 bsize_high = bsize_low + row_boundary_block_scale_factor[bsize_low];
1018 } else if (has_cols && !has_rows) {
1019 bsize_high = bsize_low + col_boundary_block_scale_factor[bsize_low];
1020 } else if (!has_cols && !has_rows) {
1021 bsize_high = bsize_low;
1022 }
1023
1024 partition_high = partition_lookup[bsl_high][bsize_high];
1025 subsize_high = get_subsize(bsize, partition_high);
1026
1027 if (subsize_high < BLOCK_8X8) {
1028 set_block_size(cpi, x, xd, mi_row_high, mi_col_high, bsize_high);
1029 } else {
1030 const int bsl = b_width_log2_lookup[bsize];
1031 const int bs = (1 << bsl) >> 2;
1032 switch (partition_high) {
1033 case PARTITION_NONE:
1034 set_block_size(cpi, x, xd, mi_row_high, mi_col_high, bsize_high);
1035 break;
1036 case PARTITION_HORZ:
1037 set_block_size(cpi, x, xd, mi_row_high, mi_col_high, subsize_high);
1038 if (subsize_high < BLOCK_64X64)
1039 set_block_size(cpi, x, xd, mi_row_high + bs_high, mi_col_high,
1040 subsize_high);
1041 break;
1042 case PARTITION_VERT:
1043 set_block_size(cpi, x, xd, mi_row_high, mi_col_high, subsize_high);
1044 if (subsize_high < BLOCK_64X64)
1045 set_block_size(cpi, x, xd, mi_row_high, mi_col_high + bs_high,
1046 subsize_high);
1047 break;
1048 default:
1049 assert(partition_high == PARTITION_SPLIT);
1050 if (scale_partitioning_svc(cpi, x, xd, subsize_high, mi_row, mi_col,
1051 mi_row_high, mi_col_high))
1052 return 1;
1053 if (scale_partitioning_svc(cpi, x, xd, subsize_high, mi_row + (bs >> 1),
1054 mi_col, mi_row_high + bs_high, mi_col_high))
1055 return 1;
1056 if (scale_partitioning_svc(cpi, x, xd, subsize_high, mi_row,
1057 mi_col + (bs >> 1), mi_row_high,
1058 mi_col_high + bs_high))
1059 return 1;
1060 if (scale_partitioning_svc(cpi, x, xd, subsize_high, mi_row + (bs >> 1),
1061 mi_col + (bs >> 1), mi_row_high + bs_high,
1062 mi_col_high + bs_high))
1063 return 1;
1064 break;
1065 }
1066 }
1067
1068 return 0;
1069 }
1070
update_partition_svc(VP9_COMP * cpi,BLOCK_SIZE bsize,int mi_row,int mi_col)1071 static void update_partition_svc(VP9_COMP *cpi, BLOCK_SIZE bsize, int mi_row,
1072 int mi_col) {
1073 VP9_COMMON *const cm = &cpi->common;
1074 BLOCK_SIZE *prev_part = cpi->svc.prev_partition_svc;
1075 int start_pos = mi_row * cm->mi_stride + mi_col;
1076 const int bsl = b_width_log2_lookup[bsize];
1077 const int bs = (1 << bsl) >> 2;
1078 BLOCK_SIZE subsize;
1079 PARTITION_TYPE partition;
1080 const MODE_INFO *mi = NULL;
1081 int xx, yy;
1082
1083 if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
1084
1085 mi = cm->mi_grid_visible[start_pos];
1086 partition = partition_lookup[bsl][mi->sb_type];
1087 subsize = get_subsize(bsize, partition);
1088 if (subsize < BLOCK_8X8) {
1089 prev_part[start_pos] = bsize;
1090 } else {
1091 switch (partition) {
1092 case PARTITION_NONE:
1093 prev_part[start_pos] = bsize;
1094 if (bsize == BLOCK_64X64) {
1095 for (xx = 0; xx < 8; xx += 4)
1096 for (yy = 0; yy < 8; yy += 4) {
1097 if ((mi_row + xx < cm->mi_rows) && (mi_col + yy < cm->mi_cols))
1098 prev_part[start_pos + xx * cm->mi_stride + yy] = bsize;
1099 }
1100 }
1101 break;
1102 case PARTITION_HORZ:
1103 prev_part[start_pos] = subsize;
1104 if (mi_row + bs < cm->mi_rows)
1105 prev_part[start_pos + bs * cm->mi_stride] = subsize;
1106 break;
1107 case PARTITION_VERT:
1108 prev_part[start_pos] = subsize;
1109 if (mi_col + bs < cm->mi_cols) prev_part[start_pos + bs] = subsize;
1110 break;
1111 default:
1112 assert(partition == PARTITION_SPLIT);
1113 update_partition_svc(cpi, subsize, mi_row, mi_col);
1114 update_partition_svc(cpi, subsize, mi_row + bs, mi_col);
1115 update_partition_svc(cpi, subsize, mi_row, mi_col + bs);
1116 update_partition_svc(cpi, subsize, mi_row + bs, mi_col + bs);
1117 break;
1118 }
1119 }
1120 }
1121
update_prev_partition_helper(VP9_COMP * cpi,BLOCK_SIZE bsize,int mi_row,int mi_col)1122 static void update_prev_partition_helper(VP9_COMP *cpi, BLOCK_SIZE bsize,
1123 int mi_row, int mi_col) {
1124 VP9_COMMON *const cm = &cpi->common;
1125 BLOCK_SIZE *prev_part = cpi->prev_partition;
1126 int start_pos = mi_row * cm->mi_stride + mi_col;
1127 const int bsl = b_width_log2_lookup[bsize];
1128 const int bs = (1 << bsl) >> 2;
1129 BLOCK_SIZE subsize;
1130 PARTITION_TYPE partition;
1131 const MODE_INFO *mi = NULL;
1132
1133 if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
1134
1135 mi = cm->mi_grid_visible[start_pos];
1136 partition = partition_lookup[bsl][mi->sb_type];
1137 subsize = get_subsize(bsize, partition);
1138 if (subsize < BLOCK_8X8) {
1139 prev_part[start_pos] = bsize;
1140 } else {
1141 switch (partition) {
1142 case PARTITION_NONE: prev_part[start_pos] = bsize; break;
1143 case PARTITION_HORZ:
1144 prev_part[start_pos] = subsize;
1145 if (mi_row + bs < cm->mi_rows)
1146 prev_part[start_pos + bs * cm->mi_stride] = subsize;
1147 break;
1148 case PARTITION_VERT:
1149 prev_part[start_pos] = subsize;
1150 if (mi_col + bs < cm->mi_cols) prev_part[start_pos + bs] = subsize;
1151 break;
1152 default:
1153 assert(partition == PARTITION_SPLIT);
1154 update_prev_partition_helper(cpi, subsize, mi_row, mi_col);
1155 update_prev_partition_helper(cpi, subsize, mi_row + bs, mi_col);
1156 update_prev_partition_helper(cpi, subsize, mi_row, mi_col + bs);
1157 update_prev_partition_helper(cpi, subsize, mi_row + bs, mi_col + bs);
1158 break;
1159 }
1160 }
1161 }
1162
update_prev_partition(VP9_COMP * cpi,MACROBLOCK * x,int segment_id,int mi_row,int mi_col,int sb_offset)1163 static void update_prev_partition(VP9_COMP *cpi, MACROBLOCK *x, int segment_id,
1164 int mi_row, int mi_col, int sb_offset) {
1165 update_prev_partition_helper(cpi, BLOCK_64X64, mi_row, mi_col);
1166 cpi->prev_segment_id[sb_offset] = segment_id;
1167 memcpy(&(cpi->prev_variance_low[sb_offset * 25]), x->variance_low,
1168 sizeof(x->variance_low));
1169 // Reset the counter for copy partitioning
1170 cpi->copied_frame_cnt[sb_offset] = 0;
1171 }
1172
chroma_check(VP9_COMP * cpi,MACROBLOCK * x,int bsize,unsigned int y_sad,int is_key_frame,int scene_change_detected)1173 static void chroma_check(VP9_COMP *cpi, MACROBLOCK *x, int bsize,
1174 unsigned int y_sad, int is_key_frame,
1175 int scene_change_detected) {
1176 int i;
1177 MACROBLOCKD *xd = &x->e_mbd;
1178 int shift = 2;
1179
1180 if (is_key_frame) return;
1181
1182 // For speed > 8, avoid the chroma check if y_sad is above threshold.
1183 if (cpi->oxcf.speed > 8) {
1184 if (y_sad > cpi->vbp_thresholds[1] &&
1185 (!cpi->noise_estimate.enabled ||
1186 vp9_noise_estimate_extract_level(&cpi->noise_estimate) < kMedium))
1187 return;
1188 }
1189
1190 if (cpi->oxcf.content == VP9E_CONTENT_SCREEN && scene_change_detected)
1191 shift = 5;
1192
1193 for (i = 1; i <= 2; ++i) {
1194 unsigned int uv_sad = UINT_MAX;
1195 struct macroblock_plane *p = &x->plane[i];
1196 struct macroblockd_plane *pd = &xd->plane[i];
1197 const BLOCK_SIZE bs = get_plane_block_size(bsize, pd);
1198
1199 if (bs != BLOCK_INVALID)
1200 uv_sad = cpi->fn_ptr[bs].sdf(p->src.buf, p->src.stride, pd->dst.buf,
1201 pd->dst.stride);
1202
1203 // TODO(marpan): Investigate if we should lower this threshold if
1204 // superblock is detected as skin.
1205 x->color_sensitivity[i - 1] = uv_sad > (y_sad >> shift);
1206 }
1207 }
1208
avg_source_sad(VP9_COMP * cpi,MACROBLOCK * x,int shift,int sb_offset)1209 static uint64_t avg_source_sad(VP9_COMP *cpi, MACROBLOCK *x, int shift,
1210 int sb_offset) {
1211 unsigned int tmp_sse;
1212 uint64_t tmp_sad;
1213 unsigned int tmp_variance;
1214 const BLOCK_SIZE bsize = BLOCK_64X64;
1215 uint8_t *src_y = cpi->Source->y_buffer;
1216 int src_ystride = cpi->Source->y_stride;
1217 uint8_t *last_src_y = cpi->Last_Source->y_buffer;
1218 int last_src_ystride = cpi->Last_Source->y_stride;
1219 uint64_t avg_source_sad_threshold = 10000;
1220 uint64_t avg_source_sad_threshold2 = 12000;
1221 #if CONFIG_VP9_HIGHBITDEPTH
1222 if (cpi->common.use_highbitdepth) return 0;
1223 #endif
1224 src_y += shift;
1225 last_src_y += shift;
1226 tmp_sad =
1227 cpi->fn_ptr[bsize].sdf(src_y, src_ystride, last_src_y, last_src_ystride);
1228 tmp_variance = vpx_variance64x64(src_y, src_ystride, last_src_y,
1229 last_src_ystride, &tmp_sse);
1230 // Note: tmp_sse - tmp_variance = ((sum * sum) >> 12)
1231 if (tmp_sad < avg_source_sad_threshold)
1232 x->content_state_sb = ((tmp_sse - tmp_variance) < 25) ? kLowSadLowSumdiff
1233 : kLowSadHighSumdiff;
1234 else
1235 x->content_state_sb = ((tmp_sse - tmp_variance) < 25) ? kHighSadLowSumdiff
1236 : kHighSadHighSumdiff;
1237
1238 // Detect large lighting change.
1239 if (cpi->oxcf.content != VP9E_CONTENT_SCREEN &&
1240 cpi->oxcf.rc_mode == VPX_CBR && tmp_variance < (tmp_sse >> 3) &&
1241 (tmp_sse - tmp_variance) > 10000)
1242 x->content_state_sb = kLowVarHighSumdiff;
1243 else if (tmp_sad > (avg_source_sad_threshold << 1))
1244 x->content_state_sb = kVeryHighSad;
1245
1246 if (cpi->content_state_sb_fd != NULL) {
1247 if (tmp_sad < avg_source_sad_threshold2) {
1248 // Cap the increment to 255.
1249 if (cpi->content_state_sb_fd[sb_offset] < 255)
1250 cpi->content_state_sb_fd[sb_offset]++;
1251 } else {
1252 cpi->content_state_sb_fd[sb_offset] = 0;
1253 }
1254 }
1255 if (tmp_sad == 0) x->zero_temp_sad_source = 1;
1256 return tmp_sad;
1257 }
1258
1259 // This function chooses partitioning based on the variance between source and
1260 // reconstructed last, where variance is computed for down-sampled inputs.
choose_partitioning(VP9_COMP * cpi,const TileInfo * const tile,MACROBLOCK * x,int mi_row,int mi_col)1261 static int choose_partitioning(VP9_COMP *cpi, const TileInfo *const tile,
1262 MACROBLOCK *x, int mi_row, int mi_col) {
1263 VP9_COMMON *const cm = &cpi->common;
1264 MACROBLOCKD *xd = &x->e_mbd;
1265 int i, j, k, m;
1266 v64x64 vt;
1267 v16x16 *vt2 = NULL;
1268 int force_split[21];
1269 int avg_32x32;
1270 int max_var_32x32 = 0;
1271 int min_var_32x32 = INT_MAX;
1272 int var_32x32;
1273 int avg_16x16[4];
1274 int maxvar_16x16[4];
1275 int minvar_16x16[4];
1276 int64_t threshold_4x4avg;
1277 NOISE_LEVEL noise_level = kLow;
1278 int content_state = 0;
1279 uint8_t *s;
1280 const uint8_t *d;
1281 int sp;
1282 int dp;
1283 int compute_minmax_variance = 1;
1284 unsigned int y_sad = UINT_MAX;
1285 BLOCK_SIZE bsize = BLOCK_64X64;
1286 // Ref frame used in partitioning.
1287 MV_REFERENCE_FRAME ref_frame_partition = LAST_FRAME;
1288 int pixels_wide = 64, pixels_high = 64;
1289 int64_t thresholds[4] = { cpi->vbp_thresholds[0], cpi->vbp_thresholds[1],
1290 cpi->vbp_thresholds[2], cpi->vbp_thresholds[3] };
1291 int scene_change_detected =
1292 cpi->rc.high_source_sad ||
1293 (cpi->use_svc && cpi->svc.high_source_sad_superframe);
1294 int force_64_split = scene_change_detected ||
1295 (cpi->oxcf.content == VP9E_CONTENT_SCREEN &&
1296 cpi->compute_source_sad_onepass &&
1297 cpi->sf.use_source_sad && !x->zero_temp_sad_source);
1298
1299 // For the variance computation under SVC mode, we treat the frame as key if
1300 // the reference (base layer frame) is key frame (i.e., is_key_frame == 1).
1301 int is_key_frame =
1302 (frame_is_intra_only(cm) ||
1303 (is_one_pass_svc(cpi) &&
1304 cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame));
1305
1306 if (!is_key_frame) {
1307 if (cm->frame_refs[LAST_FRAME - 1].sf.x_scale_fp == REF_INVALID_SCALE ||
1308 cm->frame_refs[LAST_FRAME - 1].sf.y_scale_fp == REF_INVALID_SCALE)
1309 is_key_frame = 1;
1310 }
1311
1312 // Always use 4x4 partition for key frame.
1313 const int use_4x4_partition = frame_is_intra_only(cm);
1314 const int low_res = (cm->width <= 352 && cm->height <= 288);
1315 int variance4x4downsample[16];
1316 int segment_id;
1317 int sb_offset = (cm->mi_stride >> 3) * (mi_row >> 3) + (mi_col >> 3);
1318
1319 // For SVC: check if LAST frame is NULL or if the resolution of LAST is
1320 // different than the current frame resolution, and if so, treat this frame
1321 // as a key frame, for the purpose of the superblock partitioning.
1322 // LAST == NULL can happen in some cases where enhancement spatial layers are
1323 // enabled dyanmically in the stream and the only reference is the spatial
1324 // reference (GOLDEN).
1325 if (cpi->use_svc) {
1326 const YV12_BUFFER_CONFIG *const ref = get_ref_frame_buffer(cpi, LAST_FRAME);
1327 if (ref == NULL || ref->y_crop_height != cm->height ||
1328 ref->y_crop_width != cm->width)
1329 is_key_frame = 1;
1330 }
1331
1332 set_offsets(cpi, tile, x, mi_row, mi_col, BLOCK_64X64);
1333 set_segment_index(cpi, x, mi_row, mi_col, BLOCK_64X64, 0);
1334 segment_id = xd->mi[0]->segment_id;
1335
1336 if (cpi->oxcf.speed >= 8 || (cpi->use_svc && cpi->svc.non_reference_frame))
1337 compute_minmax_variance = 0;
1338
1339 memset(x->variance_low, 0, sizeof(x->variance_low));
1340
1341 if (cpi->sf.use_source_sad && !is_key_frame) {
1342 int sb_offset2 = ((cm->mi_cols + 7) >> 3) * (mi_row >> 3) + (mi_col >> 3);
1343 content_state = x->content_state_sb;
1344 x->skip_low_source_sad = (content_state == kLowSadLowSumdiff ||
1345 content_state == kLowSadHighSumdiff)
1346 ? 1
1347 : 0;
1348 x->lowvar_highsumdiff = (content_state == kLowVarHighSumdiff) ? 1 : 0;
1349 if (cpi->content_state_sb_fd != NULL)
1350 x->last_sb_high_content = cpi->content_state_sb_fd[sb_offset2];
1351
1352 // For SVC on top spatial layer: use/scale the partition from
1353 // the lower spatial resolution if svc_use_lowres_part is enabled.
1354 if (cpi->sf.svc_use_lowres_part &&
1355 cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 1 &&
1356 cpi->svc.prev_partition_svc != NULL && content_state != kVeryHighSad) {
1357 if (!scale_partitioning_svc(cpi, x, xd, BLOCK_64X64, mi_row >> 1,
1358 mi_col >> 1, mi_row, mi_col)) {
1359 if (cpi->sf.copy_partition_flag) {
1360 update_prev_partition(cpi, x, segment_id, mi_row, mi_col, sb_offset);
1361 }
1362 return 0;
1363 }
1364 }
1365 // If source_sad is low copy the partition without computing the y_sad.
1366 if (x->skip_low_source_sad && cpi->sf.copy_partition_flag &&
1367 !force_64_split &&
1368 copy_partitioning(cpi, x, xd, mi_row, mi_col, segment_id, sb_offset)) {
1369 x->sb_use_mv_part = 1;
1370 if (cpi->sf.svc_use_lowres_part &&
1371 cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 2)
1372 update_partition_svc(cpi, BLOCK_64X64, mi_row, mi_col);
1373 return 0;
1374 }
1375 }
1376
1377 if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled &&
1378 cyclic_refresh_segment_id_boosted(segment_id)) {
1379 int q = vp9_get_qindex(&cm->seg, segment_id, cm->base_qindex);
1380 set_vbp_thresholds(cpi, thresholds, q, content_state);
1381 } else {
1382 set_vbp_thresholds(cpi, thresholds, cm->base_qindex, content_state);
1383 }
1384 // Decrease 32x32 split threshold for screen on base layer, for scene
1385 // change/high motion frames.
1386 if (cpi->oxcf.content == VP9E_CONTENT_SCREEN &&
1387 cpi->svc.spatial_layer_id == 0 && force_64_split)
1388 thresholds[1] = 3 * thresholds[1] >> 2;
1389
1390 // For non keyframes, disable 4x4 average for low resolution when speed = 8
1391 threshold_4x4avg = (cpi->oxcf.speed < 8) ? thresholds[1] << 1 : INT64_MAX;
1392
1393 if (xd->mb_to_right_edge < 0) pixels_wide += (xd->mb_to_right_edge >> 3);
1394 if (xd->mb_to_bottom_edge < 0) pixels_high += (xd->mb_to_bottom_edge >> 3);
1395
1396 s = x->plane[0].src.buf;
1397 sp = x->plane[0].src.stride;
1398
1399 // Index for force_split: 0 for 64x64, 1-4 for 32x32 blocks,
1400 // 5-20 for the 16x16 blocks.
1401 force_split[0] = force_64_split;
1402
1403 if (!is_key_frame) {
1404 // In the case of spatial/temporal scalable coding, the assumption here is
1405 // that the temporal reference frame will always be of type LAST_FRAME.
1406 // TODO(marpan): If that assumption is broken, we need to revisit this code.
1407 MODE_INFO *mi = xd->mi[0];
1408 YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, LAST_FRAME);
1409
1410 const YV12_BUFFER_CONFIG *yv12_g = NULL;
1411 unsigned int y_sad_g, y_sad_thr, y_sad_last;
1412 bsize = BLOCK_32X32 + (mi_col + 4 < cm->mi_cols) * 2 +
1413 (mi_row + 4 < cm->mi_rows);
1414
1415 assert(yv12 != NULL);
1416
1417 if (!(is_one_pass_svc(cpi) && cpi->svc.spatial_layer_id) ||
1418 cpi->svc.use_gf_temporal_ref_current_layer) {
1419 // For now, GOLDEN will not be used for non-zero spatial layers, since
1420 // it may not be a temporal reference.
1421 yv12_g = get_ref_frame_buffer(cpi, GOLDEN_FRAME);
1422 }
1423
1424 // Only compute y_sad_g (sad for golden reference) for speed < 8.
1425 if (cpi->oxcf.speed < 8 && yv12_g && yv12_g != yv12 &&
1426 (cpi->ref_frame_flags & VP9_GOLD_FLAG)) {
1427 vp9_setup_pre_planes(xd, 0, yv12_g, mi_row, mi_col,
1428 &cm->frame_refs[GOLDEN_FRAME - 1].sf);
1429 y_sad_g = cpi->fn_ptr[bsize].sdf(
1430 x->plane[0].src.buf, x->plane[0].src.stride, xd->plane[0].pre[0].buf,
1431 xd->plane[0].pre[0].stride);
1432 } else {
1433 y_sad_g = UINT_MAX;
1434 }
1435
1436 if (cpi->oxcf.lag_in_frames > 0 && cpi->oxcf.rc_mode == VPX_VBR &&
1437 cpi->rc.is_src_frame_alt_ref) {
1438 yv12 = get_ref_frame_buffer(cpi, ALTREF_FRAME);
1439 vp9_setup_pre_planes(xd, 0, yv12, mi_row, mi_col,
1440 &cm->frame_refs[ALTREF_FRAME - 1].sf);
1441 mi->ref_frame[0] = ALTREF_FRAME;
1442 y_sad_g = UINT_MAX;
1443 } else {
1444 vp9_setup_pre_planes(xd, 0, yv12, mi_row, mi_col,
1445 &cm->frame_refs[LAST_FRAME - 1].sf);
1446 mi->ref_frame[0] = LAST_FRAME;
1447 }
1448 mi->ref_frame[1] = NO_REF_FRAME;
1449 mi->sb_type = BLOCK_64X64;
1450 mi->mv[0].as_int = 0;
1451 mi->interp_filter = BILINEAR;
1452
1453 if (cpi->oxcf.speed >= 8 && !low_res &&
1454 x->content_state_sb != kVeryHighSad) {
1455 y_sad = cpi->fn_ptr[bsize].sdf(
1456 x->plane[0].src.buf, x->plane[0].src.stride, xd->plane[0].pre[0].buf,
1457 xd->plane[0].pre[0].stride);
1458 } else {
1459 const MV dummy_mv = { 0, 0 };
1460 y_sad = vp9_int_pro_motion_estimation(cpi, x, bsize, mi_row, mi_col,
1461 &dummy_mv);
1462 x->sb_use_mv_part = 1;
1463 x->sb_mvcol_part = mi->mv[0].as_mv.col;
1464 x->sb_mvrow_part = mi->mv[0].as_mv.row;
1465 if (cpi->oxcf.content == VP9E_CONTENT_SCREEN &&
1466 cpi->svc.spatial_layer_id == cpi->svc.first_spatial_layer_to_encode &&
1467 cpi->svc.high_num_blocks_with_motion && !x->zero_temp_sad_source &&
1468 cm->width > 640 && cm->height > 480) {
1469 // Disable split below 16x16 block size when scroll motion (horz or
1470 // vert) is detected.
1471 // TODO(marpan/jianj): Improve this condition: issue is that search
1472 // range is hard-coded/limited in vp9_int_pro_motion_estimation() so
1473 // scroll motion may not be detected here.
1474 if (((abs(x->sb_mvrow_part) >= 48 && abs(x->sb_mvcol_part) <= 8) ||
1475 (abs(x->sb_mvcol_part) >= 48 && abs(x->sb_mvrow_part) <= 8)) &&
1476 y_sad < 100000) {
1477 compute_minmax_variance = 0;
1478 thresholds[2] = INT64_MAX;
1479 }
1480 }
1481 }
1482
1483 y_sad_last = y_sad;
1484 // Pick ref frame for partitioning, bias last frame when y_sad_g and y_sad
1485 // are close if short_circuit_low_temp_var is on.
1486 y_sad_thr = cpi->sf.short_circuit_low_temp_var ? (y_sad * 7) >> 3 : y_sad;
1487 if (y_sad_g < y_sad_thr) {
1488 vp9_setup_pre_planes(xd, 0, yv12_g, mi_row, mi_col,
1489 &cm->frame_refs[GOLDEN_FRAME - 1].sf);
1490 mi->ref_frame[0] = GOLDEN_FRAME;
1491 mi->mv[0].as_int = 0;
1492 y_sad = y_sad_g;
1493 ref_frame_partition = GOLDEN_FRAME;
1494 } else {
1495 x->pred_mv[LAST_FRAME] = mi->mv[0].as_mv;
1496 ref_frame_partition = LAST_FRAME;
1497 }
1498
1499 set_ref_ptrs(cm, xd, mi->ref_frame[0], mi->ref_frame[1]);
1500 vp9_build_inter_predictors_sb(xd, mi_row, mi_col, BLOCK_64X64);
1501
1502 if (cpi->use_skin_detection)
1503 x->sb_is_skin = skin_sb_split(cpi, low_res, mi_row, mi_col, force_split);
1504
1505 d = xd->plane[0].dst.buf;
1506 dp = xd->plane[0].dst.stride;
1507
1508 // If the y_sad is very small, take 64x64 as partition and exit.
1509 // Don't check on boosted segment for now, as 64x64 is suppressed there.
1510 if (segment_id == CR_SEGMENT_ID_BASE && y_sad < cpi->vbp_threshold_sad) {
1511 const int block_width = num_8x8_blocks_wide_lookup[BLOCK_64X64];
1512 const int block_height = num_8x8_blocks_high_lookup[BLOCK_64X64];
1513 if (mi_col + block_width / 2 < cm->mi_cols &&
1514 mi_row + block_height / 2 < cm->mi_rows) {
1515 set_block_size(cpi, x, xd, mi_row, mi_col, BLOCK_64X64);
1516 x->variance_low[0] = 1;
1517 chroma_check(cpi, x, bsize, y_sad, is_key_frame, scene_change_detected);
1518 if (cpi->sf.svc_use_lowres_part &&
1519 cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 2)
1520 update_partition_svc(cpi, BLOCK_64X64, mi_row, mi_col);
1521 if (cpi->sf.copy_partition_flag) {
1522 update_prev_partition(cpi, x, segment_id, mi_row, mi_col, sb_offset);
1523 }
1524 return 0;
1525 }
1526 }
1527
1528 // If the y_sad is small enough, copy the partition of the superblock in the
1529 // last frame to current frame only if the last frame is not a keyframe.
1530 // Stop the copy every cpi->max_copied_frame to refresh the partition.
1531 // TODO(jianj) : tune the threshold.
1532 if (cpi->sf.copy_partition_flag && y_sad_last < cpi->vbp_threshold_copy &&
1533 copy_partitioning(cpi, x, xd, mi_row, mi_col, segment_id, sb_offset)) {
1534 chroma_check(cpi, x, bsize, y_sad, is_key_frame, scene_change_detected);
1535 if (cpi->sf.svc_use_lowres_part &&
1536 cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 2)
1537 update_partition_svc(cpi, BLOCK_64X64, mi_row, mi_col);
1538 return 0;
1539 }
1540 } else {
1541 d = VP9_VAR_OFFS;
1542 dp = 0;
1543 #if CONFIG_VP9_HIGHBITDEPTH
1544 if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
1545 switch (xd->bd) {
1546 case 10: d = CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_10); break;
1547 case 12: d = CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_12); break;
1548 case 8:
1549 default: d = CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_8); break;
1550 }
1551 }
1552 #endif // CONFIG_VP9_HIGHBITDEPTH
1553 }
1554
1555 if (low_res && threshold_4x4avg < INT64_MAX)
1556 CHECK_MEM_ERROR(&cm->error, vt2, vpx_calloc(16, sizeof(*vt2)));
1557 // Fill in the entire tree of 8x8 (or 4x4 under some conditions) variances
1558 // for splits.
1559 for (i = 0; i < 4; i++) {
1560 const int x32_idx = ((i & 1) << 5);
1561 const int y32_idx = ((i >> 1) << 5);
1562 const int i2 = i << 2;
1563 force_split[i + 1] = 0;
1564 avg_16x16[i] = 0;
1565 maxvar_16x16[i] = 0;
1566 minvar_16x16[i] = INT_MAX;
1567 for (j = 0; j < 4; j++) {
1568 const int x16_idx = x32_idx + ((j & 1) << 4);
1569 const int y16_idx = y32_idx + ((j >> 1) << 4);
1570 const int split_index = 5 + i2 + j;
1571 v16x16 *vst = &vt.split[i].split[j];
1572 force_split[split_index] = 0;
1573 variance4x4downsample[i2 + j] = 0;
1574 if (!is_key_frame) {
1575 fill_variance_8x8avg(s, sp, d, dp, x16_idx, y16_idx, vst,
1576 #if CONFIG_VP9_HIGHBITDEPTH
1577 xd->cur_buf->flags,
1578 #endif
1579 pixels_wide, pixels_high, is_key_frame);
1580 fill_variance_tree(&vt.split[i].split[j], BLOCK_16X16);
1581 get_variance(&vt.split[i].split[j].part_variances.none);
1582 avg_16x16[i] += vt.split[i].split[j].part_variances.none.variance;
1583 if (vt.split[i].split[j].part_variances.none.variance < minvar_16x16[i])
1584 minvar_16x16[i] = vt.split[i].split[j].part_variances.none.variance;
1585 if (vt.split[i].split[j].part_variances.none.variance > maxvar_16x16[i])
1586 maxvar_16x16[i] = vt.split[i].split[j].part_variances.none.variance;
1587 if (vt.split[i].split[j].part_variances.none.variance > thresholds[2]) {
1588 // 16X16 variance is above threshold for split, so force split to 8x8
1589 // for this 16x16 block (this also forces splits for upper levels).
1590 force_split[split_index] = 1;
1591 force_split[i + 1] = 1;
1592 force_split[0] = 1;
1593 } else if (compute_minmax_variance &&
1594 vt.split[i].split[j].part_variances.none.variance >
1595 thresholds[1] &&
1596 !cyclic_refresh_segment_id_boosted(segment_id)) {
1597 // We have some nominal amount of 16x16 variance (based on average),
1598 // compute the minmax over the 8x8 sub-blocks, and if above threshold,
1599 // force split to 8x8 block for this 16x16 block.
1600 int minmax = compute_minmax_8x8(s, sp, d, dp, x16_idx, y16_idx,
1601 #if CONFIG_VP9_HIGHBITDEPTH
1602 xd->cur_buf->flags,
1603 #endif
1604 pixels_wide, pixels_high);
1605 int thresh_minmax = (int)cpi->vbp_threshold_minmax;
1606 if (x->content_state_sb == kVeryHighSad)
1607 thresh_minmax = thresh_minmax << 1;
1608 if (minmax > thresh_minmax) {
1609 force_split[split_index] = 1;
1610 force_split[i + 1] = 1;
1611 force_split[0] = 1;
1612 }
1613 }
1614 }
1615 if (is_key_frame ||
1616 (low_res && vt.split[i].split[j].part_variances.none.variance >
1617 threshold_4x4avg)) {
1618 force_split[split_index] = 0;
1619 // Go down to 4x4 down-sampling for variance.
1620 variance4x4downsample[i2 + j] = 1;
1621 for (k = 0; k < 4; k++) {
1622 int x8_idx = x16_idx + ((k & 1) << 3);
1623 int y8_idx = y16_idx + ((k >> 1) << 3);
1624 v8x8 *vst2 = is_key_frame ? &vst->split[k] : &vt2[i2 + j].split[k];
1625 fill_variance_4x4avg(s, sp, d, dp, x8_idx, y8_idx, vst2,
1626 #if CONFIG_VP9_HIGHBITDEPTH
1627 xd->cur_buf->flags,
1628 #endif
1629 pixels_wide, pixels_high, is_key_frame);
1630 }
1631 }
1632 }
1633 }
1634 if (cpi->noise_estimate.enabled)
1635 noise_level = vp9_noise_estimate_extract_level(&cpi->noise_estimate);
1636 // Fill the rest of the variance tree by summing split partition values.
1637 avg_32x32 = 0;
1638 for (i = 0; i < 4; i++) {
1639 const int i2 = i << 2;
1640 for (j = 0; j < 4; j++) {
1641 if (variance4x4downsample[i2 + j] == 1) {
1642 v16x16 *vtemp = (!is_key_frame) ? &vt2[i2 + j] : &vt.split[i].split[j];
1643 for (m = 0; m < 4; m++) fill_variance_tree(&vtemp->split[m], BLOCK_8X8);
1644 fill_variance_tree(vtemp, BLOCK_16X16);
1645 // If variance of this 16x16 block is above the threshold, force block
1646 // to split. This also forces a split on the upper levels.
1647 get_variance(&vtemp->part_variances.none);
1648 if (vtemp->part_variances.none.variance > thresholds[2]) {
1649 force_split[5 + i2 + j] = 1;
1650 force_split[i + 1] = 1;
1651 force_split[0] = 1;
1652 }
1653 }
1654 }
1655 fill_variance_tree(&vt.split[i], BLOCK_32X32);
1656 // If variance of this 32x32 block is above the threshold, or if its above
1657 // (some threshold of) the average variance over the sub-16x16 blocks, then
1658 // force this block to split. This also forces a split on the upper
1659 // (64x64) level.
1660 if (!force_split[i + 1]) {
1661 get_variance(&vt.split[i].part_variances.none);
1662 var_32x32 = vt.split[i].part_variances.none.variance;
1663 max_var_32x32 = VPXMAX(var_32x32, max_var_32x32);
1664 min_var_32x32 = VPXMIN(var_32x32, min_var_32x32);
1665 if (vt.split[i].part_variances.none.variance > thresholds[1] ||
1666 (!is_key_frame &&
1667 vt.split[i].part_variances.none.variance > (thresholds[1] >> 1) &&
1668 vt.split[i].part_variances.none.variance > (avg_16x16[i] >> 1))) {
1669 force_split[i + 1] = 1;
1670 force_split[0] = 1;
1671 } else if (!is_key_frame && noise_level < kLow && cm->height <= 360 &&
1672 (maxvar_16x16[i] - minvar_16x16[i]) > (thresholds[1] >> 1) &&
1673 maxvar_16x16[i] > thresholds[1]) {
1674 force_split[i + 1] = 1;
1675 force_split[0] = 1;
1676 }
1677 avg_32x32 += var_32x32;
1678 }
1679 }
1680 if (!force_split[0]) {
1681 fill_variance_tree(&vt, BLOCK_64X64);
1682 get_variance(&vt.part_variances.none);
1683 // If variance of this 64x64 block is above (some threshold of) the average
1684 // variance over the sub-32x32 blocks, then force this block to split.
1685 // Only checking this for noise level >= medium for now.
1686 if (!is_key_frame && noise_level >= kMedium &&
1687 vt.part_variances.none.variance > (9 * avg_32x32) >> 5)
1688 force_split[0] = 1;
1689 // Else if the maximum 32x32 variance minus the miniumum 32x32 variance in
1690 // a 64x64 block is greater than threshold and the maximum 32x32 variance is
1691 // above a miniumum threshold, then force the split of a 64x64 block
1692 // Only check this for low noise.
1693 else if (!is_key_frame && noise_level < kMedium &&
1694 (max_var_32x32 - min_var_32x32) > 3 * (thresholds[0] >> 3) &&
1695 max_var_32x32 > thresholds[0] >> 1)
1696 force_split[0] = 1;
1697 }
1698
1699 // Now go through the entire structure, splitting every block size until
1700 // we get to one that's got a variance lower than our threshold.
1701 if (mi_col + 8 > cm->mi_cols || mi_row + 8 > cm->mi_rows ||
1702 !set_vt_partitioning(cpi, x, xd, &vt, BLOCK_64X64, mi_row, mi_col,
1703 thresholds[0], BLOCK_16X16, force_split[0])) {
1704 for (i = 0; i < 4; ++i) {
1705 const int x32_idx = ((i & 1) << 2);
1706 const int y32_idx = ((i >> 1) << 2);
1707 const int i2 = i << 2;
1708 if (!set_vt_partitioning(cpi, x, xd, &vt.split[i], BLOCK_32X32,
1709 (mi_row + y32_idx), (mi_col + x32_idx),
1710 thresholds[1], BLOCK_16X16,
1711 force_split[i + 1])) {
1712 for (j = 0; j < 4; ++j) {
1713 const int x16_idx = ((j & 1) << 1);
1714 const int y16_idx = ((j >> 1) << 1);
1715 // For inter frames: if variance4x4downsample[] == 1 for this 16x16
1716 // block, then the variance is based on 4x4 down-sampling, so use vt2
1717 // in set_vt_partitioning(), otherwise use vt.
1718 v16x16 *vtemp = (!is_key_frame && variance4x4downsample[i2 + j] == 1)
1719 ? &vt2[i2 + j]
1720 : &vt.split[i].split[j];
1721 if (!set_vt_partitioning(
1722 cpi, x, xd, vtemp, BLOCK_16X16, mi_row + y32_idx + y16_idx,
1723 mi_col + x32_idx + x16_idx, thresholds[2], cpi->vbp_bsize_min,
1724 force_split[5 + i2 + j])) {
1725 for (k = 0; k < 4; ++k) {
1726 const int x8_idx = (k & 1);
1727 const int y8_idx = (k >> 1);
1728 if (use_4x4_partition) {
1729 if (!set_vt_partitioning(cpi, x, xd, &vtemp->split[k],
1730 BLOCK_8X8,
1731 mi_row + y32_idx + y16_idx + y8_idx,
1732 mi_col + x32_idx + x16_idx + x8_idx,
1733 thresholds[3], BLOCK_8X8, 0)) {
1734 set_block_size(
1735 cpi, x, xd, (mi_row + y32_idx + y16_idx + y8_idx),
1736 (mi_col + x32_idx + x16_idx + x8_idx), BLOCK_4X4);
1737 }
1738 } else {
1739 set_block_size(
1740 cpi, x, xd, (mi_row + y32_idx + y16_idx + y8_idx),
1741 (mi_col + x32_idx + x16_idx + x8_idx), BLOCK_8X8);
1742 }
1743 }
1744 }
1745 }
1746 }
1747 }
1748 }
1749
1750 if (!frame_is_intra_only(cm) && cpi->sf.copy_partition_flag) {
1751 update_prev_partition(cpi, x, segment_id, mi_row, mi_col, sb_offset);
1752 }
1753
1754 if (!frame_is_intra_only(cm) && cpi->sf.svc_use_lowres_part &&
1755 cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 2)
1756 update_partition_svc(cpi, BLOCK_64X64, mi_row, mi_col);
1757
1758 if (cpi->sf.short_circuit_low_temp_var) {
1759 set_low_temp_var_flag(cpi, x, xd, &vt, thresholds, ref_frame_partition,
1760 mi_col, mi_row);
1761 }
1762
1763 chroma_check(cpi, x, bsize, y_sad, is_key_frame, scene_change_detected);
1764 if (vt2) vpx_free(vt2);
1765 return 0;
1766 }
1767
1768 #if !CONFIG_REALTIME_ONLY
update_state(VP9_COMP * cpi,ThreadData * td,PICK_MODE_CONTEXT * ctx,int mi_row,int mi_col,BLOCK_SIZE bsize,int output_enabled)1769 static void update_state(VP9_COMP *cpi, ThreadData *td, PICK_MODE_CONTEXT *ctx,
1770 int mi_row, int mi_col, BLOCK_SIZE bsize,
1771 int output_enabled) {
1772 int i, x_idx, y;
1773 VP9_COMMON *const cm = &cpi->common;
1774 RD_COUNTS *const rdc = &td->rd_counts;
1775 MACROBLOCK *const x = &td->mb;
1776 MACROBLOCKD *const xd = &x->e_mbd;
1777 struct macroblock_plane *const p = x->plane;
1778 struct macroblockd_plane *const pd = xd->plane;
1779 MODE_INFO *mi = &ctx->mic;
1780 MODE_INFO *const xdmi = xd->mi[0];
1781 MODE_INFO *mi_addr = xd->mi[0];
1782 const struct segmentation *const seg = &cm->seg;
1783 const int bw = num_8x8_blocks_wide_lookup[mi->sb_type];
1784 const int bh = num_8x8_blocks_high_lookup[mi->sb_type];
1785 const int x_mis = VPXMIN(bw, cm->mi_cols - mi_col);
1786 const int y_mis = VPXMIN(bh, cm->mi_rows - mi_row);
1787 MV_REF *const frame_mvs = cm->cur_frame->mvs + mi_row * cm->mi_cols + mi_col;
1788 int w, h;
1789
1790 const int mis = cm->mi_stride;
1791 const int mi_width = num_8x8_blocks_wide_lookup[bsize];
1792 const int mi_height = num_8x8_blocks_high_lookup[bsize];
1793 int max_plane;
1794
1795 assert(mi->sb_type == bsize);
1796
1797 *mi_addr = *mi;
1798 *x->mbmi_ext = ctx->mbmi_ext;
1799
1800 // If segmentation in use
1801 if (seg->enabled) {
1802 // For in frame complexity AQ copy the segment id from the segment map.
1803 if (cpi->oxcf.aq_mode == COMPLEXITY_AQ) {
1804 const uint8_t *const map =
1805 seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map;
1806 mi_addr->segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col);
1807 }
1808 // Else for cyclic refresh mode update the segment map, set the segment id
1809 // and then update the quantizer.
1810 if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ &&
1811 cpi->cyclic_refresh->content_mode) {
1812 vp9_cyclic_refresh_update_segment(cpi, xd->mi[0], mi_row, mi_col, bsize,
1813 ctx->rate, ctx->dist, x->skip, p);
1814 }
1815 }
1816
1817 max_plane = is_inter_block(xdmi) ? MAX_MB_PLANE : 1;
1818 for (i = 0; i < max_plane; ++i) {
1819 p[i].coeff = ctx->coeff_pbuf[i][1];
1820 p[i].qcoeff = ctx->qcoeff_pbuf[i][1];
1821 pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][1];
1822 p[i].eobs = ctx->eobs_pbuf[i][1];
1823 }
1824
1825 for (i = max_plane; i < MAX_MB_PLANE; ++i) {
1826 p[i].coeff = ctx->coeff_pbuf[i][2];
1827 p[i].qcoeff = ctx->qcoeff_pbuf[i][2];
1828 pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][2];
1829 p[i].eobs = ctx->eobs_pbuf[i][2];
1830 }
1831
1832 // Restore the coding context of the MB to that that was in place
1833 // when the mode was picked for it
1834 for (y = 0; y < mi_height; y++)
1835 for (x_idx = 0; x_idx < mi_width; x_idx++)
1836 if ((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width > x_idx &&
1837 (xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height > y) {
1838 xd->mi[x_idx + y * mis] = mi_addr;
1839 }
1840
1841 if (cpi->oxcf.aq_mode != NO_AQ) vp9_init_plane_quantizers(cpi, x);
1842
1843 if (is_inter_block(xdmi) && xdmi->sb_type < BLOCK_8X8) {
1844 xdmi->mv[0].as_int = mi->bmi[3].as_mv[0].as_int;
1845 xdmi->mv[1].as_int = mi->bmi[3].as_mv[1].as_int;
1846 }
1847
1848 x->skip = ctx->skip;
1849 memcpy(x->zcoeff_blk[xdmi->tx_size], ctx->zcoeff_blk,
1850 sizeof(ctx->zcoeff_blk[0]) * ctx->num_4x4_blk);
1851
1852 if (!output_enabled) return;
1853
1854 #if CONFIG_INTERNAL_STATS
1855 if (frame_is_intra_only(cm)) {
1856 static const int kf_mode_index[] = {
1857 THR_DC /*DC_PRED*/, THR_V_PRED /*V_PRED*/,
1858 THR_H_PRED /*H_PRED*/, THR_D45_PRED /*D45_PRED*/,
1859 THR_D135_PRED /*D135_PRED*/, THR_D117_PRED /*D117_PRED*/,
1860 THR_D153_PRED /*D153_PRED*/, THR_D207_PRED /*D207_PRED*/,
1861 THR_D63_PRED /*D63_PRED*/, THR_TM /*TM_PRED*/,
1862 };
1863 ++cpi->mode_chosen_counts[kf_mode_index[xdmi->mode]];
1864 } else {
1865 // Note how often each mode chosen as best
1866 ++cpi->mode_chosen_counts[ctx->best_mode_index];
1867 }
1868 #endif
1869 if (!frame_is_intra_only(cm)) {
1870 if (is_inter_block(xdmi)) {
1871 vp9_update_mv_count(td);
1872
1873 if (cm->interp_filter == SWITCHABLE) {
1874 const int ctx_interp = get_pred_context_switchable_interp(xd);
1875 ++td->counts->switchable_interp[ctx_interp][xdmi->interp_filter];
1876 }
1877 }
1878
1879 rdc->comp_pred_diff[SINGLE_REFERENCE] += ctx->single_pred_diff;
1880 rdc->comp_pred_diff[COMPOUND_REFERENCE] += ctx->comp_pred_diff;
1881 rdc->comp_pred_diff[REFERENCE_MODE_SELECT] += ctx->hybrid_pred_diff;
1882
1883 for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i)
1884 rdc->filter_diff[i] += ctx->best_filter_diff[i];
1885 }
1886
1887 for (h = 0; h < y_mis; ++h) {
1888 MV_REF *const frame_mv = frame_mvs + h * cm->mi_cols;
1889 for (w = 0; w < x_mis; ++w) {
1890 MV_REF *const mv = frame_mv + w;
1891 mv->ref_frame[0] = mi->ref_frame[0];
1892 mv->ref_frame[1] = mi->ref_frame[1];
1893 mv->mv[0].as_int = mi->mv[0].as_int;
1894 mv->mv[1].as_int = mi->mv[1].as_int;
1895 }
1896 }
1897 }
1898 #endif // !CONFIG_REALTIME_ONLY
1899
vp9_setup_src_planes(MACROBLOCK * x,const YV12_BUFFER_CONFIG * src,int mi_row,int mi_col)1900 void vp9_setup_src_planes(MACROBLOCK *x, const YV12_BUFFER_CONFIG *src,
1901 int mi_row, int mi_col) {
1902 uint8_t *const buffers[3] = { src->y_buffer, src->u_buffer, src->v_buffer };
1903 const int strides[3] = { src->y_stride, src->uv_stride, src->uv_stride };
1904 int i;
1905
1906 // Set current frame pointer.
1907 x->e_mbd.cur_buf = src;
1908
1909 for (i = 0; i < MAX_MB_PLANE; i++)
1910 setup_pred_plane(&x->plane[i].src, buffers[i], strides[i], mi_row, mi_col,
1911 NULL, x->e_mbd.plane[i].subsampling_x,
1912 x->e_mbd.plane[i].subsampling_y);
1913 }
1914
set_mode_info_seg_skip(MACROBLOCK * x,TX_MODE tx_mode,INTERP_FILTER interp_filter,RD_COST * rd_cost,BLOCK_SIZE bsize)1915 static void set_mode_info_seg_skip(MACROBLOCK *x, TX_MODE tx_mode,
1916 INTERP_FILTER interp_filter,
1917 RD_COST *rd_cost, BLOCK_SIZE bsize) {
1918 MACROBLOCKD *const xd = &x->e_mbd;
1919 MODE_INFO *const mi = xd->mi[0];
1920 INTERP_FILTER filter_ref;
1921
1922 filter_ref = get_pred_context_switchable_interp(xd);
1923 if (interp_filter == BILINEAR)
1924 filter_ref = BILINEAR;
1925 else if (filter_ref == SWITCHABLE_FILTERS)
1926 filter_ref = EIGHTTAP;
1927
1928 mi->sb_type = bsize;
1929 mi->mode = ZEROMV;
1930 mi->tx_size =
1931 VPXMIN(max_txsize_lookup[bsize], tx_mode_to_biggest_tx_size[tx_mode]);
1932 mi->skip = 1;
1933 mi->uv_mode = DC_PRED;
1934 mi->ref_frame[0] = LAST_FRAME;
1935 mi->ref_frame[1] = NO_REF_FRAME;
1936 mi->mv[0].as_int = 0;
1937 mi->interp_filter = filter_ref;
1938
1939 xd->mi[0]->bmi[0].as_mv[0].as_int = 0;
1940 x->skip = 1;
1941
1942 vp9_rd_cost_init(rd_cost);
1943 }
1944
1945 #if !CONFIG_REALTIME_ONLY
set_segment_rdmult(VP9_COMP * const cpi,MACROBLOCK * const x,int mi_row,int mi_col,BLOCK_SIZE bsize,AQ_MODE aq_mode)1946 static void set_segment_rdmult(VP9_COMP *const cpi, MACROBLOCK *const x,
1947 int mi_row, int mi_col, BLOCK_SIZE bsize,
1948 AQ_MODE aq_mode) {
1949 VP9_COMMON *const cm = &cpi->common;
1950 const VP9EncoderConfig *const oxcf = &cpi->oxcf;
1951 const uint8_t *const map =
1952 cm->seg.update_map ? cpi->segmentation_map : cm->last_frame_seg_map;
1953
1954 vp9_init_plane_quantizers(cpi, x);
1955 vpx_clear_system_state();
1956
1957 if (aq_mode == NO_AQ || aq_mode == PSNR_AQ) {
1958 if (cpi->sf.enable_tpl_model) x->rdmult = x->cb_rdmult;
1959 } else if (aq_mode == PERCEPTUAL_AQ) {
1960 x->rdmult = x->cb_rdmult;
1961 } else if (aq_mode == CYCLIC_REFRESH_AQ) {
1962 // If segment is boosted, use rdmult for that segment.
1963 if (cyclic_refresh_segment_id_boosted(
1964 get_segment_id(cm, map, bsize, mi_row, mi_col)))
1965 x->rdmult = vp9_cyclic_refresh_get_rdmult(cpi->cyclic_refresh);
1966 } else {
1967 x->rdmult = vp9_compute_rd_mult(cpi, cm->base_qindex + cm->y_dc_delta_q);
1968 }
1969
1970 if (oxcf->tuning == VP8_TUNE_SSIM) {
1971 set_ssim_rdmult(cpi, x, bsize, mi_row, mi_col, &x->rdmult);
1972 }
1973 }
1974
rd_pick_sb_modes(VP9_COMP * cpi,TileDataEnc * tile_data,MACROBLOCK * const x,int mi_row,int mi_col,RD_COST * rd_cost,BLOCK_SIZE bsize,PICK_MODE_CONTEXT * ctx,int rate_in_best_rd,int64_t dist_in_best_rd)1975 static void rd_pick_sb_modes(VP9_COMP *cpi, TileDataEnc *tile_data,
1976 MACROBLOCK *const x, int mi_row, int mi_col,
1977 RD_COST *rd_cost, BLOCK_SIZE bsize,
1978 PICK_MODE_CONTEXT *ctx, int rate_in_best_rd,
1979 int64_t dist_in_best_rd) {
1980 VP9_COMMON *const cm = &cpi->common;
1981 TileInfo *const tile_info = &tile_data->tile_info;
1982 MACROBLOCKD *const xd = &x->e_mbd;
1983 MODE_INFO *mi;
1984 struct macroblock_plane *const p = x->plane;
1985 struct macroblockd_plane *const pd = xd->plane;
1986 const AQ_MODE aq_mode = cpi->oxcf.aq_mode;
1987 int i, orig_rdmult;
1988 int64_t best_rd = INT64_MAX;
1989
1990 vpx_clear_system_state();
1991 #if CONFIG_COLLECT_COMPONENT_TIMING
1992 start_timing(cpi, rd_pick_sb_modes_time);
1993 #endif
1994
1995 // Use the lower precision, but faster, 32x32 fdct for mode selection.
1996 x->use_lp32x32fdct = 1;
1997
1998 set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
1999 mi = xd->mi[0];
2000 mi->sb_type = bsize;
2001
2002 for (i = 0; i < MAX_MB_PLANE; ++i) {
2003 p[i].coeff = ctx->coeff_pbuf[i][0];
2004 p[i].qcoeff = ctx->qcoeff_pbuf[i][0];
2005 pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][0];
2006 p[i].eobs = ctx->eobs_pbuf[i][0];
2007 }
2008 ctx->is_coded = 0;
2009 ctx->skippable = 0;
2010 ctx->pred_pixel_ready = 0;
2011 x->skip_recode = 0;
2012
2013 // Set to zero to make sure we do not use the previous encoded frame stats
2014 mi->skip = 0;
2015
2016 #if CONFIG_VP9_HIGHBITDEPTH
2017 if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
2018 x->source_variance = vp9_high_get_sby_perpixel_variance(
2019 cpi, &x->plane[0].src, bsize, xd->bd);
2020 } else {
2021 x->source_variance =
2022 vp9_get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize);
2023 }
2024 #else
2025 x->source_variance =
2026 vp9_get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize);
2027 #endif // CONFIG_VP9_HIGHBITDEPTH
2028
2029 // Save rdmult before it might be changed, so it can be restored later.
2030 orig_rdmult = x->rdmult;
2031
2032 if ((cpi->sf.tx_domain_thresh > 0.0) ||
2033 (cpi->sf.trellis_opt_tx_rd.thresh > 0.0)) {
2034 double logvar = vp9_log_block_var(cpi, x, bsize);
2035 // Check block complexity as part of decision on using pixel or transform
2036 // domain distortion in rd tests.
2037 x->block_tx_domain = cpi->sf.allow_txfm_domain_distortion &&
2038 (logvar >= cpi->sf.tx_domain_thresh);
2039
2040 // Store block complexity to decide on using quantized coefficient
2041 // optimization inside the rd loop.
2042 x->log_block_src_var = logvar;
2043 } else {
2044 x->block_tx_domain = cpi->sf.allow_txfm_domain_distortion;
2045 x->log_block_src_var = 0.0;
2046 }
2047
2048 set_segment_index(cpi, x, mi_row, mi_col, bsize, 0);
2049 set_segment_rdmult(cpi, x, mi_row, mi_col, bsize, aq_mode);
2050 if (rate_in_best_rd < INT_MAX && dist_in_best_rd < INT64_MAX) {
2051 best_rd = vp9_calculate_rd_cost(x->rdmult, x->rddiv, rate_in_best_rd,
2052 dist_in_best_rd);
2053 }
2054
2055 // Find best coding mode & reconstruct the MB so it is available
2056 // as a predictor for MBs that follow in the SB
2057 if (frame_is_intra_only(cm)) {
2058 vp9_rd_pick_intra_mode_sb(cpi, x, rd_cost, bsize, ctx, best_rd);
2059 } else {
2060 if (bsize >= BLOCK_8X8) {
2061 #if CONFIG_COLLECT_COMPONENT_TIMING
2062 start_timing(cpi, vp9_rd_pick_inter_mode_sb_time);
2063 #endif
2064 if (segfeature_active(&cm->seg, mi->segment_id, SEG_LVL_SKIP))
2065 vp9_rd_pick_inter_mode_sb_seg_skip(cpi, tile_data, x, rd_cost, bsize,
2066 ctx, best_rd);
2067 else
2068 vp9_rd_pick_inter_mode_sb(cpi, tile_data, x, mi_row, mi_col, rd_cost,
2069 bsize, ctx, best_rd);
2070 #if CONFIG_COLLECT_COMPONENT_TIMING
2071 end_timing(cpi, vp9_rd_pick_inter_mode_sb_time);
2072 #endif
2073 } else {
2074 #if CONFIG_COLLECT_COMPONENT_TIMING
2075 start_timing(cpi, vp9_rd_pick_inter_mode_sub8x8_time);
2076 #endif
2077 vp9_rd_pick_inter_mode_sub8x8(cpi, tile_data, x, mi_row, mi_col, rd_cost,
2078 bsize, ctx, best_rd);
2079 #if CONFIG_COLLECT_COMPONENT_TIMING
2080 end_timing(cpi, vp9_rd_pick_inter_mode_sub8x8_time);
2081 #endif
2082 }
2083 }
2084
2085 // Examine the resulting rate and for AQ mode 2 make a segment choice.
2086 if ((rd_cost->rate != INT_MAX) && (aq_mode == COMPLEXITY_AQ) &&
2087 (bsize >= BLOCK_16X16) &&
2088 (cm->frame_type == KEY_FRAME || cpi->refresh_alt_ref_frame ||
2089 (cpi->refresh_golden_frame && !cpi->rc.is_src_frame_alt_ref))) {
2090 vp9_caq_select_segment(cpi, x, bsize, mi_row, mi_col, rd_cost->rate);
2091 }
2092
2093 // TODO(jingning) The rate-distortion optimization flow needs to be
2094 // refactored to provide proper exit/return handle.
2095 if (rd_cost->rate == INT_MAX || rd_cost->dist == INT64_MAX)
2096 rd_cost->rdcost = INT64_MAX;
2097 else
2098 rd_cost->rdcost = RDCOST(x->rdmult, x->rddiv, rd_cost->rate, rd_cost->dist);
2099
2100 x->rdmult = orig_rdmult;
2101
2102 ctx->rate = rd_cost->rate;
2103 ctx->dist = rd_cost->dist;
2104 #if CONFIG_COLLECT_COMPONENT_TIMING
2105 end_timing(cpi, rd_pick_sb_modes_time);
2106 #endif
2107 }
2108 #endif // !CONFIG_REALTIME_ONLY
2109
update_stats(VP9_COMMON * cm,ThreadData * td)2110 static void update_stats(VP9_COMMON *cm, ThreadData *td) {
2111 const MACROBLOCK *x = &td->mb;
2112 const MACROBLOCKD *const xd = &x->e_mbd;
2113 const MODE_INFO *const mi = xd->mi[0];
2114 const MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
2115 const BLOCK_SIZE bsize = mi->sb_type;
2116
2117 if (!frame_is_intra_only(cm)) {
2118 FRAME_COUNTS *const counts = td->counts;
2119 const int inter_block = is_inter_block(mi);
2120 const int seg_ref_active =
2121 segfeature_active(&cm->seg, mi->segment_id, SEG_LVL_REF_FRAME);
2122 if (!seg_ref_active) {
2123 counts->intra_inter[get_intra_inter_context(xd)][inter_block]++;
2124 // If the segment reference feature is enabled we have only a single
2125 // reference frame allowed for the segment so exclude it from
2126 // the reference frame counts used to work out probabilities.
2127 if (inter_block) {
2128 const MV_REFERENCE_FRAME ref0 = mi->ref_frame[0];
2129 if (cm->reference_mode == REFERENCE_MODE_SELECT)
2130 counts->comp_inter[vp9_get_reference_mode_context(cm, xd)]
2131 [has_second_ref(mi)]++;
2132
2133 if (has_second_ref(mi)) {
2134 const int idx = cm->ref_frame_sign_bias[cm->comp_fixed_ref];
2135 const int ctx = vp9_get_pred_context_comp_ref_p(cm, xd);
2136 const int bit = mi->ref_frame[!idx] == cm->comp_var_ref[1];
2137 counts->comp_ref[ctx][bit]++;
2138 } else {
2139 counts->single_ref[vp9_get_pred_context_single_ref_p1(xd)][0]
2140 [ref0 != LAST_FRAME]++;
2141 if (ref0 != LAST_FRAME)
2142 counts->single_ref[vp9_get_pred_context_single_ref_p2(xd)][1]
2143 [ref0 != GOLDEN_FRAME]++;
2144 }
2145 }
2146 }
2147 if (inter_block &&
2148 !segfeature_active(&cm->seg, mi->segment_id, SEG_LVL_SKIP)) {
2149 const int mode_ctx = mbmi_ext->mode_context[mi->ref_frame[0]];
2150 if (bsize >= BLOCK_8X8) {
2151 const PREDICTION_MODE mode = mi->mode;
2152 ++counts->inter_mode[mode_ctx][INTER_OFFSET(mode)];
2153 } else {
2154 const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
2155 const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
2156 int idx, idy;
2157 for (idy = 0; idy < 2; idy += num_4x4_h) {
2158 for (idx = 0; idx < 2; idx += num_4x4_w) {
2159 const int j = idy * 2 + idx;
2160 const PREDICTION_MODE b_mode = mi->bmi[j].as_mode;
2161 ++counts->inter_mode[mode_ctx][INTER_OFFSET(b_mode)];
2162 }
2163 }
2164 }
2165 }
2166 }
2167 }
2168
2169 #if !CONFIG_REALTIME_ONLY
restore_context(MACROBLOCK * const x,int mi_row,int mi_col,ENTROPY_CONTEXT a[16* MAX_MB_PLANE],ENTROPY_CONTEXT l[16* MAX_MB_PLANE],PARTITION_CONTEXT sa[8],PARTITION_CONTEXT sl[8],BLOCK_SIZE bsize)2170 static void restore_context(MACROBLOCK *const x, int mi_row, int mi_col,
2171 ENTROPY_CONTEXT a[16 * MAX_MB_PLANE],
2172 ENTROPY_CONTEXT l[16 * MAX_MB_PLANE],
2173 PARTITION_CONTEXT sa[8], PARTITION_CONTEXT sl[8],
2174 BLOCK_SIZE bsize) {
2175 MACROBLOCKD *const xd = &x->e_mbd;
2176 int p;
2177 const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
2178 const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
2179 int mi_width = num_8x8_blocks_wide_lookup[bsize];
2180 int mi_height = num_8x8_blocks_high_lookup[bsize];
2181 for (p = 0; p < MAX_MB_PLANE; p++) {
2182 memcpy(xd->above_context[p] + ((mi_col * 2) >> xd->plane[p].subsampling_x),
2183 a + num_4x4_blocks_wide * p,
2184 (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >>
2185 xd->plane[p].subsampling_x);
2186 memcpy(xd->left_context[p] +
2187 ((mi_row & MI_MASK) * 2 >> xd->plane[p].subsampling_y),
2188 l + num_4x4_blocks_high * p,
2189 (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >>
2190 xd->plane[p].subsampling_y);
2191 }
2192 memcpy(xd->above_seg_context + mi_col, sa,
2193 sizeof(*xd->above_seg_context) * mi_width);
2194 memcpy(xd->left_seg_context + (mi_row & MI_MASK), sl,
2195 sizeof(xd->left_seg_context[0]) * mi_height);
2196 }
2197
save_context(MACROBLOCK * const x,int mi_row,int mi_col,ENTROPY_CONTEXT a[16* MAX_MB_PLANE],ENTROPY_CONTEXT l[16* MAX_MB_PLANE],PARTITION_CONTEXT sa[8],PARTITION_CONTEXT sl[8],BLOCK_SIZE bsize)2198 static void save_context(MACROBLOCK *const x, int mi_row, int mi_col,
2199 ENTROPY_CONTEXT a[16 * MAX_MB_PLANE],
2200 ENTROPY_CONTEXT l[16 * MAX_MB_PLANE],
2201 PARTITION_CONTEXT sa[8], PARTITION_CONTEXT sl[8],
2202 BLOCK_SIZE bsize) {
2203 const MACROBLOCKD *const xd = &x->e_mbd;
2204 int p;
2205 const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
2206 const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
2207 int mi_width = num_8x8_blocks_wide_lookup[bsize];
2208 int mi_height = num_8x8_blocks_high_lookup[bsize];
2209
2210 // buffer the above/left context information of the block in search.
2211 for (p = 0; p < MAX_MB_PLANE; ++p) {
2212 memcpy(a + num_4x4_blocks_wide * p,
2213 xd->above_context[p] + (mi_col * 2 >> xd->plane[p].subsampling_x),
2214 (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >>
2215 xd->plane[p].subsampling_x);
2216 memcpy(l + num_4x4_blocks_high * p,
2217 xd->left_context[p] +
2218 ((mi_row & MI_MASK) * 2 >> xd->plane[p].subsampling_y),
2219 (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >>
2220 xd->plane[p].subsampling_y);
2221 }
2222 memcpy(sa, xd->above_seg_context + mi_col,
2223 sizeof(*xd->above_seg_context) * mi_width);
2224 memcpy(sl, xd->left_seg_context + (mi_row & MI_MASK),
2225 sizeof(xd->left_seg_context[0]) * mi_height);
2226 }
2227
encode_b(VP9_COMP * cpi,const TileInfo * const tile,ThreadData * td,TOKENEXTRA ** tp,int mi_row,int mi_col,int output_enabled,BLOCK_SIZE bsize,PICK_MODE_CONTEXT * ctx)2228 static void encode_b(VP9_COMP *cpi, const TileInfo *const tile, ThreadData *td,
2229 TOKENEXTRA **tp, int mi_row, int mi_col,
2230 int output_enabled, BLOCK_SIZE bsize,
2231 PICK_MODE_CONTEXT *ctx) {
2232 MACROBLOCK *const x = &td->mb;
2233 set_offsets(cpi, tile, x, mi_row, mi_col, bsize);
2234
2235 if (cpi->sf.enable_tpl_model &&
2236 (cpi->oxcf.aq_mode == NO_AQ || cpi->oxcf.aq_mode == PERCEPTUAL_AQ)) {
2237 const VP9EncoderConfig *const oxcf = &cpi->oxcf;
2238 x->rdmult = x->cb_rdmult;
2239 if (oxcf->tuning == VP8_TUNE_SSIM) {
2240 set_ssim_rdmult(cpi, x, bsize, mi_row, mi_col, &x->rdmult);
2241 }
2242 }
2243
2244 update_state(cpi, td, ctx, mi_row, mi_col, bsize, output_enabled);
2245 encode_superblock(cpi, td, tp, output_enabled, mi_row, mi_col, bsize, ctx);
2246
2247 if (output_enabled) {
2248 update_stats(&cpi->common, td);
2249
2250 (*tp)->token = EOSB_TOKEN;
2251 (*tp)++;
2252 }
2253 }
2254
encode_sb(VP9_COMP * cpi,ThreadData * td,const TileInfo * const tile,TOKENEXTRA ** tp,int mi_row,int mi_col,int output_enabled,BLOCK_SIZE bsize,PC_TREE * pc_tree)2255 static void encode_sb(VP9_COMP *cpi, ThreadData *td, const TileInfo *const tile,
2256 TOKENEXTRA **tp, int mi_row, int mi_col,
2257 int output_enabled, BLOCK_SIZE bsize, PC_TREE *pc_tree) {
2258 VP9_COMMON *const cm = &cpi->common;
2259 MACROBLOCK *const x = &td->mb;
2260 MACROBLOCKD *const xd = &x->e_mbd;
2261
2262 const int bsl = b_width_log2_lookup[bsize], hbs = (1 << bsl) / 4;
2263 int ctx;
2264 PARTITION_TYPE partition;
2265 BLOCK_SIZE subsize = bsize;
2266
2267 if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
2268
2269 if (bsize >= BLOCK_8X8) {
2270 ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
2271 subsize = get_subsize(bsize, pc_tree->partitioning);
2272 } else {
2273 ctx = 0;
2274 subsize = BLOCK_4X4;
2275 }
2276
2277 partition = partition_lookup[bsl][subsize];
2278 if (output_enabled && bsize != BLOCK_4X4)
2279 td->counts->partition[ctx][partition]++;
2280
2281 switch (partition) {
2282 case PARTITION_NONE:
2283 encode_b(cpi, tile, td, tp, mi_row, mi_col, output_enabled, subsize,
2284 &pc_tree->none);
2285 break;
2286 case PARTITION_VERT:
2287 encode_b(cpi, tile, td, tp, mi_row, mi_col, output_enabled, subsize,
2288 &pc_tree->vertical[0]);
2289 if (mi_col + hbs < cm->mi_cols && bsize > BLOCK_8X8) {
2290 encode_b(cpi, tile, td, tp, mi_row, mi_col + hbs, output_enabled,
2291 subsize, &pc_tree->vertical[1]);
2292 }
2293 break;
2294 case PARTITION_HORZ:
2295 encode_b(cpi, tile, td, tp, mi_row, mi_col, output_enabled, subsize,
2296 &pc_tree->horizontal[0]);
2297 if (mi_row + hbs < cm->mi_rows && bsize > BLOCK_8X8) {
2298 encode_b(cpi, tile, td, tp, mi_row + hbs, mi_col, output_enabled,
2299 subsize, &pc_tree->horizontal[1]);
2300 }
2301 break;
2302 default:
2303 assert(partition == PARTITION_SPLIT);
2304 if (bsize == BLOCK_8X8) {
2305 encode_b(cpi, tile, td, tp, mi_row, mi_col, output_enabled, subsize,
2306 pc_tree->u.leaf_split[0]);
2307 } else {
2308 encode_sb(cpi, td, tile, tp, mi_row, mi_col, output_enabled, subsize,
2309 pc_tree->u.split[0]);
2310 encode_sb(cpi, td, tile, tp, mi_row, mi_col + hbs, output_enabled,
2311 subsize, pc_tree->u.split[1]);
2312 encode_sb(cpi, td, tile, tp, mi_row + hbs, mi_col, output_enabled,
2313 subsize, pc_tree->u.split[2]);
2314 encode_sb(cpi, td, tile, tp, mi_row + hbs, mi_col + hbs, output_enabled,
2315 subsize, pc_tree->u.split[3]);
2316 }
2317 break;
2318 }
2319
2320 if (partition != PARTITION_SPLIT || bsize == BLOCK_8X8)
2321 update_partition_context(xd, mi_row, mi_col, subsize, bsize);
2322 }
2323 #endif // !CONFIG_REALTIME_ONLY
2324
2325 // Check to see if the given partition size is allowed for a specified number
2326 // of 8x8 block rows and columns remaining in the image.
2327 // If not then return the largest allowed partition size
find_partition_size(BLOCK_SIZE bsize,int rows_left,int cols_left,int * bh,int * bw)2328 static BLOCK_SIZE find_partition_size(BLOCK_SIZE bsize, int rows_left,
2329 int cols_left, int *bh, int *bw) {
2330 if (rows_left <= 0 || cols_left <= 0) {
2331 return VPXMIN(bsize, BLOCK_8X8);
2332 } else {
2333 for (; bsize > 0; bsize -= 3) {
2334 *bh = num_8x8_blocks_high_lookup[bsize];
2335 *bw = num_8x8_blocks_wide_lookup[bsize];
2336 if ((*bh <= rows_left) && (*bw <= cols_left)) {
2337 break;
2338 }
2339 }
2340 }
2341 return bsize;
2342 }
2343
set_partial_b64x64_partition(MODE_INFO * mi,int mis,int bh_in,int bw_in,int row8x8_remaining,int col8x8_remaining,BLOCK_SIZE bsize,MODE_INFO ** mi_8x8)2344 static void set_partial_b64x64_partition(MODE_INFO *mi, int mis, int bh_in,
2345 int bw_in, int row8x8_remaining,
2346 int col8x8_remaining, BLOCK_SIZE bsize,
2347 MODE_INFO **mi_8x8) {
2348 int bh = bh_in;
2349 int r, c;
2350 for (r = 0; r < MI_BLOCK_SIZE; r += bh) {
2351 int bw = bw_in;
2352 for (c = 0; c < MI_BLOCK_SIZE; c += bw) {
2353 const int index = r * mis + c;
2354 mi_8x8[index] = mi + index;
2355 mi_8x8[index]->sb_type = find_partition_size(
2356 bsize, row8x8_remaining - r, col8x8_remaining - c, &bh, &bw);
2357 }
2358 }
2359 }
2360
2361 // This function attempts to set all mode info entries in a given SB64
2362 // to the same block partition size.
2363 // However, at the bottom and right borders of the image the requested size
2364 // may not be allowed in which case this code attempts to choose the largest
2365 // allowable partition.
set_fixed_partitioning(VP9_COMP * cpi,const TileInfo * const tile,MODE_INFO ** mi_8x8,int mi_row,int mi_col,BLOCK_SIZE bsize)2366 static void set_fixed_partitioning(VP9_COMP *cpi, const TileInfo *const tile,
2367 MODE_INFO **mi_8x8, int mi_row, int mi_col,
2368 BLOCK_SIZE bsize) {
2369 VP9_COMMON *const cm = &cpi->common;
2370 const int mis = cm->mi_stride;
2371 const int row8x8_remaining = tile->mi_row_end - mi_row;
2372 const int col8x8_remaining = tile->mi_col_end - mi_col;
2373 int block_row, block_col;
2374 MODE_INFO *mi_upper_left = cm->mi + mi_row * mis + mi_col;
2375 int bh = num_8x8_blocks_high_lookup[bsize];
2376 int bw = num_8x8_blocks_wide_lookup[bsize];
2377
2378 assert((row8x8_remaining > 0) && (col8x8_remaining > 0));
2379
2380 // Apply the requested partition size to the SB64 if it is all "in image"
2381 if ((col8x8_remaining >= MI_BLOCK_SIZE) &&
2382 (row8x8_remaining >= MI_BLOCK_SIZE)) {
2383 for (block_row = 0; block_row < MI_BLOCK_SIZE; block_row += bh) {
2384 for (block_col = 0; block_col < MI_BLOCK_SIZE; block_col += bw) {
2385 int index = block_row * mis + block_col;
2386 mi_8x8[index] = mi_upper_left + index;
2387 mi_8x8[index]->sb_type = bsize;
2388 }
2389 }
2390 } else {
2391 // Else this is a partial SB64.
2392 set_partial_b64x64_partition(mi_upper_left, mis, bh, bw, row8x8_remaining,
2393 col8x8_remaining, bsize, mi_8x8);
2394 }
2395 }
2396
2397 static const struct {
2398 int row;
2399 int col;
2400 } coord_lookup[16] = {
2401 // 32x32 index = 0
2402 { 0, 0 },
2403 { 0, 2 },
2404 { 2, 0 },
2405 { 2, 2 },
2406 // 32x32 index = 1
2407 { 0, 4 },
2408 { 0, 6 },
2409 { 2, 4 },
2410 { 2, 6 },
2411 // 32x32 index = 2
2412 { 4, 0 },
2413 { 4, 2 },
2414 { 6, 0 },
2415 { 6, 2 },
2416 // 32x32 index = 3
2417 { 4, 4 },
2418 { 4, 6 },
2419 { 6, 4 },
2420 { 6, 6 },
2421 };
2422
set_source_var_based_partition(VP9_COMP * cpi,const TileInfo * const tile,MACROBLOCK * const x,MODE_INFO ** mi_8x8,int mi_row,int mi_col)2423 static void set_source_var_based_partition(VP9_COMP *cpi,
2424 const TileInfo *const tile,
2425 MACROBLOCK *const x,
2426 MODE_INFO **mi_8x8, int mi_row,
2427 int mi_col) {
2428 VP9_COMMON *const cm = &cpi->common;
2429 const int mis = cm->mi_stride;
2430 const int row8x8_remaining = tile->mi_row_end - mi_row;
2431 const int col8x8_remaining = tile->mi_col_end - mi_col;
2432 MODE_INFO *mi_upper_left = cm->mi + mi_row * mis + mi_col;
2433
2434 vp9_setup_src_planes(x, cpi->Source, mi_row, mi_col);
2435
2436 assert((row8x8_remaining > 0) && (col8x8_remaining > 0));
2437
2438 // In-image SB64
2439 if ((col8x8_remaining >= MI_BLOCK_SIZE) &&
2440 (row8x8_remaining >= MI_BLOCK_SIZE)) {
2441 int i, j;
2442 int index;
2443 Diff d32[4];
2444 const int offset = (mi_row >> 1) * cm->mb_cols + (mi_col >> 1);
2445 int is_larger_better = 0;
2446 int use32x32 = 0;
2447 unsigned int thr = cpi->source_var_thresh;
2448
2449 memset(d32, 0, sizeof(d32));
2450
2451 for (i = 0; i < 4; i++) {
2452 Diff *d16[4];
2453
2454 for (j = 0; j < 4; j++) {
2455 int b_mi_row = coord_lookup[i * 4 + j].row;
2456 int b_mi_col = coord_lookup[i * 4 + j].col;
2457 int boffset = b_mi_row / 2 * cm->mb_cols + b_mi_col / 2;
2458
2459 d16[j] = cpi->source_diff_var + offset + boffset;
2460
2461 index = b_mi_row * mis + b_mi_col;
2462 mi_8x8[index] = mi_upper_left + index;
2463 mi_8x8[index]->sb_type = BLOCK_16X16;
2464
2465 // TODO(yunqingwang): If d16[j].var is very large, use 8x8 partition
2466 // size to further improve quality.
2467 }
2468
2469 is_larger_better = (d16[0]->var < thr) && (d16[1]->var < thr) &&
2470 (d16[2]->var < thr) && (d16[3]->var < thr);
2471
2472 // Use 32x32 partition
2473 if (is_larger_better) {
2474 use32x32 += 1;
2475
2476 for (j = 0; j < 4; j++) {
2477 d32[i].sse += d16[j]->sse;
2478 d32[i].sum += d16[j]->sum;
2479 }
2480
2481 d32[i].var =
2482 (unsigned int)(d32[i].sse -
2483 (unsigned int)(((int64_t)d32[i].sum * d32[i].sum) >>
2484 10));
2485
2486 index = coord_lookup[i * 4].row * mis + coord_lookup[i * 4].col;
2487 mi_8x8[index] = mi_upper_left + index;
2488 mi_8x8[index]->sb_type = BLOCK_32X32;
2489 }
2490 }
2491
2492 if (use32x32 == 4) {
2493 thr <<= 1;
2494 is_larger_better = (d32[0].var < thr) && (d32[1].var < thr) &&
2495 (d32[2].var < thr) && (d32[3].var < thr);
2496
2497 // Use 64x64 partition
2498 if (is_larger_better) {
2499 mi_8x8[0] = mi_upper_left;
2500 mi_8x8[0]->sb_type = BLOCK_64X64;
2501 }
2502 }
2503 } else { // partial in-image SB64
2504 int bh = num_8x8_blocks_high_lookup[BLOCK_16X16];
2505 int bw = num_8x8_blocks_wide_lookup[BLOCK_16X16];
2506 set_partial_b64x64_partition(mi_upper_left, mis, bh, bw, row8x8_remaining,
2507 col8x8_remaining, BLOCK_16X16, mi_8x8);
2508 }
2509 }
2510
update_state_rt(VP9_COMP * cpi,ThreadData * td,PICK_MODE_CONTEXT * ctx,int mi_row,int mi_col,int bsize)2511 static void update_state_rt(VP9_COMP *cpi, ThreadData *td,
2512 PICK_MODE_CONTEXT *ctx, int mi_row, int mi_col,
2513 int bsize) {
2514 VP9_COMMON *const cm = &cpi->common;
2515 MACROBLOCK *const x = &td->mb;
2516 MACROBLOCKD *const xd = &x->e_mbd;
2517 MODE_INFO *const mi = xd->mi[0];
2518 struct macroblock_plane *const p = x->plane;
2519 const struct segmentation *const seg = &cm->seg;
2520 const int bw = num_8x8_blocks_wide_lookup[mi->sb_type];
2521 const int bh = num_8x8_blocks_high_lookup[mi->sb_type];
2522 const int x_mis = VPXMIN(bw, cm->mi_cols - mi_col);
2523 const int y_mis = VPXMIN(bh, cm->mi_rows - mi_row);
2524
2525 *(xd->mi[0]) = ctx->mic;
2526 *(x->mbmi_ext) = ctx->mbmi_ext;
2527
2528 if (seg->enabled && (cpi->oxcf.aq_mode != NO_AQ || cpi->roi.enabled ||
2529 cpi->active_map.enabled)) {
2530 // Setting segmentation map for cyclic_refresh.
2531 if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ &&
2532 cpi->cyclic_refresh->content_mode) {
2533 vp9_cyclic_refresh_update_segment(cpi, mi, mi_row, mi_col, bsize,
2534 ctx->rate, ctx->dist, x->skip, p);
2535 } else {
2536 const uint8_t *const map =
2537 seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map;
2538 mi->segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col);
2539 }
2540 vp9_init_plane_quantizers(cpi, x);
2541 }
2542
2543 if (is_inter_block(mi)) {
2544 vp9_update_mv_count(td);
2545 if (cm->interp_filter == SWITCHABLE) {
2546 const int pred_ctx = get_pred_context_switchable_interp(xd);
2547 ++td->counts->switchable_interp[pred_ctx][mi->interp_filter];
2548 }
2549
2550 if (mi->sb_type < BLOCK_8X8) {
2551 mi->mv[0].as_int = mi->bmi[3].as_mv[0].as_int;
2552 mi->mv[1].as_int = mi->bmi[3].as_mv[1].as_int;
2553 }
2554 }
2555
2556 if (cm->use_prev_frame_mvs || !cm->error_resilient_mode ||
2557 (cpi->svc.use_base_mv && cpi->svc.number_spatial_layers > 1 &&
2558 cpi->svc.spatial_layer_id != cpi->svc.number_spatial_layers - 1)) {
2559 MV_REF *const frame_mvs =
2560 cm->cur_frame->mvs + mi_row * cm->mi_cols + mi_col;
2561 int w, h;
2562
2563 for (h = 0; h < y_mis; ++h) {
2564 MV_REF *const frame_mv = frame_mvs + h * cm->mi_cols;
2565 for (w = 0; w < x_mis; ++w) {
2566 MV_REF *const mv = frame_mv + w;
2567 mv->ref_frame[0] = mi->ref_frame[0];
2568 mv->ref_frame[1] = mi->ref_frame[1];
2569 mv->mv[0].as_int = mi->mv[0].as_int;
2570 mv->mv[1].as_int = mi->mv[1].as_int;
2571 }
2572 }
2573 }
2574
2575 x->skip = ctx->skip;
2576 x->skip_txfm[0] = (mi->segment_id || xd->lossless) ? 0 : ctx->skip_txfm[0];
2577 }
2578
encode_b_rt(VP9_COMP * cpi,ThreadData * td,const TileInfo * const tile,TOKENEXTRA ** tp,int mi_row,int mi_col,int output_enabled,BLOCK_SIZE bsize,PICK_MODE_CONTEXT * ctx)2579 static void encode_b_rt(VP9_COMP *cpi, ThreadData *td,
2580 const TileInfo *const tile, TOKENEXTRA **tp, int mi_row,
2581 int mi_col, int output_enabled, BLOCK_SIZE bsize,
2582 PICK_MODE_CONTEXT *ctx) {
2583 MACROBLOCK *const x = &td->mb;
2584 set_offsets(cpi, tile, x, mi_row, mi_col, bsize);
2585 update_state_rt(cpi, td, ctx, mi_row, mi_col, bsize);
2586
2587 encode_superblock(cpi, td, tp, output_enabled, mi_row, mi_col, bsize, ctx);
2588 update_stats(&cpi->common, td);
2589
2590 (*tp)->token = EOSB_TOKEN;
2591 (*tp)++;
2592 }
2593
encode_sb_rt(VP9_COMP * cpi,ThreadData * td,const TileInfo * const tile,TOKENEXTRA ** tp,int mi_row,int mi_col,int output_enabled,BLOCK_SIZE bsize,PC_TREE * pc_tree)2594 static void encode_sb_rt(VP9_COMP *cpi, ThreadData *td,
2595 const TileInfo *const tile, TOKENEXTRA **tp,
2596 int mi_row, int mi_col, int output_enabled,
2597 BLOCK_SIZE bsize, PC_TREE *pc_tree) {
2598 VP9_COMMON *const cm = &cpi->common;
2599 MACROBLOCK *const x = &td->mb;
2600 MACROBLOCKD *const xd = &x->e_mbd;
2601
2602 const int bsl = b_width_log2_lookup[bsize], hbs = (1 << bsl) / 4;
2603 int ctx;
2604 PARTITION_TYPE partition;
2605 BLOCK_SIZE subsize;
2606
2607 if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
2608
2609 if (bsize >= BLOCK_8X8) {
2610 const int idx_str = xd->mi_stride * mi_row + mi_col;
2611 MODE_INFO **mi_8x8 = cm->mi_grid_visible + idx_str;
2612 ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
2613 subsize = mi_8x8[0]->sb_type;
2614 } else {
2615 ctx = 0;
2616 subsize = BLOCK_4X4;
2617 }
2618
2619 partition = partition_lookup[bsl][subsize];
2620 if (output_enabled && bsize != BLOCK_4X4)
2621 td->counts->partition[ctx][partition]++;
2622
2623 switch (partition) {
2624 case PARTITION_NONE:
2625 encode_b_rt(cpi, td, tile, tp, mi_row, mi_col, output_enabled, subsize,
2626 &pc_tree->none);
2627 break;
2628 case PARTITION_VERT:
2629 encode_b_rt(cpi, td, tile, tp, mi_row, mi_col, output_enabled, subsize,
2630 &pc_tree->vertical[0]);
2631 if (mi_col + hbs < cm->mi_cols && bsize > BLOCK_8X8) {
2632 encode_b_rt(cpi, td, tile, tp, mi_row, mi_col + hbs, output_enabled,
2633 subsize, &pc_tree->vertical[1]);
2634 }
2635 break;
2636 case PARTITION_HORZ:
2637 encode_b_rt(cpi, td, tile, tp, mi_row, mi_col, output_enabled, subsize,
2638 &pc_tree->horizontal[0]);
2639 if (mi_row + hbs < cm->mi_rows && bsize > BLOCK_8X8) {
2640 encode_b_rt(cpi, td, tile, tp, mi_row + hbs, mi_col, output_enabled,
2641 subsize, &pc_tree->horizontal[1]);
2642 }
2643 break;
2644 default:
2645 assert(partition == PARTITION_SPLIT);
2646 subsize = get_subsize(bsize, PARTITION_SPLIT);
2647 encode_sb_rt(cpi, td, tile, tp, mi_row, mi_col, output_enabled, subsize,
2648 pc_tree->u.split[0]);
2649 encode_sb_rt(cpi, td, tile, tp, mi_row, mi_col + hbs, output_enabled,
2650 subsize, pc_tree->u.split[1]);
2651 encode_sb_rt(cpi, td, tile, tp, mi_row + hbs, mi_col, output_enabled,
2652 subsize, pc_tree->u.split[2]);
2653 encode_sb_rt(cpi, td, tile, tp, mi_row + hbs, mi_col + hbs,
2654 output_enabled, subsize, pc_tree->u.split[3]);
2655 break;
2656 }
2657
2658 if (partition != PARTITION_SPLIT || bsize == BLOCK_8X8)
2659 update_partition_context(xd, mi_row, mi_col, subsize, bsize);
2660 }
2661
2662 #if !CONFIG_REALTIME_ONLY
rd_use_partition(VP9_COMP * cpi,ThreadData * td,TileDataEnc * tile_data,MODE_INFO ** mi_8x8,TOKENEXTRA ** tp,int mi_row,int mi_col,BLOCK_SIZE bsize,int * rate,int64_t * dist,int do_recon,PC_TREE * pc_tree)2663 static void rd_use_partition(VP9_COMP *cpi, ThreadData *td,
2664 TileDataEnc *tile_data, MODE_INFO **mi_8x8,
2665 TOKENEXTRA **tp, int mi_row, int mi_col,
2666 BLOCK_SIZE bsize, int *rate, int64_t *dist,
2667 int do_recon, PC_TREE *pc_tree) {
2668 VP9_COMMON *const cm = &cpi->common;
2669 TileInfo *const tile_info = &tile_data->tile_info;
2670 MACROBLOCK *const x = &td->mb;
2671 MACROBLOCKD *const xd = &x->e_mbd;
2672 const int mis = cm->mi_stride;
2673 const int bsl = b_width_log2_lookup[bsize];
2674 const int mi_step = num_4x4_blocks_wide_lookup[bsize] / 2;
2675 const int bss = (1 << bsl) / 4;
2676 int i, pl;
2677 PARTITION_TYPE partition = PARTITION_NONE;
2678 BLOCK_SIZE subsize;
2679 ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE];
2680 PARTITION_CONTEXT sl[8], sa[8];
2681 RD_COST last_part_rdc, none_rdc, chosen_rdc;
2682 BLOCK_SIZE sub_subsize = BLOCK_4X4;
2683 int splits_below = 0;
2684 BLOCK_SIZE bs_type = mi_8x8[0]->sb_type;
2685 int do_partition_search = 1;
2686 PICK_MODE_CONTEXT *ctx = &pc_tree->none;
2687
2688 if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
2689
2690 assert(num_4x4_blocks_wide_lookup[bsize] ==
2691 num_4x4_blocks_high_lookup[bsize]);
2692
2693 vp9_rd_cost_reset(&last_part_rdc);
2694 vp9_rd_cost_reset(&none_rdc);
2695 vp9_rd_cost_reset(&chosen_rdc);
2696
2697 partition = partition_lookup[bsl][bs_type];
2698 subsize = get_subsize(bsize, partition);
2699
2700 pc_tree->partitioning = partition;
2701 save_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
2702
2703 if (bsize == BLOCK_16X16 && cpi->oxcf.aq_mode != NO_AQ) {
2704 set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
2705 x->mb_energy = vp9_block_energy(cpi, x, bsize);
2706 }
2707
2708 if (do_partition_search &&
2709 cpi->sf.partition_search_type == SEARCH_PARTITION &&
2710 cpi->sf.adjust_partitioning_from_last_frame) {
2711 // Check if any of the sub blocks are further split.
2712 if (partition == PARTITION_SPLIT && subsize > BLOCK_8X8) {
2713 sub_subsize = get_subsize(subsize, PARTITION_SPLIT);
2714 splits_below = 1;
2715 for (i = 0; i < 4; i++) {
2716 int jj = i >> 1, ii = i & 0x01;
2717 MODE_INFO *this_mi = mi_8x8[jj * bss * mis + ii * bss];
2718 if (this_mi && this_mi->sb_type >= sub_subsize) {
2719 splits_below = 0;
2720 }
2721 }
2722 }
2723
2724 // If partition is not none try none unless each of the 4 splits are split
2725 // even further..
2726 if (partition != PARTITION_NONE && !splits_below &&
2727 mi_row + (mi_step >> 1) < cm->mi_rows &&
2728 mi_col + (mi_step >> 1) < cm->mi_cols) {
2729 pc_tree->partitioning = PARTITION_NONE;
2730 rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &none_rdc, bsize, ctx,
2731 INT_MAX, INT64_MAX);
2732
2733 pl = partition_plane_context(xd, mi_row, mi_col, bsize);
2734
2735 if (none_rdc.rate < INT_MAX) {
2736 none_rdc.rate += cpi->partition_cost[pl][PARTITION_NONE];
2737 none_rdc.rdcost =
2738 RDCOST(x->rdmult, x->rddiv, none_rdc.rate, none_rdc.dist);
2739 }
2740
2741 restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
2742 mi_8x8[0]->sb_type = bs_type;
2743 pc_tree->partitioning = partition;
2744 }
2745 }
2746
2747 switch (partition) {
2748 case PARTITION_NONE:
2749 rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc, bsize,
2750 ctx, INT_MAX, INT64_MAX);
2751 break;
2752 case PARTITION_HORZ:
2753 pc_tree->horizontal[0].skip_ref_frame_mask = 0;
2754 rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc,
2755 subsize, &pc_tree->horizontal[0], INT_MAX, INT64_MAX);
2756 if (last_part_rdc.rate != INT_MAX && bsize >= BLOCK_8X8 &&
2757 mi_row + (mi_step >> 1) < cm->mi_rows) {
2758 RD_COST tmp_rdc;
2759 PICK_MODE_CONTEXT *hctx = &pc_tree->horizontal[0];
2760 vp9_rd_cost_init(&tmp_rdc);
2761 update_state(cpi, td, hctx, mi_row, mi_col, subsize, 0);
2762 encode_superblock(cpi, td, tp, 0, mi_row, mi_col, subsize, hctx);
2763 pc_tree->horizontal[1].skip_ref_frame_mask = 0;
2764 rd_pick_sb_modes(cpi, tile_data, x, mi_row + (mi_step >> 1), mi_col,
2765 &tmp_rdc, subsize, &pc_tree->horizontal[1], INT_MAX,
2766 INT64_MAX);
2767 if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
2768 vp9_rd_cost_reset(&last_part_rdc);
2769 break;
2770 }
2771 last_part_rdc.rate += tmp_rdc.rate;
2772 last_part_rdc.dist += tmp_rdc.dist;
2773 last_part_rdc.rdcost += tmp_rdc.rdcost;
2774 }
2775 break;
2776 case PARTITION_VERT:
2777 pc_tree->vertical[0].skip_ref_frame_mask = 0;
2778 rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc,
2779 subsize, &pc_tree->vertical[0], INT_MAX, INT64_MAX);
2780 if (last_part_rdc.rate != INT_MAX && bsize >= BLOCK_8X8 &&
2781 mi_col + (mi_step >> 1) < cm->mi_cols) {
2782 RD_COST tmp_rdc;
2783 PICK_MODE_CONTEXT *vctx = &pc_tree->vertical[0];
2784 vp9_rd_cost_init(&tmp_rdc);
2785 update_state(cpi, td, vctx, mi_row, mi_col, subsize, 0);
2786 encode_superblock(cpi, td, tp, 0, mi_row, mi_col, subsize, vctx);
2787 pc_tree->vertical[bsize > BLOCK_8X8].skip_ref_frame_mask = 0;
2788 rd_pick_sb_modes(
2789 cpi, tile_data, x, mi_row, mi_col + (mi_step >> 1), &tmp_rdc,
2790 subsize, &pc_tree->vertical[bsize > BLOCK_8X8], INT_MAX, INT64_MAX);
2791 if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
2792 vp9_rd_cost_reset(&last_part_rdc);
2793 break;
2794 }
2795 last_part_rdc.rate += tmp_rdc.rate;
2796 last_part_rdc.dist += tmp_rdc.dist;
2797 last_part_rdc.rdcost += tmp_rdc.rdcost;
2798 }
2799 break;
2800 default:
2801 assert(partition == PARTITION_SPLIT);
2802 if (bsize == BLOCK_8X8) {
2803 rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc,
2804 subsize, pc_tree->u.leaf_split[0], INT_MAX, INT64_MAX);
2805 break;
2806 }
2807 last_part_rdc.rate = 0;
2808 last_part_rdc.dist = 0;
2809 last_part_rdc.rdcost = 0;
2810 for (i = 0; i < 4; i++) {
2811 int x_idx = (i & 1) * (mi_step >> 1);
2812 int y_idx = (i >> 1) * (mi_step >> 1);
2813 int jj = i >> 1, ii = i & 0x01;
2814 RD_COST tmp_rdc;
2815 if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols))
2816 continue;
2817
2818 vp9_rd_cost_init(&tmp_rdc);
2819 rd_use_partition(cpi, td, tile_data, mi_8x8 + jj * bss * mis + ii * bss,
2820 tp, mi_row + y_idx, mi_col + x_idx, subsize,
2821 &tmp_rdc.rate, &tmp_rdc.dist, i != 3,
2822 pc_tree->u.split[i]);
2823 if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
2824 vp9_rd_cost_reset(&last_part_rdc);
2825 break;
2826 }
2827 last_part_rdc.rate += tmp_rdc.rate;
2828 last_part_rdc.dist += tmp_rdc.dist;
2829 }
2830 break;
2831 }
2832
2833 pl = partition_plane_context(xd, mi_row, mi_col, bsize);
2834 if (last_part_rdc.rate < INT_MAX) {
2835 last_part_rdc.rate += cpi->partition_cost[pl][partition];
2836 last_part_rdc.rdcost =
2837 RDCOST(x->rdmult, x->rddiv, last_part_rdc.rate, last_part_rdc.dist);
2838 }
2839
2840 if (do_partition_search && cpi->sf.adjust_partitioning_from_last_frame &&
2841 cpi->sf.partition_search_type == SEARCH_PARTITION &&
2842 partition != PARTITION_SPLIT && bsize > BLOCK_8X8 &&
2843 (mi_row + mi_step < cm->mi_rows ||
2844 mi_row + (mi_step >> 1) == cm->mi_rows) &&
2845 (mi_col + mi_step < cm->mi_cols ||
2846 mi_col + (mi_step >> 1) == cm->mi_cols)) {
2847 BLOCK_SIZE split_subsize = get_subsize(bsize, PARTITION_SPLIT);
2848 chosen_rdc.rate = 0;
2849 chosen_rdc.dist = 0;
2850 restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
2851 pc_tree->partitioning = PARTITION_SPLIT;
2852
2853 // Split partition.
2854 for (i = 0; i < 4; i++) {
2855 int x_idx = (i & 1) * (mi_step >> 1);
2856 int y_idx = (i >> 1) * (mi_step >> 1);
2857 RD_COST tmp_rdc;
2858
2859 if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols))
2860 continue;
2861
2862 save_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
2863 pc_tree->u.split[i]->partitioning = PARTITION_NONE;
2864 rd_pick_sb_modes(cpi, tile_data, x, mi_row + y_idx, mi_col + x_idx,
2865 &tmp_rdc, split_subsize, &pc_tree->u.split[i]->none,
2866 INT_MAX, INT64_MAX);
2867
2868 restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
2869
2870 if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
2871 vp9_rd_cost_reset(&chosen_rdc);
2872 break;
2873 }
2874
2875 chosen_rdc.rate += tmp_rdc.rate;
2876 chosen_rdc.dist += tmp_rdc.dist;
2877
2878 if (i != 3)
2879 encode_sb(cpi, td, tile_info, tp, mi_row + y_idx, mi_col + x_idx, 0,
2880 split_subsize, pc_tree->u.split[i]);
2881
2882 pl = partition_plane_context(xd, mi_row + y_idx, mi_col + x_idx,
2883 split_subsize);
2884 chosen_rdc.rate += cpi->partition_cost[pl][PARTITION_NONE];
2885 }
2886 pl = partition_plane_context(xd, mi_row, mi_col, bsize);
2887 if (chosen_rdc.rate < INT_MAX) {
2888 chosen_rdc.rate += cpi->partition_cost[pl][PARTITION_SPLIT];
2889 chosen_rdc.rdcost =
2890 RDCOST(x->rdmult, x->rddiv, chosen_rdc.rate, chosen_rdc.dist);
2891 }
2892 }
2893
2894 // If last_part is better set the partitioning to that.
2895 if (last_part_rdc.rdcost < chosen_rdc.rdcost) {
2896 mi_8x8[0]->sb_type = bsize;
2897 if (bsize >= BLOCK_8X8) pc_tree->partitioning = partition;
2898 chosen_rdc = last_part_rdc;
2899 }
2900 // If none was better set the partitioning to that.
2901 if (none_rdc.rdcost < chosen_rdc.rdcost) {
2902 if (bsize >= BLOCK_8X8) pc_tree->partitioning = PARTITION_NONE;
2903 chosen_rdc = none_rdc;
2904 }
2905
2906 restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
2907
2908 // We must have chosen a partitioning and encoding or we'll fail later on.
2909 // No other opportunities for success.
2910 if (bsize == BLOCK_64X64)
2911 assert(chosen_rdc.rate < INT_MAX && chosen_rdc.dist < INT64_MAX);
2912
2913 if (do_recon) {
2914 int output_enabled = (bsize == BLOCK_64X64);
2915 encode_sb(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled, bsize,
2916 pc_tree);
2917 }
2918
2919 *rate = chosen_rdc.rate;
2920 *dist = chosen_rdc.dist;
2921 }
2922
2923 static const BLOCK_SIZE min_partition_size[BLOCK_SIZES] = {
2924 BLOCK_4X4, BLOCK_4X4, BLOCK_4X4, BLOCK_4X4, BLOCK_4X4,
2925 BLOCK_4X4, BLOCK_8X8, BLOCK_8X8, BLOCK_8X8, BLOCK_16X16,
2926 BLOCK_16X16, BLOCK_16X16, BLOCK_16X16
2927 };
2928
2929 static const BLOCK_SIZE max_partition_size[BLOCK_SIZES] = {
2930 BLOCK_8X8, BLOCK_16X16, BLOCK_16X16, BLOCK_16X16, BLOCK_32X32,
2931 BLOCK_32X32, BLOCK_32X32, BLOCK_64X64, BLOCK_64X64, BLOCK_64X64,
2932 BLOCK_64X64, BLOCK_64X64, BLOCK_64X64
2933 };
2934
2935 // Look at all the mode_info entries for blocks that are part of this
2936 // partition and find the min and max values for sb_type.
2937 // At the moment this is designed to work on a 64x64 SB but could be
2938 // adjusted to use a size parameter.
2939 //
2940 // The min and max are assumed to have been initialized prior to calling this
2941 // function so repeat calls can accumulate a min and max of more than one sb64.
get_sb_partition_size_range(MACROBLOCKD * xd,MODE_INFO ** mi_8x8,BLOCK_SIZE * min_block_size,BLOCK_SIZE * max_block_size,int bs_hist[BLOCK_SIZES])2942 static void get_sb_partition_size_range(MACROBLOCKD *xd, MODE_INFO **mi_8x8,
2943 BLOCK_SIZE *min_block_size,
2944 BLOCK_SIZE *max_block_size,
2945 int bs_hist[BLOCK_SIZES]) {
2946 int sb_width_in_blocks = MI_BLOCK_SIZE;
2947 int sb_height_in_blocks = MI_BLOCK_SIZE;
2948 int i, j;
2949 int index = 0;
2950
2951 // Check the sb_type for each block that belongs to this region.
2952 for (i = 0; i < sb_height_in_blocks; ++i) {
2953 for (j = 0; j < sb_width_in_blocks; ++j) {
2954 MODE_INFO *mi = mi_8x8[index + j];
2955 BLOCK_SIZE sb_type = mi ? mi->sb_type : 0;
2956 bs_hist[sb_type]++;
2957 *min_block_size = VPXMIN(*min_block_size, sb_type);
2958 *max_block_size = VPXMAX(*max_block_size, sb_type);
2959 }
2960 index += xd->mi_stride;
2961 }
2962 }
2963
2964 // Next square block size less or equal than current block size.
2965 static const BLOCK_SIZE next_square_size[BLOCK_SIZES] = {
2966 BLOCK_4X4, BLOCK_4X4, BLOCK_4X4, BLOCK_8X8, BLOCK_8X8,
2967 BLOCK_8X8, BLOCK_16X16, BLOCK_16X16, BLOCK_16X16, BLOCK_32X32,
2968 BLOCK_32X32, BLOCK_32X32, BLOCK_64X64
2969 };
2970
2971 // Look at neighboring blocks and set a min and max partition size based on
2972 // what they chose.
rd_auto_partition_range(VP9_COMP * cpi,const TileInfo * const tile,MACROBLOCKD * const xd,int mi_row,int mi_col,BLOCK_SIZE * min_block_size,BLOCK_SIZE * max_block_size)2973 static void rd_auto_partition_range(VP9_COMP *cpi, const TileInfo *const tile,
2974 MACROBLOCKD *const xd, int mi_row,
2975 int mi_col, BLOCK_SIZE *min_block_size,
2976 BLOCK_SIZE *max_block_size) {
2977 VP9_COMMON *const cm = &cpi->common;
2978 MODE_INFO **mi = xd->mi;
2979 const int left_in_image = !!xd->left_mi;
2980 const int above_in_image = !!xd->above_mi;
2981 const int row8x8_remaining = tile->mi_row_end - mi_row;
2982 const int col8x8_remaining = tile->mi_col_end - mi_col;
2983 int bh, bw;
2984 BLOCK_SIZE min_size = BLOCK_4X4;
2985 BLOCK_SIZE max_size = BLOCK_64X64;
2986 int bs_hist[BLOCK_SIZES] = { 0 };
2987
2988 // Trap case where we do not have a prediction.
2989 if (left_in_image || above_in_image || cm->frame_type != KEY_FRAME) {
2990 // Default "min to max" and "max to min"
2991 min_size = BLOCK_64X64;
2992 max_size = BLOCK_4X4;
2993
2994 // NOTE: each call to get_sb_partition_size_range() uses the previous
2995 // passed in values for min and max as a starting point.
2996 // Find the min and max partition used in previous frame at this location
2997 if (cm->frame_type != KEY_FRAME) {
2998 MODE_INFO **prev_mi =
2999 &cm->prev_mi_grid_visible[mi_row * xd->mi_stride + mi_col];
3000 get_sb_partition_size_range(xd, prev_mi, &min_size, &max_size, bs_hist);
3001 }
3002 // Find the min and max partition sizes used in the left SB64
3003 if (left_in_image) {
3004 MODE_INFO **left_sb64_mi = &mi[-MI_BLOCK_SIZE];
3005 get_sb_partition_size_range(xd, left_sb64_mi, &min_size, &max_size,
3006 bs_hist);
3007 }
3008 // Find the min and max partition sizes used in the above SB64.
3009 if (above_in_image) {
3010 MODE_INFO **above_sb64_mi = &mi[-xd->mi_stride * MI_BLOCK_SIZE];
3011 get_sb_partition_size_range(xd, above_sb64_mi, &min_size, &max_size,
3012 bs_hist);
3013 }
3014
3015 // Adjust observed min and max for "relaxed" auto partition case.
3016 if (cpi->sf.auto_min_max_partition_size == RELAXED_NEIGHBORING_MIN_MAX) {
3017 min_size = min_partition_size[min_size];
3018 max_size = max_partition_size[max_size];
3019 }
3020 }
3021
3022 // Check border cases where max and min from neighbors may not be legal.
3023 max_size = find_partition_size(max_size, row8x8_remaining, col8x8_remaining,
3024 &bh, &bw);
3025 // Test for blocks at the edge of the active image.
3026 // This may be the actual edge of the image or where there are formatting
3027 // bars.
3028 if (vp9_active_edge_sb(cpi, mi_row, mi_col)) {
3029 min_size = BLOCK_4X4;
3030 } else {
3031 min_size =
3032 VPXMIN(cpi->sf.rd_auto_partition_min_limit, VPXMIN(min_size, max_size));
3033 }
3034
3035 // When use_square_partition_only is true, make sure at least one square
3036 // partition is allowed by selecting the next smaller square size as
3037 // *min_block_size.
3038 if (cpi->sf.use_square_partition_only &&
3039 next_square_size[max_size] < min_size) {
3040 min_size = next_square_size[max_size];
3041 }
3042
3043 *min_block_size = min_size;
3044 *max_block_size = max_size;
3045 }
3046
3047 // TODO(jingning) refactor functions setting partition search range
set_partition_range(VP9_COMMON * cm,MACROBLOCKD * xd,int mi_row,int mi_col,BLOCK_SIZE bsize,BLOCK_SIZE * min_bs,BLOCK_SIZE * max_bs)3048 static void set_partition_range(VP9_COMMON *cm, MACROBLOCKD *xd, int mi_row,
3049 int mi_col, BLOCK_SIZE bsize,
3050 BLOCK_SIZE *min_bs, BLOCK_SIZE *max_bs) {
3051 int mi_width = num_8x8_blocks_wide_lookup[bsize];
3052 int mi_height = num_8x8_blocks_high_lookup[bsize];
3053 int idx, idy;
3054
3055 MODE_INFO *mi;
3056 const int idx_str = cm->mi_stride * mi_row + mi_col;
3057 MODE_INFO **prev_mi = &cm->prev_mi_grid_visible[idx_str];
3058 BLOCK_SIZE bs, min_size, max_size;
3059
3060 min_size = BLOCK_64X64;
3061 max_size = BLOCK_4X4;
3062
3063 for (idy = 0; idy < mi_height; ++idy) {
3064 for (idx = 0; idx < mi_width; ++idx) {
3065 mi = prev_mi[idy * cm->mi_stride + idx];
3066 bs = mi ? mi->sb_type : bsize;
3067 min_size = VPXMIN(min_size, bs);
3068 max_size = VPXMAX(max_size, bs);
3069 }
3070 }
3071
3072 if (xd->left_mi) {
3073 for (idy = 0; idy < mi_height; ++idy) {
3074 mi = xd->mi[idy * cm->mi_stride - 1];
3075 bs = mi ? mi->sb_type : bsize;
3076 min_size = VPXMIN(min_size, bs);
3077 max_size = VPXMAX(max_size, bs);
3078 }
3079 }
3080
3081 if (xd->above_mi) {
3082 for (idx = 0; idx < mi_width; ++idx) {
3083 mi = xd->mi[idx - cm->mi_stride];
3084 bs = mi ? mi->sb_type : bsize;
3085 min_size = VPXMIN(min_size, bs);
3086 max_size = VPXMAX(max_size, bs);
3087 }
3088 }
3089
3090 if (min_size == max_size) {
3091 min_size = min_partition_size[min_size];
3092 max_size = max_partition_size[max_size];
3093 }
3094
3095 *min_bs = min_size;
3096 *max_bs = max_size;
3097 }
3098 #endif // !CONFIG_REALTIME_ONLY
3099
store_pred_mv(MACROBLOCK * x,PICK_MODE_CONTEXT * ctx)3100 static INLINE void store_pred_mv(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) {
3101 memcpy(ctx->pred_mv, x->pred_mv, sizeof(x->pred_mv));
3102 }
3103
load_pred_mv(MACROBLOCK * x,PICK_MODE_CONTEXT * ctx)3104 static INLINE void load_pred_mv(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) {
3105 memcpy(x->pred_mv, ctx->pred_mv, sizeof(x->pred_mv));
3106 }
3107
3108 // Calculate prediction based on the given input features and neural net config.
3109 // Assume there are no more than NN_MAX_NODES_PER_LAYER nodes in each hidden
3110 // layer.
nn_predict(const float * features,const NN_CONFIG * nn_config,float * output)3111 static void nn_predict(const float *features, const NN_CONFIG *nn_config,
3112 float *output) {
3113 int num_input_nodes = nn_config->num_inputs;
3114 int buf_index = 0;
3115 float buf[2][NN_MAX_NODES_PER_LAYER];
3116 const float *input_nodes = features;
3117
3118 // Propagate hidden layers.
3119 const int num_layers = nn_config->num_hidden_layers;
3120 int layer, node, i;
3121 assert(num_layers <= NN_MAX_HIDDEN_LAYERS);
3122 for (layer = 0; layer < num_layers; ++layer) {
3123 const float *weights = nn_config->weights[layer];
3124 const float *bias = nn_config->bias[layer];
3125 float *output_nodes = buf[buf_index];
3126 const int num_output_nodes = nn_config->num_hidden_nodes[layer];
3127 assert(num_output_nodes < NN_MAX_NODES_PER_LAYER);
3128 for (node = 0; node < num_output_nodes; ++node) {
3129 float val = 0.0f;
3130 for (i = 0; i < num_input_nodes; ++i) val += weights[i] * input_nodes[i];
3131 val += bias[node];
3132 // ReLU as activation function.
3133 val = VPXMAX(val, 0.0f);
3134 output_nodes[node] = val;
3135 weights += num_input_nodes;
3136 }
3137 num_input_nodes = num_output_nodes;
3138 input_nodes = output_nodes;
3139 buf_index = 1 - buf_index;
3140 }
3141
3142 // Final output layer.
3143 {
3144 const float *weights = nn_config->weights[num_layers];
3145 for (node = 0; node < nn_config->num_outputs; ++node) {
3146 const float *bias = nn_config->bias[num_layers];
3147 float val = 0.0f;
3148 for (i = 0; i < num_input_nodes; ++i) val += weights[i] * input_nodes[i];
3149 output[node] = val + bias[node];
3150 weights += num_input_nodes;
3151 }
3152 }
3153 }
3154
3155 #if !CONFIG_REALTIME_ONLY
3156 #define FEATURES 7
3157 // Machine-learning based partition search early termination.
3158 // Return 1 to skip split and rect partitions.
ml_pruning_partition(VP9_COMMON * const cm,MACROBLOCKD * const xd,PICK_MODE_CONTEXT * ctx,int mi_row,int mi_col,BLOCK_SIZE bsize)3159 static int ml_pruning_partition(VP9_COMMON *const cm, MACROBLOCKD *const xd,
3160 PICK_MODE_CONTEXT *ctx, int mi_row, int mi_col,
3161 BLOCK_SIZE bsize) {
3162 const int mag_mv =
3163 abs(ctx->mic.mv[0].as_mv.col) + abs(ctx->mic.mv[0].as_mv.row);
3164 const int left_in_image = !!xd->left_mi;
3165 const int above_in_image = !!xd->above_mi;
3166 MODE_INFO **prev_mi =
3167 &cm->prev_mi_grid_visible[mi_col + cm->mi_stride * mi_row];
3168 int above_par = 0; // above_partitioning
3169 int left_par = 0; // left_partitioning
3170 int last_par = 0; // last_partitioning
3171 int offset = 0;
3172 int i;
3173 BLOCK_SIZE context_size;
3174 const NN_CONFIG *nn_config = NULL;
3175 const float *mean, *sd, *linear_weights;
3176 float nn_score, linear_score;
3177 float features[FEATURES];
3178
3179 assert(b_width_log2_lookup[bsize] == b_height_log2_lookup[bsize]);
3180 vpx_clear_system_state();
3181
3182 switch (bsize) {
3183 case BLOCK_64X64:
3184 offset = 0;
3185 nn_config = &vp9_partition_nnconfig_64x64;
3186 break;
3187 case BLOCK_32X32:
3188 offset = 8;
3189 nn_config = &vp9_partition_nnconfig_32x32;
3190 break;
3191 case BLOCK_16X16:
3192 offset = 16;
3193 nn_config = &vp9_partition_nnconfig_16x16;
3194 break;
3195 default: assert(0 && "Unexpected block size."); return 0;
3196 }
3197
3198 if (above_in_image) {
3199 context_size = xd->above_mi->sb_type;
3200 if (context_size < bsize)
3201 above_par = 2;
3202 else if (context_size == bsize)
3203 above_par = 1;
3204 }
3205
3206 if (left_in_image) {
3207 context_size = xd->left_mi->sb_type;
3208 if (context_size < bsize)
3209 left_par = 2;
3210 else if (context_size == bsize)
3211 left_par = 1;
3212 }
3213
3214 if (prev_mi[0]) {
3215 context_size = prev_mi[0]->sb_type;
3216 if (context_size < bsize)
3217 last_par = 2;
3218 else if (context_size == bsize)
3219 last_par = 1;
3220 }
3221
3222 mean = &vp9_partition_feature_mean[offset];
3223 sd = &vp9_partition_feature_std[offset];
3224 features[0] = ((float)ctx->rate - mean[0]) / sd[0];
3225 features[1] = ((float)ctx->dist - mean[1]) / sd[1];
3226 features[2] = ((float)mag_mv / 2 - mean[2]) * sd[2];
3227 features[3] = ((float)(left_par + above_par) / 2 - mean[3]) * sd[3];
3228 features[4] = ((float)ctx->sum_y_eobs - mean[4]) / sd[4];
3229 features[5] = ((float)cm->base_qindex - mean[5]) * sd[5];
3230 features[6] = ((float)last_par - mean[6]) * sd[6];
3231
3232 // Predict using linear model.
3233 linear_weights = &vp9_partition_linear_weights[offset];
3234 linear_score = linear_weights[FEATURES];
3235 for (i = 0; i < FEATURES; ++i)
3236 linear_score += linear_weights[i] * features[i];
3237 if (linear_score > 0.1f) return 0;
3238
3239 // Predict using neural net model.
3240 nn_predict(features, nn_config, &nn_score);
3241
3242 if (linear_score < -0.0f && nn_score < 0.1f) return 1;
3243 if (nn_score < -0.0f && linear_score < 0.1f) return 1;
3244 return 0;
3245 }
3246 #undef FEATURES
3247
3248 #define FEATURES 4
3249 // ML-based partition search breakout.
ml_predict_breakout(VP9_COMP * const cpi,BLOCK_SIZE bsize,const MACROBLOCK * const x,const RD_COST * const rd_cost)3250 static int ml_predict_breakout(VP9_COMP *const cpi, BLOCK_SIZE bsize,
3251 const MACROBLOCK *const x,
3252 const RD_COST *const rd_cost) {
3253 DECLARE_ALIGNED(16, static const uint8_t, vp9_64_zeros[64]) = { 0 };
3254 const VP9_COMMON *const cm = &cpi->common;
3255 float features[FEATURES];
3256 const float *linear_weights = NULL; // Linear model weights.
3257 float linear_score = 0.0f;
3258 const int qindex = cm->base_qindex;
3259 const int q_ctx = qindex >= 200 ? 0 : (qindex >= 150 ? 1 : 2);
3260 const int is_720p_or_larger = VPXMIN(cm->width, cm->height) >= 720;
3261 const int resolution_ctx = is_720p_or_larger ? 1 : 0;
3262
3263 switch (bsize) {
3264 case BLOCK_64X64:
3265 linear_weights = vp9_partition_breakout_weights_64[resolution_ctx][q_ctx];
3266 break;
3267 case BLOCK_32X32:
3268 linear_weights = vp9_partition_breakout_weights_32[resolution_ctx][q_ctx];
3269 break;
3270 case BLOCK_16X16:
3271 linear_weights = vp9_partition_breakout_weights_16[resolution_ctx][q_ctx];
3272 break;
3273 case BLOCK_8X8:
3274 linear_weights = vp9_partition_breakout_weights_8[resolution_ctx][q_ctx];
3275 break;
3276 default: assert(0 && "Unexpected block size."); return 0;
3277 }
3278 if (!linear_weights) return 0;
3279
3280 { // Generate feature values.
3281 #if CONFIG_VP9_HIGHBITDEPTH
3282 const int ac_q =
3283 vp9_ac_quant(cm->base_qindex, 0, cm->bit_depth) >> (x->e_mbd.bd - 8);
3284 #else
3285 const int ac_q = vp9_ac_quant(qindex, 0, cm->bit_depth);
3286 #endif // CONFIG_VP9_HIGHBITDEPTH
3287 const int num_pels_log2 = num_pels_log2_lookup[bsize];
3288 int feature_index = 0;
3289 unsigned int var, sse;
3290 float rate_f, dist_f;
3291
3292 #if CONFIG_VP9_HIGHBITDEPTH
3293 if (x->e_mbd.cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
3294 var =
3295 vp9_high_get_sby_variance(cpi, &x->plane[0].src, bsize, x->e_mbd.bd);
3296 } else {
3297 var = cpi->fn_ptr[bsize].vf(x->plane[0].src.buf, x->plane[0].src.stride,
3298 vp9_64_zeros, 0, &sse);
3299 }
3300 #else
3301 var = cpi->fn_ptr[bsize].vf(x->plane[0].src.buf, x->plane[0].src.stride,
3302 vp9_64_zeros, 0, &sse);
3303 #endif
3304 var = var >> num_pels_log2;
3305
3306 vpx_clear_system_state();
3307
3308 rate_f = (float)VPXMIN(rd_cost->rate, INT_MAX);
3309 dist_f = (float)(VPXMIN(rd_cost->dist, INT_MAX) >> num_pels_log2);
3310 rate_f =
3311 ((float)x->rdmult / 128.0f / 512.0f / (float)(1 << num_pels_log2)) *
3312 rate_f;
3313
3314 features[feature_index++] = rate_f;
3315 features[feature_index++] = dist_f;
3316 features[feature_index++] = (float)var;
3317 features[feature_index++] = (float)ac_q;
3318 assert(feature_index == FEATURES);
3319 }
3320
3321 { // Calculate the output score.
3322 int i;
3323 linear_score = linear_weights[FEATURES];
3324 for (i = 0; i < FEATURES; ++i)
3325 linear_score += linear_weights[i] * features[i];
3326 }
3327
3328 return linear_score >= cpi->sf.rd_ml_partition.search_breakout_thresh[q_ctx];
3329 }
3330 #undef FEATURES
3331
3332 #define FEATURES 8
3333 #define LABELS 4
ml_prune_rect_partition(VP9_COMP * const cpi,MACROBLOCK * const x,BLOCK_SIZE bsize,const PC_TREE * const pc_tree,int * allow_horz,int * allow_vert,int64_t ref_rd)3334 static void ml_prune_rect_partition(VP9_COMP *const cpi, MACROBLOCK *const x,
3335 BLOCK_SIZE bsize,
3336 const PC_TREE *const pc_tree,
3337 int *allow_horz, int *allow_vert,
3338 int64_t ref_rd) {
3339 const NN_CONFIG *nn_config = NULL;
3340 float score[LABELS] = {
3341 0.0f,
3342 };
3343 int thresh = -1;
3344 int i;
3345 (void)x;
3346
3347 if (ref_rd <= 0 || ref_rd > 1000000000) return;
3348
3349 switch (bsize) {
3350 case BLOCK_8X8: break;
3351 case BLOCK_16X16:
3352 nn_config = &vp9_rect_part_nnconfig_16;
3353 thresh = cpi->sf.rd_ml_partition.prune_rect_thresh[1];
3354 break;
3355 case BLOCK_32X32:
3356 nn_config = &vp9_rect_part_nnconfig_32;
3357 thresh = cpi->sf.rd_ml_partition.prune_rect_thresh[2];
3358 break;
3359 case BLOCK_64X64:
3360 nn_config = &vp9_rect_part_nnconfig_64;
3361 thresh = cpi->sf.rd_ml_partition.prune_rect_thresh[3];
3362 break;
3363 default: assert(0 && "Unexpected block size."); return;
3364 }
3365 if (!nn_config || thresh < 0) return;
3366
3367 // Feature extraction and model score calculation.
3368 {
3369 const VP9_COMMON *const cm = &cpi->common;
3370 #if CONFIG_VP9_HIGHBITDEPTH
3371 const int dc_q =
3372 vp9_dc_quant(cm->base_qindex, 0, cm->bit_depth) >> (x->e_mbd.bd - 8);
3373 #else
3374 const int dc_q = vp9_dc_quant(cm->base_qindex, 0, cm->bit_depth);
3375 #endif // CONFIG_VP9_HIGHBITDEPTH
3376 const int bs = 4 * num_4x4_blocks_wide_lookup[bsize];
3377 int feature_index = 0;
3378 float features[FEATURES];
3379
3380 features[feature_index++] = logf((float)dc_q + 1.0f);
3381 features[feature_index++] =
3382 (float)(pc_tree->partitioning == PARTITION_NONE);
3383 features[feature_index++] = logf((float)ref_rd / bs / bs + 1.0f);
3384
3385 {
3386 const float norm_factor = 1.0f / ((float)ref_rd + 1.0f);
3387 const int64_t none_rdcost = pc_tree->none.rdcost;
3388 float rd_ratio = 2.0f;
3389 if (none_rdcost > 0 && none_rdcost < 1000000000)
3390 rd_ratio = (float)none_rdcost * norm_factor;
3391 features[feature_index++] = VPXMIN(rd_ratio, 2.0f);
3392
3393 for (i = 0; i < 4; ++i) {
3394 const int64_t this_rd = pc_tree->u.split[i]->none.rdcost;
3395 const int rd_valid = this_rd > 0 && this_rd < 1000000000;
3396 // Ratio between sub-block RD and whole block RD.
3397 features[feature_index++] =
3398 rd_valid ? (float)this_rd * norm_factor : 1.0f;
3399 }
3400 }
3401
3402 assert(feature_index == FEATURES);
3403 nn_predict(features, nn_config, score);
3404 }
3405
3406 // Make decisions based on the model score.
3407 {
3408 int max_score = -1000;
3409 int horz = 0, vert = 0;
3410 int int_score[LABELS];
3411 for (i = 0; i < LABELS; ++i) {
3412 int_score[i] = (int)(100 * score[i]);
3413 max_score = VPXMAX(int_score[i], max_score);
3414 }
3415 thresh = max_score - thresh;
3416 for (i = 0; i < LABELS; ++i) {
3417 if (int_score[i] >= thresh) {
3418 if ((i >> 0) & 1) horz = 1;
3419 if ((i >> 1) & 1) vert = 1;
3420 }
3421 }
3422 *allow_horz = *allow_horz && horz;
3423 *allow_vert = *allow_vert && vert;
3424 }
3425 }
3426 #undef FEATURES
3427 #undef LABELS
3428
3429 // Perform fast and coarse motion search for the given block. This is a
3430 // pre-processing step for the ML based partition search speedup.
simple_motion_search(const VP9_COMP * const cpi,MACROBLOCK * const x,BLOCK_SIZE bsize,int mi_row,int mi_col,MV ref_mv,MV_REFERENCE_FRAME ref,uint8_t * const pred_buf)3431 static void simple_motion_search(const VP9_COMP *const cpi, MACROBLOCK *const x,
3432 BLOCK_SIZE bsize, int mi_row, int mi_col,
3433 MV ref_mv, MV_REFERENCE_FRAME ref,
3434 uint8_t *const pred_buf) {
3435 const VP9_COMMON *const cm = &cpi->common;
3436 MACROBLOCKD *const xd = &x->e_mbd;
3437 MODE_INFO *const mi = xd->mi[0];
3438 YV12_BUFFER_CONFIG *yv12;
3439 YV12_BUFFER_CONFIG *scaled_ref_frame = vp9_get_scaled_ref_frame(cpi, ref);
3440 const int step_param = 1;
3441 const MvLimits tmp_mv_limits = x->mv_limits;
3442 const SEARCH_METHODS search_method = NSTEP;
3443 const int sadpb = x->sadperbit16;
3444 MV ref_mv_full = { ref_mv.row >> 3, ref_mv.col >> 3 };
3445 MV best_mv = { 0, 0 };
3446 int cost_list[5];
3447 struct buf_2d backup_pre[MAX_MB_PLANE] = { { 0, 0 } };
3448
3449 if (scaled_ref_frame) {
3450 yv12 = scaled_ref_frame;
3451 // As reported in b/311294795, the reference buffer pointer needs to be
3452 // saved and restored after the search. Otherwise, it causes problems while
3453 // the reference frame scaling happens.
3454 for (int i = 0; i < MAX_MB_PLANE; i++) backup_pre[i] = xd->plane[i].pre[0];
3455 } else {
3456 yv12 = get_ref_frame_buffer(cpi, ref);
3457 }
3458
3459 assert(yv12 != NULL);
3460 if (!yv12) return;
3461 vp9_setup_pre_planes(xd, 0, yv12, mi_row, mi_col, NULL);
3462 mi->ref_frame[0] = ref;
3463 mi->ref_frame[1] = NO_REF_FRAME;
3464 mi->sb_type = bsize;
3465 vp9_set_mv_search_range(&x->mv_limits, &ref_mv);
3466 vp9_full_pixel_search(cpi, x, bsize, &ref_mv_full, step_param, search_method,
3467 sadpb, cond_cost_list(cpi, cost_list), &ref_mv,
3468 &best_mv, 0, 0);
3469 best_mv.row *= 8;
3470 best_mv.col *= 8;
3471 x->mv_limits = tmp_mv_limits;
3472 mi->mv[0].as_mv = best_mv;
3473
3474 // Restore reference buffer pointer.
3475 if (scaled_ref_frame) {
3476 for (int i = 0; i < MAX_MB_PLANE; i++) xd->plane[i].pre[0] = backup_pre[i];
3477 }
3478
3479 set_ref_ptrs(cm, xd, mi->ref_frame[0], mi->ref_frame[1]);
3480 xd->plane[0].dst.buf = pred_buf;
3481 xd->plane[0].dst.stride = 64;
3482 vp9_build_inter_predictors_sby(xd, mi_row, mi_col, bsize);
3483 }
3484
3485 // Use a neural net model to prune partition-none and partition-split search.
3486 // Features used: QP; spatial block size contexts; variance of prediction
3487 // residue after simple_motion_search.
3488 #define FEATURES 12
ml_predict_var_rd_partitioning(const VP9_COMP * const cpi,MACROBLOCK * const x,PC_TREE * const pc_tree,BLOCK_SIZE bsize,int mi_row,int mi_col,int * none,int * split)3489 static void ml_predict_var_rd_partitioning(const VP9_COMP *const cpi,
3490 MACROBLOCK *const x,
3491 PC_TREE *const pc_tree,
3492 BLOCK_SIZE bsize, int mi_row,
3493 int mi_col, int *none, int *split) {
3494 const VP9_COMMON *const cm = &cpi->common;
3495 const NN_CONFIG *nn_config = NULL;
3496 const MACROBLOCKD *const xd = &x->e_mbd;
3497 #if CONFIG_VP9_HIGHBITDEPTH
3498 DECLARE_ALIGNED(16, uint8_t, pred_buffer[64 * 64 * 2]);
3499 uint8_t *const pred_buf = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
3500 ? (CONVERT_TO_BYTEPTR(pred_buffer))
3501 : pred_buffer;
3502 #else
3503 DECLARE_ALIGNED(16, uint8_t, pred_buffer[64 * 64]);
3504 uint8_t *const pred_buf = pred_buffer;
3505 #endif // CONFIG_VP9_HIGHBITDEPTH
3506 const int speed = cpi->oxcf.speed;
3507 float thresh = 0.0f;
3508
3509 switch (bsize) {
3510 case BLOCK_64X64:
3511 nn_config = &vp9_part_split_nnconfig_64;
3512 thresh = speed > 0 ? 2.8f : 3.0f;
3513 break;
3514 case BLOCK_32X32:
3515 nn_config = &vp9_part_split_nnconfig_32;
3516 thresh = speed > 0 ? 3.5f : 3.0f;
3517 break;
3518 case BLOCK_16X16:
3519 nn_config = &vp9_part_split_nnconfig_16;
3520 thresh = speed > 0 ? 3.8f : 4.0f;
3521 break;
3522 case BLOCK_8X8:
3523 nn_config = &vp9_part_split_nnconfig_8;
3524 if (cm->width >= 720 && cm->height >= 720)
3525 thresh = speed > 0 ? 2.5f : 2.0f;
3526 else
3527 thresh = speed > 0 ? 3.8f : 2.0f;
3528 break;
3529 default: assert(0 && "Unexpected block size."); return;
3530 }
3531
3532 if (!nn_config) return;
3533
3534 // Do a simple single motion search to find a prediction for current block.
3535 // The variance of the residue will be used as input features.
3536 {
3537 MV ref_mv;
3538 const MV_REFERENCE_FRAME ref =
3539 cpi->rc.is_src_frame_alt_ref ? ALTREF_FRAME : LAST_FRAME;
3540 // If bsize is 64x64, use zero MV as reference; otherwise, use MV result
3541 // of previous(larger) block as reference.
3542 if (bsize == BLOCK_64X64)
3543 ref_mv.row = ref_mv.col = 0;
3544 else
3545 ref_mv = pc_tree->mv;
3546 vp9_setup_src_planes(x, cpi->Source, mi_row, mi_col);
3547 simple_motion_search(cpi, x, bsize, mi_row, mi_col, ref_mv, ref, pred_buf);
3548 pc_tree->mv = x->e_mbd.mi[0]->mv[0].as_mv;
3549 }
3550
3551 vpx_clear_system_state();
3552
3553 {
3554 float features[FEATURES] = { 0.0f };
3555 #if CONFIG_VP9_HIGHBITDEPTH
3556 const int dc_q =
3557 vp9_dc_quant(cm->base_qindex, 0, cm->bit_depth) >> (xd->bd - 8);
3558 #else
3559 const int dc_q = vp9_dc_quant(cm->base_qindex, 0, cm->bit_depth);
3560 #endif // CONFIG_VP9_HIGHBITDEPTH
3561 int feature_idx = 0;
3562 float score;
3563
3564 // Generate model input features.
3565 features[feature_idx++] = logf((float)dc_q + 1.0f);
3566
3567 // Get the variance of the residue as input features.
3568 {
3569 const int bs = 4 * num_4x4_blocks_wide_lookup[bsize];
3570 const BLOCK_SIZE subsize = get_subsize(bsize, PARTITION_SPLIT);
3571 const uint8_t *pred = pred_buf;
3572 const uint8_t *src = x->plane[0].src.buf;
3573 const int src_stride = x->plane[0].src.stride;
3574 const int pred_stride = 64;
3575 unsigned int sse;
3576 // Variance of whole block.
3577 const unsigned int var =
3578 cpi->fn_ptr[bsize].vf(src, src_stride, pred, pred_stride, &sse);
3579 const float factor = (var == 0) ? 1.0f : (1.0f / (float)var);
3580 const int has_above = !!xd->above_mi;
3581 const int has_left = !!xd->left_mi;
3582 const BLOCK_SIZE above_bsize = has_above ? xd->above_mi->sb_type : bsize;
3583 const BLOCK_SIZE left_bsize = has_left ? xd->left_mi->sb_type : bsize;
3584 int i;
3585
3586 features[feature_idx++] = (float)has_above;
3587 features[feature_idx++] = (float)b_width_log2_lookup[above_bsize];
3588 features[feature_idx++] = (float)b_height_log2_lookup[above_bsize];
3589 features[feature_idx++] = (float)has_left;
3590 features[feature_idx++] = (float)b_width_log2_lookup[left_bsize];
3591 features[feature_idx++] = (float)b_height_log2_lookup[left_bsize];
3592 features[feature_idx++] = logf((float)var + 1.0f);
3593 for (i = 0; i < 4; ++i) {
3594 const int x_idx = (i & 1) * bs / 2;
3595 const int y_idx = (i >> 1) * bs / 2;
3596 const int src_offset = y_idx * src_stride + x_idx;
3597 const int pred_offset = y_idx * pred_stride + x_idx;
3598 // Variance of quarter block.
3599 const unsigned int sub_var =
3600 cpi->fn_ptr[subsize].vf(src + src_offset, src_stride,
3601 pred + pred_offset, pred_stride, &sse);
3602 const float var_ratio = (var == 0) ? 1.0f : factor * (float)sub_var;
3603 features[feature_idx++] = var_ratio;
3604 }
3605 }
3606 assert(feature_idx == FEATURES);
3607
3608 // Feed the features into the model to get the confidence score.
3609 nn_predict(features, nn_config, &score);
3610
3611 // Higher score means that the model has higher confidence that the split
3612 // partition is better than the non-split partition. So if the score is
3613 // high enough, we skip the none-split partition search; if the score is
3614 // low enough, we skip the split partition search.
3615 if (score > thresh) *none = 0;
3616 if (score < -thresh) *split = 0;
3617 }
3618 }
3619 #undef FEATURES
3620 #endif // !CONFIG_REALTIME_ONLY
3621
log_wiener_var(int64_t wiener_variance)3622 static double log_wiener_var(int64_t wiener_variance) {
3623 return log(1.0 + wiener_variance) / log(2.0);
3624 }
3625
build_kmeans_segmentation(VP9_COMP * cpi)3626 static void build_kmeans_segmentation(VP9_COMP *cpi) {
3627 VP9_COMMON *cm = &cpi->common;
3628 BLOCK_SIZE bsize = BLOCK_64X64;
3629 KMEANS_DATA *kmeans_data;
3630
3631 vp9_disable_segmentation(&cm->seg);
3632 if (cm->show_frame) {
3633 int mi_row, mi_col;
3634 cpi->kmeans_data_size = 0;
3635 cpi->kmeans_ctr_num = 8;
3636
3637 for (mi_row = 0; mi_row < cm->mi_rows; mi_row += MI_BLOCK_SIZE) {
3638 for (mi_col = 0; mi_col < cm->mi_cols; mi_col += MI_BLOCK_SIZE) {
3639 int mb_row_start = mi_row >> 1;
3640 int mb_col_start = mi_col >> 1;
3641 int mb_row_end = VPXMIN(
3642 (mi_row + num_8x8_blocks_high_lookup[bsize]) >> 1, cm->mb_rows);
3643 int mb_col_end = VPXMIN(
3644 (mi_col + num_8x8_blocks_wide_lookup[bsize]) >> 1, cm->mb_cols);
3645 int row, col;
3646 int64_t wiener_variance = 0;
3647
3648 for (row = mb_row_start; row < mb_row_end; ++row)
3649 for (col = mb_col_start; col < mb_col_end; ++col)
3650 wiener_variance += cpi->mb_wiener_variance[row * cm->mb_cols + col];
3651
3652 wiener_variance /=
3653 (mb_row_end - mb_row_start) * (mb_col_end - mb_col_start);
3654
3655 #if CONFIG_MULTITHREAD
3656 pthread_mutex_lock(&cpi->kmeans_mutex);
3657 #endif // CONFIG_MULTITHREAD
3658
3659 kmeans_data = &cpi->kmeans_data_arr[cpi->kmeans_data_size++];
3660 kmeans_data->value = log_wiener_var(wiener_variance);
3661 kmeans_data->pos = mi_row * cpi->kmeans_data_stride + mi_col;
3662 #if CONFIG_MULTITHREAD
3663 pthread_mutex_unlock(&cpi->kmeans_mutex);
3664 #endif // CONFIG_MULTITHREAD
3665 }
3666 }
3667
3668 vp9_kmeans(cpi->kmeans_ctr_ls, cpi->kmeans_boundary_ls,
3669 cpi->kmeans_count_ls, cpi->kmeans_ctr_num, cpi->kmeans_data_arr,
3670 cpi->kmeans_data_size);
3671
3672 vp9_perceptual_aq_mode_setup(cpi, &cm->seg);
3673 }
3674 }
3675
3676 #if !CONFIG_REALTIME_ONLY
wiener_var_segment(VP9_COMP * cpi,BLOCK_SIZE bsize,int mi_row,int mi_col)3677 static int wiener_var_segment(VP9_COMP *cpi, BLOCK_SIZE bsize, int mi_row,
3678 int mi_col) {
3679 VP9_COMMON *cm = &cpi->common;
3680 int mb_row_start = mi_row >> 1;
3681 int mb_col_start = mi_col >> 1;
3682 int mb_row_end =
3683 VPXMIN((mi_row + num_8x8_blocks_high_lookup[bsize]) >> 1, cm->mb_rows);
3684 int mb_col_end =
3685 VPXMIN((mi_col + num_8x8_blocks_wide_lookup[bsize]) >> 1, cm->mb_cols);
3686 int row, col, idx;
3687 int64_t wiener_variance = 0;
3688 int segment_id;
3689 int8_t seg_hist[MAX_SEGMENTS] = { 0 };
3690 int8_t max_count = 0, max_index = -1;
3691
3692 vpx_clear_system_state();
3693
3694 assert(cpi->norm_wiener_variance > 0);
3695
3696 for (row = mb_row_start; row < mb_row_end; ++row) {
3697 for (col = mb_col_start; col < mb_col_end; ++col) {
3698 wiener_variance = cpi->mb_wiener_variance[row * cm->mb_cols + col];
3699 segment_id =
3700 vp9_get_group_idx(log_wiener_var(wiener_variance),
3701 cpi->kmeans_boundary_ls, cpi->kmeans_ctr_num);
3702 ++seg_hist[segment_id];
3703 }
3704 }
3705
3706 for (idx = 0; idx < cpi->kmeans_ctr_num; ++idx) {
3707 if (seg_hist[idx] > max_count) {
3708 max_count = seg_hist[idx];
3709 max_index = idx;
3710 }
3711 }
3712
3713 assert(max_index >= 0);
3714 segment_id = max_index;
3715
3716 return segment_id;
3717 }
3718
get_rdmult_delta(VP9_COMP * cpi,BLOCK_SIZE bsize,int mi_row,int mi_col,int orig_rdmult)3719 static int get_rdmult_delta(VP9_COMP *cpi, BLOCK_SIZE bsize, int mi_row,
3720 int mi_col, int orig_rdmult) {
3721 const int gf_group_index = cpi->twopass.gf_group.index;
3722 int64_t intra_cost = 0;
3723 int64_t mc_dep_cost = 0;
3724 int mi_wide = num_8x8_blocks_wide_lookup[bsize];
3725 int mi_high = num_8x8_blocks_high_lookup[bsize];
3726 int row, col;
3727
3728 int dr = 0;
3729 double r0, rk, beta;
3730
3731 TplDepFrame *tpl_frame;
3732 TplDepStats *tpl_stats;
3733 int tpl_stride;
3734
3735 if (gf_group_index >= MAX_ARF_GOP_SIZE) return orig_rdmult;
3736 tpl_frame = &cpi->tpl_stats[gf_group_index];
3737
3738 if (tpl_frame->is_valid == 0) return orig_rdmult;
3739 tpl_stats = tpl_frame->tpl_stats_ptr;
3740 tpl_stride = tpl_frame->stride;
3741
3742 if (cpi->twopass.gf_group.layer_depth[gf_group_index] > 1) return orig_rdmult;
3743
3744 for (row = mi_row; row < mi_row + mi_high; ++row) {
3745 for (col = mi_col; col < mi_col + mi_wide; ++col) {
3746 TplDepStats *this_stats = &tpl_stats[row * tpl_stride + col];
3747
3748 if (row >= cpi->common.mi_rows || col >= cpi->common.mi_cols) continue;
3749
3750 intra_cost += this_stats->intra_cost;
3751 mc_dep_cost += this_stats->mc_dep_cost;
3752 }
3753 }
3754
3755 vpx_clear_system_state();
3756
3757 r0 = cpi->rd.r0;
3758 rk = (double)intra_cost / mc_dep_cost;
3759 beta = r0 / rk;
3760 dr = vp9_get_adaptive_rdmult(cpi, beta);
3761
3762 dr = VPXMIN(dr, orig_rdmult * 3 / 2);
3763 dr = VPXMAX(dr, orig_rdmult * 1 / 2);
3764
3765 dr = VPXMAX(1, dr);
3766
3767 return dr;
3768 }
3769 #endif // !CONFIG_REALTIME_ONLY
3770
3771 #if CONFIG_RATE_CTRL
assign_partition_info(const int row_start_4x4,const int col_start_4x4,const int block_width_4x4,const int block_height_4x4,const int num_unit_rows,const int num_unit_cols,PARTITION_INFO * partition_info)3772 static void assign_partition_info(
3773 const int row_start_4x4, const int col_start_4x4, const int block_width_4x4,
3774 const int block_height_4x4, const int num_unit_rows,
3775 const int num_unit_cols, PARTITION_INFO *partition_info) {
3776 int i, j;
3777 for (i = 0; i < block_height_4x4; ++i) {
3778 for (j = 0; j < block_width_4x4; ++j) {
3779 const int row_4x4 = row_start_4x4 + i;
3780 const int col_4x4 = col_start_4x4 + j;
3781 const int unit_index = row_4x4 * num_unit_cols + col_4x4;
3782 if (row_4x4 >= num_unit_rows || col_4x4 >= num_unit_cols) continue;
3783 partition_info[unit_index].row = row_4x4 << 2;
3784 partition_info[unit_index].column = col_4x4 << 2;
3785 partition_info[unit_index].row_start = row_start_4x4 << 2;
3786 partition_info[unit_index].column_start = col_start_4x4 << 2;
3787 partition_info[unit_index].width = block_width_4x4 << 2;
3788 partition_info[unit_index].height = block_height_4x4 << 2;
3789 }
3790 }
3791 }
3792
assign_motion_vector_info(const int block_width_4x4,const int block_height_4x4,const int row_start_4x4,const int col_start_4x4,const int num_unit_rows,const int num_unit_cols,MV * source_mv[2],MV_REFERENCE_FRAME source_ref_frame[2],MOTION_VECTOR_INFO * motion_vector_info)3793 static void assign_motion_vector_info(const int block_width_4x4,
3794 const int block_height_4x4,
3795 const int row_start_4x4,
3796 const int col_start_4x4,
3797 const int num_unit_rows,
3798 const int num_unit_cols, MV *source_mv[2],
3799 MV_REFERENCE_FRAME source_ref_frame[2],
3800 MOTION_VECTOR_INFO *motion_vector_info) {
3801 int i, j;
3802 for (i = 0; i < block_height_4x4; ++i) {
3803 for (j = 0; j < block_width_4x4; ++j) {
3804 const int row_4x4 = row_start_4x4 + i;
3805 const int col_4x4 = col_start_4x4 + j;
3806 const int unit_index = row_4x4 * num_unit_cols + col_4x4;
3807 if (row_4x4 >= num_unit_rows || col_4x4 >= num_unit_cols) continue;
3808 if (source_ref_frame[1] == NO_REF_FRAME) {
3809 assert(source_mv[1]->row == 0 && source_mv[1]->col == 0);
3810 }
3811 motion_vector_info[unit_index].ref_frame[0] = source_ref_frame[0];
3812 motion_vector_info[unit_index].ref_frame[1] = source_ref_frame[1];
3813 motion_vector_info[unit_index].mv[0].as_mv.row = source_mv[0]->row;
3814 motion_vector_info[unit_index].mv[0].as_mv.col = source_mv[0]->col;
3815 motion_vector_info[unit_index].mv[1].as_mv.row = source_mv[1]->row;
3816 motion_vector_info[unit_index].mv[1].as_mv.col = source_mv[1]->col;
3817 }
3818 }
3819 }
3820
store_superblock_info(const PC_TREE * const pc_tree,MODE_INFO ** mi_grid_visible,const int mi_stride,const int square_size_4x4,const int num_unit_rows,const int num_unit_cols,const int row_start_4x4,const int col_start_4x4,PARTITION_INFO * partition_info,MOTION_VECTOR_INFO * motion_vector_info)3821 static void store_superblock_info(
3822 const PC_TREE *const pc_tree, MODE_INFO **mi_grid_visible,
3823 const int mi_stride, const int square_size_4x4, const int num_unit_rows,
3824 const int num_unit_cols, const int row_start_4x4, const int col_start_4x4,
3825 PARTITION_INFO *partition_info, MOTION_VECTOR_INFO *motion_vector_info) {
3826 const int subblock_square_size_4x4 = square_size_4x4 >> 1;
3827 if (row_start_4x4 >= num_unit_rows || col_start_4x4 >= num_unit_cols) return;
3828 assert(pc_tree->partitioning != PARTITION_INVALID);
3829 // End node, no split.
3830 if (pc_tree->partitioning == PARTITION_NONE ||
3831 pc_tree->partitioning == PARTITION_HORZ ||
3832 pc_tree->partitioning == PARTITION_VERT || square_size_4x4 == 1) {
3833 const int mi_row = row_start_4x4 >> 1;
3834 const int mi_col = col_start_4x4 >> 1;
3835 const int mi_idx = mi_stride * mi_row + mi_col;
3836 MODE_INFO **mi = mi_grid_visible + mi_idx;
3837 MV *source_mv[2];
3838 MV_REFERENCE_FRAME source_ref_frame[2];
3839
3840 // partition info
3841 const int block_width_4x4 = (pc_tree->partitioning == PARTITION_VERT)
3842 ? square_size_4x4 >> 1
3843 : square_size_4x4;
3844 const int block_height_4x4 = (pc_tree->partitioning == PARTITION_HORZ)
3845 ? square_size_4x4 >> 1
3846 : square_size_4x4;
3847 assign_partition_info(row_start_4x4, col_start_4x4, block_width_4x4,
3848 block_height_4x4, num_unit_rows, num_unit_cols,
3849 partition_info);
3850 if (pc_tree->partitioning == PARTITION_VERT) {
3851 assign_partition_info(row_start_4x4, col_start_4x4 + block_width_4x4,
3852 block_width_4x4, block_height_4x4, num_unit_rows,
3853 num_unit_cols, partition_info);
3854 } else if (pc_tree->partitioning == PARTITION_HORZ) {
3855 assign_partition_info(row_start_4x4 + block_height_4x4, col_start_4x4,
3856 block_width_4x4, block_height_4x4, num_unit_rows,
3857 num_unit_cols, partition_info);
3858 }
3859
3860 // motion vector info
3861 if (pc_tree->partitioning == PARTITION_HORZ) {
3862 int is_valid_second_rectangle = 0;
3863 assert(square_size_4x4 > 1);
3864 // First rectangle.
3865 source_ref_frame[0] = mi[0]->ref_frame[0];
3866 source_ref_frame[1] = mi[0]->ref_frame[1];
3867 source_mv[0] = &mi[0]->mv[0].as_mv;
3868 source_mv[1] = &mi[0]->mv[1].as_mv;
3869 assign_motion_vector_info(block_width_4x4, block_height_4x4,
3870 row_start_4x4, col_start_4x4, num_unit_rows,
3871 num_unit_cols, source_mv, source_ref_frame,
3872 motion_vector_info);
3873 // Second rectangle.
3874 if (square_size_4x4 == 2) {
3875 is_valid_second_rectangle = 1;
3876 source_ref_frame[0] = mi[0]->ref_frame[0];
3877 source_ref_frame[1] = mi[0]->ref_frame[1];
3878 source_mv[0] = &mi[0]->bmi[2].as_mv[0].as_mv;
3879 source_mv[1] = &mi[0]->bmi[2].as_mv[1].as_mv;
3880 } else {
3881 const int mi_row_2 = mi_row + (block_height_4x4 >> 1);
3882 const int mi_col_2 = mi_col;
3883 if (mi_row_2 * 2 < num_unit_rows && mi_col_2 * 2 < num_unit_cols) {
3884 const int mi_idx_2 = mi_stride * mi_row_2 + mi_col_2;
3885 is_valid_second_rectangle = 1;
3886 mi = mi_grid_visible + mi_idx_2;
3887 source_ref_frame[0] = mi[0]->ref_frame[0];
3888 source_ref_frame[1] = mi[0]->ref_frame[1];
3889 source_mv[0] = &mi[0]->mv[0].as_mv;
3890 source_mv[1] = &mi[0]->mv[1].as_mv;
3891 }
3892 }
3893 if (is_valid_second_rectangle) {
3894 assign_motion_vector_info(
3895 block_width_4x4, block_height_4x4, row_start_4x4 + block_height_4x4,
3896 col_start_4x4, num_unit_rows, num_unit_cols, source_mv,
3897 source_ref_frame, motion_vector_info);
3898 }
3899 } else if (pc_tree->partitioning == PARTITION_VERT) {
3900 int is_valid_second_rectangle = 0;
3901 assert(square_size_4x4 > 1);
3902 // First rectangle.
3903 source_ref_frame[0] = mi[0]->ref_frame[0];
3904 source_ref_frame[1] = mi[0]->ref_frame[1];
3905 source_mv[0] = &mi[0]->mv[0].as_mv;
3906 source_mv[1] = &mi[0]->mv[1].as_mv;
3907 assign_motion_vector_info(block_width_4x4, block_height_4x4,
3908 row_start_4x4, col_start_4x4, num_unit_rows,
3909 num_unit_cols, source_mv, source_ref_frame,
3910 motion_vector_info);
3911 // Second rectangle.
3912 if (square_size_4x4 == 2) {
3913 is_valid_second_rectangle = 1;
3914 source_ref_frame[0] = mi[0]->ref_frame[0];
3915 source_ref_frame[1] = mi[0]->ref_frame[1];
3916 source_mv[0] = &mi[0]->bmi[1].as_mv[0].as_mv;
3917 source_mv[1] = &mi[0]->bmi[1].as_mv[1].as_mv;
3918 } else {
3919 const int mi_row_2 = mi_row;
3920 const int mi_col_2 = mi_col + (block_width_4x4 >> 1);
3921 if (mi_row_2 * 2 < num_unit_rows && mi_col_2 * 2 < num_unit_cols) {
3922 const int mi_idx_2 = mi_stride * mi_row_2 + mi_col_2;
3923 is_valid_second_rectangle = 1;
3924 mi = mi_grid_visible + mi_idx_2;
3925 source_ref_frame[0] = mi[0]->ref_frame[0];
3926 source_ref_frame[1] = mi[0]->ref_frame[1];
3927 source_mv[0] = &mi[0]->mv[0].as_mv;
3928 source_mv[1] = &mi[0]->mv[1].as_mv;
3929 }
3930 }
3931 if (is_valid_second_rectangle) {
3932 assign_motion_vector_info(
3933 block_width_4x4, block_height_4x4, row_start_4x4,
3934 col_start_4x4 + block_width_4x4, num_unit_rows, num_unit_cols,
3935 source_mv, source_ref_frame, motion_vector_info);
3936 }
3937 } else {
3938 assert(pc_tree->partitioning == PARTITION_NONE || square_size_4x4 == 1);
3939 source_ref_frame[0] = mi[0]->ref_frame[0];
3940 source_ref_frame[1] = mi[0]->ref_frame[1];
3941 if (square_size_4x4 == 1) {
3942 const int sub8x8_row = row_start_4x4 % 2;
3943 const int sub8x8_col = col_start_4x4 % 2;
3944 const int sub8x8_idx = sub8x8_row * 2 + sub8x8_col;
3945 source_mv[0] = &mi[0]->bmi[sub8x8_idx].as_mv[0].as_mv;
3946 source_mv[1] = &mi[0]->bmi[sub8x8_idx].as_mv[1].as_mv;
3947 } else {
3948 source_mv[0] = &mi[0]->mv[0].as_mv;
3949 source_mv[1] = &mi[0]->mv[1].as_mv;
3950 }
3951 assign_motion_vector_info(block_width_4x4, block_height_4x4,
3952 row_start_4x4, col_start_4x4, num_unit_rows,
3953 num_unit_cols, source_mv, source_ref_frame,
3954 motion_vector_info);
3955 }
3956
3957 return;
3958 }
3959 // recursively traverse partition tree when partition is split.
3960 assert(pc_tree->partitioning == PARTITION_SPLIT);
3961 store_superblock_info(pc_tree->u.split[0], mi_grid_visible, mi_stride,
3962 subblock_square_size_4x4, num_unit_rows, num_unit_cols,
3963 row_start_4x4, col_start_4x4, partition_info,
3964 motion_vector_info);
3965 store_superblock_info(pc_tree->u.split[1], mi_grid_visible, mi_stride,
3966 subblock_square_size_4x4, num_unit_rows, num_unit_cols,
3967 row_start_4x4, col_start_4x4 + subblock_square_size_4x4,
3968 partition_info, motion_vector_info);
3969 store_superblock_info(pc_tree->u.split[2], mi_grid_visible, mi_stride,
3970 subblock_square_size_4x4, num_unit_rows, num_unit_cols,
3971 row_start_4x4 + subblock_square_size_4x4, col_start_4x4,
3972 partition_info, motion_vector_info);
3973 store_superblock_info(pc_tree->u.split[3], mi_grid_visible, mi_stride,
3974 subblock_square_size_4x4, num_unit_rows, num_unit_cols,
3975 row_start_4x4 + subblock_square_size_4x4,
3976 col_start_4x4 + subblock_square_size_4x4,
3977 partition_info, motion_vector_info);
3978 }
3979 #endif // CONFIG_RATE_CTRL
3980
3981 #if !CONFIG_REALTIME_ONLY
3982 // TODO(jingning,jimbankoski,rbultje): properly skip partition types that are
3983 // unlikely to be selected depending on previous rate-distortion optimization
3984 // results, for encoding speed-up.
rd_pick_partition(VP9_COMP * cpi,ThreadData * td,TileDataEnc * tile_data,TOKENEXTRA ** tp,int mi_row,int mi_col,BLOCK_SIZE bsize,RD_COST * rd_cost,RD_COST best_rdc,PC_TREE * pc_tree)3985 static int rd_pick_partition(VP9_COMP *cpi, ThreadData *td,
3986 TileDataEnc *tile_data, TOKENEXTRA **tp,
3987 int mi_row, int mi_col, BLOCK_SIZE bsize,
3988 RD_COST *rd_cost, RD_COST best_rdc,
3989 PC_TREE *pc_tree) {
3990 VP9_COMMON *const cm = &cpi->common;
3991 const VP9EncoderConfig *const oxcf = &cpi->oxcf;
3992 TileInfo *const tile_info = &tile_data->tile_info;
3993 MACROBLOCK *const x = &td->mb;
3994 MACROBLOCKD *const xd = &x->e_mbd;
3995 const int mi_step = num_8x8_blocks_wide_lookup[bsize] / 2;
3996 ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE];
3997 PARTITION_CONTEXT sl[8], sa[8];
3998 TOKENEXTRA *tp_orig = *tp;
3999 PICK_MODE_CONTEXT *const ctx = &pc_tree->none;
4000 int i;
4001 const int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
4002 BLOCK_SIZE subsize;
4003 RD_COST this_rdc, sum_rdc;
4004 int do_split = bsize >= BLOCK_8X8;
4005 int do_rect = 1;
4006 INTERP_FILTER pred_interp_filter;
4007
4008 // Override skipping rectangular partition operations for edge blocks
4009 const int force_horz_split = (mi_row + mi_step >= cm->mi_rows);
4010 const int force_vert_split = (mi_col + mi_step >= cm->mi_cols);
4011 const int xss = x->e_mbd.plane[1].subsampling_x;
4012 const int yss = x->e_mbd.plane[1].subsampling_y;
4013
4014 BLOCK_SIZE min_size = x->min_partition_size;
4015 BLOCK_SIZE max_size = x->max_partition_size;
4016
4017 int partition_none_allowed = !force_horz_split && !force_vert_split;
4018 int partition_horz_allowed =
4019 !force_vert_split && yss <= xss && bsize >= BLOCK_8X8;
4020 int partition_vert_allowed =
4021 !force_horz_split && xss <= yss && bsize >= BLOCK_8X8;
4022
4023 int64_t dist_breakout_thr = cpi->sf.partition_search_breakout_thr.dist;
4024 int rate_breakout_thr = cpi->sf.partition_search_breakout_thr.rate;
4025 int must_split = 0;
4026 int should_encode_sb = 0;
4027
4028 // Ref frames picked in the [i_th] quarter subblock during square partition
4029 // RD search. It may be used to prune ref frame selection of rect partitions.
4030 uint8_t ref_frames_used[4] = { 0, 0, 0, 0 };
4031
4032 int partition_mul = x->cb_rdmult;
4033
4034 (void)*tp_orig;
4035
4036 assert(num_8x8_blocks_wide_lookup[bsize] ==
4037 num_8x8_blocks_high_lookup[bsize]);
4038
4039 dist_breakout_thr >>=
4040 8 - (b_width_log2_lookup[bsize] + b_height_log2_lookup[bsize]);
4041
4042 rate_breakout_thr *= num_pels_log2_lookup[bsize];
4043
4044 vp9_rd_cost_init(&this_rdc);
4045 vp9_rd_cost_init(&sum_rdc);
4046
4047 set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
4048
4049 if (oxcf->tuning == VP8_TUNE_SSIM) {
4050 set_ssim_rdmult(cpi, x, bsize, mi_row, mi_col, &partition_mul);
4051 }
4052 vp9_rd_cost_update(partition_mul, x->rddiv, &best_rdc);
4053
4054 if (bsize == BLOCK_16X16 && cpi->oxcf.aq_mode != NO_AQ &&
4055 cpi->oxcf.aq_mode != LOOKAHEAD_AQ)
4056 x->mb_energy = vp9_block_energy(cpi, x, bsize);
4057
4058 if (cpi->sf.cb_partition_search && bsize == BLOCK_16X16) {
4059 int cb_partition_search_ctrl =
4060 ((pc_tree->index == 0 || pc_tree->index == 3) +
4061 get_chessboard_index(cm->current_video_frame)) &
4062 0x1;
4063
4064 if (cb_partition_search_ctrl && bsize > min_size && bsize < max_size)
4065 set_partition_range(cm, xd, mi_row, mi_col, bsize, &min_size, &max_size);
4066 }
4067
4068 // Get sub block energy range
4069 if (bsize >= BLOCK_16X16) {
4070 int min_energy, max_energy;
4071 vp9_get_sub_block_energy(cpi, x, mi_row, mi_col, bsize, &min_energy,
4072 &max_energy);
4073 must_split = (min_energy < -3) && (max_energy - min_energy > 2);
4074 }
4075
4076 // Determine partition types in search according to the speed features.
4077 // The threshold set here has to be of square block size.
4078 if (cpi->sf.auto_min_max_partition_size) {
4079 partition_none_allowed &= (bsize <= max_size);
4080 partition_horz_allowed &=
4081 ((bsize <= max_size && bsize > min_size) || force_horz_split);
4082 partition_vert_allowed &=
4083 ((bsize <= max_size && bsize > min_size) || force_vert_split);
4084 do_split &= bsize > min_size;
4085 }
4086
4087 if (cpi->sf.use_square_partition_only &&
4088 (bsize > cpi->sf.use_square_only_thresh_high ||
4089 bsize < cpi->sf.use_square_only_thresh_low)) {
4090 if (cpi->use_svc) {
4091 if (!vp9_active_h_edge(cpi, mi_row, mi_step) || x->e_mbd.lossless)
4092 partition_horz_allowed &= force_horz_split;
4093 if (!vp9_active_v_edge(cpi, mi_row, mi_step) || x->e_mbd.lossless)
4094 partition_vert_allowed &= force_vert_split;
4095 } else {
4096 partition_horz_allowed &= force_horz_split;
4097 partition_vert_allowed &= force_vert_split;
4098 }
4099 }
4100
4101 save_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
4102
4103 pc_tree->partitioning = PARTITION_NONE;
4104
4105 if (cpi->sf.rd_ml_partition.var_pruning && !frame_is_intra_only(cm)) {
4106 const int do_rd_ml_partition_var_pruning =
4107 partition_none_allowed && do_split &&
4108 mi_row + num_8x8_blocks_high_lookup[bsize] <= cm->mi_rows &&
4109 mi_col + num_8x8_blocks_wide_lookup[bsize] <= cm->mi_cols;
4110 if (do_rd_ml_partition_var_pruning) {
4111 ml_predict_var_rd_partitioning(cpi, x, pc_tree, bsize, mi_row, mi_col,
4112 &partition_none_allowed, &do_split);
4113 } else {
4114 vp9_zero(pc_tree->mv);
4115 }
4116 if (bsize > BLOCK_8X8) { // Store MV result as reference for subblocks.
4117 for (i = 0; i < 4; ++i) pc_tree->u.split[i]->mv = pc_tree->mv;
4118 }
4119 }
4120
4121 // PARTITION_NONE
4122 if (partition_none_allowed) {
4123 rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &this_rdc, bsize, ctx,
4124 best_rdc.rate, best_rdc.dist);
4125 ctx->rdcost = this_rdc.rdcost;
4126 if (this_rdc.rate != INT_MAX) {
4127 if (cpi->sf.prune_ref_frame_for_rect_partitions) {
4128 const int ref1 = ctx->mic.ref_frame[0];
4129 const int ref2 = ctx->mic.ref_frame[1];
4130 for (i = 0; i < 4; ++i) {
4131 ref_frames_used[i] |= (1 << ref1);
4132 if (ref2 > 0) ref_frames_used[i] |= (1 << ref2);
4133 }
4134 }
4135 if (bsize >= BLOCK_8X8) {
4136 this_rdc.rate += cpi->partition_cost[pl][PARTITION_NONE];
4137 vp9_rd_cost_update(partition_mul, x->rddiv, &this_rdc);
4138 }
4139
4140 if (this_rdc.rdcost < best_rdc.rdcost) {
4141 MODE_INFO *mi = xd->mi[0];
4142
4143 best_rdc = this_rdc;
4144 should_encode_sb = 1;
4145 if (bsize >= BLOCK_8X8) pc_tree->partitioning = PARTITION_NONE;
4146
4147 if (cpi->sf.rd_ml_partition.search_early_termination) {
4148 // Currently, the machine-learning based partition search early
4149 // termination is only used while bsize is 16x16, 32x32 or 64x64,
4150 // VPXMIN(cm->width, cm->height) >= 480, and speed = 0.
4151 if (!x->e_mbd.lossless &&
4152 !segfeature_active(&cm->seg, mi->segment_id, SEG_LVL_SKIP) &&
4153 ctx->mic.mode >= INTRA_MODES && bsize >= BLOCK_16X16) {
4154 if (ml_pruning_partition(cm, xd, ctx, mi_row, mi_col, bsize)) {
4155 do_split = 0;
4156 do_rect = 0;
4157 }
4158 }
4159 }
4160
4161 if ((do_split || do_rect) && !x->e_mbd.lossless && ctx->skippable) {
4162 const int use_ml_based_breakout =
4163 cpi->sf.rd_ml_partition.search_breakout && cm->base_qindex >= 100;
4164 if (use_ml_based_breakout) {
4165 if (ml_predict_breakout(cpi, bsize, x, &this_rdc)) {
4166 do_split = 0;
4167 do_rect = 0;
4168 }
4169 } else {
4170 if (!cpi->sf.rd_ml_partition.search_early_termination) {
4171 if ((best_rdc.dist < (dist_breakout_thr >> 2)) ||
4172 (best_rdc.dist < dist_breakout_thr &&
4173 best_rdc.rate < rate_breakout_thr)) {
4174 do_split = 0;
4175 do_rect = 0;
4176 }
4177 }
4178 }
4179 }
4180 }
4181 }
4182 restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
4183 } else {
4184 vp9_zero(ctx->pred_mv);
4185 ctx->mic.interp_filter = EIGHTTAP;
4186 }
4187
4188 // store estimated motion vector
4189 store_pred_mv(x, ctx);
4190
4191 // If the interp_filter is marked as SWITCHABLE_FILTERS, it was for an
4192 // intra block and used for context purposes.
4193 if (ctx->mic.interp_filter == SWITCHABLE_FILTERS) {
4194 pred_interp_filter = EIGHTTAP;
4195 } else {
4196 pred_interp_filter = ctx->mic.interp_filter;
4197 }
4198
4199 // PARTITION_SPLIT
4200 // TODO(jingning): use the motion vectors given by the above search as
4201 // the starting point of motion search in the following partition type check.
4202 pc_tree->u.split[0]->none.rdcost = 0;
4203 pc_tree->u.split[1]->none.rdcost = 0;
4204 pc_tree->u.split[2]->none.rdcost = 0;
4205 pc_tree->u.split[3]->none.rdcost = 0;
4206 if (do_split || must_split) {
4207 subsize = get_subsize(bsize, PARTITION_SPLIT);
4208 load_pred_mv(x, ctx);
4209 if (bsize == BLOCK_8X8) {
4210 i = 4;
4211 if (cpi->sf.adaptive_pred_interp_filter && partition_none_allowed)
4212 pc_tree->u.leaf_split[0]->pred_interp_filter = pred_interp_filter;
4213 rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc, subsize,
4214 pc_tree->u.leaf_split[0], best_rdc.rate, best_rdc.dist);
4215 if (sum_rdc.rate == INT_MAX) {
4216 sum_rdc.rdcost = INT64_MAX;
4217 } else {
4218 if (cpi->sf.prune_ref_frame_for_rect_partitions) {
4219 const int ref1 = pc_tree->u.leaf_split[0]->mic.ref_frame[0];
4220 const int ref2 = pc_tree->u.leaf_split[0]->mic.ref_frame[1];
4221 for (i = 0; i < 4; ++i) {
4222 ref_frames_used[i] |= (1 << ref1);
4223 if (ref2 > 0) ref_frames_used[i] |= (1 << ref2);
4224 }
4225 }
4226 }
4227 } else {
4228 for (i = 0; (i < 4) && ((sum_rdc.rdcost < best_rdc.rdcost) || must_split);
4229 ++i) {
4230 const int x_idx = (i & 1) * mi_step;
4231 const int y_idx = (i >> 1) * mi_step;
4232 int found_best_rd = 0;
4233 RD_COST best_rdc_split;
4234 vp9_rd_cost_reset(&best_rdc_split);
4235
4236 if (best_rdc.rate < INT_MAX && best_rdc.dist < INT64_MAX) {
4237 // A must split test here increases the number of sub
4238 // partitions but hurts metrics results quite a bit,
4239 // so this extra test is commented out pending
4240 // further tests on whether it adds much in terms of
4241 // visual quality.
4242 // (must_split) ? best_rdc.rate
4243 // : best_rdc.rate - sum_rdc.rate,
4244 // (must_split) ? best_rdc.dist
4245 // : best_rdc.dist - sum_rdc.dist,
4246 best_rdc_split.rate = best_rdc.rate - sum_rdc.rate;
4247 best_rdc_split.dist = best_rdc.dist - sum_rdc.dist;
4248 }
4249
4250 if (mi_row + y_idx >= cm->mi_rows || mi_col + x_idx >= cm->mi_cols)
4251 continue;
4252
4253 pc_tree->u.split[i]->index = i;
4254 if (cpi->sf.prune_ref_frame_for_rect_partitions)
4255 pc_tree->u.split[i]->none.rate = INT_MAX;
4256 found_best_rd = rd_pick_partition(
4257 cpi, td, tile_data, tp, mi_row + y_idx, mi_col + x_idx, subsize,
4258 &this_rdc, best_rdc_split, pc_tree->u.split[i]);
4259
4260 if (found_best_rd == 0) {
4261 sum_rdc.rdcost = INT64_MAX;
4262 break;
4263 } else {
4264 if (cpi->sf.prune_ref_frame_for_rect_partitions &&
4265 pc_tree->u.split[i]->none.rate != INT_MAX) {
4266 const int ref1 = pc_tree->u.split[i]->none.mic.ref_frame[0];
4267 const int ref2 = pc_tree->u.split[i]->none.mic.ref_frame[1];
4268 ref_frames_used[i] |= (1 << ref1);
4269 if (ref2 > 0) ref_frames_used[i] |= (1 << ref2);
4270 }
4271 sum_rdc.rate += this_rdc.rate;
4272 sum_rdc.dist += this_rdc.dist;
4273 vp9_rd_cost_update(partition_mul, x->rddiv, &sum_rdc);
4274 }
4275 }
4276 }
4277
4278 if (((sum_rdc.rdcost < best_rdc.rdcost) || must_split) && i == 4) {
4279 sum_rdc.rate += cpi->partition_cost[pl][PARTITION_SPLIT];
4280 vp9_rd_cost_update(partition_mul, x->rddiv, &sum_rdc);
4281
4282 if ((sum_rdc.rdcost < best_rdc.rdcost) ||
4283 (must_split && (sum_rdc.dist < best_rdc.dist))) {
4284 best_rdc = sum_rdc;
4285 should_encode_sb = 1;
4286 pc_tree->partitioning = PARTITION_SPLIT;
4287
4288 // Rate and distortion based partition search termination clause.
4289 if (!cpi->sf.rd_ml_partition.search_early_termination &&
4290 !x->e_mbd.lossless &&
4291 ((best_rdc.dist < (dist_breakout_thr >> 2)) ||
4292 (best_rdc.dist < dist_breakout_thr &&
4293 best_rdc.rate < rate_breakout_thr))) {
4294 do_rect = 0;
4295 }
4296 }
4297 } else {
4298 // skip rectangular partition test when larger block size
4299 // gives better rd cost
4300 if (cpi->sf.less_rectangular_check &&
4301 (bsize > cpi->sf.use_square_only_thresh_high ||
4302 best_rdc.dist < dist_breakout_thr))
4303 do_rect &= !partition_none_allowed;
4304 }
4305 restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
4306 }
4307
4308 pc_tree->horizontal[0].skip_ref_frame_mask = 0;
4309 pc_tree->horizontal[1].skip_ref_frame_mask = 0;
4310 pc_tree->vertical[0].skip_ref_frame_mask = 0;
4311 pc_tree->vertical[1].skip_ref_frame_mask = 0;
4312 if (cpi->sf.prune_ref_frame_for_rect_partitions) {
4313 uint8_t used_frames;
4314 used_frames = ref_frames_used[0] | ref_frames_used[1];
4315 if (used_frames) {
4316 pc_tree->horizontal[0].skip_ref_frame_mask = ~used_frames & 0xff;
4317 }
4318 used_frames = ref_frames_used[2] | ref_frames_used[3];
4319 if (used_frames) {
4320 pc_tree->horizontal[1].skip_ref_frame_mask = ~used_frames & 0xff;
4321 }
4322 used_frames = ref_frames_used[0] | ref_frames_used[2];
4323 if (used_frames) {
4324 pc_tree->vertical[0].skip_ref_frame_mask = ~used_frames & 0xff;
4325 }
4326 used_frames = ref_frames_used[1] | ref_frames_used[3];
4327 if (used_frames) {
4328 pc_tree->vertical[1].skip_ref_frame_mask = ~used_frames & 0xff;
4329 }
4330 }
4331
4332 {
4333 const int do_ml_rect_partition_pruning =
4334 !frame_is_intra_only(cm) && !force_horz_split && !force_vert_split &&
4335 (partition_horz_allowed || partition_vert_allowed) && bsize > BLOCK_8X8;
4336 if (do_ml_rect_partition_pruning) {
4337 ml_prune_rect_partition(cpi, x, bsize, pc_tree, &partition_horz_allowed,
4338 &partition_vert_allowed, best_rdc.rdcost);
4339 }
4340 }
4341
4342 // PARTITION_HORZ
4343 if (partition_horz_allowed &&
4344 (do_rect || vp9_active_h_edge(cpi, mi_row, mi_step))) {
4345 const int part_mode_rate = cpi->partition_cost[pl][PARTITION_HORZ];
4346 subsize = get_subsize(bsize, PARTITION_HORZ);
4347 load_pred_mv(x, ctx);
4348 if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
4349 partition_none_allowed)
4350 pc_tree->horizontal[0].pred_interp_filter = pred_interp_filter;
4351 rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc, subsize,
4352 &pc_tree->horizontal[0], best_rdc.rate - part_mode_rate,
4353 best_rdc.dist);
4354 if (sum_rdc.rdcost < INT64_MAX) {
4355 sum_rdc.rate += part_mode_rate;
4356 vp9_rd_cost_update(partition_mul, x->rddiv, &sum_rdc);
4357 }
4358
4359 if (sum_rdc.rdcost < best_rdc.rdcost && mi_row + mi_step < cm->mi_rows &&
4360 bsize > BLOCK_8X8) {
4361 PICK_MODE_CONTEXT *hctx = &pc_tree->horizontal[0];
4362 update_state(cpi, td, hctx, mi_row, mi_col, subsize, 0);
4363 encode_superblock(cpi, td, tp, 0, mi_row, mi_col, subsize, hctx);
4364 if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
4365 partition_none_allowed)
4366 pc_tree->horizontal[1].pred_interp_filter = pred_interp_filter;
4367 rd_pick_sb_modes(cpi, tile_data, x, mi_row + mi_step, mi_col, &this_rdc,
4368 subsize, &pc_tree->horizontal[1],
4369 best_rdc.rate - sum_rdc.rate,
4370 best_rdc.dist - sum_rdc.dist);
4371 if (this_rdc.rate == INT_MAX) {
4372 sum_rdc.rdcost = INT64_MAX;
4373 } else {
4374 sum_rdc.rate += this_rdc.rate;
4375 sum_rdc.dist += this_rdc.dist;
4376 vp9_rd_cost_update(partition_mul, x->rddiv, &sum_rdc);
4377 }
4378 }
4379
4380 if (sum_rdc.rdcost < best_rdc.rdcost) {
4381 best_rdc = sum_rdc;
4382 should_encode_sb = 1;
4383 pc_tree->partitioning = PARTITION_HORZ;
4384
4385 if (cpi->sf.less_rectangular_check &&
4386 bsize > cpi->sf.use_square_only_thresh_high)
4387 do_rect = 0;
4388 }
4389 restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
4390 }
4391
4392 // PARTITION_VERT
4393 if (partition_vert_allowed &&
4394 (do_rect || vp9_active_v_edge(cpi, mi_col, mi_step))) {
4395 const int part_mode_rate = cpi->partition_cost[pl][PARTITION_VERT];
4396 subsize = get_subsize(bsize, PARTITION_VERT);
4397 load_pred_mv(x, ctx);
4398 if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
4399 partition_none_allowed)
4400 pc_tree->vertical[0].pred_interp_filter = pred_interp_filter;
4401 rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc, subsize,
4402 &pc_tree->vertical[0], best_rdc.rate - part_mode_rate,
4403 best_rdc.dist);
4404 if (sum_rdc.rdcost < INT64_MAX) {
4405 sum_rdc.rate += part_mode_rate;
4406 vp9_rd_cost_update(partition_mul, x->rddiv, &sum_rdc);
4407 }
4408
4409 if (sum_rdc.rdcost < best_rdc.rdcost && mi_col + mi_step < cm->mi_cols &&
4410 bsize > BLOCK_8X8) {
4411 update_state(cpi, td, &pc_tree->vertical[0], mi_row, mi_col, subsize, 0);
4412 encode_superblock(cpi, td, tp, 0, mi_row, mi_col, subsize,
4413 &pc_tree->vertical[0]);
4414 if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
4415 partition_none_allowed)
4416 pc_tree->vertical[1].pred_interp_filter = pred_interp_filter;
4417 rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + mi_step, &this_rdc,
4418 subsize, &pc_tree->vertical[1],
4419 best_rdc.rate - sum_rdc.rate,
4420 best_rdc.dist - sum_rdc.dist);
4421 if (this_rdc.rate == INT_MAX) {
4422 sum_rdc.rdcost = INT64_MAX;
4423 } else {
4424 sum_rdc.rate += this_rdc.rate;
4425 sum_rdc.dist += this_rdc.dist;
4426 vp9_rd_cost_update(partition_mul, x->rddiv, &sum_rdc);
4427 }
4428 }
4429
4430 if (sum_rdc.rdcost < best_rdc.rdcost) {
4431 best_rdc = sum_rdc;
4432 should_encode_sb = 1;
4433 pc_tree->partitioning = PARTITION_VERT;
4434 }
4435 restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
4436 }
4437
4438 if (bsize == BLOCK_64X64 && best_rdc.rdcost == INT64_MAX) {
4439 vp9_rd_cost_reset(&this_rdc);
4440 rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &this_rdc, BLOCK_64X64,
4441 ctx, INT_MAX, INT64_MAX);
4442 ctx->rdcost = this_rdc.rdcost;
4443 vp9_rd_cost_update(partition_mul, x->rddiv, &this_rdc);
4444 if (this_rdc.rdcost < best_rdc.rdcost) {
4445 best_rdc = this_rdc;
4446 should_encode_sb = 1;
4447 pc_tree->partitioning = PARTITION_NONE;
4448 }
4449 }
4450
4451 *rd_cost = best_rdc;
4452
4453 if (should_encode_sb && pc_tree->index != 3) {
4454 int output_enabled = (bsize == BLOCK_64X64);
4455 #if CONFIG_COLLECT_COMPONENT_TIMING
4456 start_timing(cpi, encode_sb_time);
4457 #endif
4458 encode_sb(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled, bsize,
4459 pc_tree);
4460 #if CONFIG_COLLECT_COMPONENT_TIMING
4461 end_timing(cpi, encode_sb_time);
4462 #endif
4463 #if CONFIG_RATE_CTRL
4464 if (oxcf->use_simple_encode_api) {
4465 // Store partition, motion vector of the superblock.
4466 if (output_enabled) {
4467 const int num_unit_rows =
4468 get_num_unit_4x4(cpi->frame_info.frame_height);
4469 const int num_unit_cols = get_num_unit_4x4(cpi->frame_info.frame_width);
4470 store_superblock_info(pc_tree, cm->mi_grid_visible, cm->mi_stride,
4471 num_4x4_blocks_wide_lookup[BLOCK_64X64],
4472 num_unit_rows, num_unit_cols, mi_row << 1,
4473 mi_col << 1, cpi->partition_info,
4474 cpi->motion_vector_info);
4475 }
4476 }
4477 #endif // CONFIG_RATE_CTRL
4478 }
4479
4480 if (bsize == BLOCK_64X64) {
4481 assert(tp_orig < *tp);
4482 assert(best_rdc.rate < INT_MAX);
4483 assert(best_rdc.dist < INT64_MAX);
4484 } else {
4485 assert(tp_orig == *tp);
4486 }
4487
4488 return should_encode_sb;
4489 }
4490
encode_rd_sb_row(VP9_COMP * cpi,ThreadData * td,TileDataEnc * tile_data,int mi_row,TOKENEXTRA ** tp)4491 static void encode_rd_sb_row(VP9_COMP *cpi, ThreadData *td,
4492 TileDataEnc *tile_data, int mi_row,
4493 TOKENEXTRA **tp) {
4494 VP9_COMMON *const cm = &cpi->common;
4495 TileInfo *const tile_info = &tile_data->tile_info;
4496 MACROBLOCK *const x = &td->mb;
4497 MACROBLOCKD *const xd = &x->e_mbd;
4498 SPEED_FEATURES *const sf = &cpi->sf;
4499 const int mi_col_start = tile_info->mi_col_start;
4500 const int mi_col_end = tile_info->mi_col_end;
4501 int mi_col;
4502 const int sb_row = mi_row >> MI_BLOCK_SIZE_LOG2;
4503 const int num_sb_cols =
4504 get_num_cols(tile_data->tile_info, MI_BLOCK_SIZE_LOG2);
4505 int sb_col_in_tile;
4506
4507 // Initialize the left context for the new SB row
4508 memset(&xd->left_context, 0, sizeof(xd->left_context));
4509 memset(xd->left_seg_context, 0, sizeof(xd->left_seg_context));
4510
4511 // Code each SB in the row
4512 for (mi_col = mi_col_start, sb_col_in_tile = 0; mi_col < mi_col_end;
4513 mi_col += MI_BLOCK_SIZE, sb_col_in_tile++) {
4514 const struct segmentation *const seg = &cm->seg;
4515 int dummy_rate;
4516 int64_t dummy_dist;
4517 RD_COST dummy_rdc;
4518 int i;
4519 int seg_skip = 0;
4520 int orig_rdmult = cpi->rd.RDMULT;
4521
4522 const int idx_str = cm->mi_stride * mi_row + mi_col;
4523 MODE_INFO **mi = cm->mi_grid_visible + idx_str;
4524
4525 vp9_rd_cost_reset(&dummy_rdc);
4526 (*(cpi->row_mt_sync_read_ptr))(&tile_data->row_mt_sync, sb_row,
4527 sb_col_in_tile);
4528
4529 if (sf->adaptive_pred_interp_filter) {
4530 for (i = 0; i < 64; ++i) td->leaf_tree[i].pred_interp_filter = SWITCHABLE;
4531
4532 for (i = 0; i < 64; ++i) {
4533 td->pc_tree[i].vertical[0].pred_interp_filter = SWITCHABLE;
4534 td->pc_tree[i].vertical[1].pred_interp_filter = SWITCHABLE;
4535 td->pc_tree[i].horizontal[0].pred_interp_filter = SWITCHABLE;
4536 td->pc_tree[i].horizontal[1].pred_interp_filter = SWITCHABLE;
4537 }
4538 }
4539
4540 for (i = 0; i < MAX_REF_FRAMES; ++i) {
4541 x->pred_mv[i].row = INT16_MAX;
4542 x->pred_mv[i].col = INT16_MAX;
4543 }
4544 td->pc_root->index = 0;
4545
4546 if (seg->enabled) {
4547 const uint8_t *const map =
4548 seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map;
4549 int segment_id = get_segment_id(cm, map, BLOCK_64X64, mi_row, mi_col);
4550 seg_skip = segfeature_active(seg, segment_id, SEG_LVL_SKIP);
4551 }
4552
4553 x->source_variance = UINT_MAX;
4554
4555 x->cb_rdmult = orig_rdmult;
4556
4557 if (sf->partition_search_type == FIXED_PARTITION || seg_skip) {
4558 const BLOCK_SIZE bsize =
4559 seg_skip ? BLOCK_64X64 : sf->always_this_block_size;
4560 set_offsets(cpi, tile_info, x, mi_row, mi_col, BLOCK_64X64);
4561 set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize);
4562 rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, BLOCK_64X64,
4563 &dummy_rate, &dummy_dist, 1, td->pc_root);
4564 } else if (sf->partition_search_type == VAR_BASED_PARTITION &&
4565 cm->frame_type != KEY_FRAME) {
4566 choose_partitioning(cpi, tile_info, x, mi_row, mi_col);
4567 rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, BLOCK_64X64,
4568 &dummy_rate, &dummy_dist, 1, td->pc_root);
4569 } else {
4570 if (cpi->twopass.gf_group.index > 0 && cpi->sf.enable_tpl_model) {
4571 int dr =
4572 get_rdmult_delta(cpi, BLOCK_64X64, mi_row, mi_col, orig_rdmult);
4573 x->cb_rdmult = dr;
4574 }
4575
4576 if (cpi->oxcf.aq_mode == PERCEPTUAL_AQ && cm->show_frame) {
4577 x->segment_id = wiener_var_segment(cpi, BLOCK_64X64, mi_row, mi_col);
4578 x->cb_rdmult = vp9_compute_rd_mult(
4579 cpi, vp9_get_qindex(&cm->seg, x->segment_id, cm->base_qindex));
4580 }
4581
4582 // If required set upper and lower partition size limits
4583 if (sf->auto_min_max_partition_size) {
4584 set_offsets(cpi, tile_info, x, mi_row, mi_col, BLOCK_64X64);
4585 rd_auto_partition_range(cpi, tile_info, xd, mi_row, mi_col,
4586 &x->min_partition_size, &x->max_partition_size);
4587 }
4588 td->pc_root->none.rdcost = 0;
4589
4590 #if CONFIG_COLLECT_COMPONENT_TIMING
4591 start_timing(cpi, rd_pick_partition_time);
4592 #endif
4593 rd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, BLOCK_64X64,
4594 &dummy_rdc, dummy_rdc, td->pc_root);
4595 #if CONFIG_COLLECT_COMPONENT_TIMING
4596 end_timing(cpi, rd_pick_partition_time);
4597 #endif
4598 }
4599 (*(cpi->row_mt_sync_write_ptr))(&tile_data->row_mt_sync, sb_row,
4600 sb_col_in_tile, num_sb_cols);
4601 }
4602 }
4603 #endif // !CONFIG_REALTIME_ONLY
4604
init_encode_frame_mb_context(VP9_COMP * cpi)4605 static void init_encode_frame_mb_context(VP9_COMP *cpi) {
4606 MACROBLOCK *const x = &cpi->td.mb;
4607 VP9_COMMON *const cm = &cpi->common;
4608 MACROBLOCKD *const xd = &x->e_mbd;
4609 const int aligned_mi_cols = mi_cols_aligned_to_sb(cm->mi_cols);
4610
4611 // Copy data over into macro block data structures.
4612 vp9_setup_src_planes(x, cpi->Source, 0, 0);
4613
4614 vp9_setup_block_planes(&x->e_mbd, cm->subsampling_x, cm->subsampling_y);
4615
4616 // Note: this memset assumes above_context[0], [1] and [2]
4617 // are allocated as part of the same buffer.
4618 memset(xd->above_context[0], 0,
4619 sizeof(*xd->above_context[0]) * 2 * aligned_mi_cols * MAX_MB_PLANE);
4620 memset(xd->above_seg_context, 0,
4621 sizeof(*xd->above_seg_context) * aligned_mi_cols);
4622 }
4623
check_dual_ref_flags(VP9_COMP * cpi)4624 static int check_dual_ref_flags(VP9_COMP *cpi) {
4625 const int ref_flags = cpi->ref_frame_flags;
4626
4627 if (segfeature_active(&cpi->common.seg, 1, SEG_LVL_REF_FRAME)) {
4628 return 0;
4629 } else {
4630 return (!!(ref_flags & VP9_GOLD_FLAG) + !!(ref_flags & VP9_LAST_FLAG) +
4631 !!(ref_flags & VP9_ALT_FLAG)) >= 2;
4632 }
4633 }
4634
reset_skip_tx_size(VP9_COMMON * cm,TX_SIZE max_tx_size)4635 static void reset_skip_tx_size(VP9_COMMON *cm, TX_SIZE max_tx_size) {
4636 int mi_row, mi_col;
4637 const int mis = cm->mi_stride;
4638 MODE_INFO **mi_ptr = cm->mi_grid_visible;
4639
4640 for (mi_row = 0; mi_row < cm->mi_rows; ++mi_row, mi_ptr += mis) {
4641 for (mi_col = 0; mi_col < cm->mi_cols; ++mi_col) {
4642 if (mi_ptr[mi_col]->tx_size > max_tx_size)
4643 mi_ptr[mi_col]->tx_size = max_tx_size;
4644 }
4645 }
4646 }
4647
get_frame_type(const VP9_COMP * cpi)4648 static MV_REFERENCE_FRAME get_frame_type(const VP9_COMP *cpi) {
4649 if (frame_is_intra_only(&cpi->common))
4650 return INTRA_FRAME;
4651 else if (cpi->rc.is_src_frame_alt_ref && cpi->refresh_golden_frame)
4652 return ALTREF_FRAME;
4653 else if (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)
4654 return GOLDEN_FRAME;
4655 else
4656 return LAST_FRAME;
4657 }
4658
select_tx_mode(const VP9_COMP * cpi,MACROBLOCKD * const xd)4659 static TX_MODE select_tx_mode(const VP9_COMP *cpi, MACROBLOCKD *const xd) {
4660 if (xd->lossless) return ONLY_4X4;
4661 if (cpi->common.frame_type == KEY_FRAME && cpi->sf.use_nonrd_pick_mode)
4662 return ALLOW_16X16;
4663 if (cpi->sf.tx_size_search_method == USE_LARGESTALL)
4664 return ALLOW_32X32;
4665 else if (cpi->sf.tx_size_search_method == USE_FULL_RD ||
4666 cpi->sf.tx_size_search_method == USE_TX_8X8)
4667 return TX_MODE_SELECT;
4668 else
4669 return cpi->common.tx_mode;
4670 }
4671
hybrid_intra_mode_search(VP9_COMP * cpi,MACROBLOCK * const x,RD_COST * rd_cost,BLOCK_SIZE bsize,PICK_MODE_CONTEXT * ctx)4672 static void hybrid_intra_mode_search(VP9_COMP *cpi, MACROBLOCK *const x,
4673 RD_COST *rd_cost, BLOCK_SIZE bsize,
4674 PICK_MODE_CONTEXT *ctx) {
4675 if (!cpi->sf.nonrd_keyframe && bsize < BLOCK_16X16)
4676 vp9_rd_pick_intra_mode_sb(cpi, x, rd_cost, bsize, ctx, INT64_MAX);
4677 else
4678 vp9_pick_intra_mode(cpi, x, rd_cost, bsize, ctx);
4679 }
4680
hybrid_search_svc_baseiskey(VP9_COMP * cpi,MACROBLOCK * const x,RD_COST * rd_cost,BLOCK_SIZE bsize,PICK_MODE_CONTEXT * ctx,TileDataEnc * tile_data,int mi_row,int mi_col)4681 static void hybrid_search_svc_baseiskey(VP9_COMP *cpi, MACROBLOCK *const x,
4682 RD_COST *rd_cost, BLOCK_SIZE bsize,
4683 PICK_MODE_CONTEXT *ctx,
4684 TileDataEnc *tile_data, int mi_row,
4685 int mi_col) {
4686 if (!cpi->sf.nonrd_keyframe && bsize <= BLOCK_8X8) {
4687 vp9_rd_pick_intra_mode_sb(cpi, x, rd_cost, bsize, ctx, INT64_MAX);
4688 } else {
4689 if (cpi->svc.disable_inter_layer_pred == INTER_LAYER_PRED_OFF)
4690 vp9_pick_intra_mode(cpi, x, rd_cost, bsize, ctx);
4691 else if (bsize >= BLOCK_8X8)
4692 vp9_pick_inter_mode(cpi, x, tile_data, mi_row, mi_col, rd_cost, bsize,
4693 ctx);
4694 else
4695 vp9_pick_inter_mode_sub8x8(cpi, x, mi_row, mi_col, rd_cost, bsize, ctx);
4696 }
4697 }
4698
hybrid_search_scene_change(VP9_COMP * cpi,MACROBLOCK * const x,RD_COST * rd_cost,BLOCK_SIZE bsize,PICK_MODE_CONTEXT * ctx,TileDataEnc * tile_data,int mi_row,int mi_col)4699 static void hybrid_search_scene_change(VP9_COMP *cpi, MACROBLOCK *const x,
4700 RD_COST *rd_cost, BLOCK_SIZE bsize,
4701 PICK_MODE_CONTEXT *ctx,
4702 TileDataEnc *tile_data, int mi_row,
4703 int mi_col) {
4704 if (!cpi->sf.nonrd_keyframe && bsize <= BLOCK_8X8) {
4705 vp9_rd_pick_intra_mode_sb(cpi, x, rd_cost, bsize, ctx, INT64_MAX);
4706 } else {
4707 vp9_pick_inter_mode(cpi, x, tile_data, mi_row, mi_col, rd_cost, bsize, ctx);
4708 }
4709 }
4710
nonrd_pick_sb_modes(VP9_COMP * cpi,TileDataEnc * tile_data,MACROBLOCK * const x,int mi_row,int mi_col,RD_COST * rd_cost,BLOCK_SIZE bsize,PICK_MODE_CONTEXT * ctx)4711 static void nonrd_pick_sb_modes(VP9_COMP *cpi, TileDataEnc *tile_data,
4712 MACROBLOCK *const x, int mi_row, int mi_col,
4713 RD_COST *rd_cost, BLOCK_SIZE bsize,
4714 PICK_MODE_CONTEXT *ctx) {
4715 VP9_COMMON *const cm = &cpi->common;
4716 TileInfo *const tile_info = &tile_data->tile_info;
4717 MACROBLOCKD *const xd = &x->e_mbd;
4718 MODE_INFO *mi;
4719 ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE];
4720 BLOCK_SIZE bs = VPXMAX(bsize, BLOCK_8X8); // processing unit block size
4721 const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bs];
4722 const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bs];
4723 int plane;
4724
4725 set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
4726
4727 set_segment_index(cpi, x, mi_row, mi_col, bsize, 0);
4728
4729 x->skip_recode = 0;
4730
4731 mi = xd->mi[0];
4732 mi->sb_type = bsize;
4733
4734 for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
4735 struct macroblockd_plane *pd = &xd->plane[plane];
4736 memcpy(a + num_4x4_blocks_wide * plane, pd->above_context,
4737 (sizeof(a[0]) * num_4x4_blocks_wide) >> pd->subsampling_x);
4738 memcpy(l + num_4x4_blocks_high * plane, pd->left_context,
4739 (sizeof(l[0]) * num_4x4_blocks_high) >> pd->subsampling_y);
4740 }
4741
4742 if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled)
4743 if (cyclic_refresh_segment_id_boosted(mi->segment_id))
4744 x->rdmult = vp9_cyclic_refresh_get_rdmult(cpi->cyclic_refresh);
4745
4746 if (frame_is_intra_only(cm))
4747 hybrid_intra_mode_search(cpi, x, rd_cost, bsize, ctx);
4748 else if (cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame)
4749 hybrid_search_svc_baseiskey(cpi, x, rd_cost, bsize, ctx, tile_data, mi_row,
4750 mi_col);
4751 else if (segfeature_active(&cm->seg, mi->segment_id, SEG_LVL_SKIP))
4752 set_mode_info_seg_skip(x, cm->tx_mode, cm->interp_filter, rd_cost, bsize);
4753 else if (bsize >= BLOCK_8X8) {
4754 if (cpi->rc.hybrid_intra_scene_change)
4755 hybrid_search_scene_change(cpi, x, rd_cost, bsize, ctx, tile_data, mi_row,
4756 mi_col);
4757 else
4758 vp9_pick_inter_mode(cpi, x, tile_data, mi_row, mi_col, rd_cost, bsize,
4759 ctx);
4760 } else {
4761 vp9_pick_inter_mode_sub8x8(cpi, x, mi_row, mi_col, rd_cost, bsize, ctx);
4762 }
4763
4764 duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col, bsize);
4765
4766 for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
4767 struct macroblockd_plane *pd = &xd->plane[plane];
4768 memcpy(pd->above_context, a + num_4x4_blocks_wide * plane,
4769 (sizeof(a[0]) * num_4x4_blocks_wide) >> pd->subsampling_x);
4770 memcpy(pd->left_context, l + num_4x4_blocks_high * plane,
4771 (sizeof(l[0]) * num_4x4_blocks_high) >> pd->subsampling_y);
4772 }
4773
4774 if (rd_cost->rate == INT_MAX) vp9_rd_cost_reset(rd_cost);
4775
4776 ctx->rate = rd_cost->rate;
4777 ctx->dist = rd_cost->dist;
4778 }
4779
fill_mode_info_sb(VP9_COMMON * cm,MACROBLOCK * x,int mi_row,int mi_col,BLOCK_SIZE bsize,PC_TREE * pc_tree)4780 static void fill_mode_info_sb(VP9_COMMON *cm, MACROBLOCK *x, int mi_row,
4781 int mi_col, BLOCK_SIZE bsize, PC_TREE *pc_tree) {
4782 MACROBLOCKD *xd = &x->e_mbd;
4783 int bsl = b_width_log2_lookup[bsize], hbs = (1 << bsl) / 4;
4784 PARTITION_TYPE partition = pc_tree->partitioning;
4785 BLOCK_SIZE subsize = get_subsize(bsize, partition);
4786
4787 assert(bsize >= BLOCK_8X8);
4788
4789 if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
4790
4791 switch (partition) {
4792 case PARTITION_NONE:
4793 set_mode_info_offsets(cm, x, xd, mi_row, mi_col);
4794 *(xd->mi[0]) = pc_tree->none.mic;
4795 *(x->mbmi_ext) = pc_tree->none.mbmi_ext;
4796 duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col, bsize);
4797 break;
4798 case PARTITION_VERT:
4799 set_mode_info_offsets(cm, x, xd, mi_row, mi_col);
4800 *(xd->mi[0]) = pc_tree->vertical[0].mic;
4801 *(x->mbmi_ext) = pc_tree->vertical[0].mbmi_ext;
4802 duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col, subsize);
4803
4804 if (mi_col + hbs < cm->mi_cols) {
4805 set_mode_info_offsets(cm, x, xd, mi_row, mi_col + hbs);
4806 *(xd->mi[0]) = pc_tree->vertical[1].mic;
4807 *(x->mbmi_ext) = pc_tree->vertical[1].mbmi_ext;
4808 duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col + hbs, subsize);
4809 }
4810 break;
4811 case PARTITION_HORZ:
4812 set_mode_info_offsets(cm, x, xd, mi_row, mi_col);
4813 *(xd->mi[0]) = pc_tree->horizontal[0].mic;
4814 *(x->mbmi_ext) = pc_tree->horizontal[0].mbmi_ext;
4815 duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col, subsize);
4816 if (mi_row + hbs < cm->mi_rows) {
4817 set_mode_info_offsets(cm, x, xd, mi_row + hbs, mi_col);
4818 *(xd->mi[0]) = pc_tree->horizontal[1].mic;
4819 *(x->mbmi_ext) = pc_tree->horizontal[1].mbmi_ext;
4820 duplicate_mode_info_in_sb(cm, xd, mi_row + hbs, mi_col, subsize);
4821 }
4822 break;
4823 case PARTITION_SPLIT: {
4824 fill_mode_info_sb(cm, x, mi_row, mi_col, subsize, pc_tree->u.split[0]);
4825 fill_mode_info_sb(cm, x, mi_row, mi_col + hbs, subsize,
4826 pc_tree->u.split[1]);
4827 fill_mode_info_sb(cm, x, mi_row + hbs, mi_col, subsize,
4828 pc_tree->u.split[2]);
4829 fill_mode_info_sb(cm, x, mi_row + hbs, mi_col + hbs, subsize,
4830 pc_tree->u.split[3]);
4831 break;
4832 }
4833 default: break;
4834 }
4835 }
4836
4837 // Reset the prediction pixel ready flag recursively.
pred_pixel_ready_reset(PC_TREE * pc_tree,BLOCK_SIZE bsize)4838 static void pred_pixel_ready_reset(PC_TREE *pc_tree, BLOCK_SIZE bsize) {
4839 pc_tree->none.pred_pixel_ready = 0;
4840 pc_tree->horizontal[0].pred_pixel_ready = 0;
4841 pc_tree->horizontal[1].pred_pixel_ready = 0;
4842 pc_tree->vertical[0].pred_pixel_ready = 0;
4843 pc_tree->vertical[1].pred_pixel_ready = 0;
4844
4845 if (bsize > BLOCK_8X8) {
4846 BLOCK_SIZE subsize = get_subsize(bsize, PARTITION_SPLIT);
4847 int i;
4848 for (i = 0; i < 4; ++i)
4849 pred_pixel_ready_reset(pc_tree->u.split[i], subsize);
4850 }
4851 }
4852
4853 #define FEATURES 6
4854 #define LABELS 2
ml_predict_var_partitioning(VP9_COMP * cpi,MACROBLOCK * x,BLOCK_SIZE bsize,int mi_row,int mi_col)4855 static int ml_predict_var_partitioning(VP9_COMP *cpi, MACROBLOCK *x,
4856 BLOCK_SIZE bsize, int mi_row,
4857 int mi_col) {
4858 VP9_COMMON *const cm = &cpi->common;
4859 const NN_CONFIG *nn_config = NULL;
4860
4861 switch (bsize) {
4862 case BLOCK_64X64: nn_config = &vp9_var_part_nnconfig_64; break;
4863 case BLOCK_32X32: nn_config = &vp9_var_part_nnconfig_32; break;
4864 case BLOCK_16X16: nn_config = &vp9_var_part_nnconfig_16; break;
4865 case BLOCK_8X8: break;
4866 default: assert(0 && "Unexpected block size."); return -1;
4867 }
4868
4869 if (!nn_config) return -1;
4870
4871 vpx_clear_system_state();
4872
4873 {
4874 const float thresh = cpi->oxcf.speed <= 5 ? 1.25f : 0.0f;
4875 float features[FEATURES] = { 0.0f };
4876 const int dc_q = vp9_dc_quant(cm->base_qindex, 0, cm->bit_depth);
4877 int feature_idx = 0;
4878 float score[LABELS];
4879
4880 features[feature_idx++] = logf((float)(dc_q * dc_q) / 256.0f + 1.0f);
4881 vp9_setup_src_planes(x, cpi->Source, mi_row, mi_col);
4882 {
4883 const int bs = 4 * num_4x4_blocks_wide_lookup[bsize];
4884 const BLOCK_SIZE subsize = get_subsize(bsize, PARTITION_SPLIT);
4885 const int sb_offset_row = 8 * (mi_row & 7);
4886 const int sb_offset_col = 8 * (mi_col & 7);
4887 const uint8_t *pred = x->est_pred + sb_offset_row * 64 + sb_offset_col;
4888 const uint8_t *src = x->plane[0].src.buf;
4889 const int src_stride = x->plane[0].src.stride;
4890 const int pred_stride = 64;
4891 unsigned int sse;
4892 int i;
4893 // Variance of whole block.
4894 const unsigned int var =
4895 cpi->fn_ptr[bsize].vf(src, src_stride, pred, pred_stride, &sse);
4896 const float factor = (var == 0) ? 1.0f : (1.0f / (float)var);
4897
4898 features[feature_idx++] = logf((float)var + 1.0f);
4899 for (i = 0; i < 4; ++i) {
4900 const int x_idx = (i & 1) * bs / 2;
4901 const int y_idx = (i >> 1) * bs / 2;
4902 const int src_offset = y_idx * src_stride + x_idx;
4903 const int pred_offset = y_idx * pred_stride + x_idx;
4904 // Variance of quarter block.
4905 const unsigned int sub_var =
4906 cpi->fn_ptr[subsize].vf(src + src_offset, src_stride,
4907 pred + pred_offset, pred_stride, &sse);
4908 const float var_ratio = (var == 0) ? 1.0f : factor * (float)sub_var;
4909 features[feature_idx++] = var_ratio;
4910 }
4911 }
4912
4913 assert(feature_idx == FEATURES);
4914 nn_predict(features, nn_config, score);
4915 if (score[0] > thresh) return PARTITION_SPLIT;
4916 if (score[0] < -thresh) return PARTITION_NONE;
4917 return -1;
4918 }
4919 }
4920 #undef FEATURES
4921 #undef LABELS
4922
nonrd_pick_partition(VP9_COMP * cpi,ThreadData * td,TileDataEnc * tile_data,TOKENEXTRA ** tp,int mi_row,int mi_col,BLOCK_SIZE bsize,RD_COST * rd_cost,int do_recon,int64_t best_rd,PC_TREE * pc_tree)4923 static void nonrd_pick_partition(VP9_COMP *cpi, ThreadData *td,
4924 TileDataEnc *tile_data, TOKENEXTRA **tp,
4925 int mi_row, int mi_col, BLOCK_SIZE bsize,
4926 RD_COST *rd_cost, int do_recon,
4927 int64_t best_rd, PC_TREE *pc_tree) {
4928 const SPEED_FEATURES *const sf = &cpi->sf;
4929 VP9_COMMON *const cm = &cpi->common;
4930 TileInfo *const tile_info = &tile_data->tile_info;
4931 MACROBLOCK *const x = &td->mb;
4932 MACROBLOCKD *const xd = &x->e_mbd;
4933 const int ms = num_8x8_blocks_wide_lookup[bsize] / 2;
4934 TOKENEXTRA *tp_orig = *tp;
4935 PICK_MODE_CONTEXT *ctx = &pc_tree->none;
4936 int i;
4937 BLOCK_SIZE subsize = bsize;
4938 RD_COST this_rdc, sum_rdc, best_rdc;
4939 int do_split = bsize >= BLOCK_8X8;
4940 int do_rect = 1;
4941 // Override skipping rectangular partition operations for edge blocks
4942 const int force_horz_split = (mi_row + ms >= cm->mi_rows);
4943 const int force_vert_split = (mi_col + ms >= cm->mi_cols);
4944 const int xss = x->e_mbd.plane[1].subsampling_x;
4945 const int yss = x->e_mbd.plane[1].subsampling_y;
4946
4947 int partition_none_allowed = !force_horz_split && !force_vert_split;
4948 int partition_horz_allowed =
4949 !force_vert_split && yss <= xss && bsize >= BLOCK_8X8;
4950 int partition_vert_allowed =
4951 !force_horz_split && xss <= yss && bsize >= BLOCK_8X8;
4952 const int use_ml_based_partitioning =
4953 sf->partition_search_type == ML_BASED_PARTITION;
4954
4955 (void)*tp_orig;
4956
4957 // Avoid checking for rectangular partitions for speed >= 5.
4958 if (cpi->oxcf.speed >= 5) do_rect = 0;
4959
4960 assert(num_8x8_blocks_wide_lookup[bsize] ==
4961 num_8x8_blocks_high_lookup[bsize]);
4962
4963 vp9_rd_cost_init(&sum_rdc);
4964 vp9_rd_cost_reset(&best_rdc);
4965 best_rdc.rdcost = best_rd;
4966
4967 // Determine partition types in search according to the speed features.
4968 // The threshold set here has to be of square block size.
4969 if (sf->auto_min_max_partition_size) {
4970 partition_none_allowed &=
4971 (bsize <= x->max_partition_size && bsize >= x->min_partition_size);
4972 partition_horz_allowed &=
4973 ((bsize <= x->max_partition_size && bsize > x->min_partition_size) ||
4974 force_horz_split);
4975 partition_vert_allowed &=
4976 ((bsize <= x->max_partition_size && bsize > x->min_partition_size) ||
4977 force_vert_split);
4978 do_split &= bsize > x->min_partition_size;
4979 }
4980 if (sf->use_square_partition_only) {
4981 partition_horz_allowed &= force_horz_split;
4982 partition_vert_allowed &= force_vert_split;
4983 }
4984
4985 if (use_ml_based_partitioning) {
4986 if (partition_none_allowed || do_split) do_rect = 0;
4987 if (partition_none_allowed && do_split) {
4988 const int ml_predicted_partition =
4989 ml_predict_var_partitioning(cpi, x, bsize, mi_row, mi_col);
4990 if (ml_predicted_partition == PARTITION_NONE) do_split = 0;
4991 if (ml_predicted_partition == PARTITION_SPLIT) partition_none_allowed = 0;
4992 }
4993 }
4994
4995 if (!partition_none_allowed && !do_split) do_rect = 1;
4996
4997 ctx->pred_pixel_ready =
4998 !(partition_vert_allowed || partition_horz_allowed || do_split);
4999
5000 // PARTITION_NONE
5001 if (partition_none_allowed) {
5002 nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &this_rdc, bsize,
5003 ctx);
5004 ctx->mic = *xd->mi[0];
5005 ctx->mbmi_ext = *x->mbmi_ext;
5006 ctx->skip_txfm[0] = x->skip_txfm[0];
5007 ctx->skip = x->skip;
5008
5009 if (this_rdc.rate != INT_MAX) {
5010 const int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
5011 this_rdc.rate += cpi->partition_cost[pl][PARTITION_NONE];
5012 this_rdc.rdcost =
5013 RDCOST(x->rdmult, x->rddiv, this_rdc.rate, this_rdc.dist);
5014 if (this_rdc.rdcost < best_rdc.rdcost) {
5015 best_rdc = this_rdc;
5016 if (bsize >= BLOCK_8X8) pc_tree->partitioning = PARTITION_NONE;
5017
5018 if (!use_ml_based_partitioning) {
5019 int64_t dist_breakout_thr = sf->partition_search_breakout_thr.dist;
5020 int64_t rate_breakout_thr = sf->partition_search_breakout_thr.rate;
5021 dist_breakout_thr >>=
5022 8 - (b_width_log2_lookup[bsize] + b_height_log2_lookup[bsize]);
5023 rate_breakout_thr *= num_pels_log2_lookup[bsize];
5024 if (!x->e_mbd.lossless && this_rdc.rate < rate_breakout_thr &&
5025 this_rdc.dist < dist_breakout_thr) {
5026 do_split = 0;
5027 do_rect = 0;
5028 }
5029 }
5030 }
5031 }
5032 }
5033
5034 // store estimated motion vector
5035 store_pred_mv(x, ctx);
5036
5037 // PARTITION_SPLIT
5038 if (do_split) {
5039 int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
5040 sum_rdc.rate += cpi->partition_cost[pl][PARTITION_SPLIT];
5041 sum_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist);
5042 subsize = get_subsize(bsize, PARTITION_SPLIT);
5043 for (i = 0; i < 4 && sum_rdc.rdcost < best_rdc.rdcost; ++i) {
5044 const int x_idx = (i & 1) * ms;
5045 const int y_idx = (i >> 1) * ms;
5046
5047 if (mi_row + y_idx >= cm->mi_rows || mi_col + x_idx >= cm->mi_cols)
5048 continue;
5049 load_pred_mv(x, ctx);
5050 nonrd_pick_partition(
5051 cpi, td, tile_data, tp, mi_row + y_idx, mi_col + x_idx, subsize,
5052 &this_rdc, 0, best_rdc.rdcost - sum_rdc.rdcost, pc_tree->u.split[i]);
5053
5054 if (this_rdc.rate == INT_MAX) {
5055 vp9_rd_cost_reset(&sum_rdc);
5056 } else {
5057 sum_rdc.rate += this_rdc.rate;
5058 sum_rdc.dist += this_rdc.dist;
5059 sum_rdc.rdcost += this_rdc.rdcost;
5060 }
5061 }
5062
5063 if (sum_rdc.rdcost < best_rdc.rdcost) {
5064 best_rdc = sum_rdc;
5065 pc_tree->partitioning = PARTITION_SPLIT;
5066 } else {
5067 // skip rectangular partition test when larger block size
5068 // gives better rd cost
5069 if (sf->less_rectangular_check) do_rect &= !partition_none_allowed;
5070 }
5071 }
5072
5073 // PARTITION_HORZ
5074 if (partition_horz_allowed && do_rect) {
5075 subsize = get_subsize(bsize, PARTITION_HORZ);
5076 load_pred_mv(x, ctx);
5077 pc_tree->horizontal[0].pred_pixel_ready = 1;
5078 nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc, subsize,
5079 &pc_tree->horizontal[0]);
5080
5081 pc_tree->horizontal[0].mic = *xd->mi[0];
5082 pc_tree->horizontal[0].mbmi_ext = *x->mbmi_ext;
5083 pc_tree->horizontal[0].skip_txfm[0] = x->skip_txfm[0];
5084 pc_tree->horizontal[0].skip = x->skip;
5085
5086 if (sum_rdc.rdcost < best_rdc.rdcost && mi_row + ms < cm->mi_rows) {
5087 load_pred_mv(x, ctx);
5088 pc_tree->horizontal[1].pred_pixel_ready = 1;
5089 nonrd_pick_sb_modes(cpi, tile_data, x, mi_row + ms, mi_col, &this_rdc,
5090 subsize, &pc_tree->horizontal[1]);
5091
5092 pc_tree->horizontal[1].mic = *xd->mi[0];
5093 pc_tree->horizontal[1].mbmi_ext = *x->mbmi_ext;
5094 pc_tree->horizontal[1].skip_txfm[0] = x->skip_txfm[0];
5095 pc_tree->horizontal[1].skip = x->skip;
5096
5097 if (this_rdc.rate == INT_MAX) {
5098 vp9_rd_cost_reset(&sum_rdc);
5099 } else {
5100 int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
5101 this_rdc.rate += cpi->partition_cost[pl][PARTITION_HORZ];
5102 sum_rdc.rate += this_rdc.rate;
5103 sum_rdc.dist += this_rdc.dist;
5104 sum_rdc.rdcost =
5105 RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist);
5106 }
5107 }
5108
5109 if (sum_rdc.rdcost < best_rdc.rdcost) {
5110 best_rdc = sum_rdc;
5111 pc_tree->partitioning = PARTITION_HORZ;
5112 } else {
5113 pred_pixel_ready_reset(pc_tree, bsize);
5114 }
5115 }
5116
5117 // PARTITION_VERT
5118 if (partition_vert_allowed && do_rect) {
5119 subsize = get_subsize(bsize, PARTITION_VERT);
5120 load_pred_mv(x, ctx);
5121 pc_tree->vertical[0].pred_pixel_ready = 1;
5122 nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc, subsize,
5123 &pc_tree->vertical[0]);
5124 pc_tree->vertical[0].mic = *xd->mi[0];
5125 pc_tree->vertical[0].mbmi_ext = *x->mbmi_ext;
5126 pc_tree->vertical[0].skip_txfm[0] = x->skip_txfm[0];
5127 pc_tree->vertical[0].skip = x->skip;
5128
5129 if (sum_rdc.rdcost < best_rdc.rdcost && mi_col + ms < cm->mi_cols) {
5130 load_pred_mv(x, ctx);
5131 pc_tree->vertical[1].pred_pixel_ready = 1;
5132 nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + ms, &this_rdc,
5133 subsize, &pc_tree->vertical[1]);
5134 pc_tree->vertical[1].mic = *xd->mi[0];
5135 pc_tree->vertical[1].mbmi_ext = *x->mbmi_ext;
5136 pc_tree->vertical[1].skip_txfm[0] = x->skip_txfm[0];
5137 pc_tree->vertical[1].skip = x->skip;
5138
5139 if (this_rdc.rate == INT_MAX) {
5140 vp9_rd_cost_reset(&sum_rdc);
5141 } else {
5142 int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
5143 sum_rdc.rate += cpi->partition_cost[pl][PARTITION_VERT];
5144 sum_rdc.rate += this_rdc.rate;
5145 sum_rdc.dist += this_rdc.dist;
5146 sum_rdc.rdcost =
5147 RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist);
5148 }
5149 }
5150
5151 if (sum_rdc.rdcost < best_rdc.rdcost) {
5152 best_rdc = sum_rdc;
5153 pc_tree->partitioning = PARTITION_VERT;
5154 } else {
5155 pred_pixel_ready_reset(pc_tree, bsize);
5156 }
5157 }
5158
5159 *rd_cost = best_rdc;
5160
5161 if (best_rdc.rate == INT_MAX) {
5162 vp9_rd_cost_reset(rd_cost);
5163 return;
5164 }
5165
5166 // update mode info array
5167 fill_mode_info_sb(cm, x, mi_row, mi_col, bsize, pc_tree);
5168
5169 if (best_rdc.rate < INT_MAX && best_rdc.dist < INT64_MAX && do_recon) {
5170 int output_enabled = (bsize == BLOCK_64X64);
5171 encode_sb_rt(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled, bsize,
5172 pc_tree);
5173 }
5174
5175 if (bsize == BLOCK_64X64 && do_recon) {
5176 assert(tp_orig < *tp);
5177 assert(best_rdc.rate < INT_MAX);
5178 assert(best_rdc.dist < INT64_MAX);
5179 } else {
5180 assert(tp_orig == *tp);
5181 }
5182 }
5183
nonrd_select_partition(VP9_COMP * cpi,ThreadData * td,TileDataEnc * tile_data,MODE_INFO ** mi,TOKENEXTRA ** tp,int mi_row,int mi_col,BLOCK_SIZE bsize,int output_enabled,RD_COST * rd_cost,PC_TREE * pc_tree)5184 static void nonrd_select_partition(VP9_COMP *cpi, ThreadData *td,
5185 TileDataEnc *tile_data, MODE_INFO **mi,
5186 TOKENEXTRA **tp, int mi_row, int mi_col,
5187 BLOCK_SIZE bsize, int output_enabled,
5188 RD_COST *rd_cost, PC_TREE *pc_tree) {
5189 VP9_COMMON *const cm = &cpi->common;
5190 TileInfo *const tile_info = &tile_data->tile_info;
5191 MACROBLOCK *const x = &td->mb;
5192 MACROBLOCKD *const xd = &x->e_mbd;
5193 const int bsl = b_width_log2_lookup[bsize], hbs = (1 << bsl) / 4;
5194 const int mis = cm->mi_stride;
5195 PARTITION_TYPE partition;
5196 BLOCK_SIZE subsize;
5197 RD_COST this_rdc;
5198 BLOCK_SIZE subsize_ref =
5199 (cpi->sf.adapt_partition_source_sad) ? BLOCK_8X8 : BLOCK_16X16;
5200
5201 vp9_rd_cost_reset(&this_rdc);
5202 if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
5203
5204 subsize = (bsize >= BLOCK_8X8) ? mi[0]->sb_type : BLOCK_4X4;
5205 partition = partition_lookup[bsl][subsize];
5206
5207 if (bsize == BLOCK_32X32 && subsize == BLOCK_32X32) {
5208 x->max_partition_size = BLOCK_32X32;
5209 x->min_partition_size = BLOCK_16X16;
5210 nonrd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, bsize, rd_cost,
5211 0, INT64_MAX, pc_tree);
5212 } else if (bsize == BLOCK_32X32 && partition != PARTITION_NONE &&
5213 subsize >= subsize_ref) {
5214 x->max_partition_size = BLOCK_32X32;
5215 x->min_partition_size = BLOCK_8X8;
5216 nonrd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, bsize, rd_cost,
5217 0, INT64_MAX, pc_tree);
5218 } else if (bsize == BLOCK_16X16 && partition != PARTITION_NONE) {
5219 x->max_partition_size = BLOCK_16X16;
5220 x->min_partition_size = BLOCK_8X8;
5221 nonrd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, bsize, rd_cost,
5222 0, INT64_MAX, pc_tree);
5223 } else {
5224 switch (partition) {
5225 case PARTITION_NONE:
5226 pc_tree->none.pred_pixel_ready = 1;
5227 nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, rd_cost, subsize,
5228 &pc_tree->none);
5229 pc_tree->none.mic = *xd->mi[0];
5230 pc_tree->none.mbmi_ext = *x->mbmi_ext;
5231 pc_tree->none.skip_txfm[0] = x->skip_txfm[0];
5232 pc_tree->none.skip = x->skip;
5233 break;
5234 case PARTITION_VERT:
5235 pc_tree->vertical[0].pred_pixel_ready = 1;
5236 nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, rd_cost, subsize,
5237 &pc_tree->vertical[0]);
5238 pc_tree->vertical[0].mic = *xd->mi[0];
5239 pc_tree->vertical[0].mbmi_ext = *x->mbmi_ext;
5240 pc_tree->vertical[0].skip_txfm[0] = x->skip_txfm[0];
5241 pc_tree->vertical[0].skip = x->skip;
5242 if (mi_col + hbs < cm->mi_cols) {
5243 pc_tree->vertical[1].pred_pixel_ready = 1;
5244 nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + hbs,
5245 &this_rdc, subsize, &pc_tree->vertical[1]);
5246 pc_tree->vertical[1].mic = *xd->mi[0];
5247 pc_tree->vertical[1].mbmi_ext = *x->mbmi_ext;
5248 pc_tree->vertical[1].skip_txfm[0] = x->skip_txfm[0];
5249 pc_tree->vertical[1].skip = x->skip;
5250 if (this_rdc.rate != INT_MAX && this_rdc.dist != INT64_MAX &&
5251 rd_cost->rate != INT_MAX && rd_cost->dist != INT64_MAX) {
5252 rd_cost->rate += this_rdc.rate;
5253 rd_cost->dist += this_rdc.dist;
5254 }
5255 }
5256 break;
5257 case PARTITION_HORZ:
5258 pc_tree->horizontal[0].pred_pixel_ready = 1;
5259 nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, rd_cost, subsize,
5260 &pc_tree->horizontal[0]);
5261 pc_tree->horizontal[0].mic = *xd->mi[0];
5262 pc_tree->horizontal[0].mbmi_ext = *x->mbmi_ext;
5263 pc_tree->horizontal[0].skip_txfm[0] = x->skip_txfm[0];
5264 pc_tree->horizontal[0].skip = x->skip;
5265 if (mi_row + hbs < cm->mi_rows) {
5266 pc_tree->horizontal[1].pred_pixel_ready = 1;
5267 nonrd_pick_sb_modes(cpi, tile_data, x, mi_row + hbs, mi_col,
5268 &this_rdc, subsize, &pc_tree->horizontal[1]);
5269 pc_tree->horizontal[1].mic = *xd->mi[0];
5270 pc_tree->horizontal[1].mbmi_ext = *x->mbmi_ext;
5271 pc_tree->horizontal[1].skip_txfm[0] = x->skip_txfm[0];
5272 pc_tree->horizontal[1].skip = x->skip;
5273 if (this_rdc.rate != INT_MAX && this_rdc.dist != INT64_MAX &&
5274 rd_cost->rate != INT_MAX && rd_cost->dist != INT64_MAX) {
5275 rd_cost->rate += this_rdc.rate;
5276 rd_cost->dist += this_rdc.dist;
5277 }
5278 }
5279 break;
5280 default:
5281 assert(partition == PARTITION_SPLIT);
5282 subsize = get_subsize(bsize, PARTITION_SPLIT);
5283 nonrd_select_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col,
5284 subsize, output_enabled, rd_cost,
5285 pc_tree->u.split[0]);
5286 nonrd_select_partition(cpi, td, tile_data, mi + hbs, tp, mi_row,
5287 mi_col + hbs, subsize, output_enabled, &this_rdc,
5288 pc_tree->u.split[1]);
5289 if (this_rdc.rate != INT_MAX && this_rdc.dist != INT64_MAX &&
5290 rd_cost->rate != INT_MAX && rd_cost->dist != INT64_MAX) {
5291 rd_cost->rate += this_rdc.rate;
5292 rd_cost->dist += this_rdc.dist;
5293 }
5294 nonrd_select_partition(cpi, td, tile_data, mi + hbs * mis, tp,
5295 mi_row + hbs, mi_col, subsize, output_enabled,
5296 &this_rdc, pc_tree->u.split[2]);
5297 if (this_rdc.rate != INT_MAX && this_rdc.dist != INT64_MAX &&
5298 rd_cost->rate != INT_MAX && rd_cost->dist != INT64_MAX) {
5299 rd_cost->rate += this_rdc.rate;
5300 rd_cost->dist += this_rdc.dist;
5301 }
5302 nonrd_select_partition(cpi, td, tile_data, mi + hbs * mis + hbs, tp,
5303 mi_row + hbs, mi_col + hbs, subsize,
5304 output_enabled, &this_rdc, pc_tree->u.split[3]);
5305 if (this_rdc.rate != INT_MAX && this_rdc.dist != INT64_MAX &&
5306 rd_cost->rate != INT_MAX && rd_cost->dist != INT64_MAX) {
5307 rd_cost->rate += this_rdc.rate;
5308 rd_cost->dist += this_rdc.dist;
5309 }
5310 break;
5311 }
5312 }
5313
5314 if (bsize == BLOCK_64X64 && output_enabled)
5315 encode_sb_rt(cpi, td, tile_info, tp, mi_row, mi_col, 1, bsize, pc_tree);
5316 }
5317
nonrd_use_partition(VP9_COMP * cpi,ThreadData * td,TileDataEnc * tile_data,MODE_INFO ** mi,TOKENEXTRA ** tp,int mi_row,int mi_col,BLOCK_SIZE bsize,int output_enabled,RD_COST * dummy_cost,PC_TREE * pc_tree)5318 static void nonrd_use_partition(VP9_COMP *cpi, ThreadData *td,
5319 TileDataEnc *tile_data, MODE_INFO **mi,
5320 TOKENEXTRA **tp, int mi_row, int mi_col,
5321 BLOCK_SIZE bsize, int output_enabled,
5322 RD_COST *dummy_cost, PC_TREE *pc_tree) {
5323 VP9_COMMON *const cm = &cpi->common;
5324 TileInfo *tile_info = &tile_data->tile_info;
5325 MACROBLOCK *const x = &td->mb;
5326 MACROBLOCKD *const xd = &x->e_mbd;
5327 const int bsl = b_width_log2_lookup[bsize], hbs = (1 << bsl) / 4;
5328 const int mis = cm->mi_stride;
5329 PARTITION_TYPE partition;
5330 BLOCK_SIZE subsize;
5331
5332 if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
5333
5334 subsize = (bsize >= BLOCK_8X8) ? mi[0]->sb_type : BLOCK_4X4;
5335 partition = partition_lookup[bsl][subsize];
5336
5337 if (output_enabled && bsize != BLOCK_4X4) {
5338 int ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
5339 td->counts->partition[ctx][partition]++;
5340 }
5341
5342 switch (partition) {
5343 case PARTITION_NONE:
5344 pc_tree->none.pred_pixel_ready = 1;
5345 nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, dummy_cost,
5346 subsize, &pc_tree->none);
5347 pc_tree->none.mic = *xd->mi[0];
5348 pc_tree->none.mbmi_ext = *x->mbmi_ext;
5349 pc_tree->none.skip_txfm[0] = x->skip_txfm[0];
5350 pc_tree->none.skip = x->skip;
5351 encode_b_rt(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled,
5352 subsize, &pc_tree->none);
5353 break;
5354 case PARTITION_VERT:
5355 pc_tree->vertical[0].pred_pixel_ready = 1;
5356 nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, dummy_cost,
5357 subsize, &pc_tree->vertical[0]);
5358 pc_tree->vertical[0].mic = *xd->mi[0];
5359 pc_tree->vertical[0].mbmi_ext = *x->mbmi_ext;
5360 pc_tree->vertical[0].skip_txfm[0] = x->skip_txfm[0];
5361 pc_tree->vertical[0].skip = x->skip;
5362 encode_b_rt(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled,
5363 subsize, &pc_tree->vertical[0]);
5364 if (mi_col + hbs < cm->mi_cols && bsize > BLOCK_8X8) {
5365 pc_tree->vertical[1].pred_pixel_ready = 1;
5366 nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + hbs, dummy_cost,
5367 subsize, &pc_tree->vertical[1]);
5368 pc_tree->vertical[1].mic = *xd->mi[0];
5369 pc_tree->vertical[1].mbmi_ext = *x->mbmi_ext;
5370 pc_tree->vertical[1].skip_txfm[0] = x->skip_txfm[0];
5371 pc_tree->vertical[1].skip = x->skip;
5372 encode_b_rt(cpi, td, tile_info, tp, mi_row, mi_col + hbs,
5373 output_enabled, subsize, &pc_tree->vertical[1]);
5374 }
5375 break;
5376 case PARTITION_HORZ:
5377 pc_tree->horizontal[0].pred_pixel_ready = 1;
5378 nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, dummy_cost,
5379 subsize, &pc_tree->horizontal[0]);
5380 pc_tree->horizontal[0].mic = *xd->mi[0];
5381 pc_tree->horizontal[0].mbmi_ext = *x->mbmi_ext;
5382 pc_tree->horizontal[0].skip_txfm[0] = x->skip_txfm[0];
5383 pc_tree->horizontal[0].skip = x->skip;
5384 encode_b_rt(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled,
5385 subsize, &pc_tree->horizontal[0]);
5386
5387 if (mi_row + hbs < cm->mi_rows && bsize > BLOCK_8X8) {
5388 pc_tree->horizontal[1].pred_pixel_ready = 1;
5389 nonrd_pick_sb_modes(cpi, tile_data, x, mi_row + hbs, mi_col, dummy_cost,
5390 subsize, &pc_tree->horizontal[1]);
5391 pc_tree->horizontal[1].mic = *xd->mi[0];
5392 pc_tree->horizontal[1].mbmi_ext = *x->mbmi_ext;
5393 pc_tree->horizontal[1].skip_txfm[0] = x->skip_txfm[0];
5394 pc_tree->horizontal[1].skip = x->skip;
5395 encode_b_rt(cpi, td, tile_info, tp, mi_row + hbs, mi_col,
5396 output_enabled, subsize, &pc_tree->horizontal[1]);
5397 }
5398 break;
5399 default:
5400 assert(partition == PARTITION_SPLIT);
5401 subsize = get_subsize(bsize, PARTITION_SPLIT);
5402 if (bsize == BLOCK_8X8) {
5403 nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, dummy_cost,
5404 subsize, pc_tree->u.leaf_split[0]);
5405 encode_b_rt(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled,
5406 subsize, pc_tree->u.leaf_split[0]);
5407 } else {
5408 nonrd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, subsize,
5409 output_enabled, dummy_cost, pc_tree->u.split[0]);
5410 nonrd_use_partition(cpi, td, tile_data, mi + hbs, tp, mi_row,
5411 mi_col + hbs, subsize, output_enabled, dummy_cost,
5412 pc_tree->u.split[1]);
5413 nonrd_use_partition(cpi, td, tile_data, mi + hbs * mis, tp,
5414 mi_row + hbs, mi_col, subsize, output_enabled,
5415 dummy_cost, pc_tree->u.split[2]);
5416 nonrd_use_partition(cpi, td, tile_data, mi + hbs * mis + hbs, tp,
5417 mi_row + hbs, mi_col + hbs, subsize, output_enabled,
5418 dummy_cost, pc_tree->u.split[3]);
5419 }
5420 break;
5421 }
5422
5423 if (partition != PARTITION_SPLIT || bsize == BLOCK_8X8)
5424 update_partition_context(xd, mi_row, mi_col, subsize, bsize);
5425 }
5426
5427 // Get a prediction(stored in x->est_pred) for the whole 64x64 superblock.
get_estimated_pred(VP9_COMP * cpi,const TileInfo * const tile,MACROBLOCK * x,int mi_row,int mi_col)5428 static void get_estimated_pred(VP9_COMP *cpi, const TileInfo *const tile,
5429 MACROBLOCK *x, int mi_row, int mi_col) {
5430 VP9_COMMON *const cm = &cpi->common;
5431 const int is_key_frame = frame_is_intra_only(cm);
5432 MACROBLOCKD *xd = &x->e_mbd;
5433
5434 set_offsets(cpi, tile, x, mi_row, mi_col, BLOCK_64X64);
5435
5436 if (!is_key_frame) {
5437 MODE_INFO *mi = xd->mi[0];
5438 YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, LAST_FRAME);
5439 const YV12_BUFFER_CONFIG *yv12_g = NULL;
5440 const BLOCK_SIZE bsize = BLOCK_32X32 + (mi_col + 4 < cm->mi_cols) * 2 +
5441 (mi_row + 4 < cm->mi_rows);
5442 unsigned int y_sad_g, y_sad_thr;
5443 unsigned int y_sad = UINT_MAX;
5444
5445 assert(yv12 != NULL);
5446
5447 if (!(is_one_pass_svc(cpi) && cpi->svc.spatial_layer_id) ||
5448 cpi->svc.use_gf_temporal_ref_current_layer) {
5449 // For now, GOLDEN will not be used for non-zero spatial layers, since
5450 // it may not be a temporal reference.
5451 yv12_g = get_ref_frame_buffer(cpi, GOLDEN_FRAME);
5452 }
5453
5454 // Only compute y_sad_g (sad for golden reference) for speed < 8.
5455 if (cpi->oxcf.speed < 8 && yv12_g && yv12_g != yv12 &&
5456 (cpi->ref_frame_flags & VP9_GOLD_FLAG)) {
5457 vp9_setup_pre_planes(xd, 0, yv12_g, mi_row, mi_col,
5458 &cm->frame_refs[GOLDEN_FRAME - 1].sf);
5459 y_sad_g = cpi->fn_ptr[bsize].sdf(
5460 x->plane[0].src.buf, x->plane[0].src.stride, xd->plane[0].pre[0].buf,
5461 xd->plane[0].pre[0].stride);
5462 } else {
5463 y_sad_g = UINT_MAX;
5464 }
5465
5466 if (cpi->oxcf.lag_in_frames > 0 && cpi->oxcf.rc_mode == VPX_VBR &&
5467 cpi->rc.is_src_frame_alt_ref) {
5468 yv12 = get_ref_frame_buffer(cpi, ALTREF_FRAME);
5469 vp9_setup_pre_planes(xd, 0, yv12, mi_row, mi_col,
5470 &cm->frame_refs[ALTREF_FRAME - 1].sf);
5471 mi->ref_frame[0] = ALTREF_FRAME;
5472 y_sad_g = UINT_MAX;
5473 } else {
5474 vp9_setup_pre_planes(xd, 0, yv12, mi_row, mi_col,
5475 &cm->frame_refs[LAST_FRAME - 1].sf);
5476 mi->ref_frame[0] = LAST_FRAME;
5477 }
5478 mi->ref_frame[1] = NO_REF_FRAME;
5479 mi->sb_type = BLOCK_64X64;
5480 mi->mv[0].as_int = 0;
5481 mi->interp_filter = BILINEAR;
5482
5483 {
5484 const MV dummy_mv = { 0, 0 };
5485 y_sad = vp9_int_pro_motion_estimation(cpi, x, bsize, mi_row, mi_col,
5486 &dummy_mv);
5487 x->sb_use_mv_part = 1;
5488 x->sb_mvcol_part = mi->mv[0].as_mv.col;
5489 x->sb_mvrow_part = mi->mv[0].as_mv.row;
5490 }
5491
5492 // Pick ref frame for partitioning, bias last frame when y_sad_g and y_sad
5493 // are close if short_circuit_low_temp_var is on.
5494 y_sad_thr = cpi->sf.short_circuit_low_temp_var ? (y_sad * 7) >> 3 : y_sad;
5495 if (y_sad_g < y_sad_thr) {
5496 vp9_setup_pre_planes(xd, 0, yv12_g, mi_row, mi_col,
5497 &cm->frame_refs[GOLDEN_FRAME - 1].sf);
5498 mi->ref_frame[0] = GOLDEN_FRAME;
5499 mi->mv[0].as_int = 0;
5500 } else {
5501 x->pred_mv[LAST_FRAME] = mi->mv[0].as_mv;
5502 }
5503
5504 set_ref_ptrs(cm, xd, mi->ref_frame[0], mi->ref_frame[1]);
5505 xd->plane[0].dst.buf = x->est_pred;
5506 xd->plane[0].dst.stride = 64;
5507 vp9_build_inter_predictors_sb(xd, mi_row, mi_col, BLOCK_64X64);
5508 } else {
5509 #if CONFIG_VP9_HIGHBITDEPTH
5510 switch (xd->bd) {
5511 case 8: memset(x->est_pred, 128, 64 * 64 * sizeof(x->est_pred[0])); break;
5512 case 10:
5513 memset(x->est_pred, 128 * 4, 64 * 64 * sizeof(x->est_pred[0]));
5514 break;
5515 case 12:
5516 memset(x->est_pred, 128 * 16, 64 * 64 * sizeof(x->est_pred[0]));
5517 break;
5518 }
5519 #else
5520 memset(x->est_pred, 128, 64 * 64 * sizeof(x->est_pred[0]));
5521 #endif // CONFIG_VP9_HIGHBITDEPTH
5522 }
5523 }
5524
encode_nonrd_sb_row(VP9_COMP * cpi,ThreadData * td,TileDataEnc * tile_data,int mi_row,TOKENEXTRA ** tp)5525 static void encode_nonrd_sb_row(VP9_COMP *cpi, ThreadData *td,
5526 TileDataEnc *tile_data, int mi_row,
5527 TOKENEXTRA **tp) {
5528 SPEED_FEATURES *const sf = &cpi->sf;
5529 VP9_COMMON *const cm = &cpi->common;
5530 TileInfo *const tile_info = &tile_data->tile_info;
5531 MACROBLOCK *const x = &td->mb;
5532 MACROBLOCKD *const xd = &x->e_mbd;
5533 const int mi_col_start = tile_info->mi_col_start;
5534 const int mi_col_end = tile_info->mi_col_end;
5535 int mi_col;
5536 const int sb_row = mi_row >> MI_BLOCK_SIZE_LOG2;
5537 const int num_sb_cols =
5538 get_num_cols(tile_data->tile_info, MI_BLOCK_SIZE_LOG2);
5539 int sb_col_in_tile;
5540
5541 // Initialize the left context for the new SB row
5542 memset(&xd->left_context, 0, sizeof(xd->left_context));
5543 memset(xd->left_seg_context, 0, sizeof(xd->left_seg_context));
5544
5545 // Code each SB in the row
5546 for (mi_col = mi_col_start, sb_col_in_tile = 0; mi_col < mi_col_end;
5547 mi_col += MI_BLOCK_SIZE, ++sb_col_in_tile) {
5548 const struct segmentation *const seg = &cm->seg;
5549 RD_COST dummy_rdc;
5550 const int idx_str = cm->mi_stride * mi_row + mi_col;
5551 MODE_INFO **mi = cm->mi_grid_visible + idx_str;
5552 PARTITION_SEARCH_TYPE partition_search_type = sf->partition_search_type;
5553 BLOCK_SIZE bsize = BLOCK_64X64;
5554 int seg_skip = 0;
5555 int i;
5556
5557 (*(cpi->row_mt_sync_read_ptr))(&tile_data->row_mt_sync, sb_row,
5558 sb_col_in_tile);
5559
5560 if (cpi->use_skin_detection) {
5561 vp9_compute_skin_sb(cpi, BLOCK_16X16, mi_row, mi_col);
5562 }
5563
5564 x->source_variance = UINT_MAX;
5565 for (i = 0; i < MAX_REF_FRAMES; ++i) {
5566 x->pred_mv[i].row = INT16_MAX;
5567 x->pred_mv[i].col = INT16_MAX;
5568 }
5569 vp9_rd_cost_init(&dummy_rdc);
5570 x->color_sensitivity[0] = 0;
5571 x->color_sensitivity[1] = 0;
5572 x->sb_is_skin = 0;
5573 x->skip_low_source_sad = 0;
5574 x->lowvar_highsumdiff = 0;
5575 x->content_state_sb = 0;
5576 x->zero_temp_sad_source = 0;
5577 x->sb_use_mv_part = 0;
5578 x->sb_mvcol_part = 0;
5579 x->sb_mvrow_part = 0;
5580 x->sb_pickmode_part = 0;
5581 x->arf_frame_usage = 0;
5582 x->lastgolden_frame_usage = 0;
5583
5584 if (cpi->compute_source_sad_onepass && cpi->sf.use_source_sad) {
5585 int shift = cpi->Source->y_stride * (mi_row << 3) + (mi_col << 3);
5586 int sb_offset2 = ((cm->mi_cols + 7) >> 3) * (mi_row >> 3) + (mi_col >> 3);
5587 int64_t source_sad = avg_source_sad(cpi, x, shift, sb_offset2);
5588 if (sf->adapt_partition_source_sad &&
5589 (cpi->oxcf.rc_mode == VPX_VBR && !cpi->rc.is_src_frame_alt_ref &&
5590 source_sad > sf->adapt_partition_thresh &&
5591 (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)))
5592 partition_search_type = REFERENCE_PARTITION;
5593 }
5594
5595 if (seg->enabled) {
5596 const uint8_t *const map =
5597 seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map;
5598 int segment_id = get_segment_id(cm, map, BLOCK_64X64, mi_row, mi_col);
5599 seg_skip = segfeature_active(seg, segment_id, SEG_LVL_SKIP);
5600
5601 if (cpi->roi.enabled && cpi->roi.skip[BACKGROUND_SEG_SKIP_ID] &&
5602 cpi->rc.frames_since_key > FRAMES_NO_SKIPPING_AFTER_KEY &&
5603 x->content_state_sb > kLowSadLowSumdiff) {
5604 // For ROI with skip, force segment = 0 (no skip) over whole
5605 // superblock to avoid artifacts if temporal change in source_sad is
5606 // not 0.
5607 int xi, yi;
5608 const int bw = num_8x8_blocks_wide_lookup[BLOCK_64X64];
5609 const int bh = num_8x8_blocks_high_lookup[BLOCK_64X64];
5610 const int xmis = VPXMIN(cm->mi_cols - mi_col, bw);
5611 const int ymis = VPXMIN(cm->mi_rows - mi_row, bh);
5612 const int block_index = mi_row * cm->mi_cols + mi_col;
5613 set_mode_info_offsets(cm, x, xd, mi_row, mi_col);
5614 for (yi = 0; yi < ymis; yi++)
5615 for (xi = 0; xi < xmis; xi++) {
5616 int map_offset = block_index + yi * cm->mi_cols + xi;
5617 cpi->segmentation_map[map_offset] = 0;
5618 }
5619 set_segment_index(cpi, x, mi_row, mi_col, BLOCK_64X64, 0);
5620 seg_skip = 0;
5621 }
5622 if (seg_skip) {
5623 partition_search_type = FIXED_PARTITION;
5624 }
5625 }
5626
5627 // Set the partition type of the 64X64 block
5628 switch (partition_search_type) {
5629 case VAR_BASED_PARTITION:
5630 // TODO(jingning, marpan): The mode decision and encoding process
5631 // support both intra and inter sub8x8 block coding for RTC mode.
5632 // Tune the thresholds accordingly to use sub8x8 block coding for
5633 // coding performance improvement.
5634 choose_partitioning(cpi, tile_info, x, mi_row, mi_col);
5635 nonrd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col,
5636 BLOCK_64X64, 1, &dummy_rdc, td->pc_root);
5637 break;
5638 case ML_BASED_PARTITION:
5639 get_estimated_pred(cpi, tile_info, x, mi_row, mi_col);
5640 x->max_partition_size = BLOCK_64X64;
5641 x->min_partition_size = BLOCK_8X8;
5642 x->sb_pickmode_part = 1;
5643 nonrd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col,
5644 BLOCK_64X64, &dummy_rdc, 1, INT64_MAX,
5645 td->pc_root);
5646 break;
5647 case SOURCE_VAR_BASED_PARTITION:
5648 set_source_var_based_partition(cpi, tile_info, x, mi, mi_row, mi_col);
5649 nonrd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col,
5650 BLOCK_64X64, 1, &dummy_rdc, td->pc_root);
5651 break;
5652 case FIXED_PARTITION:
5653 if (!seg_skip) bsize = sf->always_this_block_size;
5654 set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize);
5655 nonrd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col,
5656 BLOCK_64X64, 1, &dummy_rdc, td->pc_root);
5657 break;
5658 default:
5659 assert(partition_search_type == REFERENCE_PARTITION);
5660 x->sb_pickmode_part = 1;
5661 set_offsets(cpi, tile_info, x, mi_row, mi_col, BLOCK_64X64);
5662 // Use nonrd_pick_partition on scene-cut for VBR mode.
5663 // nonrd_pick_partition does not support 4x4 partition, so avoid it
5664 // on key frame for now.
5665 if ((cpi->oxcf.rc_mode == VPX_VBR && cpi->rc.high_source_sad &&
5666 cpi->oxcf.speed < 6 && !frame_is_intra_only(cm) &&
5667 (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame))) {
5668 // Use lower max_partition_size for low resolutions.
5669 if (cm->width <= 352 && cm->height <= 288)
5670 x->max_partition_size = BLOCK_32X32;
5671 else
5672 x->max_partition_size = BLOCK_64X64;
5673 x->min_partition_size = BLOCK_8X8;
5674 nonrd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col,
5675 BLOCK_64X64, &dummy_rdc, 1, INT64_MAX,
5676 td->pc_root);
5677 } else {
5678 choose_partitioning(cpi, tile_info, x, mi_row, mi_col);
5679 // TODO(marpan): Seems like nonrd_select_partition does not support
5680 // 4x4 partition. Since 4x4 is used on key frame, use this switch
5681 // for now.
5682 if (frame_is_intra_only(cm))
5683 nonrd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col,
5684 BLOCK_64X64, 1, &dummy_rdc, td->pc_root);
5685 else
5686 nonrd_select_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col,
5687 BLOCK_64X64, 1, &dummy_rdc, td->pc_root);
5688 }
5689
5690 break;
5691 }
5692
5693 // Update ref_frame usage for inter frame if this group is ARF group.
5694 if (!cpi->rc.is_src_frame_alt_ref && !cpi->refresh_golden_frame &&
5695 !cpi->refresh_alt_ref_frame && cpi->rc.alt_ref_gf_group &&
5696 cpi->sf.use_altref_onepass) {
5697 int sboffset = ((cm->mi_cols + 7) >> 3) * (mi_row >> 3) + (mi_col >> 3);
5698 if (cpi->count_arf_frame_usage != NULL)
5699 cpi->count_arf_frame_usage[sboffset] = x->arf_frame_usage;
5700 if (cpi->count_lastgolden_frame_usage != NULL)
5701 cpi->count_lastgolden_frame_usage[sboffset] = x->lastgolden_frame_usage;
5702 }
5703
5704 (*(cpi->row_mt_sync_write_ptr))(&tile_data->row_mt_sync, sb_row,
5705 sb_col_in_tile, num_sb_cols);
5706 }
5707 }
5708 // end RTC play code
5709
variance(const Diff * const d)5710 static INLINE uint32_t variance(const Diff *const d) {
5711 return d->sse - (uint32_t)(((int64_t)d->sum * d->sum) >> 8);
5712 }
5713
5714 #if CONFIG_VP9_HIGHBITDEPTH
variance_highbd(Diff * const d)5715 static INLINE uint32_t variance_highbd(Diff *const d) {
5716 const int64_t var = (int64_t)d->sse - (((int64_t)d->sum * d->sum) >> 8);
5717 return (var >= 0) ? (uint32_t)var : 0;
5718 }
5719 #endif // CONFIG_VP9_HIGHBITDEPTH
5720
set_var_thresh_from_histogram(VP9_COMP * cpi)5721 static int set_var_thresh_from_histogram(VP9_COMP *cpi) {
5722 const SPEED_FEATURES *const sf = &cpi->sf;
5723 const VP9_COMMON *const cm = &cpi->common;
5724
5725 const uint8_t *src = cpi->Source->y_buffer;
5726 const uint8_t *last_src = cpi->Last_Source->y_buffer;
5727 const int src_stride = cpi->Source->y_stride;
5728 const int last_stride = cpi->Last_Source->y_stride;
5729
5730 // Pick cutoff threshold
5731 const int cutoff = (VPXMIN(cm->width, cm->height) >= 720)
5732 ? (cm->MBs * VAR_HIST_LARGE_CUT_OFF / 100)
5733 : (cm->MBs * VAR_HIST_SMALL_CUT_OFF / 100);
5734 DECLARE_ALIGNED(16, int, hist[VAR_HIST_BINS]);
5735 Diff *var16 = cpi->source_diff_var;
5736
5737 int sum = 0;
5738 int i, j;
5739
5740 memset(hist, 0, VAR_HIST_BINS * sizeof(hist[0]));
5741
5742 for (i = 0; i < cm->mb_rows; i++) {
5743 for (j = 0; j < cm->mb_cols; j++) {
5744 #if CONFIG_VP9_HIGHBITDEPTH
5745 if (cm->use_highbitdepth) {
5746 switch (cm->bit_depth) {
5747 case VPX_BITS_8:
5748 vpx_highbd_8_get16x16var(src, src_stride, last_src, last_stride,
5749 &var16->sse, &var16->sum);
5750 var16->var = variance(var16);
5751 break;
5752 case VPX_BITS_10:
5753 vpx_highbd_10_get16x16var(src, src_stride, last_src, last_stride,
5754 &var16->sse, &var16->sum);
5755 var16->var = variance_highbd(var16);
5756 break;
5757 default:
5758 assert(cm->bit_depth == VPX_BITS_12);
5759 vpx_highbd_12_get16x16var(src, src_stride, last_src, last_stride,
5760 &var16->sse, &var16->sum);
5761 var16->var = variance_highbd(var16);
5762 break;
5763 }
5764 } else {
5765 vpx_get16x16var(src, src_stride, last_src, last_stride, &var16->sse,
5766 &var16->sum);
5767 var16->var = variance(var16);
5768 }
5769 #else
5770 vpx_get16x16var(src, src_stride, last_src, last_stride, &var16->sse,
5771 &var16->sum);
5772 var16->var = variance(var16);
5773 #endif // CONFIG_VP9_HIGHBITDEPTH
5774
5775 if (var16->var >= VAR_HIST_MAX_BG_VAR)
5776 hist[VAR_HIST_BINS - 1]++;
5777 else
5778 hist[var16->var / VAR_HIST_FACTOR]++;
5779
5780 src += 16;
5781 last_src += 16;
5782 var16++;
5783 }
5784
5785 src = src - cm->mb_cols * 16 + 16 * src_stride;
5786 last_src = last_src - cm->mb_cols * 16 + 16 * last_stride;
5787 }
5788
5789 cpi->source_var_thresh = 0;
5790
5791 if (hist[VAR_HIST_BINS - 1] < cutoff) {
5792 for (i = 0; i < VAR_HIST_BINS - 1; i++) {
5793 sum += hist[i];
5794
5795 if (sum > cutoff) {
5796 cpi->source_var_thresh = (i + 1) * VAR_HIST_FACTOR;
5797 return 0;
5798 }
5799 }
5800 }
5801
5802 return sf->search_type_check_frequency;
5803 }
5804
source_var_based_partition_search_method(VP9_COMP * cpi)5805 static void source_var_based_partition_search_method(VP9_COMP *cpi) {
5806 VP9_COMMON *const cm = &cpi->common;
5807 SPEED_FEATURES *const sf = &cpi->sf;
5808
5809 if (cm->frame_type == KEY_FRAME) {
5810 // For key frame, use SEARCH_PARTITION.
5811 sf->partition_search_type = SEARCH_PARTITION;
5812 } else if (cm->intra_only) {
5813 sf->partition_search_type = FIXED_PARTITION;
5814 } else {
5815 if (cm->last_width != cm->width || cm->last_height != cm->height) {
5816 if (cpi->source_diff_var) vpx_free(cpi->source_diff_var);
5817
5818 CHECK_MEM_ERROR(&cm->error, cpi->source_diff_var,
5819 vpx_calloc(cm->MBs, sizeof(cpi->source_diff_var)));
5820 }
5821
5822 if (!cpi->frames_till_next_var_check)
5823 cpi->frames_till_next_var_check = set_var_thresh_from_histogram(cpi);
5824
5825 if (cpi->frames_till_next_var_check > 0) {
5826 sf->partition_search_type = FIXED_PARTITION;
5827 cpi->frames_till_next_var_check--;
5828 }
5829 }
5830 }
5831
get_skip_encode_frame(const VP9_COMMON * cm,ThreadData * const td)5832 static int get_skip_encode_frame(const VP9_COMMON *cm, ThreadData *const td) {
5833 unsigned int intra_count = 0, inter_count = 0;
5834 int j;
5835
5836 for (j = 0; j < INTRA_INTER_CONTEXTS; ++j) {
5837 intra_count += td->counts->intra_inter[j][0];
5838 inter_count += td->counts->intra_inter[j][1];
5839 }
5840
5841 return (intra_count << 2) < inter_count && cm->frame_type != KEY_FRAME &&
5842 cm->show_frame;
5843 }
5844
vp9_init_tile_data(VP9_COMP * cpi)5845 void vp9_init_tile_data(VP9_COMP *cpi) {
5846 VP9_COMMON *const cm = &cpi->common;
5847 const int tile_cols = 1 << cm->log2_tile_cols;
5848 const int tile_rows = 1 << cm->log2_tile_rows;
5849 int tile_col, tile_row;
5850 TOKENEXTRA *pre_tok = cpi->tile_tok[0][0];
5851 TOKENLIST *tplist = cpi->tplist[0][0];
5852 int tile_tok = 0;
5853 int tplist_count = 0;
5854
5855 if (cpi->tile_data == NULL || cpi->allocated_tiles < tile_cols * tile_rows) {
5856 if (cpi->tile_data != NULL) {
5857 // Free the row mt memory in cpi->tile_data first.
5858 vp9_row_mt_mem_dealloc(cpi);
5859 vpx_free(cpi->tile_data);
5860 }
5861 cpi->allocated_tiles = 0;
5862 CHECK_MEM_ERROR(
5863 &cm->error, cpi->tile_data,
5864 vpx_malloc(tile_cols * tile_rows * sizeof(*cpi->tile_data)));
5865 cpi->allocated_tiles = tile_cols * tile_rows;
5866
5867 for (tile_row = 0; tile_row < tile_rows; ++tile_row)
5868 for (tile_col = 0; tile_col < tile_cols; ++tile_col) {
5869 TileDataEnc *tile_data =
5870 &cpi->tile_data[tile_row * tile_cols + tile_col];
5871 int i, j;
5872 const MV zero_mv = { 0, 0 };
5873 for (i = 0; i < BLOCK_SIZES; ++i) {
5874 for (j = 0; j < MAX_MODES; ++j) {
5875 tile_data->thresh_freq_fact[i][j] = RD_THRESH_INIT_FACT;
5876 tile_data->thresh_freq_fact_prev[i][j] = RD_THRESH_INIT_FACT;
5877 tile_data->mode_map[i][j] = j;
5878 }
5879 }
5880 tile_data->firstpass_top_mv = zero_mv;
5881 #if CONFIG_MULTITHREAD
5882 tile_data->row_base_thresh_freq_fact = NULL;
5883 #endif
5884 }
5885 }
5886
5887 for (tile_row = 0; tile_row < tile_rows; ++tile_row) {
5888 for (tile_col = 0; tile_col < tile_cols; ++tile_col) {
5889 TileDataEnc *this_tile = &cpi->tile_data[tile_row * tile_cols + tile_col];
5890 TileInfo *tile_info = &this_tile->tile_info;
5891 if (cpi->sf.adaptive_rd_thresh_row_mt) {
5892 vp9_row_mt_alloc_rd_thresh(cpi, this_tile);
5893 }
5894 vp9_tile_init(tile_info, cm, tile_row, tile_col);
5895
5896 cpi->tile_tok[tile_row][tile_col] = pre_tok + tile_tok;
5897 pre_tok = cpi->tile_tok[tile_row][tile_col];
5898 tile_tok = allocated_tokens(*tile_info);
5899
5900 cpi->tplist[tile_row][tile_col] = tplist + tplist_count;
5901 tplist = cpi->tplist[tile_row][tile_col];
5902 tplist_count = get_num_vert_units(*tile_info, MI_BLOCK_SIZE_LOG2);
5903 }
5904 }
5905 }
5906
vp9_encode_sb_row(VP9_COMP * cpi,ThreadData * td,int tile_row,int tile_col,int mi_row)5907 void vp9_encode_sb_row(VP9_COMP *cpi, ThreadData *td, int tile_row,
5908 int tile_col, int mi_row) {
5909 VP9_COMMON *const cm = &cpi->common;
5910 const int tile_cols = 1 << cm->log2_tile_cols;
5911 TileDataEnc *this_tile = &cpi->tile_data[tile_row * tile_cols + tile_col];
5912 const TileInfo *const tile_info = &this_tile->tile_info;
5913 TOKENEXTRA *tok = NULL;
5914 int tile_sb_row;
5915 int tile_mb_cols = (tile_info->mi_col_end - tile_info->mi_col_start + 1) >> 1;
5916
5917 tile_sb_row = mi_cols_aligned_to_sb(mi_row - tile_info->mi_row_start) >>
5918 MI_BLOCK_SIZE_LOG2;
5919 get_start_tok(cpi, tile_row, tile_col, mi_row, &tok);
5920 cpi->tplist[tile_row][tile_col][tile_sb_row].start = tok;
5921
5922 #if CONFIG_REALTIME_ONLY
5923 assert(cpi->sf.use_nonrd_pick_mode);
5924 encode_nonrd_sb_row(cpi, td, this_tile, mi_row, &tok);
5925 #else
5926 if (cpi->sf.use_nonrd_pick_mode)
5927 encode_nonrd_sb_row(cpi, td, this_tile, mi_row, &tok);
5928 else
5929 encode_rd_sb_row(cpi, td, this_tile, mi_row, &tok);
5930 #endif
5931
5932 cpi->tplist[tile_row][tile_col][tile_sb_row].stop = tok;
5933 cpi->tplist[tile_row][tile_col][tile_sb_row].count =
5934 (unsigned int)(cpi->tplist[tile_row][tile_col][tile_sb_row].stop -
5935 cpi->tplist[tile_row][tile_col][tile_sb_row].start);
5936 assert(tok - cpi->tplist[tile_row][tile_col][tile_sb_row].start <=
5937 get_token_alloc(MI_BLOCK_SIZE >> 1, tile_mb_cols));
5938
5939 (void)tile_mb_cols;
5940 }
5941
vp9_encode_tile(VP9_COMP * cpi,ThreadData * td,int tile_row,int tile_col)5942 void vp9_encode_tile(VP9_COMP *cpi, ThreadData *td, int tile_row,
5943 int tile_col) {
5944 VP9_COMMON *const cm = &cpi->common;
5945 const int tile_cols = 1 << cm->log2_tile_cols;
5946 TileDataEnc *this_tile = &cpi->tile_data[tile_row * tile_cols + tile_col];
5947 const TileInfo *const tile_info = &this_tile->tile_info;
5948 const int mi_row_start = tile_info->mi_row_start;
5949 const int mi_row_end = tile_info->mi_row_end;
5950 int mi_row;
5951
5952 for (mi_row = mi_row_start; mi_row < mi_row_end; mi_row += MI_BLOCK_SIZE)
5953 vp9_encode_sb_row(cpi, td, tile_row, tile_col, mi_row);
5954 }
5955
encode_tiles(VP9_COMP * cpi)5956 static void encode_tiles(VP9_COMP *cpi) {
5957 VP9_COMMON *const cm = &cpi->common;
5958 const int tile_cols = 1 << cm->log2_tile_cols;
5959 const int tile_rows = 1 << cm->log2_tile_rows;
5960 int tile_col, tile_row;
5961
5962 vp9_init_tile_data(cpi);
5963
5964 for (tile_row = 0; tile_row < tile_rows; ++tile_row)
5965 for (tile_col = 0; tile_col < tile_cols; ++tile_col)
5966 vp9_encode_tile(cpi, &cpi->td, tile_row, tile_col);
5967 }
5968
compare_kmeans_data(const void * a,const void * b)5969 static int compare_kmeans_data(const void *a, const void *b) {
5970 if (((const KMEANS_DATA *)a)->value > ((const KMEANS_DATA *)b)->value) {
5971 return 1;
5972 } else if (((const KMEANS_DATA *)a)->value <
5973 ((const KMEANS_DATA *)b)->value) {
5974 return -1;
5975 } else {
5976 return 0;
5977 }
5978 }
5979
compute_boundary_ls(const double * ctr_ls,int k,double * boundary_ls)5980 static void compute_boundary_ls(const double *ctr_ls, int k,
5981 double *boundary_ls) {
5982 // boundary_ls[j] is the upper bound of data centered at ctr_ls[j]
5983 int j;
5984 for (j = 0; j < k - 1; ++j) {
5985 boundary_ls[j] = (ctr_ls[j] + ctr_ls[j + 1]) / 2.;
5986 }
5987 boundary_ls[k - 1] = DBL_MAX;
5988 }
5989
vp9_get_group_idx(double value,double * boundary_ls,int k)5990 int vp9_get_group_idx(double value, double *boundary_ls, int k) {
5991 int group_idx = 0;
5992 while (value >= boundary_ls[group_idx]) {
5993 ++group_idx;
5994 if (group_idx == k - 1) {
5995 break;
5996 }
5997 }
5998 return group_idx;
5999 }
6000
vp9_kmeans(double * ctr_ls,double * boundary_ls,int * count_ls,int k,KMEANS_DATA * arr,int size)6001 void vp9_kmeans(double *ctr_ls, double *boundary_ls, int *count_ls, int k,
6002 KMEANS_DATA *arr, int size) {
6003 int i, j;
6004 int itr;
6005 int group_idx;
6006 double sum[MAX_KMEANS_GROUPS];
6007 int count[MAX_KMEANS_GROUPS];
6008
6009 vpx_clear_system_state();
6010
6011 assert(k >= 2 && k <= MAX_KMEANS_GROUPS);
6012
6013 qsort(arr, size, sizeof(*arr), compare_kmeans_data);
6014
6015 // initialize the center points
6016 for (j = 0; j < k; ++j) {
6017 ctr_ls[j] = arr[(size * (2 * j + 1)) / (2 * k)].value;
6018 }
6019
6020 for (itr = 0; itr < 10; ++itr) {
6021 compute_boundary_ls(ctr_ls, k, boundary_ls);
6022 for (i = 0; i < MAX_KMEANS_GROUPS; ++i) {
6023 sum[i] = 0;
6024 count[i] = 0;
6025 }
6026
6027 // Both the data and centers are sorted in ascending order.
6028 // As each data point is processed in order, its corresponding group index
6029 // can only increase. So we only need to reset the group index to zero here.
6030 group_idx = 0;
6031 for (i = 0; i < size; ++i) {
6032 while (arr[i].value >= boundary_ls[group_idx]) {
6033 // place samples into clusters
6034 ++group_idx;
6035 if (group_idx == k - 1) {
6036 break;
6037 }
6038 }
6039 sum[group_idx] += arr[i].value;
6040 ++count[group_idx];
6041 }
6042
6043 for (group_idx = 0; group_idx < k; ++group_idx) {
6044 if (count[group_idx] > 0)
6045 ctr_ls[group_idx] = sum[group_idx] / count[group_idx];
6046
6047 sum[group_idx] = 0;
6048 count[group_idx] = 0;
6049 }
6050 }
6051
6052 // compute group_idx, boundary_ls and count_ls
6053 for (j = 0; j < k; ++j) {
6054 count_ls[j] = 0;
6055 }
6056 compute_boundary_ls(ctr_ls, k, boundary_ls);
6057 group_idx = 0;
6058 for (i = 0; i < size; ++i) {
6059 while (arr[i].value >= boundary_ls[group_idx]) {
6060 ++group_idx;
6061 if (group_idx == k - 1) {
6062 break;
6063 }
6064 }
6065 arr[i].group_idx = group_idx;
6066 ++count_ls[group_idx];
6067 }
6068 }
6069
encode_frame_internal(VP9_COMP * cpi)6070 static void encode_frame_internal(VP9_COMP *cpi) {
6071 SPEED_FEATURES *const sf = &cpi->sf;
6072 ThreadData *const td = &cpi->td;
6073 MACROBLOCK *const x = &td->mb;
6074 VP9_COMMON *const cm = &cpi->common;
6075 MACROBLOCKD *const xd = &x->e_mbd;
6076 const int gf_group_index = cpi->twopass.gf_group.index;
6077
6078 xd->mi = cm->mi_grid_visible;
6079 xd->mi[0] = cm->mi;
6080 vp9_zero(*td->counts);
6081 vp9_zero(cpi->td.rd_counts);
6082
6083 xd->lossless = cm->base_qindex == 0 && cm->y_dc_delta_q == 0 &&
6084 cm->uv_dc_delta_q == 0 && cm->uv_ac_delta_q == 0;
6085
6086 #if CONFIG_VP9_HIGHBITDEPTH
6087 if (cm->use_highbitdepth)
6088 x->fwd_txfm4x4 = xd->lossless ? vp9_highbd_fwht4x4 : vpx_highbd_fdct4x4;
6089 else
6090 x->fwd_txfm4x4 = xd->lossless ? vp9_fwht4x4 : vpx_fdct4x4;
6091 x->highbd_inv_txfm_add =
6092 xd->lossless ? vp9_highbd_iwht4x4_add : vp9_highbd_idct4x4_add;
6093 #else
6094 x->fwd_txfm4x4 = xd->lossless ? vp9_fwht4x4 : vpx_fdct4x4;
6095 #endif // CONFIG_VP9_HIGHBITDEPTH
6096 x->inv_txfm_add = xd->lossless ? vp9_iwht4x4_add : vp9_idct4x4_add;
6097 x->optimize = sf->optimize_coefficients == 1 && cpi->oxcf.pass != 1;
6098 if (xd->lossless) x->optimize = 0;
6099 x->sharpness = cpi->oxcf.sharpness;
6100 x->adjust_rdmult_by_segment = (cpi->oxcf.aq_mode == VARIANCE_AQ);
6101
6102 cm->tx_mode = select_tx_mode(cpi, xd);
6103
6104 vp9_frame_init_quantizer(cpi);
6105
6106 vp9_initialize_rd_consts(cpi);
6107 vp9_initialize_me_consts(cpi, x, cm->base_qindex);
6108 init_encode_frame_mb_context(cpi);
6109 cm->use_prev_frame_mvs =
6110 !cm->error_resilient_mode && cm->width == cm->last_width &&
6111 cm->height == cm->last_height && !cm->intra_only && cm->last_show_frame;
6112 // Special case: set prev_mi to NULL when the previous mode info
6113 // context cannot be used.
6114 cm->prev_mi =
6115 cm->use_prev_frame_mvs ? cm->prev_mip + cm->mi_stride + 1 : NULL;
6116
6117 x->quant_fp = cpi->sf.use_quant_fp;
6118 vp9_zero(x->skip_txfm);
6119 if (sf->use_nonrd_pick_mode) {
6120 // Initialize internal buffer pointers for rtc coding, where non-RD
6121 // mode decision is used and hence no buffer pointer swap needed.
6122 int i;
6123 struct macroblock_plane *const p = x->plane;
6124 struct macroblockd_plane *const pd = xd->plane;
6125 PICK_MODE_CONTEXT *ctx = &cpi->td.pc_root->none;
6126
6127 for (i = 0; i < MAX_MB_PLANE; ++i) {
6128 p[i].coeff = ctx->coeff_pbuf[i][0];
6129 p[i].qcoeff = ctx->qcoeff_pbuf[i][0];
6130 pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][0];
6131 p[i].eobs = ctx->eobs_pbuf[i][0];
6132 }
6133 vp9_zero(x->zcoeff_blk);
6134
6135 if (cm->frame_type != KEY_FRAME && cpi->rc.frames_since_golden == 0 &&
6136 !(cpi->oxcf.lag_in_frames > 0 && cpi->oxcf.rc_mode == VPX_VBR) &&
6137 !cpi->use_svc)
6138 cpi->ref_frame_flags &= (~VP9_GOLD_FLAG);
6139
6140 if (sf->partition_search_type == SOURCE_VAR_BASED_PARTITION)
6141 source_var_based_partition_search_method(cpi);
6142 } else if (gf_group_index && gf_group_index < MAX_ARF_GOP_SIZE &&
6143 cpi->sf.enable_tpl_model) {
6144 TplDepFrame *tpl_frame = &cpi->tpl_stats[cpi->twopass.gf_group.index];
6145 TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr;
6146
6147 int tpl_stride = tpl_frame->stride;
6148 int64_t intra_cost_base = 0;
6149 int64_t mc_dep_cost_base = 0;
6150 int row, col;
6151
6152 for (row = 0; row < cm->mi_rows && tpl_frame->is_valid; ++row) {
6153 for (col = 0; col < cm->mi_cols; ++col) {
6154 TplDepStats *this_stats = &tpl_stats[row * tpl_stride + col];
6155 intra_cost_base += this_stats->intra_cost;
6156 mc_dep_cost_base += this_stats->mc_dep_cost;
6157 }
6158 }
6159
6160 vpx_clear_system_state();
6161
6162 if (tpl_frame->is_valid)
6163 cpi->rd.r0 = (double)intra_cost_base / mc_dep_cost_base;
6164 }
6165
6166 for (MV_REFERENCE_FRAME ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME;
6167 ++ref_frame) {
6168 if (cpi->ref_frame_flags & ref_frame_to_flag(ref_frame)) {
6169 if (cm->frame_refs[ref_frame - 1].sf.x_scale_fp == REF_INVALID_SCALE ||
6170 cm->frame_refs[ref_frame - 1].sf.y_scale_fp == REF_INVALID_SCALE)
6171 cpi->ref_frame_flags &= ~ref_frame_to_flag(ref_frame);
6172 }
6173 }
6174
6175 // Frame segmentation
6176 if (cpi->oxcf.aq_mode == PERCEPTUAL_AQ) build_kmeans_segmentation(cpi);
6177
6178 {
6179 struct vpx_usec_timer emr_timer;
6180 vpx_usec_timer_start(&emr_timer);
6181
6182 if (!cpi->row_mt) {
6183 cpi->row_mt_sync_read_ptr = vp9_row_mt_sync_read_dummy;
6184 cpi->row_mt_sync_write_ptr = vp9_row_mt_sync_write_dummy;
6185 // If allowed, encoding tiles in parallel with one thread handling one
6186 // tile when row based multi-threading is disabled.
6187 if (VPXMIN(cpi->oxcf.max_threads, 1 << cm->log2_tile_cols) > 1)
6188 vp9_encode_tiles_mt(cpi);
6189 else
6190 encode_tiles(cpi);
6191 } else {
6192 cpi->row_mt_sync_read_ptr = vp9_row_mt_sync_read;
6193 cpi->row_mt_sync_write_ptr = vp9_row_mt_sync_write;
6194 vp9_encode_tiles_row_mt(cpi);
6195 }
6196
6197 vpx_usec_timer_mark(&emr_timer);
6198 cpi->time_encode_sb_row += vpx_usec_timer_elapsed(&emr_timer);
6199 }
6200
6201 sf->skip_encode_frame =
6202 sf->skip_encode_sb ? get_skip_encode_frame(cm, td) : 0;
6203
6204 #if 0
6205 // Keep record of the total distortion this time around for future use
6206 cpi->last_frame_distortion = cpi->frame_distortion;
6207 #endif
6208 }
6209
get_interp_filter(const int64_t threshes[SWITCHABLE_FILTER_CONTEXTS],int is_alt_ref)6210 static INTERP_FILTER get_interp_filter(
6211 const int64_t threshes[SWITCHABLE_FILTER_CONTEXTS], int is_alt_ref) {
6212 if (!is_alt_ref && threshes[EIGHTTAP_SMOOTH] > threshes[EIGHTTAP] &&
6213 threshes[EIGHTTAP_SMOOTH] > threshes[EIGHTTAP_SHARP] &&
6214 threshes[EIGHTTAP_SMOOTH] > threshes[SWITCHABLE - 1]) {
6215 return EIGHTTAP_SMOOTH;
6216 } else if (threshes[EIGHTTAP_SHARP] > threshes[EIGHTTAP] &&
6217 threshes[EIGHTTAP_SHARP] > threshes[SWITCHABLE - 1]) {
6218 return EIGHTTAP_SHARP;
6219 } else if (threshes[EIGHTTAP] > threshes[SWITCHABLE - 1]) {
6220 return EIGHTTAP;
6221 } else {
6222 return SWITCHABLE;
6223 }
6224 }
6225
compute_frame_aq_offset(struct VP9_COMP * cpi)6226 static int compute_frame_aq_offset(struct VP9_COMP *cpi) {
6227 VP9_COMMON *const cm = &cpi->common;
6228 MODE_INFO **mi_8x8_ptr = cm->mi_grid_visible;
6229 struct segmentation *const seg = &cm->seg;
6230
6231 int mi_row, mi_col;
6232 int sum_delta = 0;
6233 int qdelta_index;
6234 int segment_id;
6235
6236 for (mi_row = 0; mi_row < cm->mi_rows; mi_row++) {
6237 MODE_INFO **mi_8x8 = mi_8x8_ptr;
6238 for (mi_col = 0; mi_col < cm->mi_cols; mi_col++, mi_8x8++) {
6239 segment_id = mi_8x8[0]->segment_id;
6240 qdelta_index = get_segdata(seg, segment_id, SEG_LVL_ALT_Q);
6241 sum_delta += qdelta_index;
6242 }
6243 mi_8x8_ptr += cm->mi_stride;
6244 }
6245
6246 return sum_delta / (cm->mi_rows * cm->mi_cols);
6247 }
6248
restore_encode_params(VP9_COMP * cpi)6249 static void restore_encode_params(VP9_COMP *cpi) {
6250 VP9_COMMON *const cm = &cpi->common;
6251 int tile_idx;
6252 int i, j;
6253 TileDataEnc *tile_data;
6254 RD_OPT *rd_opt = &cpi->rd;
6255 for (i = 0; i < MAX_REF_FRAMES; i++) {
6256 for (j = 0; j < REFERENCE_MODES; j++)
6257 rd_opt->prediction_type_threshes[i][j] =
6258 rd_opt->prediction_type_threshes_prev[i][j];
6259
6260 for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; j++)
6261 rd_opt->filter_threshes[i][j] = rd_opt->filter_threshes_prev[i][j];
6262 }
6263
6264 for (tile_idx = 0; tile_idx < cpi->allocated_tiles; tile_idx++) {
6265 assert(cpi->tile_data);
6266 tile_data = &cpi->tile_data[tile_idx];
6267 vp9_copy(tile_data->thresh_freq_fact, tile_data->thresh_freq_fact_prev);
6268 }
6269
6270 cm->interp_filter = cpi->sf.default_interp_filter;
6271 }
6272
vp9_encode_frame(VP9_COMP * cpi)6273 void vp9_encode_frame(VP9_COMP *cpi) {
6274 VP9_COMMON *const cm = &cpi->common;
6275
6276 restore_encode_params(cpi);
6277
6278 #if CONFIG_MISMATCH_DEBUG
6279 mismatch_reset_frame(MAX_MB_PLANE);
6280 #endif
6281
6282 // In the longer term the encoder should be generalized to match the
6283 // decoder such that we allow compound where one of the 3 buffers has a
6284 // different sign bias and that buffer is then the fixed ref. However, this
6285 // requires further work in the rd loop. For now the only supported encoder
6286 // side behavior is where the ALT ref buffer has opposite sign bias to
6287 // the other two.
6288 if (!frame_is_intra_only(cm)) {
6289 if (vp9_compound_reference_allowed(cm)) {
6290 cpi->allow_comp_inter_inter = 1;
6291 vp9_setup_compound_reference_mode(cm);
6292 } else {
6293 cpi->allow_comp_inter_inter = 0;
6294 }
6295 }
6296
6297 if (cpi->sf.frame_parameter_update) {
6298 int i;
6299 RD_OPT *const rd_opt = &cpi->rd;
6300 FRAME_COUNTS *counts = cpi->td.counts;
6301 RD_COUNTS *const rdc = &cpi->td.rd_counts;
6302
6303 // This code does a single RD pass over the whole frame assuming
6304 // either compound, single or hybrid prediction as per whatever has
6305 // worked best for that type of frame in the past.
6306 // It also predicts whether another coding mode would have worked
6307 // better than this coding mode. If that is the case, it remembers
6308 // that for subsequent frames.
6309 // It also does the same analysis for transform size selection.
6310 const MV_REFERENCE_FRAME frame_type = get_frame_type(cpi);
6311 int64_t *const mode_thrs = rd_opt->prediction_type_threshes[frame_type];
6312 int64_t *const filter_thrs = rd_opt->filter_threshes[frame_type];
6313 const int is_alt_ref = frame_type == ALTREF_FRAME;
6314
6315 /* prediction (compound, single or hybrid) mode selection */
6316 if (is_alt_ref || !cpi->allow_comp_inter_inter)
6317 cm->reference_mode = SINGLE_REFERENCE;
6318 else if (mode_thrs[COMPOUND_REFERENCE] > mode_thrs[SINGLE_REFERENCE] &&
6319 mode_thrs[COMPOUND_REFERENCE] > mode_thrs[REFERENCE_MODE_SELECT] &&
6320 check_dual_ref_flags(cpi) && cpi->static_mb_pct == 100)
6321 cm->reference_mode = COMPOUND_REFERENCE;
6322 else if (mode_thrs[SINGLE_REFERENCE] > mode_thrs[REFERENCE_MODE_SELECT])
6323 cm->reference_mode = SINGLE_REFERENCE;
6324 else
6325 cm->reference_mode = REFERENCE_MODE_SELECT;
6326
6327 if (cm->interp_filter == SWITCHABLE)
6328 cm->interp_filter = get_interp_filter(filter_thrs, is_alt_ref);
6329
6330 #if CONFIG_COLLECT_COMPONENT_TIMING
6331 start_timing(cpi, encode_frame_internal_time);
6332 #endif
6333 encode_frame_internal(cpi);
6334 #if CONFIG_COLLECT_COMPONENT_TIMING
6335 end_timing(cpi, encode_frame_internal_time);
6336 #endif
6337
6338 for (i = 0; i < REFERENCE_MODES; ++i)
6339 mode_thrs[i] = (mode_thrs[i] + rdc->comp_pred_diff[i] / cm->MBs) / 2;
6340
6341 for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i)
6342 filter_thrs[i] = (filter_thrs[i] + rdc->filter_diff[i] / cm->MBs) / 2;
6343
6344 if (cm->reference_mode == REFERENCE_MODE_SELECT) {
6345 int single_count_zero = 0;
6346 int comp_count_zero = 0;
6347
6348 for (i = 0; i < COMP_INTER_CONTEXTS; i++) {
6349 single_count_zero += counts->comp_inter[i][0];
6350 comp_count_zero += counts->comp_inter[i][1];
6351 }
6352
6353 if (comp_count_zero == 0) {
6354 cm->reference_mode = SINGLE_REFERENCE;
6355 vp9_zero(counts->comp_inter);
6356 } else if (single_count_zero == 0) {
6357 cm->reference_mode = COMPOUND_REFERENCE;
6358 vp9_zero(counts->comp_inter);
6359 }
6360 }
6361
6362 if (cm->tx_mode == TX_MODE_SELECT) {
6363 int count4x4 = 0;
6364 int count8x8_lp = 0, count8x8_8x8p = 0;
6365 int count16x16_16x16p = 0, count16x16_lp = 0;
6366 int count32x32 = 0;
6367
6368 for (i = 0; i < TX_SIZE_CONTEXTS; ++i) {
6369 count4x4 += counts->tx.p32x32[i][TX_4X4];
6370 count4x4 += counts->tx.p16x16[i][TX_4X4];
6371 count4x4 += counts->tx.p8x8[i][TX_4X4];
6372
6373 count8x8_lp += counts->tx.p32x32[i][TX_8X8];
6374 count8x8_lp += counts->tx.p16x16[i][TX_8X8];
6375 count8x8_8x8p += counts->tx.p8x8[i][TX_8X8];
6376
6377 count16x16_16x16p += counts->tx.p16x16[i][TX_16X16];
6378 count16x16_lp += counts->tx.p32x32[i][TX_16X16];
6379 count32x32 += counts->tx.p32x32[i][TX_32X32];
6380 }
6381 if (count4x4 == 0 && count16x16_lp == 0 && count16x16_16x16p == 0 &&
6382 count32x32 == 0) {
6383 cm->tx_mode = ALLOW_8X8;
6384 reset_skip_tx_size(cm, TX_8X8);
6385 } else if (count8x8_8x8p == 0 && count16x16_16x16p == 0 &&
6386 count8x8_lp == 0 && count16x16_lp == 0 && count32x32 == 0) {
6387 cm->tx_mode = ONLY_4X4;
6388 reset_skip_tx_size(cm, TX_4X4);
6389 } else if (count8x8_lp == 0 && count16x16_lp == 0 && count4x4 == 0) {
6390 cm->tx_mode = ALLOW_32X32;
6391 } else if (count32x32 == 0 && count8x8_lp == 0 && count4x4 == 0) {
6392 cm->tx_mode = ALLOW_16X16;
6393 reset_skip_tx_size(cm, TX_16X16);
6394 }
6395 }
6396 } else {
6397 FRAME_COUNTS *counts = cpi->td.counts;
6398 cm->reference_mode = SINGLE_REFERENCE;
6399 if (cpi->allow_comp_inter_inter && cpi->sf.use_compound_nonrd_pickmode &&
6400 cpi->rc.alt_ref_gf_group && !cpi->rc.is_src_frame_alt_ref &&
6401 cm->frame_type != KEY_FRAME)
6402 cm->reference_mode = REFERENCE_MODE_SELECT;
6403
6404 encode_frame_internal(cpi);
6405
6406 if (cm->reference_mode == REFERENCE_MODE_SELECT) {
6407 int single_count_zero = 0;
6408 int comp_count_zero = 0;
6409 int i;
6410 for (i = 0; i < COMP_INTER_CONTEXTS; i++) {
6411 single_count_zero += counts->comp_inter[i][0];
6412 comp_count_zero += counts->comp_inter[i][1];
6413 }
6414 if (comp_count_zero == 0) {
6415 cm->reference_mode = SINGLE_REFERENCE;
6416 vp9_zero(counts->comp_inter);
6417 } else if (single_count_zero == 0) {
6418 cm->reference_mode = COMPOUND_REFERENCE;
6419 vp9_zero(counts->comp_inter);
6420 }
6421 }
6422 }
6423
6424 // If segmented AQ is enabled compute the average AQ weighting.
6425 if (cm->seg.enabled && (cpi->oxcf.aq_mode != NO_AQ) &&
6426 (cm->seg.update_map || cm->seg.update_data)) {
6427 cm->seg.aq_av_offset = compute_frame_aq_offset(cpi);
6428 }
6429 }
6430
sum_intra_stats(FRAME_COUNTS * counts,const MODE_INFO * mi)6431 static void sum_intra_stats(FRAME_COUNTS *counts, const MODE_INFO *mi) {
6432 const PREDICTION_MODE y_mode = mi->mode;
6433 const PREDICTION_MODE uv_mode = mi->uv_mode;
6434 const BLOCK_SIZE bsize = mi->sb_type;
6435
6436 if (bsize < BLOCK_8X8) {
6437 int idx, idy;
6438 const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
6439 const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
6440 for (idy = 0; idy < 2; idy += num_4x4_h)
6441 for (idx = 0; idx < 2; idx += num_4x4_w)
6442 ++counts->y_mode[0][mi->bmi[idy * 2 + idx].as_mode];
6443 } else {
6444 ++counts->y_mode[size_group_lookup[bsize]][y_mode];
6445 }
6446
6447 ++counts->uv_mode[y_mode][uv_mode];
6448 }
6449
update_zeromv_cnt(VP9_COMP * const cpi,const MODE_INFO * const mi,int mi_row,int mi_col,BLOCK_SIZE bsize)6450 static void update_zeromv_cnt(VP9_COMP *const cpi, const MODE_INFO *const mi,
6451 int mi_row, int mi_col, BLOCK_SIZE bsize) {
6452 const VP9_COMMON *const cm = &cpi->common;
6453 MV mv = mi->mv[0].as_mv;
6454 const int bw = num_8x8_blocks_wide_lookup[bsize];
6455 const int bh = num_8x8_blocks_high_lookup[bsize];
6456 const int xmis = VPXMIN(cm->mi_cols - mi_col, bw);
6457 const int ymis = VPXMIN(cm->mi_rows - mi_row, bh);
6458 const int block_index = mi_row * cm->mi_cols + mi_col;
6459 int x, y;
6460 for (y = 0; y < ymis; y++)
6461 for (x = 0; x < xmis; x++) {
6462 int map_offset = block_index + y * cm->mi_cols + x;
6463 if (mi->ref_frame[0] == LAST_FRAME && is_inter_block(mi) &&
6464 mi->segment_id <= CR_SEGMENT_ID_BOOST2) {
6465 if (abs(mv.row) < 8 && abs(mv.col) < 8) {
6466 if (cpi->consec_zero_mv[map_offset] < 255)
6467 cpi->consec_zero_mv[map_offset]++;
6468 } else {
6469 cpi->consec_zero_mv[map_offset] = 0;
6470 }
6471 }
6472 }
6473 }
6474
encode_superblock(VP9_COMP * cpi,ThreadData * td,TOKENEXTRA ** t,int output_enabled,int mi_row,int mi_col,BLOCK_SIZE bsize,PICK_MODE_CONTEXT * ctx)6475 static void encode_superblock(VP9_COMP *cpi, ThreadData *td, TOKENEXTRA **t,
6476 int output_enabled, int mi_row, int mi_col,
6477 BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx) {
6478 VP9_COMMON *const cm = &cpi->common;
6479 MACROBLOCK *const x = &td->mb;
6480 MACROBLOCKD *const xd = &x->e_mbd;
6481 MODE_INFO *mi = xd->mi[0];
6482 const int seg_skip =
6483 segfeature_active(&cm->seg, mi->segment_id, SEG_LVL_SKIP);
6484 x->skip_recode = !x->select_tx_size && mi->sb_type >= BLOCK_8X8 &&
6485 cpi->oxcf.aq_mode != COMPLEXITY_AQ &&
6486 cpi->oxcf.aq_mode != CYCLIC_REFRESH_AQ &&
6487 cpi->sf.allow_skip_recode;
6488
6489 if (!x->skip_recode && !cpi->sf.use_nonrd_pick_mode)
6490 memset(x->skip_txfm, 0, sizeof(x->skip_txfm));
6491
6492 x->skip_optimize = ctx->is_coded;
6493 ctx->is_coded = 1;
6494 x->use_lp32x32fdct = cpi->sf.use_lp32x32fdct;
6495 x->skip_encode = (!output_enabled && cpi->sf.skip_encode_frame &&
6496 x->q_index < QIDX_SKIP_THRESH);
6497
6498 if (x->skip_encode) return;
6499
6500 if (!is_inter_block(mi)) {
6501 int plane;
6502 #if CONFIG_BETTER_HW_COMPATIBILITY && CONFIG_VP9_HIGHBITDEPTH
6503 if ((xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) &&
6504 (xd->above_mi == NULL || xd->left_mi == NULL) &&
6505 need_top_left[mi->uv_mode])
6506 assert(0);
6507 #endif // CONFIG_BETTER_HW_COMPATIBILITY && CONFIG_VP9_HIGHBITDEPTH
6508 mi->skip = 1;
6509 for (plane = 0; plane < MAX_MB_PLANE; ++plane)
6510 vp9_encode_intra_block_plane(x, VPXMAX(bsize, BLOCK_8X8), plane, 1);
6511 if (output_enabled) sum_intra_stats(td->counts, mi);
6512 vp9_tokenize_sb(cpi, td, t, !output_enabled, seg_skip,
6513 VPXMAX(bsize, BLOCK_8X8));
6514 } else {
6515 int ref;
6516 const int is_compound = has_second_ref(mi);
6517 set_ref_ptrs(cm, xd, mi->ref_frame[0], mi->ref_frame[1]);
6518 for (ref = 0; ref < 1 + is_compound; ++ref) {
6519 YV12_BUFFER_CONFIG *cfg = get_ref_frame_buffer(cpi, mi->ref_frame[ref]);
6520 assert(cfg != NULL);
6521 vp9_setup_pre_planes(xd, ref, cfg, mi_row, mi_col,
6522 &xd->block_refs[ref]->sf);
6523 }
6524 if (!(cpi->sf.reuse_inter_pred_sby && ctx->pred_pixel_ready) || seg_skip)
6525 vp9_build_inter_predictors_sby(xd, mi_row, mi_col,
6526 VPXMAX(bsize, BLOCK_8X8));
6527
6528 vp9_build_inter_predictors_sbuv(xd, mi_row, mi_col,
6529 VPXMAX(bsize, BLOCK_8X8));
6530
6531 #if CONFIG_MISMATCH_DEBUG
6532 if (output_enabled) {
6533 int plane;
6534 for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
6535 const struct macroblockd_plane *pd = &xd->plane[plane];
6536 int pixel_c, pixel_r;
6537 const BLOCK_SIZE plane_bsize =
6538 get_plane_block_size(VPXMAX(bsize, BLOCK_8X8), &xd->plane[plane]);
6539 const int bw = get_block_width(plane_bsize);
6540 const int bh = get_block_height(plane_bsize);
6541 mi_to_pixel_loc(&pixel_c, &pixel_r, mi_col, mi_row, 0, 0,
6542 pd->subsampling_x, pd->subsampling_y);
6543
6544 mismatch_record_block_pre(pd->dst.buf, pd->dst.stride, plane, pixel_c,
6545 pixel_r, bw, bh,
6546 xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH);
6547 }
6548 }
6549 #endif
6550
6551 vp9_encode_sb(x, VPXMAX(bsize, BLOCK_8X8), mi_row, mi_col, output_enabled);
6552 vp9_tokenize_sb(cpi, td, t, !output_enabled, seg_skip,
6553 VPXMAX(bsize, BLOCK_8X8));
6554 }
6555
6556 if (seg_skip) {
6557 assert(mi->skip);
6558 }
6559
6560 if (output_enabled) {
6561 if (cm->tx_mode == TX_MODE_SELECT && mi->sb_type >= BLOCK_8X8 &&
6562 !(is_inter_block(mi) && mi->skip)) {
6563 ++get_tx_counts(max_txsize_lookup[bsize], get_tx_size_context(xd),
6564 &td->counts->tx)[mi->tx_size];
6565 } else {
6566 // The new intra coding scheme requires no change of transform size
6567 if (is_inter_block(mi)) {
6568 mi->tx_size = VPXMIN(tx_mode_to_biggest_tx_size[cm->tx_mode],
6569 max_txsize_lookup[bsize]);
6570 } else {
6571 mi->tx_size = (bsize >= BLOCK_8X8) ? mi->tx_size : TX_4X4;
6572 }
6573 }
6574
6575 ++td->counts->tx.tx_totals[mi->tx_size];
6576 ++td->counts->tx.tx_totals[get_uv_tx_size(mi, &xd->plane[1])];
6577 if (cm->seg.enabled && cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ &&
6578 cpi->cyclic_refresh->content_mode)
6579 vp9_cyclic_refresh_update_sb_postencode(cpi, mi, mi_row, mi_col, bsize);
6580 if (cpi->oxcf.pass == 0 && cpi->svc.temporal_layer_id == 0 &&
6581 (!cpi->use_svc ||
6582 (cpi->use_svc &&
6583 !cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame &&
6584 cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 1)))
6585 update_zeromv_cnt(cpi, mi, mi_row, mi_col, bsize);
6586 }
6587 }
6588