1 /*
2 * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include <limits.h>
12 #include <math.h>
13 #include <stdint.h>
14 #include <stdio.h>
15
16 #include "./vpx_dsp_rtcd.h"
17 #include "./vpx_scale_rtcd.h"
18
19 #include "vpx_dsp/vpx_dsp_common.h"
20 #include "vpx_mem/vpx_mem.h"
21 #include "vpx_ports/mem.h"
22 #include "vpx_ports/system_state.h"
23 #include "vpx_scale/vpx_scale.h"
24 #include "vpx_scale/yv12config.h"
25
26 #include "vp9/common/vp9_entropymv.h"
27 #include "vp9/common/vp9_quant_common.h"
28 #include "vp9/common/vp9_reconinter.h" // vp9_setup_dst_planes()
29 #include "vp9/encoder/vp9_aq_variance.h"
30 #include "vp9/encoder/vp9_block.h"
31 #include "vp9/encoder/vp9_encodeframe.h"
32 #include "vp9/encoder/vp9_encodemb.h"
33 #include "vp9/encoder/vp9_encodemv.h"
34 #include "vp9/encoder/vp9_encoder.h"
35 #include "vp9/encoder/vp9_ethread.h"
36 #include "vp9/encoder/vp9_extend.h"
37 #include "vp9/encoder/vp9_ext_ratectrl.h"
38 #include "vp9/encoder/vp9_firstpass.h"
39 #include "vp9/encoder/vp9_mcomp.h"
40 #include "vp9/encoder/vp9_quantize.h"
41 #include "vp9/encoder/vp9_ratectrl.h"
42 #include "vp9/encoder/vp9_rd.h"
43 #include "vpx/internal/vpx_codec_internal.h"
44 #include "vpx/vpx_codec.h"
45 #include "vpx/vpx_ext_ratectrl.h"
46 #include "vpx_dsp/variance.h"
47
48 #define OUTPUT_FPF 0
49 #define ARF_STATS_OUTPUT 0
50 #define COMPLEXITY_STATS_OUTPUT 0
51
52 #define FIRST_PASS_Q 10.0
53 #define NORMAL_BOOST 100
54 #define MIN_ARF_GF_BOOST 250
55 #define MIN_DECAY_FACTOR 0.01
56 #define NEW_MV_MODE_PENALTY 32
57 #define DARK_THRESH 64
58 #define LOW_I_THRESH 24000
59
60 #define NCOUNT_INTRA_THRESH 8192
61 #define NCOUNT_INTRA_FACTOR 3
62
63 #define INTRA_PART 0.005
64 #define DEFAULT_DECAY_LIMIT 0.75
65 #define LOW_SR_DIFF_TRHESH 0.1
66 #define LOW_CODED_ERR_PER_MB 10.0
67 #define NCOUNT_FRAME_II_THRESH 6.0
68 #define BASELINE_ERR_PER_MB 12500.0
69 #define GF_MAX_FRAME_BOOST 96.0
70
71 #ifdef AGGRESSIVE_VBR
72 #define KF_MIN_FRAME_BOOST 40.0
73 #define KF_MAX_FRAME_BOOST 80.0
74 #define MAX_KF_TOT_BOOST 4800
75 #else
76 #define KF_MIN_FRAME_BOOST 40.0
77 #define KF_MAX_FRAME_BOOST 96.0
78 #define MAX_KF_TOT_BOOST 5400
79 #endif
80
81 #define DEFAULT_ZM_FACTOR 0.5
82 #define MINQ_ADJ_LIMIT 48
83 #define MINQ_ADJ_LIMIT_CQ 20
84 #define HIGH_UNDERSHOOT_RATIO 2
85 #define AV_WQ_FACTOR 4.0
86
87 #define DOUBLE_DIVIDE_CHECK(x) ((x) < 0 ? (x)-0.000001 : (x) + 0.000001)
88
89 #if ARF_STATS_OUTPUT
90 unsigned int arf_count = 0;
91 #endif
92
93 // Resets the first pass file to the given position using a relative seek from
94 // the current position.
reset_fpf_position(TWO_PASS * p,const FIRSTPASS_STATS * position)95 static void reset_fpf_position(TWO_PASS *p, const FIRSTPASS_STATS *position) {
96 p->stats_in = position;
97 }
98
99 // Read frame stats at an offset from the current position.
read_frame_stats(const TWO_PASS * p,int offset)100 static const FIRSTPASS_STATS *read_frame_stats(const TWO_PASS *p, int offset) {
101 if ((offset >= 0 && p->stats_in + offset >= p->stats_in_end) ||
102 (offset < 0 && p->stats_in + offset < p->stats_in_start)) {
103 return NULL;
104 }
105
106 return &p->stats_in[offset];
107 }
108
input_stats(TWO_PASS * p,FIRSTPASS_STATS * fps)109 static int input_stats(TWO_PASS *p, FIRSTPASS_STATS *fps) {
110 if (p->stats_in >= p->stats_in_end) return EOF;
111
112 *fps = *p->stats_in;
113 ++p->stats_in;
114 return 1;
115 }
116
output_stats(FIRSTPASS_STATS * stats)117 static void output_stats(FIRSTPASS_STATS *stats) {
118 (void)stats;
119 // TEMP debug code
120 #if OUTPUT_FPF
121 {
122 FILE *fpfile;
123 fpfile = fopen("firstpass.stt", "a");
124
125 fprintf(fpfile,
126 "%12.0lf %12.4lf %12.2lf %12.2lf %12.2lf %12.0lf %12.4lf %12.4lf"
127 "%12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.4lf"
128 "%12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.0lf %12.4lf %12.0lf"
129 "%12.4lf"
130 "\n",
131 stats->frame, stats->weight, stats->intra_error, stats->coded_error,
132 stats->sr_coded_error, stats->frame_noise_energy, stats->pcnt_inter,
133 stats->pcnt_motion, stats->pcnt_second_ref, stats->pcnt_neutral,
134 stats->pcnt_intra_low, stats->pcnt_intra_high,
135 stats->intra_skip_pct, stats->intra_smooth_pct,
136 stats->inactive_zone_rows, stats->inactive_zone_cols, stats->MVr,
137 stats->mvr_abs, stats->MVc, stats->mvc_abs, stats->MVrv,
138 stats->MVcv, stats->mv_in_out_count, stats->count, stats->duration);
139 fclose(fpfile);
140 }
141 #endif
142 }
143
zero_stats(FIRSTPASS_STATS * section)144 static void zero_stats(FIRSTPASS_STATS *section) {
145 section->frame = 0.0;
146 section->weight = 0.0;
147 section->intra_error = 0.0;
148 section->coded_error = 0.0;
149 section->sr_coded_error = 0.0;
150 section->frame_noise_energy = 0.0;
151 section->pcnt_inter = 0.0;
152 section->pcnt_motion = 0.0;
153 section->pcnt_second_ref = 0.0;
154 section->pcnt_neutral = 0.0;
155 section->intra_skip_pct = 0.0;
156 section->intra_smooth_pct = 0.0;
157 section->pcnt_intra_low = 0.0;
158 section->pcnt_intra_high = 0.0;
159 section->inactive_zone_rows = 0.0;
160 section->inactive_zone_cols = 0.0;
161 section->new_mv_count = 0.0;
162 section->MVr = 0.0;
163 section->mvr_abs = 0.0;
164 section->MVc = 0.0;
165 section->mvc_abs = 0.0;
166 section->MVrv = 0.0;
167 section->MVcv = 0.0;
168 section->mv_in_out_count = 0.0;
169 section->count = 0.0;
170 section->duration = 1.0;
171 section->spatial_layer_id = 0;
172 }
173
accumulate_stats(FIRSTPASS_STATS * section,const FIRSTPASS_STATS * frame)174 static void accumulate_stats(FIRSTPASS_STATS *section,
175 const FIRSTPASS_STATS *frame) {
176 section->frame += frame->frame;
177 section->weight += frame->weight;
178 section->spatial_layer_id = frame->spatial_layer_id;
179 section->intra_error += frame->intra_error;
180 section->coded_error += frame->coded_error;
181 section->sr_coded_error += frame->sr_coded_error;
182 section->frame_noise_energy += frame->frame_noise_energy;
183 section->pcnt_inter += frame->pcnt_inter;
184 section->pcnt_motion += frame->pcnt_motion;
185 section->pcnt_second_ref += frame->pcnt_second_ref;
186 section->pcnt_neutral += frame->pcnt_neutral;
187 section->intra_skip_pct += frame->intra_skip_pct;
188 section->intra_smooth_pct += frame->intra_smooth_pct;
189 section->pcnt_intra_low += frame->pcnt_intra_low;
190 section->pcnt_intra_high += frame->pcnt_intra_high;
191 section->inactive_zone_rows += frame->inactive_zone_rows;
192 section->inactive_zone_cols += frame->inactive_zone_cols;
193 section->new_mv_count += frame->new_mv_count;
194 section->MVr += frame->MVr;
195 section->mvr_abs += frame->mvr_abs;
196 section->MVc += frame->MVc;
197 section->mvc_abs += frame->mvc_abs;
198 section->MVrv += frame->MVrv;
199 section->MVcv += frame->MVcv;
200 section->mv_in_out_count += frame->mv_in_out_count;
201 section->count += frame->count;
202 section->duration += frame->duration;
203 }
204
subtract_stats(FIRSTPASS_STATS * section,const FIRSTPASS_STATS * frame)205 static void subtract_stats(FIRSTPASS_STATS *section,
206 const FIRSTPASS_STATS *frame) {
207 section->frame -= frame->frame;
208 section->weight -= frame->weight;
209 section->intra_error -= frame->intra_error;
210 section->coded_error -= frame->coded_error;
211 section->sr_coded_error -= frame->sr_coded_error;
212 section->frame_noise_energy -= frame->frame_noise_energy;
213 section->pcnt_inter -= frame->pcnt_inter;
214 section->pcnt_motion -= frame->pcnt_motion;
215 section->pcnt_second_ref -= frame->pcnt_second_ref;
216 section->pcnt_neutral -= frame->pcnt_neutral;
217 section->intra_skip_pct -= frame->intra_skip_pct;
218 section->intra_smooth_pct -= frame->intra_smooth_pct;
219 section->pcnt_intra_low -= frame->pcnt_intra_low;
220 section->pcnt_intra_high -= frame->pcnt_intra_high;
221 section->inactive_zone_rows -= frame->inactive_zone_rows;
222 section->inactive_zone_cols -= frame->inactive_zone_cols;
223 section->new_mv_count -= frame->new_mv_count;
224 section->MVr -= frame->MVr;
225 section->mvr_abs -= frame->mvr_abs;
226 section->MVc -= frame->MVc;
227 section->mvc_abs -= frame->mvc_abs;
228 section->MVrv -= frame->MVrv;
229 section->MVcv -= frame->MVcv;
230 section->mv_in_out_count -= frame->mv_in_out_count;
231 section->count -= frame->count;
232 section->duration -= frame->duration;
233 }
234
235 // Calculate an active area of the image that discounts formatting
236 // bars and partially discounts other 0 energy areas.
237 #define MIN_ACTIVE_AREA 0.5
238 #define MAX_ACTIVE_AREA 1.0
calculate_active_area(const FRAME_INFO * frame_info,const FIRSTPASS_STATS * this_frame)239 static double calculate_active_area(const FRAME_INFO *frame_info,
240 const FIRSTPASS_STATS *this_frame) {
241 double active_pct;
242
243 active_pct =
244 1.0 -
245 ((this_frame->intra_skip_pct / 2) +
246 ((this_frame->inactive_zone_rows * 2) / (double)frame_info->mb_rows));
247 return fclamp(active_pct, MIN_ACTIVE_AREA, MAX_ACTIVE_AREA);
248 }
249
250 // Get the average weighted error for the clip (or corpus)
get_distribution_av_err(VP9_COMP * cpi,TWO_PASS * const twopass)251 static double get_distribution_av_err(VP9_COMP *cpi, TWO_PASS *const twopass) {
252 const double av_weight =
253 twopass->total_stats.weight / twopass->total_stats.count;
254
255 if (cpi->oxcf.vbr_corpus_complexity)
256 return av_weight * twopass->mean_mod_score;
257 else
258 return (twopass->total_stats.coded_error * av_weight) /
259 twopass->total_stats.count;
260 }
261
262 #define ACT_AREA_CORRECTION 0.5
263 // Calculate a modified Error used in distributing bits between easier and
264 // harder frames.
calculate_mod_frame_score(const VP9_COMP * cpi,const VP9EncoderConfig * oxcf,const FIRSTPASS_STATS * this_frame,const double av_err)265 static double calculate_mod_frame_score(const VP9_COMP *cpi,
266 const VP9EncoderConfig *oxcf,
267 const FIRSTPASS_STATS *this_frame,
268 const double av_err) {
269 double modified_score =
270 av_err * pow(this_frame->coded_error * this_frame->weight /
271 DOUBLE_DIVIDE_CHECK(av_err),
272 oxcf->two_pass_vbrbias / 100.0);
273
274 // Correction for active area. Frames with a reduced active area
275 // (eg due to formatting bars) have a higher error per mb for the
276 // remaining active MBs. The correction here assumes that coding
277 // 0.5N blocks of complexity 2X is a little easier than coding N
278 // blocks of complexity X.
279 modified_score *= pow(calculate_active_area(&cpi->frame_info, this_frame),
280 ACT_AREA_CORRECTION);
281
282 return modified_score;
283 }
284
calc_norm_frame_score(const VP9EncoderConfig * oxcf,const FRAME_INFO * frame_info,const FIRSTPASS_STATS * this_frame,double mean_mod_score,double av_err)285 static double calc_norm_frame_score(const VP9EncoderConfig *oxcf,
286 const FRAME_INFO *frame_info,
287 const FIRSTPASS_STATS *this_frame,
288 double mean_mod_score, double av_err) {
289 double modified_score =
290 av_err * pow(this_frame->coded_error * this_frame->weight /
291 DOUBLE_DIVIDE_CHECK(av_err),
292 oxcf->two_pass_vbrbias / 100.0);
293
294 const double min_score = (double)(oxcf->two_pass_vbrmin_section) / 100.0;
295 const double max_score = (double)(oxcf->two_pass_vbrmax_section) / 100.0;
296
297 // Correction for active area. Frames with a reduced active area
298 // (eg due to formatting bars) have a higher error per mb for the
299 // remaining active MBs. The correction here assumes that coding
300 // 0.5N blocks of complexity 2X is a little easier than coding N
301 // blocks of complexity X.
302 modified_score *=
303 pow(calculate_active_area(frame_info, this_frame), ACT_AREA_CORRECTION);
304
305 // Normalize to a midpoint score.
306 modified_score /= DOUBLE_DIVIDE_CHECK(mean_mod_score);
307 return fclamp(modified_score, min_score, max_score);
308 }
309
calculate_norm_frame_score(const VP9_COMP * cpi,const TWO_PASS * twopass,const VP9EncoderConfig * oxcf,const FIRSTPASS_STATS * this_frame,const double av_err)310 static double calculate_norm_frame_score(const VP9_COMP *cpi,
311 const TWO_PASS *twopass,
312 const VP9EncoderConfig *oxcf,
313 const FIRSTPASS_STATS *this_frame,
314 const double av_err) {
315 return calc_norm_frame_score(oxcf, &cpi->frame_info, this_frame,
316 twopass->mean_mod_score, av_err);
317 }
318
319 // This function returns the maximum target rate per frame.
frame_max_bits(const RATE_CONTROL * rc,const VP9EncoderConfig * oxcf)320 static int frame_max_bits(const RATE_CONTROL *rc,
321 const VP9EncoderConfig *oxcf) {
322 int64_t max_bits = ((int64_t)rc->avg_frame_bandwidth *
323 (int64_t)oxcf->two_pass_vbrmax_section) /
324 100;
325 if (max_bits < 0)
326 max_bits = 0;
327 else if (max_bits > rc->max_frame_bandwidth)
328 max_bits = rc->max_frame_bandwidth;
329
330 return (int)max_bits;
331 }
332
vp9_init_first_pass(VP9_COMP * cpi)333 void vp9_init_first_pass(VP9_COMP *cpi) {
334 zero_stats(&cpi->twopass.total_stats);
335 }
336
vp9_end_first_pass(VP9_COMP * cpi)337 void vp9_end_first_pass(VP9_COMP *cpi) {
338 output_stats(&cpi->twopass.total_stats);
339 cpi->twopass.first_pass_done = 1;
340 vpx_free(cpi->twopass.fp_mb_float_stats);
341 cpi->twopass.fp_mb_float_stats = NULL;
342 }
343
get_block_variance_fn(BLOCK_SIZE bsize)344 static vpx_variance_fn_t get_block_variance_fn(BLOCK_SIZE bsize) {
345 switch (bsize) {
346 case BLOCK_8X8: return vpx_mse8x8;
347 case BLOCK_16X8: return vpx_mse16x8;
348 case BLOCK_8X16: return vpx_mse8x16;
349 default: return vpx_mse16x16;
350 }
351 }
352
get_prediction_error(BLOCK_SIZE bsize,const struct buf_2d * src,const struct buf_2d * ref)353 static unsigned int get_prediction_error(BLOCK_SIZE bsize,
354 const struct buf_2d *src,
355 const struct buf_2d *ref) {
356 unsigned int sse;
357 const vpx_variance_fn_t fn = get_block_variance_fn(bsize);
358 fn(src->buf, src->stride, ref->buf, ref->stride, &sse);
359 return sse;
360 }
361
362 #if CONFIG_VP9_HIGHBITDEPTH
highbd_get_block_variance_fn(BLOCK_SIZE bsize,int bd)363 static vpx_variance_fn_t highbd_get_block_variance_fn(BLOCK_SIZE bsize,
364 int bd) {
365 switch (bd) {
366 default:
367 switch (bsize) {
368 case BLOCK_8X8: return vpx_highbd_8_mse8x8;
369 case BLOCK_16X8: return vpx_highbd_8_mse16x8;
370 case BLOCK_8X16: return vpx_highbd_8_mse8x16;
371 default: return vpx_highbd_8_mse16x16;
372 }
373 case 10:
374 switch (bsize) {
375 case BLOCK_8X8: return vpx_highbd_10_mse8x8;
376 case BLOCK_16X8: return vpx_highbd_10_mse16x8;
377 case BLOCK_8X16: return vpx_highbd_10_mse8x16;
378 default: return vpx_highbd_10_mse16x16;
379 }
380 case 12:
381 switch (bsize) {
382 case BLOCK_8X8: return vpx_highbd_12_mse8x8;
383 case BLOCK_16X8: return vpx_highbd_12_mse16x8;
384 case BLOCK_8X16: return vpx_highbd_12_mse8x16;
385 default: return vpx_highbd_12_mse16x16;
386 }
387 }
388 }
389
highbd_get_prediction_error(BLOCK_SIZE bsize,const struct buf_2d * src,const struct buf_2d * ref,int bd)390 static unsigned int highbd_get_prediction_error(BLOCK_SIZE bsize,
391 const struct buf_2d *src,
392 const struct buf_2d *ref,
393 int bd) {
394 unsigned int sse;
395 const vpx_variance_fn_t fn = highbd_get_block_variance_fn(bsize, bd);
396 fn(src->buf, src->stride, ref->buf, ref->stride, &sse);
397 return sse;
398 }
399 #endif // CONFIG_VP9_HIGHBITDEPTH
400
401 // Refine the motion search range according to the frame dimension
402 // for first pass test.
get_search_range(const VP9_COMP * cpi)403 static int get_search_range(const VP9_COMP *cpi) {
404 int sr = 0;
405 const int dim = VPXMIN(cpi->initial_width, cpi->initial_height);
406
407 while ((dim << sr) < MAX_FULL_PEL_VAL) ++sr;
408 return sr;
409 }
410
411 // Reduce limits to keep the motion search within MV_MAX of ref_mv. Not doing
412 // this can be problematic for big videos (8K) and may cause assert failure
413 // (or memory violation) in mv_cost. Limits are only modified if they would
414 // be non-empty. Returns 1 if limits are non-empty.
intersect_limits_with_mv_max(MvLimits * mv_limits,const MV * ref_mv)415 static int intersect_limits_with_mv_max(MvLimits *mv_limits, const MV *ref_mv) {
416 const int row_min =
417 VPXMAX(mv_limits->row_min, (ref_mv->row + 7 - MV_MAX) >> 3);
418 const int row_max =
419 VPXMIN(mv_limits->row_max, (ref_mv->row - 1 + MV_MAX) >> 3);
420 const int col_min =
421 VPXMAX(mv_limits->col_min, (ref_mv->col + 7 - MV_MAX) >> 3);
422 const int col_max =
423 VPXMIN(mv_limits->col_max, (ref_mv->col - 1 + MV_MAX) >> 3);
424 if (row_min > row_max || col_min > col_max) {
425 return 0;
426 }
427 mv_limits->row_min = row_min;
428 mv_limits->row_max = row_max;
429 mv_limits->col_min = col_min;
430 mv_limits->col_max = col_max;
431 return 1;
432 }
433
first_pass_motion_search(VP9_COMP * cpi,MACROBLOCK * x,const MV * ref_mv,MV * best_mv,int * best_motion_err)434 static void first_pass_motion_search(VP9_COMP *cpi, MACROBLOCK *x,
435 const MV *ref_mv, MV *best_mv,
436 int *best_motion_err) {
437 MACROBLOCKD *const xd = &x->e_mbd;
438 MV tmp_mv = { 0, 0 };
439 MV ref_mv_full = { ref_mv->row >> 3, ref_mv->col >> 3 };
440 int num00, tmp_err, n;
441 const BLOCK_SIZE bsize = xd->mi[0]->sb_type;
442 vp9_variance_fn_ptr_t v_fn_ptr = cpi->fn_ptr[bsize];
443 const int new_mv_mode_penalty = NEW_MV_MODE_PENALTY;
444 MV center_mv_full = ref_mv_full;
445 unsigned int start_mv_sad;
446 vp9_sad_fn_ptr_t sad_fn_ptr;
447
448 int step_param = 3;
449 int further_steps = (MAX_MVSEARCH_STEPS - 1) - step_param;
450 const int sr = get_search_range(cpi);
451 const MvLimits tmp_mv_limits = x->mv_limits;
452 step_param += sr;
453 further_steps -= sr;
454
455 if (!intersect_limits_with_mv_max(&x->mv_limits, ref_mv)) {
456 return;
457 }
458
459 // Override the default variance function to use MSE.
460 v_fn_ptr.vf = get_block_variance_fn(bsize);
461 #if CONFIG_VP9_HIGHBITDEPTH
462 if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
463 v_fn_ptr.vf = highbd_get_block_variance_fn(bsize, xd->bd);
464 }
465 #endif // CONFIG_VP9_HIGHBITDEPTH
466
467 // Calculate SAD of the start mv
468 clamp_mv(&ref_mv_full, x->mv_limits.col_min, x->mv_limits.col_max,
469 x->mv_limits.row_min, x->mv_limits.row_max);
470 start_mv_sad = get_start_mv_sad(x, &ref_mv_full, ¢er_mv_full,
471 cpi->fn_ptr[bsize].sdf, x->sadperbit16);
472 sad_fn_ptr.sdf = cpi->fn_ptr[bsize].sdf;
473 sad_fn_ptr.sdx4df = cpi->fn_ptr[bsize].sdx4df;
474
475 // Center the initial step/diamond search on best mv.
476 tmp_err = cpi->diamond_search_sad(x, &cpi->ss_cfg, &ref_mv_full, start_mv_sad,
477 &tmp_mv, step_param, x->sadperbit16, &num00,
478 &sad_fn_ptr, ref_mv);
479 if (tmp_err < INT_MAX)
480 tmp_err = vp9_get_mvpred_var(x, &tmp_mv, ref_mv, &v_fn_ptr, 1);
481 if (tmp_err < INT_MAX - new_mv_mode_penalty) tmp_err += new_mv_mode_penalty;
482
483 if (tmp_err < *best_motion_err) {
484 *best_motion_err = tmp_err;
485 *best_mv = tmp_mv;
486 }
487
488 // Carry out further step/diamond searches as necessary.
489 n = num00;
490 num00 = 0;
491
492 while (n < further_steps) {
493 ++n;
494
495 if (num00) {
496 --num00;
497 } else {
498 tmp_err = cpi->diamond_search_sad(
499 x, &cpi->ss_cfg, &ref_mv_full, start_mv_sad, &tmp_mv, step_param + n,
500 x->sadperbit16, &num00, &sad_fn_ptr, ref_mv);
501 if (tmp_err < INT_MAX)
502 tmp_err = vp9_get_mvpred_var(x, &tmp_mv, ref_mv, &v_fn_ptr, 1);
503 if (tmp_err < INT_MAX - new_mv_mode_penalty)
504 tmp_err += new_mv_mode_penalty;
505
506 if (tmp_err < *best_motion_err) {
507 *best_motion_err = tmp_err;
508 *best_mv = tmp_mv;
509 }
510 }
511 }
512 x->mv_limits = tmp_mv_limits;
513 }
514
get_bsize(const VP9_COMMON * cm,int mb_row,int mb_col)515 static BLOCK_SIZE get_bsize(const VP9_COMMON *cm, int mb_row, int mb_col) {
516 if (2 * mb_col + 1 < cm->mi_cols) {
517 return 2 * mb_row + 1 < cm->mi_rows ? BLOCK_16X16 : BLOCK_16X8;
518 } else {
519 return 2 * mb_row + 1 < cm->mi_rows ? BLOCK_8X16 : BLOCK_8X8;
520 }
521 }
522
find_fp_qindex(vpx_bit_depth_t bit_depth)523 static int find_fp_qindex(vpx_bit_depth_t bit_depth) {
524 int i;
525
526 for (i = 0; i < QINDEX_RANGE; ++i)
527 if (vp9_convert_qindex_to_q(i, bit_depth) >= FIRST_PASS_Q) break;
528
529 if (i == QINDEX_RANGE) i--;
530
531 return i;
532 }
533
set_first_pass_params(VP9_COMP * cpi)534 static void set_first_pass_params(VP9_COMP *cpi) {
535 VP9_COMMON *const cm = &cpi->common;
536 if (!cpi->refresh_alt_ref_frame &&
537 (cm->current_video_frame == 0 || (cpi->frame_flags & FRAMEFLAGS_KEY))) {
538 cm->frame_type = KEY_FRAME;
539 } else {
540 cm->frame_type = INTER_FRAME;
541 }
542 // Do not use periodic key frames.
543 cpi->rc.frames_to_key = INT_MAX;
544 }
545
546 // Scale an sse threshold to account for 8/10/12 bit.
scale_sse_threshold(VP9_COMMON * cm,int thresh)547 static int scale_sse_threshold(VP9_COMMON *cm, int thresh) {
548 int ret_val = thresh;
549 #if CONFIG_VP9_HIGHBITDEPTH
550 if (cm->use_highbitdepth) {
551 switch (cm->bit_depth) {
552 case VPX_BITS_8: ret_val = thresh; break;
553 case VPX_BITS_10: ret_val = thresh << 4; break;
554 default:
555 assert(cm->bit_depth == VPX_BITS_12);
556 ret_val = thresh << 8;
557 break;
558 }
559 }
560 #else
561 (void)cm;
562 #endif // CONFIG_VP9_HIGHBITDEPTH
563 return ret_val;
564 }
565
566 // This threshold is used to track blocks where to all intents and purposes
567 // the intra prediction error 0. Though the metric we test against
568 // is technically a sse we are mainly interested in blocks where all the pixels
569 // in the 8 bit domain have an error of <= 1 (where error = sse) so a
570 // linear scaling for 10 and 12 bit gives similar results.
571 #define UL_INTRA_THRESH 50
get_ul_intra_threshold(VP9_COMMON * cm)572 static int get_ul_intra_threshold(VP9_COMMON *cm) {
573 int ret_val = UL_INTRA_THRESH;
574 #if CONFIG_VP9_HIGHBITDEPTH
575 if (cm->use_highbitdepth) {
576 switch (cm->bit_depth) {
577 case VPX_BITS_8: ret_val = UL_INTRA_THRESH; break;
578 case VPX_BITS_10: ret_val = UL_INTRA_THRESH << 2; break;
579 default:
580 assert(cm->bit_depth == VPX_BITS_12);
581 ret_val = UL_INTRA_THRESH << 4;
582 break;
583 }
584 }
585 #else
586 (void)cm;
587 #endif // CONFIG_VP9_HIGHBITDEPTH
588 return ret_val;
589 }
590
591 #define SMOOTH_INTRA_THRESH 4000
get_smooth_intra_threshold(VP9_COMMON * cm)592 static int get_smooth_intra_threshold(VP9_COMMON *cm) {
593 int ret_val = SMOOTH_INTRA_THRESH;
594 #if CONFIG_VP9_HIGHBITDEPTH
595 if (cm->use_highbitdepth) {
596 switch (cm->bit_depth) {
597 case VPX_BITS_8: ret_val = SMOOTH_INTRA_THRESH; break;
598 case VPX_BITS_10: ret_val = SMOOTH_INTRA_THRESH << 4; break;
599 default:
600 assert(cm->bit_depth == VPX_BITS_12);
601 ret_val = SMOOTH_INTRA_THRESH << 8;
602 break;
603 }
604 }
605 #else
606 (void)cm;
607 #endif // CONFIG_VP9_HIGHBITDEPTH
608 return ret_val;
609 }
610
611 #define FP_DN_THRESH 8
612 #define FP_MAX_DN_THRESH 24
613 #define KERNEL_SIZE 3
614
615 // Baseline Kernel weights for first pass noise metric
616 static uint8_t fp_dn_kernel_3[KERNEL_SIZE * KERNEL_SIZE] = { 1, 2, 1, 2, 4,
617 2, 1, 2, 1 };
618
619 // Estimate noise at a single point based on the impact of a spatial kernel
620 // on the point value
fp_estimate_point_noise(uint8_t * src_ptr,const int stride)621 static int fp_estimate_point_noise(uint8_t *src_ptr, const int stride) {
622 int sum_weight = 0;
623 int sum_val = 0;
624 int i, j;
625 int max_diff = 0;
626 int diff;
627 int dn_diff;
628 uint8_t *tmp_ptr;
629 uint8_t *kernel_ptr;
630 uint8_t dn_val;
631 uint8_t centre_val = *src_ptr;
632
633 kernel_ptr = fp_dn_kernel_3;
634
635 // Apply the kernel
636 tmp_ptr = src_ptr - stride - 1;
637 for (i = 0; i < KERNEL_SIZE; ++i) {
638 for (j = 0; j < KERNEL_SIZE; ++j) {
639 diff = abs((int)centre_val - (int)tmp_ptr[j]);
640 max_diff = VPXMAX(max_diff, diff);
641 if (diff <= FP_DN_THRESH) {
642 sum_weight += *kernel_ptr;
643 sum_val += (int)tmp_ptr[j] * (int)*kernel_ptr;
644 }
645 ++kernel_ptr;
646 }
647 tmp_ptr += stride;
648 }
649
650 if (max_diff < FP_MAX_DN_THRESH)
651 // Update the source value with the new filtered value
652 dn_val = (sum_val + (sum_weight >> 1)) / sum_weight;
653 else
654 dn_val = *src_ptr;
655
656 // return the noise energy as the square of the difference between the
657 // denoised and raw value.
658 dn_diff = (int)*src_ptr - (int)dn_val;
659 return dn_diff * dn_diff;
660 }
661 #if CONFIG_VP9_HIGHBITDEPTH
fp_highbd_estimate_point_noise(uint8_t * src_ptr,const int stride)662 static int fp_highbd_estimate_point_noise(uint8_t *src_ptr, const int stride) {
663 int sum_weight = 0;
664 int sum_val = 0;
665 int i, j;
666 int max_diff = 0;
667 int diff;
668 int dn_diff;
669 uint8_t *tmp_ptr;
670 uint16_t *tmp_ptr16;
671 uint8_t *kernel_ptr;
672 uint16_t dn_val;
673 uint16_t centre_val = *CONVERT_TO_SHORTPTR(src_ptr);
674
675 kernel_ptr = fp_dn_kernel_3;
676
677 // Apply the kernel
678 tmp_ptr = src_ptr - stride - 1;
679 for (i = 0; i < KERNEL_SIZE; ++i) {
680 tmp_ptr16 = CONVERT_TO_SHORTPTR(tmp_ptr);
681 for (j = 0; j < KERNEL_SIZE; ++j) {
682 diff = abs((int)centre_val - (int)tmp_ptr16[j]);
683 max_diff = VPXMAX(max_diff, diff);
684 if (diff <= FP_DN_THRESH) {
685 sum_weight += *kernel_ptr;
686 sum_val += (int)tmp_ptr16[j] * (int)*kernel_ptr;
687 }
688 ++kernel_ptr;
689 }
690 tmp_ptr += stride;
691 }
692
693 if (max_diff < FP_MAX_DN_THRESH)
694 // Update the source value with the new filtered value
695 dn_val = (sum_val + (sum_weight >> 1)) / sum_weight;
696 else
697 dn_val = *CONVERT_TO_SHORTPTR(src_ptr);
698
699 // return the noise energy as the square of the difference between the
700 // denoised and raw value.
701 dn_diff = (int)(*CONVERT_TO_SHORTPTR(src_ptr)) - (int)dn_val;
702 return dn_diff * dn_diff;
703 }
704 #endif
705
706 // Estimate noise for a block.
fp_estimate_block_noise(MACROBLOCK * x,BLOCK_SIZE bsize)707 static int fp_estimate_block_noise(MACROBLOCK *x, BLOCK_SIZE bsize) {
708 #if CONFIG_VP9_HIGHBITDEPTH
709 MACROBLOCKD *xd = &x->e_mbd;
710 #endif
711 uint8_t *src_ptr = &x->plane[0].src.buf[0];
712 const int width = num_4x4_blocks_wide_lookup[bsize] * 4;
713 const int height = num_4x4_blocks_high_lookup[bsize] * 4;
714 int w, h;
715 int stride = x->plane[0].src.stride;
716 int block_noise = 0;
717
718 // Sampled points to reduce cost overhead.
719 for (h = 0; h < height; h += 2) {
720 for (w = 0; w < width; w += 2) {
721 #if CONFIG_VP9_HIGHBITDEPTH
722 if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
723 block_noise += fp_highbd_estimate_point_noise(src_ptr, stride);
724 else
725 block_noise += fp_estimate_point_noise(src_ptr, stride);
726 #else
727 block_noise += fp_estimate_point_noise(src_ptr, stride);
728 #endif
729 ++src_ptr;
730 }
731 src_ptr += (stride - width);
732 }
733 return block_noise << 2; // Scale << 2 to account for sampling.
734 }
735
736 // This function is called to test the functionality of row based
737 // multi-threading in unit tests for bit-exactness
accumulate_floating_point_stats(VP9_COMP * cpi,TileDataEnc * first_tile_col)738 static void accumulate_floating_point_stats(VP9_COMP *cpi,
739 TileDataEnc *first_tile_col) {
740 VP9_COMMON *const cm = &cpi->common;
741 int mb_row, mb_col;
742 first_tile_col->fp_data.intra_factor = 0;
743 first_tile_col->fp_data.brightness_factor = 0;
744 first_tile_col->fp_data.neutral_count = 0;
745 for (mb_row = 0; mb_row < cm->mb_rows; ++mb_row) {
746 for (mb_col = 0; mb_col < cm->mb_cols; ++mb_col) {
747 const int mb_index = mb_row * cm->mb_cols + mb_col;
748 first_tile_col->fp_data.intra_factor +=
749 cpi->twopass.fp_mb_float_stats[mb_index].frame_mb_intra_factor;
750 first_tile_col->fp_data.brightness_factor +=
751 cpi->twopass.fp_mb_float_stats[mb_index].frame_mb_brightness_factor;
752 first_tile_col->fp_data.neutral_count +=
753 cpi->twopass.fp_mb_float_stats[mb_index].frame_mb_neutral_count;
754 }
755 }
756 }
757
first_pass_stat_calc(VP9_COMP * cpi,FIRSTPASS_STATS * fps,FIRSTPASS_DATA * fp_acc_data)758 static void first_pass_stat_calc(VP9_COMP *cpi, FIRSTPASS_STATS *fps,
759 FIRSTPASS_DATA *fp_acc_data) {
760 VP9_COMMON *const cm = &cpi->common;
761 // The minimum error here insures some bit allocation to frames even
762 // in static regions. The allocation per MB declines for larger formats
763 // where the typical "real" energy per MB also falls.
764 // Initial estimate here uses sqrt(mbs) to define the min_err, where the
765 // number of mbs is proportional to the image area.
766 const int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE) ? cpi->initial_mbs
767 : cpi->common.MBs;
768 const double min_err = 200 * sqrt(num_mbs);
769
770 // Clamp the image start to rows/2. This number of rows is discarded top
771 // and bottom as dead data so rows / 2 means the frame is blank.
772 if ((fp_acc_data->image_data_start_row > cm->mb_rows / 2) ||
773 (fp_acc_data->image_data_start_row == INVALID_ROW)) {
774 fp_acc_data->image_data_start_row = cm->mb_rows / 2;
775 }
776 // Exclude any image dead zone
777 if (fp_acc_data->image_data_start_row > 0) {
778 fp_acc_data->intra_skip_count =
779 VPXMAX(0, fp_acc_data->intra_skip_count -
780 (fp_acc_data->image_data_start_row * cm->mb_cols * 2));
781 }
782
783 fp_acc_data->intra_factor = fp_acc_data->intra_factor / (double)num_mbs;
784 fp_acc_data->brightness_factor =
785 fp_acc_data->brightness_factor / (double)num_mbs;
786 fps->weight = fp_acc_data->intra_factor * fp_acc_data->brightness_factor;
787
788 fps->frame = cm->current_video_frame;
789 fps->spatial_layer_id = cpi->svc.spatial_layer_id;
790
791 fps->coded_error =
792 ((double)(fp_acc_data->coded_error >> 8) + min_err) / num_mbs;
793 fps->sr_coded_error =
794 ((double)(fp_acc_data->sr_coded_error >> 8) + min_err) / num_mbs;
795 fps->intra_error =
796 ((double)(fp_acc_data->intra_error >> 8) + min_err) / num_mbs;
797
798 fps->frame_noise_energy =
799 (double)(fp_acc_data->frame_noise_energy) / (double)num_mbs;
800 fps->count = 1.0;
801 fps->pcnt_inter = (double)(fp_acc_data->intercount) / num_mbs;
802 fps->pcnt_second_ref = (double)(fp_acc_data->second_ref_count) / num_mbs;
803 fps->pcnt_neutral = (double)(fp_acc_data->neutral_count) / num_mbs;
804 fps->pcnt_intra_low = (double)(fp_acc_data->intra_count_low) / num_mbs;
805 fps->pcnt_intra_high = (double)(fp_acc_data->intra_count_high) / num_mbs;
806 fps->intra_skip_pct = (double)(fp_acc_data->intra_skip_count) / num_mbs;
807 fps->intra_smooth_pct = (double)(fp_acc_data->intra_smooth_count) / num_mbs;
808 fps->inactive_zone_rows = (double)(fp_acc_data->image_data_start_row);
809 // Currently set to 0 as most issues relate to letter boxing.
810 fps->inactive_zone_cols = (double)0;
811
812 if (fp_acc_data->mvcount > 0) {
813 fps->new_mv_count = (double)(fp_acc_data->new_mv_count) / num_mbs;
814 fps->MVr = (double)(fp_acc_data->sum_mvr) / fp_acc_data->mvcount;
815 fps->mvr_abs = (double)(fp_acc_data->sum_mvr_abs) / fp_acc_data->mvcount;
816 fps->MVc = (double)(fp_acc_data->sum_mvc) / fp_acc_data->mvcount;
817 fps->mvc_abs = (double)(fp_acc_data->sum_mvc_abs) / fp_acc_data->mvcount;
818 fps->MVrv = ((double)(fp_acc_data->sum_mvrs) -
819 ((double)(fp_acc_data->sum_mvr) * (fp_acc_data->sum_mvr) /
820 fp_acc_data->mvcount)) /
821 fp_acc_data->mvcount;
822 fps->MVcv = ((double)(fp_acc_data->sum_mvcs) -
823 ((double)(fp_acc_data->sum_mvc) * (fp_acc_data->sum_mvc) /
824 fp_acc_data->mvcount)) /
825 fp_acc_data->mvcount;
826 fps->mv_in_out_count =
827 (double)(fp_acc_data->sum_in_vectors) / (fp_acc_data->mvcount * 2);
828 fps->pcnt_motion = (double)(fp_acc_data->mvcount) / num_mbs;
829 } else {
830 fps->new_mv_count = 0.0;
831 fps->MVr = 0.0;
832 fps->mvr_abs = 0.0;
833 fps->MVc = 0.0;
834 fps->mvc_abs = 0.0;
835 fps->MVrv = 0.0;
836 fps->MVcv = 0.0;
837 fps->mv_in_out_count = 0.0;
838 fps->pcnt_motion = 0.0;
839 }
840 }
841
accumulate_fp_mb_row_stat(TileDataEnc * this_tile,FIRSTPASS_DATA * fp_acc_data)842 static void accumulate_fp_mb_row_stat(TileDataEnc *this_tile,
843 FIRSTPASS_DATA *fp_acc_data) {
844 this_tile->fp_data.intra_factor += fp_acc_data->intra_factor;
845 this_tile->fp_data.brightness_factor += fp_acc_data->brightness_factor;
846 this_tile->fp_data.coded_error += fp_acc_data->coded_error;
847 this_tile->fp_data.sr_coded_error += fp_acc_data->sr_coded_error;
848 this_tile->fp_data.frame_noise_energy += fp_acc_data->frame_noise_energy;
849 this_tile->fp_data.intra_error += fp_acc_data->intra_error;
850 this_tile->fp_data.intercount += fp_acc_data->intercount;
851 this_tile->fp_data.second_ref_count += fp_acc_data->second_ref_count;
852 this_tile->fp_data.neutral_count += fp_acc_data->neutral_count;
853 this_tile->fp_data.intra_count_low += fp_acc_data->intra_count_low;
854 this_tile->fp_data.intra_count_high += fp_acc_data->intra_count_high;
855 this_tile->fp_data.intra_skip_count += fp_acc_data->intra_skip_count;
856 this_tile->fp_data.new_mv_count += fp_acc_data->new_mv_count;
857 this_tile->fp_data.mvcount += fp_acc_data->mvcount;
858 this_tile->fp_data.sum_mvr += fp_acc_data->sum_mvr;
859 this_tile->fp_data.sum_mvr_abs += fp_acc_data->sum_mvr_abs;
860 this_tile->fp_data.sum_mvc += fp_acc_data->sum_mvc;
861 this_tile->fp_data.sum_mvc_abs += fp_acc_data->sum_mvc_abs;
862 this_tile->fp_data.sum_mvrs += fp_acc_data->sum_mvrs;
863 this_tile->fp_data.sum_mvcs += fp_acc_data->sum_mvcs;
864 this_tile->fp_data.sum_in_vectors += fp_acc_data->sum_in_vectors;
865 this_tile->fp_data.intra_smooth_count += fp_acc_data->intra_smooth_count;
866 this_tile->fp_data.image_data_start_row =
867 VPXMIN(this_tile->fp_data.image_data_start_row,
868 fp_acc_data->image_data_start_row) == INVALID_ROW
869 ? VPXMAX(this_tile->fp_data.image_data_start_row,
870 fp_acc_data->image_data_start_row)
871 : VPXMIN(this_tile->fp_data.image_data_start_row,
872 fp_acc_data->image_data_start_row);
873 }
874
875 #if CONFIG_RATE_CTRL
store_fp_motion_vector(VP9_COMP * cpi,const MV * mv,const int mb_row,const int mb_col,MV_REFERENCE_FRAME frame_type,const int mv_idx)876 static void store_fp_motion_vector(VP9_COMP *cpi, const MV *mv,
877 const int mb_row, const int mb_col,
878 MV_REFERENCE_FRAME frame_type,
879 const int mv_idx) {
880 VP9_COMMON *const cm = &cpi->common;
881 const int mb_index = mb_row * cm->mb_cols + mb_col;
882 MOTION_VECTOR_INFO *this_motion_vector_info =
883 &cpi->fp_motion_vector_info[mb_index];
884 this_motion_vector_info->ref_frame[mv_idx] = frame_type;
885 if (frame_type != INTRA_FRAME) {
886 this_motion_vector_info->mv[mv_idx].as_mv = *mv;
887 }
888 }
889 #endif // CONFIG_RATE_CTRL
890
891 #define NZ_MOTION_PENALTY 128
892 #define INTRA_MODE_PENALTY 1024
vp9_first_pass_encode_tile_mb_row(VP9_COMP * cpi,ThreadData * td,FIRSTPASS_DATA * fp_acc_data,TileDataEnc * tile_data,MV * best_ref_mv,int mb_row)893 void vp9_first_pass_encode_tile_mb_row(VP9_COMP *cpi, ThreadData *td,
894 FIRSTPASS_DATA *fp_acc_data,
895 TileDataEnc *tile_data, MV *best_ref_mv,
896 int mb_row) {
897 int mb_col;
898 MACROBLOCK *const x = &td->mb;
899 VP9_COMMON *const cm = &cpi->common;
900 MACROBLOCKD *const xd = &x->e_mbd;
901 TileInfo tile = tile_data->tile_info;
902 const int mb_col_start = ROUND_POWER_OF_TWO(tile.mi_col_start, 1);
903 const int mb_col_end = ROUND_POWER_OF_TWO(tile.mi_col_end, 1);
904 struct macroblock_plane *const p = x->plane;
905 struct macroblockd_plane *const pd = xd->plane;
906 const PICK_MODE_CONTEXT *ctx = &td->pc_root->none;
907 int i, c;
908 int num_mb_cols = get_num_cols(tile_data->tile_info, 1);
909
910 int recon_yoffset, recon_uvoffset;
911 const int intrapenalty = INTRA_MODE_PENALTY;
912 const MV zero_mv = { 0, 0 };
913 int recon_y_stride, recon_uv_stride, uv_mb_height;
914
915 YV12_BUFFER_CONFIG *const lst_yv12 = get_ref_frame_buffer(cpi, LAST_FRAME);
916 YV12_BUFFER_CONFIG *gld_yv12 = get_ref_frame_buffer(cpi, GOLDEN_FRAME);
917 YV12_BUFFER_CONFIG *const new_yv12 = get_frame_new_buffer(cm);
918 const YV12_BUFFER_CONFIG *first_ref_buf = lst_yv12;
919
920 MODE_INFO mi_above, mi_left;
921
922 double mb_intra_factor;
923 double mb_brightness_factor;
924 double mb_neutral_count;
925 int scaled_low_intra_thresh = scale_sse_threshold(cm, LOW_I_THRESH);
926
927 MV *first_top_mv = &tile_data->firstpass_top_mv;
928 MV last_nonzero_mv = { 0, 0 };
929
930 // First pass code requires valid last and new frame buffers.
931 assert(new_yv12 != NULL);
932 assert(frame_is_intra_only(cm) || (lst_yv12 != NULL));
933
934 xd->mi = cm->mi_grid_visible + xd->mi_stride * (mb_row << 1) + mb_col_start;
935 xd->mi[0] = cm->mi + xd->mi_stride * (mb_row << 1) + mb_col_start;
936
937 for (i = 0; i < MAX_MB_PLANE; ++i) {
938 p[i].coeff = ctx->coeff_pbuf[i][1];
939 p[i].qcoeff = ctx->qcoeff_pbuf[i][1];
940 pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][1];
941 p[i].eobs = ctx->eobs_pbuf[i][1];
942 }
943
944 recon_y_stride = new_yv12->y_stride;
945 recon_uv_stride = new_yv12->uv_stride;
946 uv_mb_height = 16 >> (new_yv12->y_height > new_yv12->uv_height);
947
948 // Reset above block coeffs.
949 recon_yoffset = (mb_row * recon_y_stride * 16) + mb_col_start * 16;
950 recon_uvoffset =
951 (mb_row * recon_uv_stride * uv_mb_height) + mb_col_start * uv_mb_height;
952
953 // Set up limit values for motion vectors to prevent them extending
954 // outside the UMV borders.
955 x->mv_limits.row_min = -((mb_row * 16) + BORDER_MV_PIXELS_B16);
956 x->mv_limits.row_max =
957 ((cm->mb_rows - 1 - mb_row) * 16) + BORDER_MV_PIXELS_B16;
958
959 for (mb_col = mb_col_start, c = 0; mb_col < mb_col_end; ++mb_col, c++) {
960 int this_error;
961 int this_intra_error;
962 const int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row);
963 const BLOCK_SIZE bsize = get_bsize(cm, mb_row, mb_col);
964 double log_intra;
965 int level_sample;
966 const int mb_index = mb_row * cm->mb_cols + mb_col;
967
968 (*(cpi->row_mt_sync_read_ptr))(&tile_data->row_mt_sync, mb_row, c);
969
970 if (mb_col == mb_col_start) {
971 last_nonzero_mv = *first_top_mv;
972 }
973
974 // Adjust to the next column of MBs.
975 x->plane[0].src.buf = cpi->Source->y_buffer +
976 mb_row * 16 * x->plane[0].src.stride + mb_col * 16;
977 x->plane[1].src.buf = cpi->Source->u_buffer +
978 mb_row * uv_mb_height * x->plane[1].src.stride +
979 mb_col * uv_mb_height;
980 x->plane[2].src.buf = cpi->Source->v_buffer +
981 mb_row * uv_mb_height * x->plane[1].src.stride +
982 mb_col * uv_mb_height;
983
984 vpx_clear_system_state();
985
986 xd->plane[0].dst.buf = new_yv12->y_buffer + recon_yoffset;
987 xd->plane[1].dst.buf = new_yv12->u_buffer + recon_uvoffset;
988 xd->plane[2].dst.buf = new_yv12->v_buffer + recon_uvoffset;
989 xd->mi[0]->sb_type = bsize;
990 xd->mi[0]->ref_frame[0] = INTRA_FRAME;
991 set_mi_row_col(xd, &tile, mb_row << 1, num_8x8_blocks_high_lookup[bsize],
992 mb_col << 1, num_8x8_blocks_wide_lookup[bsize], cm->mi_rows,
993 cm->mi_cols);
994 // Are edges available for intra prediction?
995 // Since the firstpass does not populate the mi_grid_visible,
996 // above_mi/left_mi must be overwritten with a nonzero value when edges
997 // are available. Required by vp9_predict_intra_block().
998 xd->above_mi = (mb_row != 0) ? &mi_above : NULL;
999 xd->left_mi = ((mb_col << 1) > tile.mi_col_start) ? &mi_left : NULL;
1000
1001 // Do intra 16x16 prediction.
1002 x->skip_encode = 0;
1003 x->fp_src_pred = 0;
1004 // Do intra prediction based on source pixels for tile boundaries
1005 if (mb_col == mb_col_start && mb_col != 0) {
1006 xd->left_mi = &mi_left;
1007 x->fp_src_pred = 1;
1008 }
1009 xd->mi[0]->mode = DC_PRED;
1010 xd->mi[0]->tx_size =
1011 use_dc_pred ? (bsize >= BLOCK_16X16 ? TX_16X16 : TX_8X8) : TX_4X4;
1012 // Fix - zero the 16x16 block first. This ensures correct this_error for
1013 // block sizes smaller than 16x16.
1014 vp9_zero_array(x->plane[0].src_diff, 256);
1015 vp9_encode_intra_block_plane(x, bsize, 0, 0);
1016 this_error = vpx_get_mb_ss(x->plane[0].src_diff);
1017 this_intra_error = this_error;
1018
1019 // Keep a record of blocks that have very low intra error residual
1020 // (i.e. are in effect completely flat and untextured in the intra
1021 // domain). In natural videos this is uncommon, but it is much more
1022 // common in animations, graphics and screen content, so may be used
1023 // as a signal to detect these types of content.
1024 if (this_error < get_ul_intra_threshold(cm)) {
1025 ++(fp_acc_data->intra_skip_count);
1026 } else if ((mb_col > 0) &&
1027 (fp_acc_data->image_data_start_row == INVALID_ROW)) {
1028 fp_acc_data->image_data_start_row = mb_row;
1029 }
1030
1031 // Blocks that are mainly smooth in the intra domain.
1032 // Some special accounting for CQ but also these are better for testing
1033 // noise levels.
1034 if (this_error < get_smooth_intra_threshold(cm)) {
1035 ++(fp_acc_data->intra_smooth_count);
1036 }
1037
1038 // Special case noise measurement for first frame.
1039 if (cm->current_video_frame == 0) {
1040 if (this_intra_error < scale_sse_threshold(cm, LOW_I_THRESH)) {
1041 fp_acc_data->frame_noise_energy += fp_estimate_block_noise(x, bsize);
1042 } else {
1043 fp_acc_data->frame_noise_energy += (int64_t)SECTION_NOISE_DEF;
1044 }
1045 }
1046
1047 #if CONFIG_VP9_HIGHBITDEPTH
1048 if (cm->use_highbitdepth) {
1049 switch (cm->bit_depth) {
1050 case VPX_BITS_8: break;
1051 case VPX_BITS_10: this_error >>= 4; break;
1052 default:
1053 assert(cm->bit_depth == VPX_BITS_12);
1054 this_error >>= 8;
1055 break;
1056 }
1057 }
1058 #endif // CONFIG_VP9_HIGHBITDEPTH
1059
1060 vpx_clear_system_state();
1061 log_intra = log(this_error + 1.0);
1062 if (log_intra < 10.0) {
1063 mb_intra_factor = 1.0 + ((10.0 - log_intra) * 0.05);
1064 fp_acc_data->intra_factor += mb_intra_factor;
1065 if (cpi->row_mt_bit_exact)
1066 cpi->twopass.fp_mb_float_stats[mb_index].frame_mb_intra_factor =
1067 mb_intra_factor;
1068 } else {
1069 fp_acc_data->intra_factor += 1.0;
1070 if (cpi->row_mt_bit_exact)
1071 cpi->twopass.fp_mb_float_stats[mb_index].frame_mb_intra_factor = 1.0;
1072 }
1073
1074 #if CONFIG_VP9_HIGHBITDEPTH
1075 if (cm->use_highbitdepth)
1076 level_sample = CONVERT_TO_SHORTPTR(x->plane[0].src.buf)[0];
1077 else
1078 level_sample = x->plane[0].src.buf[0];
1079 #else
1080 level_sample = x->plane[0].src.buf[0];
1081 #endif
1082 if ((level_sample < DARK_THRESH) && (log_intra < 9.0)) {
1083 mb_brightness_factor = 1.0 + (0.01 * (DARK_THRESH - level_sample));
1084 fp_acc_data->brightness_factor += mb_brightness_factor;
1085 if (cpi->row_mt_bit_exact)
1086 cpi->twopass.fp_mb_float_stats[mb_index].frame_mb_brightness_factor =
1087 mb_brightness_factor;
1088 } else {
1089 fp_acc_data->brightness_factor += 1.0;
1090 if (cpi->row_mt_bit_exact)
1091 cpi->twopass.fp_mb_float_stats[mb_index].frame_mb_brightness_factor =
1092 1.0;
1093 }
1094
1095 // Intrapenalty below deals with situations where the intra and inter
1096 // error scores are very low (e.g. a plain black frame).
1097 // We do not have special cases in first pass for 0,0 and nearest etc so
1098 // all inter modes carry an overhead cost estimate for the mv.
1099 // When the error score is very low this causes us to pick all or lots of
1100 // INTRA modes and throw lots of key frames.
1101 // This penalty adds a cost matching that of a 0,0 mv to the intra case.
1102 this_error += intrapenalty;
1103
1104 // Accumulate the intra error.
1105 fp_acc_data->intra_error += (int64_t)this_error;
1106
1107 // Set up limit values for motion vectors to prevent them extending
1108 // outside the UMV borders.
1109 x->mv_limits.col_min = -((mb_col * 16) + BORDER_MV_PIXELS_B16);
1110 x->mv_limits.col_max =
1111 ((cm->mb_cols - 1 - mb_col) * 16) + BORDER_MV_PIXELS_B16;
1112
1113 // Other than for intra-only frame do a motion search.
1114 if (!frame_is_intra_only(cm)) {
1115 int tmp_err, motion_error, this_motion_error, raw_motion_error;
1116 // Assume 0,0 motion with no mv overhead.
1117 MV mv = { 0, 0 }, tmp_mv = { 0, 0 };
1118 struct buf_2d unscaled_last_source_buf_2d;
1119 vp9_variance_fn_ptr_t v_fn_ptr = cpi->fn_ptr[bsize];
1120
1121 #if CONFIG_RATE_CTRL
1122 if (cpi->oxcf.use_simple_encode_api) {
1123 // Store zero mv as default
1124 store_fp_motion_vector(cpi, &mv, mb_row, mb_col, LAST_FRAME, 0);
1125 }
1126 #endif // CONFIG_RAGE_CTRL
1127
1128 xd->plane[0].pre[0].buf = first_ref_buf->y_buffer + recon_yoffset;
1129 #if CONFIG_VP9_HIGHBITDEPTH
1130 if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
1131 motion_error = highbd_get_prediction_error(
1132 bsize, &x->plane[0].src, &xd->plane[0].pre[0], xd->bd);
1133 this_motion_error = highbd_get_prediction_error(
1134 bsize, &x->plane[0].src, &xd->plane[0].pre[0], 8);
1135 } else {
1136 motion_error =
1137 get_prediction_error(bsize, &x->plane[0].src, &xd->plane[0].pre[0]);
1138 this_motion_error = motion_error;
1139 }
1140 #else
1141 motion_error =
1142 get_prediction_error(bsize, &x->plane[0].src, &xd->plane[0].pre[0]);
1143 this_motion_error = motion_error;
1144 #endif // CONFIG_VP9_HIGHBITDEPTH
1145
1146 // Compute the motion error of the 0,0 motion using the last source
1147 // frame as the reference. Skip the further motion search on
1148 // reconstructed frame if this error is very small.
1149 unscaled_last_source_buf_2d.buf =
1150 cpi->unscaled_last_source->y_buffer + recon_yoffset;
1151 unscaled_last_source_buf_2d.stride = cpi->unscaled_last_source->y_stride;
1152 #if CONFIG_VP9_HIGHBITDEPTH
1153 if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
1154 raw_motion_error = highbd_get_prediction_error(
1155 bsize, &x->plane[0].src, &unscaled_last_source_buf_2d, xd->bd);
1156 } else {
1157 raw_motion_error = get_prediction_error(bsize, &x->plane[0].src,
1158 &unscaled_last_source_buf_2d);
1159 }
1160 #else
1161 raw_motion_error = get_prediction_error(bsize, &x->plane[0].src,
1162 &unscaled_last_source_buf_2d);
1163 #endif // CONFIG_VP9_HIGHBITDEPTH
1164
1165 if (raw_motion_error > NZ_MOTION_PENALTY) {
1166 // Test last reference frame using the previous best mv as the
1167 // starting point (best reference) for the search.
1168 first_pass_motion_search(cpi, x, best_ref_mv, &mv, &motion_error);
1169
1170 v_fn_ptr.vf = get_block_variance_fn(bsize);
1171 #if CONFIG_VP9_HIGHBITDEPTH
1172 if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
1173 v_fn_ptr.vf = highbd_get_block_variance_fn(bsize, xd->bd);
1174 }
1175 #endif // CONFIG_VP9_HIGHBITDEPTH
1176 this_motion_error =
1177 vp9_get_mvpred_var(x, &mv, best_ref_mv, &v_fn_ptr, 0);
1178
1179 // If the current best reference mv is not centered on 0,0 then do a
1180 // 0,0 based search as well.
1181 if (!is_zero_mv(best_ref_mv)) {
1182 tmp_err = INT_MAX;
1183 first_pass_motion_search(cpi, x, &zero_mv, &tmp_mv, &tmp_err);
1184
1185 if (tmp_err < motion_error) {
1186 motion_error = tmp_err;
1187 mv = tmp_mv;
1188 this_motion_error =
1189 vp9_get_mvpred_var(x, &tmp_mv, &zero_mv, &v_fn_ptr, 0);
1190 }
1191 }
1192 #if CONFIG_RATE_CTRL
1193 if (cpi->oxcf.use_simple_encode_api) {
1194 store_fp_motion_vector(cpi, &mv, mb_row, mb_col, LAST_FRAME, 0);
1195 }
1196 #endif // CONFIG_RAGE_CTRL
1197
1198 // Search in an older reference frame.
1199 if ((cm->current_video_frame > 1) && gld_yv12 != NULL) {
1200 // Assume 0,0 motion with no mv overhead.
1201 int gf_motion_error;
1202
1203 xd->plane[0].pre[0].buf = gld_yv12->y_buffer + recon_yoffset;
1204 #if CONFIG_VP9_HIGHBITDEPTH
1205 if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
1206 gf_motion_error = highbd_get_prediction_error(
1207 bsize, &x->plane[0].src, &xd->plane[0].pre[0], xd->bd);
1208 } else {
1209 gf_motion_error = get_prediction_error(bsize, &x->plane[0].src,
1210 &xd->plane[0].pre[0]);
1211 }
1212 #else
1213 gf_motion_error = get_prediction_error(bsize, &x->plane[0].src,
1214 &xd->plane[0].pre[0]);
1215 #endif // CONFIG_VP9_HIGHBITDEPTH
1216
1217 first_pass_motion_search(cpi, x, &zero_mv, &tmp_mv, &gf_motion_error);
1218 #if CONFIG_RATE_CTRL
1219 if (cpi->oxcf.use_simple_encode_api) {
1220 store_fp_motion_vector(cpi, &tmp_mv, mb_row, mb_col, GOLDEN_FRAME,
1221 1);
1222 }
1223 #endif // CONFIG_RAGE_CTRL
1224
1225 if (gf_motion_error < motion_error && gf_motion_error < this_error)
1226 ++(fp_acc_data->second_ref_count);
1227
1228 // Reset to last frame as reference buffer.
1229 xd->plane[0].pre[0].buf = first_ref_buf->y_buffer + recon_yoffset;
1230 xd->plane[1].pre[0].buf = first_ref_buf->u_buffer + recon_uvoffset;
1231 xd->plane[2].pre[0].buf = first_ref_buf->v_buffer + recon_uvoffset;
1232
1233 // In accumulating a score for the older reference frame take the
1234 // best of the motion predicted score and the intra coded error
1235 // (just as will be done for) accumulation of "coded_error" for
1236 // the last frame.
1237 if (gf_motion_error < this_error)
1238 fp_acc_data->sr_coded_error += gf_motion_error;
1239 else
1240 fp_acc_data->sr_coded_error += this_error;
1241 } else {
1242 fp_acc_data->sr_coded_error += motion_error;
1243 }
1244 } else {
1245 fp_acc_data->sr_coded_error += motion_error;
1246 }
1247
1248 // Start by assuming that intra mode is best.
1249 best_ref_mv->row = 0;
1250 best_ref_mv->col = 0;
1251
1252 if (motion_error <= this_error) {
1253 vpx_clear_system_state();
1254
1255 // Keep a count of cases where the inter and intra were very close
1256 // and very low. This helps with scene cut detection for example in
1257 // cropped clips with black bars at the sides or top and bottom.
1258 if (((this_error - intrapenalty) * 9 <= motion_error * 10) &&
1259 (this_error < (2 * intrapenalty))) {
1260 fp_acc_data->neutral_count += 1.0;
1261 if (cpi->row_mt_bit_exact)
1262 cpi->twopass.fp_mb_float_stats[mb_index].frame_mb_neutral_count =
1263 1.0;
1264 // Also track cases where the intra is not much worse than the inter
1265 // and use this in limiting the GF/arf group length.
1266 } else if ((this_error > NCOUNT_INTRA_THRESH) &&
1267 (this_error < (NCOUNT_INTRA_FACTOR * motion_error))) {
1268 mb_neutral_count =
1269 (double)motion_error / DOUBLE_DIVIDE_CHECK((double)this_error);
1270 fp_acc_data->neutral_count += mb_neutral_count;
1271 if (cpi->row_mt_bit_exact)
1272 cpi->twopass.fp_mb_float_stats[mb_index].frame_mb_neutral_count =
1273 mb_neutral_count;
1274 }
1275
1276 mv.row *= 8;
1277 mv.col *= 8;
1278 this_error = motion_error;
1279 xd->mi[0]->mode = NEWMV;
1280 xd->mi[0]->mv[0].as_mv = mv;
1281 xd->mi[0]->tx_size = TX_4X4;
1282 xd->mi[0]->ref_frame[0] = LAST_FRAME;
1283 xd->mi[0]->ref_frame[1] = NO_REF_FRAME;
1284 vp9_build_inter_predictors_sby(xd, mb_row << 1, mb_col << 1, bsize);
1285 vp9_encode_sby_pass1(x, bsize);
1286 fp_acc_data->sum_mvr += mv.row;
1287 fp_acc_data->sum_mvr_abs += abs(mv.row);
1288 fp_acc_data->sum_mvc += mv.col;
1289 fp_acc_data->sum_mvc_abs += abs(mv.col);
1290 fp_acc_data->sum_mvrs += mv.row * mv.row;
1291 fp_acc_data->sum_mvcs += mv.col * mv.col;
1292 ++(fp_acc_data->intercount);
1293
1294 *best_ref_mv = mv;
1295
1296 if (!is_zero_mv(&mv)) {
1297 ++(fp_acc_data->mvcount);
1298 if (!is_equal_mv(&mv, &last_nonzero_mv)) {
1299 ++(fp_acc_data->new_mv_count);
1300 }
1301 last_nonzero_mv = mv;
1302
1303 // Does the row vector point inwards or outwards?
1304 if (mb_row < cm->mb_rows / 2) {
1305 if (mv.row > 0)
1306 --(fp_acc_data->sum_in_vectors);
1307 else if (mv.row < 0)
1308 ++(fp_acc_data->sum_in_vectors);
1309 } else if (mb_row > cm->mb_rows / 2) {
1310 if (mv.row > 0)
1311 ++(fp_acc_data->sum_in_vectors);
1312 else if (mv.row < 0)
1313 --(fp_acc_data->sum_in_vectors);
1314 }
1315
1316 // Does the col vector point inwards or outwards?
1317 if (mb_col < cm->mb_cols / 2) {
1318 if (mv.col > 0)
1319 --(fp_acc_data->sum_in_vectors);
1320 else if (mv.col < 0)
1321 ++(fp_acc_data->sum_in_vectors);
1322 } else if (mb_col > cm->mb_cols / 2) {
1323 if (mv.col > 0)
1324 ++(fp_acc_data->sum_in_vectors);
1325 else if (mv.col < 0)
1326 --(fp_acc_data->sum_in_vectors);
1327 }
1328 }
1329 if (this_intra_error < scaled_low_intra_thresh) {
1330 fp_acc_data->frame_noise_energy += fp_estimate_block_noise(x, bsize);
1331 } else {
1332 fp_acc_data->frame_noise_energy += (int64_t)SECTION_NOISE_DEF;
1333 }
1334 } else { // Intra < inter error
1335 if (this_intra_error < scaled_low_intra_thresh) {
1336 fp_acc_data->frame_noise_energy += fp_estimate_block_noise(x, bsize);
1337 if (this_motion_error < scaled_low_intra_thresh) {
1338 fp_acc_data->intra_count_low += 1.0;
1339 } else {
1340 fp_acc_data->intra_count_high += 1.0;
1341 }
1342 } else {
1343 fp_acc_data->frame_noise_energy += (int64_t)SECTION_NOISE_DEF;
1344 fp_acc_data->intra_count_high += 1.0;
1345 }
1346 }
1347 } else {
1348 fp_acc_data->sr_coded_error += (int64_t)this_error;
1349 #if CONFIG_RATE_CTRL
1350 if (cpi->oxcf.use_simple_encode_api) {
1351 store_fp_motion_vector(cpi, NULL, mb_row, mb_col, INTRA_FRAME, 0);
1352 }
1353 #endif // CONFIG_RAGE_CTRL
1354 }
1355 fp_acc_data->coded_error += (int64_t)this_error;
1356
1357 if (mb_col == mb_col_start) {
1358 *first_top_mv = last_nonzero_mv;
1359 }
1360 recon_yoffset += 16;
1361 recon_uvoffset += uv_mb_height;
1362
1363 // Accumulate row level stats to the corresponding tile stats
1364 if (cpi->row_mt && mb_col == mb_col_end - 1)
1365 accumulate_fp_mb_row_stat(tile_data, fp_acc_data);
1366
1367 (*(cpi->row_mt_sync_write_ptr))(&tile_data->row_mt_sync, mb_row, c,
1368 num_mb_cols);
1369 }
1370 vpx_clear_system_state();
1371 }
1372
first_pass_encode(VP9_COMP * cpi,FIRSTPASS_DATA * fp_acc_data)1373 static void first_pass_encode(VP9_COMP *cpi, FIRSTPASS_DATA *fp_acc_data) {
1374 VP9_COMMON *const cm = &cpi->common;
1375 int mb_row;
1376 TileDataEnc tile_data;
1377 TileInfo *tile = &tile_data.tile_info;
1378 MV zero_mv = { 0, 0 };
1379 MV best_ref_mv;
1380 // Tiling is ignored in the first pass.
1381 vp9_tile_init(tile, cm, 0, 0);
1382 tile_data.firstpass_top_mv = zero_mv;
1383 #if CONFIG_RATE_CTRL
1384 if (cpi->oxcf.use_simple_encode_api) {
1385 fp_motion_vector_info_reset(cpi->frame_info.frame_width,
1386 cpi->frame_info.frame_height,
1387 cpi->fp_motion_vector_info);
1388 }
1389 #endif
1390
1391 for (mb_row = 0; mb_row < cm->mb_rows; ++mb_row) {
1392 best_ref_mv = zero_mv;
1393 vp9_first_pass_encode_tile_mb_row(cpi, &cpi->td, fp_acc_data, &tile_data,
1394 &best_ref_mv, mb_row);
1395 }
1396 }
1397
vp9_first_pass(VP9_COMP * cpi,const struct lookahead_entry * source)1398 void vp9_first_pass(VP9_COMP *cpi, const struct lookahead_entry *source) {
1399 MACROBLOCK *const x = &cpi->td.mb;
1400 VP9_COMMON *const cm = &cpi->common;
1401 MACROBLOCKD *const xd = &x->e_mbd;
1402 TWO_PASS *twopass = &cpi->twopass;
1403
1404 YV12_BUFFER_CONFIG *const lst_yv12 = get_ref_frame_buffer(cpi, LAST_FRAME);
1405 YV12_BUFFER_CONFIG *gld_yv12 = get_ref_frame_buffer(cpi, GOLDEN_FRAME);
1406 YV12_BUFFER_CONFIG *const new_yv12 = get_frame_new_buffer(cm);
1407 const YV12_BUFFER_CONFIG *first_ref_buf = lst_yv12;
1408
1409 BufferPool *const pool = cm->buffer_pool;
1410
1411 FIRSTPASS_DATA fp_temp_data;
1412 FIRSTPASS_DATA *fp_acc_data = &fp_temp_data;
1413
1414 vpx_clear_system_state();
1415 vp9_zero(fp_temp_data);
1416 fp_acc_data->image_data_start_row = INVALID_ROW;
1417
1418 // First pass code requires valid last and new frame buffers.
1419 assert(new_yv12 != NULL);
1420 assert(frame_is_intra_only(cm) || (lst_yv12 != NULL));
1421
1422 set_first_pass_params(cpi);
1423 vp9_set_quantizer(cpi, find_fp_qindex(cm->bit_depth));
1424
1425 vp9_setup_block_planes(&x->e_mbd, cm->subsampling_x, cm->subsampling_y);
1426
1427 vp9_setup_src_planes(x, cpi->Source, 0, 0);
1428 vp9_setup_dst_planes(xd->plane, new_yv12, 0, 0);
1429
1430 if (!frame_is_intra_only(cm)) {
1431 vp9_setup_pre_planes(xd, 0, first_ref_buf, 0, 0, NULL);
1432 }
1433
1434 xd->mi = cm->mi_grid_visible;
1435 xd->mi[0] = cm->mi;
1436
1437 vp9_frame_init_quantizer(cpi);
1438
1439 x->skip_recode = 0;
1440
1441 vp9_init_mv_probs(cm);
1442 vp9_initialize_rd_consts(cpi);
1443
1444 cm->log2_tile_rows = 0;
1445
1446 if (cpi->row_mt_bit_exact && cpi->twopass.fp_mb_float_stats == NULL)
1447 CHECK_MEM_ERROR(
1448 &cm->error, cpi->twopass.fp_mb_float_stats,
1449 vpx_calloc(cm->MBs * sizeof(*cpi->twopass.fp_mb_float_stats), 1));
1450
1451 {
1452 FIRSTPASS_STATS fps;
1453 TileDataEnc *first_tile_col;
1454 if (!cpi->row_mt) {
1455 cm->log2_tile_cols = 0;
1456 cpi->row_mt_sync_read_ptr = vp9_row_mt_sync_read_dummy;
1457 cpi->row_mt_sync_write_ptr = vp9_row_mt_sync_write_dummy;
1458 first_pass_encode(cpi, fp_acc_data);
1459 first_pass_stat_calc(cpi, &fps, fp_acc_data);
1460 } else {
1461 cpi->row_mt_sync_read_ptr = vp9_row_mt_sync_read;
1462 cpi->row_mt_sync_write_ptr = vp9_row_mt_sync_write;
1463 if (cpi->row_mt_bit_exact) {
1464 cm->log2_tile_cols = 0;
1465 vp9_zero_array(cpi->twopass.fp_mb_float_stats, cm->MBs);
1466 }
1467 vp9_encode_fp_row_mt(cpi);
1468 first_tile_col = &cpi->tile_data[0];
1469 if (cpi->row_mt_bit_exact)
1470 accumulate_floating_point_stats(cpi, first_tile_col);
1471 first_pass_stat_calc(cpi, &fps, &(first_tile_col->fp_data));
1472 }
1473
1474 // Don't allow a value of 0 for duration.
1475 // (Section duration is also defaulted to minimum of 1.0).
1476 fps.duration = VPXMAX(1.0, (double)(source->ts_end - source->ts_start));
1477
1478 // Don't want to do output stats with a stack variable!
1479 twopass->this_frame_stats = fps;
1480 output_stats(&twopass->this_frame_stats);
1481 accumulate_stats(&twopass->total_stats, &fps);
1482 }
1483
1484 // Copy the previous Last Frame back into gf and arf buffers if
1485 // the prediction is good enough... but also don't allow it to lag too far.
1486 if ((twopass->sr_update_lag > 3) ||
1487 ((cm->current_video_frame > 0) &&
1488 (twopass->this_frame_stats.pcnt_inter > 0.20) &&
1489 ((twopass->this_frame_stats.intra_error /
1490 DOUBLE_DIVIDE_CHECK(twopass->this_frame_stats.coded_error)) > 2.0))) {
1491 if (gld_yv12 != NULL) {
1492 ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->gld_fb_idx],
1493 cm->ref_frame_map[cpi->lst_fb_idx]);
1494 }
1495 twopass->sr_update_lag = 1;
1496 } else {
1497 ++twopass->sr_update_lag;
1498 }
1499
1500 vpx_extend_frame_borders(new_yv12);
1501
1502 // The frame we just compressed now becomes the last frame.
1503 ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->lst_fb_idx],
1504 cm->new_fb_idx);
1505
1506 // Special case for the first frame. Copy into the GF buffer as a second
1507 // reference.
1508 if (cm->current_video_frame == 0 && cpi->gld_fb_idx != INVALID_IDX) {
1509 ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->gld_fb_idx],
1510 cm->ref_frame_map[cpi->lst_fb_idx]);
1511 }
1512
1513 // In the first pass, every frame is considered as a show frame.
1514 update_frame_indexes(cm, /*show_frame=*/1);
1515 if (cpi->use_svc) vp9_inc_frame_in_layer(cpi);
1516 }
1517
1518 static const double q_pow_term[(QINDEX_RANGE >> 5) + 1] = { 0.65, 0.70, 0.75,
1519 0.85, 0.90, 0.90,
1520 0.90, 1.00, 1.25 };
1521
calc_correction_factor(double err_per_mb,double err_divisor,int q)1522 static double calc_correction_factor(double err_per_mb, double err_divisor,
1523 int q) {
1524 const double error_term = err_per_mb / DOUBLE_DIVIDE_CHECK(err_divisor);
1525 const int index = q >> 5;
1526 double power_term;
1527
1528 assert((index >= 0) && (index < (QINDEX_RANGE >> 5)));
1529
1530 // Adjustment based on quantizer to the power term.
1531 power_term =
1532 q_pow_term[index] +
1533 (((q_pow_term[index + 1] - q_pow_term[index]) * (q % 32)) / 32.0);
1534
1535 // Calculate correction factor.
1536 if (power_term < 1.0) assert(error_term >= 0.0);
1537
1538 return fclamp(pow(error_term, power_term), 0.05, 5.0);
1539 }
1540
wq_err_divisor(VP9_COMP * cpi)1541 static double wq_err_divisor(VP9_COMP *cpi) {
1542 const VP9_COMMON *const cm = &cpi->common;
1543 unsigned int screen_area = (cm->width * cm->height);
1544
1545 // Use a different error per mb factor for calculating boost for
1546 // different formats.
1547 if (screen_area <= 640 * 360) {
1548 return 115.0;
1549 } else if (screen_area < 1280 * 720) {
1550 return 125.0;
1551 } else if (screen_area <= 1920 * 1080) {
1552 return 130.0;
1553 } else if (screen_area < 3840 * 2160) {
1554 return 150.0;
1555 }
1556
1557 // Fall through to here only for 4K and above.
1558 return 200.0;
1559 }
1560
1561 #define NOISE_FACTOR_MIN 0.9
1562 #define NOISE_FACTOR_MAX 1.1
get_twopass_worst_quality(VP9_COMP * cpi,const double section_err,double inactive_zone,double section_noise,int section_target_bandwidth)1563 static int get_twopass_worst_quality(VP9_COMP *cpi, const double section_err,
1564 double inactive_zone, double section_noise,
1565 int section_target_bandwidth) {
1566 const RATE_CONTROL *const rc = &cpi->rc;
1567 const VP9EncoderConfig *const oxcf = &cpi->oxcf;
1568 TWO_PASS *const twopass = &cpi->twopass;
1569 double last_group_rate_err;
1570
1571 // Clamp the target rate to VBR min / max limts.
1572 const int target_rate =
1573 vp9_rc_clamp_pframe_target_size(cpi, section_target_bandwidth);
1574 double noise_factor = pow((section_noise / SECTION_NOISE_DEF), 0.5);
1575 noise_factor = fclamp(noise_factor, NOISE_FACTOR_MIN, NOISE_FACTOR_MAX);
1576 inactive_zone = fclamp(inactive_zone, 0.0, 1.0);
1577
1578 // TODO(jimbankoski): remove #if here or below when this has been
1579 // well tested.
1580 #if CONFIG_ALWAYS_ADJUST_BPM
1581 // based on recent history adjust expectations of bits per macroblock.
1582 last_group_rate_err =
1583 (double)twopass->rolling_arf_group_actual_bits /
1584 DOUBLE_DIVIDE_CHECK((double)twopass->rolling_arf_group_target_bits);
1585 last_group_rate_err = VPXMAX(0.25, VPXMIN(4.0, last_group_rate_err));
1586 twopass->bpm_factor *= (3.0 + last_group_rate_err) / 4.0;
1587 twopass->bpm_factor = VPXMAX(0.25, VPXMIN(4.0, twopass->bpm_factor));
1588 #endif
1589
1590 if (target_rate <= 0) {
1591 return rc->worst_quality; // Highest value allowed
1592 } else {
1593 const int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE)
1594 ? cpi->initial_mbs
1595 : cpi->common.MBs;
1596 const double active_pct = VPXMAX(0.01, 1.0 - inactive_zone);
1597 const int active_mbs = (int)VPXMAX(1, (double)num_mbs * active_pct);
1598 const double av_err_per_mb = section_err / active_pct;
1599 const double speed_term = 1.0 + 0.04 * oxcf->speed;
1600 const uint64_t target_norm_bits_per_mb =
1601 ((uint64_t)target_rate << BPER_MB_NORMBITS) / active_mbs;
1602 int q;
1603
1604 // TODO(jimbankoski): remove #if here or above when this has been
1605 // well tested.
1606 #if !CONFIG_ALWAYS_ADJUST_BPM
1607 // based on recent history adjust expectations of bits per macroblock.
1608 last_group_rate_err =
1609 (double)twopass->rolling_arf_group_actual_bits /
1610 DOUBLE_DIVIDE_CHECK((double)twopass->rolling_arf_group_target_bits);
1611 last_group_rate_err = VPXMAX(0.25, VPXMIN(4.0, last_group_rate_err));
1612 twopass->bpm_factor *= (3.0 + last_group_rate_err) / 4.0;
1613 twopass->bpm_factor = VPXMAX(0.25, VPXMIN(4.0, twopass->bpm_factor));
1614 #endif
1615
1616 // Try and pick a max Q that will be high enough to encode the
1617 // content at the given rate.
1618 for (q = rc->best_quality; q < rc->worst_quality; ++q) {
1619 const double factor =
1620 calc_correction_factor(av_err_per_mb, wq_err_divisor(cpi), q);
1621 const int bits_per_mb = vp9_rc_bits_per_mb(
1622 INTER_FRAME, q,
1623 factor * speed_term * cpi->twopass.bpm_factor * noise_factor,
1624 cpi->common.bit_depth);
1625 if ((uint64_t)bits_per_mb <= target_norm_bits_per_mb) break;
1626 }
1627
1628 // Restriction on active max q for constrained quality mode.
1629 if (cpi->oxcf.rc_mode == VPX_CQ) q = VPXMAX(q, oxcf->cq_level);
1630 return q;
1631 }
1632 }
1633
setup_rf_level_maxq(VP9_COMP * cpi)1634 static void setup_rf_level_maxq(VP9_COMP *cpi) {
1635 int i;
1636 RATE_CONTROL *const rc = &cpi->rc;
1637 for (i = INTER_NORMAL; i < RATE_FACTOR_LEVELS; ++i) {
1638 int qdelta = vp9_frame_type_qdelta(cpi, i, rc->worst_quality);
1639 rc->rf_level_maxq[i] = VPXMAX(rc->worst_quality + qdelta, rc->best_quality);
1640 }
1641 }
1642
init_subsampling(VP9_COMP * cpi)1643 static void init_subsampling(VP9_COMP *cpi) {
1644 const VP9_COMMON *const cm = &cpi->common;
1645 RATE_CONTROL *const rc = &cpi->rc;
1646 const int w = cm->width;
1647 const int h = cm->height;
1648 int i;
1649
1650 for (i = 0; i < FRAME_SCALE_STEPS; ++i) {
1651 // Note: Frames with odd-sized dimensions may result from this scaling.
1652 rc->frame_width[i] = (w * 16) / frame_scale_factor[i];
1653 rc->frame_height[i] = (h * 16) / frame_scale_factor[i];
1654 }
1655
1656 setup_rf_level_maxq(cpi);
1657 }
1658
calculate_coded_size(VP9_COMP * cpi,int * scaled_frame_width,int * scaled_frame_height)1659 void calculate_coded_size(VP9_COMP *cpi, int *scaled_frame_width,
1660 int *scaled_frame_height) {
1661 RATE_CONTROL *const rc = &cpi->rc;
1662 *scaled_frame_width = rc->frame_width[rc->frame_size_selector];
1663 *scaled_frame_height = rc->frame_height[rc->frame_size_selector];
1664 }
1665
vp9_init_second_pass(VP9_COMP * cpi)1666 void vp9_init_second_pass(VP9_COMP *cpi) {
1667 VP9EncoderConfig *const oxcf = &cpi->oxcf;
1668 RATE_CONTROL *const rc = &cpi->rc;
1669 TWO_PASS *const twopass = &cpi->twopass;
1670 double frame_rate;
1671 FIRSTPASS_STATS *stats;
1672
1673 zero_stats(&twopass->total_stats);
1674 zero_stats(&twopass->total_left_stats);
1675
1676 if (!twopass->stats_in_end) return;
1677
1678 stats = &twopass->total_stats;
1679
1680 *stats = *twopass->stats_in_end;
1681 twopass->total_left_stats = *stats;
1682
1683 // Scan the first pass file and calculate a modified score for each
1684 // frame that is used to distribute bits. The modified score is assumed
1685 // to provide a linear basis for bit allocation. I.e., a frame A with a score
1686 // that is double that of frame B will be allocated 2x as many bits.
1687 {
1688 double modified_score_total = 0.0;
1689 const FIRSTPASS_STATS *s = twopass->stats_in;
1690 double av_err;
1691
1692 if (oxcf->vbr_corpus_complexity) {
1693 twopass->mean_mod_score = (double)oxcf->vbr_corpus_complexity / 10.0;
1694 av_err = get_distribution_av_err(cpi, twopass);
1695 } else {
1696 av_err = get_distribution_av_err(cpi, twopass);
1697 // The first scan is unclamped and gives a raw average.
1698 while (s < twopass->stats_in_end) {
1699 modified_score_total += calculate_mod_frame_score(cpi, oxcf, s, av_err);
1700 ++s;
1701 }
1702
1703 // The average error from this first scan is used to define the midpoint
1704 // error for the rate distribution function.
1705 twopass->mean_mod_score =
1706 modified_score_total / DOUBLE_DIVIDE_CHECK(stats->count);
1707 }
1708
1709 // Second scan using clamps based on the previous cycle average.
1710 // This may modify the total and average somewhat but we don't bother with
1711 // further iterations.
1712 modified_score_total = 0.0;
1713 s = twopass->stats_in;
1714 while (s < twopass->stats_in_end) {
1715 modified_score_total +=
1716 calculate_norm_frame_score(cpi, twopass, oxcf, s, av_err);
1717 ++s;
1718 }
1719 twopass->normalized_score_left = modified_score_total;
1720
1721 // If using Corpus wide VBR mode then update the clip target bandwidth to
1722 // reflect how the clip compares to the rest of the corpus.
1723 if (oxcf->vbr_corpus_complexity) {
1724 oxcf->target_bandwidth =
1725 (int64_t)((double)oxcf->target_bandwidth *
1726 (twopass->normalized_score_left / stats->count));
1727 }
1728
1729 #if COMPLEXITY_STATS_OUTPUT
1730 {
1731 FILE *compstats;
1732 compstats = fopen("complexity_stats.stt", "a");
1733 fprintf(compstats, "%10.3lf\n",
1734 twopass->normalized_score_left / stats->count);
1735 fclose(compstats);
1736 }
1737 #endif
1738 }
1739
1740 frame_rate = 10000000.0 * stats->count / stats->duration;
1741 // Each frame can have a different duration, as the frame rate in the source
1742 // isn't guaranteed to be constant. The frame rate prior to the first frame
1743 // encoded in the second pass is a guess. However, the sum duration is not.
1744 // It is calculated based on the actual durations of all frames from the
1745 // first pass.
1746 vp9_new_framerate(cpi, frame_rate);
1747 twopass->bits_left =
1748 (int64_t)(stats->duration * oxcf->target_bandwidth / 10000000.0);
1749
1750 // This variable monitors how far behind the second ref update is lagging.
1751 twopass->sr_update_lag = 1;
1752
1753 // Reset the vbr bits off target counters
1754 rc->vbr_bits_off_target = 0;
1755 rc->vbr_bits_off_target_fast = 0;
1756 rc->rate_error_estimate = 0;
1757
1758 // Static sequence monitor variables.
1759 twopass->kf_zeromotion_pct = 100;
1760 twopass->last_kfgroup_zeromotion_pct = 100;
1761
1762 // Initialize bits per macro_block estimate correction factor.
1763 twopass->bpm_factor = 1.0;
1764 // Initialize actual and target bits counters for ARF groups so that
1765 // at the start we have a neutral bpm adjustment.
1766 twopass->rolling_arf_group_target_bits = 1;
1767 twopass->rolling_arf_group_actual_bits = 1;
1768
1769 if (oxcf->resize_mode != RESIZE_NONE) {
1770 init_subsampling(cpi);
1771 }
1772
1773 // Initialize the arnr strangth adjustment to 0
1774 twopass->arnr_strength_adjustment = 0;
1775 }
1776
1777 /* This function considers how the quality of prediction may be deteriorating
1778 * with distance. It compares the coded error for the last frame and the
1779 * second reference frame (usually two frames old) and also applies a factor
1780 * based on the extent of INTRA coding.
1781 *
1782 * The decay factor is then used to reduce the contribution of frames further
1783 * from the alt-ref or golden frame, to the bitrate boost calculation for that
1784 * alt-ref or golden frame.
1785 */
get_sr_decay_rate(const TWO_PASS * const twopass,const FIRSTPASS_STATS * frame)1786 static double get_sr_decay_rate(const TWO_PASS *const twopass,
1787 const FIRSTPASS_STATS *frame) {
1788 double sr_diff = (frame->sr_coded_error - frame->coded_error);
1789 double sr_decay = 1.0;
1790
1791 // Do nothing if the second ref to last frame error difference is
1792 // very small or even negative.
1793 if ((sr_diff > LOW_SR_DIFF_TRHESH)) {
1794 const double sr_diff_part =
1795 twopass->sr_diff_factor * ((sr_diff * 0.25) / frame->intra_error);
1796 double modified_pct_inter = frame->pcnt_inter;
1797 double modified_pcnt_intra;
1798
1799 if ((frame->coded_error > LOW_CODED_ERR_PER_MB) &&
1800 ((frame->intra_error / DOUBLE_DIVIDE_CHECK(frame->coded_error)) <
1801 (double)NCOUNT_FRAME_II_THRESH)) {
1802 modified_pct_inter =
1803 frame->pcnt_inter + frame->pcnt_intra_low - frame->pcnt_neutral;
1804 }
1805 modified_pcnt_intra = 100 * (1.0 - modified_pct_inter);
1806
1807 sr_decay = 1.0 - sr_diff_part - (INTRA_PART * modified_pcnt_intra);
1808 }
1809 return VPXMAX(sr_decay, twopass->sr_default_decay_limit);
1810 }
1811
1812 // This function gives an estimate of how badly we believe the prediction
1813 // quality is decaying from frame to frame.
get_zero_motion_factor(const TWO_PASS * const twopass,const FIRSTPASS_STATS * frame_stats)1814 static double get_zero_motion_factor(const TWO_PASS *const twopass,
1815 const FIRSTPASS_STATS *frame_stats) {
1816 const double zero_motion_pct =
1817 frame_stats->pcnt_inter - frame_stats->pcnt_motion;
1818 double sr_decay = get_sr_decay_rate(twopass, frame_stats);
1819 return VPXMIN(sr_decay, zero_motion_pct);
1820 }
1821
get_prediction_decay_rate(const TWO_PASS * const twopass,const FIRSTPASS_STATS * frame_stats)1822 static double get_prediction_decay_rate(const TWO_PASS *const twopass,
1823 const FIRSTPASS_STATS *frame_stats) {
1824 const double sr_decay_rate = get_sr_decay_rate(twopass, frame_stats);
1825 double zero_motion_factor =
1826 twopass->zm_factor * (frame_stats->pcnt_inter - frame_stats->pcnt_motion);
1827
1828 // Check that the zero motion factor is valid
1829 assert(zero_motion_factor >= 0.0 && zero_motion_factor <= 1.0);
1830
1831 return VPXMAX(zero_motion_factor,
1832 (sr_decay_rate + ((1.0 - sr_decay_rate) * zero_motion_factor)));
1833 }
1834
get_show_idx(const TWO_PASS * twopass)1835 static int get_show_idx(const TWO_PASS *twopass) {
1836 return (int)(twopass->stats_in - twopass->stats_in_start);
1837 }
1838 // Function to test for a condition where a complex transition is followed
1839 // by a static section. For example in slide shows where there is a fade
1840 // between slides. This is to help with more optimal kf and gf positioning.
check_transition_to_still(const FIRST_PASS_INFO * first_pass_info,int show_idx,int still_interval)1841 static int check_transition_to_still(const FIRST_PASS_INFO *first_pass_info,
1842 int show_idx, int still_interval) {
1843 int j;
1844 int num_frames = fps_get_num_frames(first_pass_info);
1845 if (show_idx + still_interval > num_frames) {
1846 return 0;
1847 }
1848
1849 // Look ahead a few frames to see if static condition persists...
1850 for (j = 0; j < still_interval; ++j) {
1851 const FIRSTPASS_STATS *stats =
1852 fps_get_frame_stats(first_pass_info, show_idx + j);
1853 if (stats->pcnt_inter - stats->pcnt_motion < 0.999) break;
1854 }
1855
1856 // Only if it does do we signal a transition to still.
1857 return j == still_interval;
1858 }
1859
1860 // This function detects a flash through the high relative pcnt_second_ref
1861 // score in the frame following a flash frame. The offset passed in should
1862 // reflect this.
detect_flash_from_frame_stats(const FIRSTPASS_STATS * frame_stats)1863 static int detect_flash_from_frame_stats(const FIRSTPASS_STATS *frame_stats) {
1864 // What we are looking for here is a situation where there is a
1865 // brief break in prediction (such as a flash) but subsequent frames
1866 // are reasonably well predicted by an earlier (pre flash) frame.
1867 // The recovery after a flash is indicated by a high pcnt_second_ref
1868 // usage or a second ref coded error notabley lower than the last
1869 // frame coded error.
1870 if (frame_stats == NULL) {
1871 return 0;
1872 }
1873 return (frame_stats->sr_coded_error < frame_stats->coded_error) ||
1874 ((frame_stats->pcnt_second_ref > frame_stats->pcnt_inter) &&
1875 (frame_stats->pcnt_second_ref >= 0.5));
1876 }
1877
detect_flash(const TWO_PASS * twopass,int offset)1878 static int detect_flash(const TWO_PASS *twopass, int offset) {
1879 const FIRSTPASS_STATS *const next_frame = read_frame_stats(twopass, offset);
1880 return detect_flash_from_frame_stats(next_frame);
1881 }
1882
1883 // Update the motion related elements to the GF arf boost calculation.
accumulate_frame_motion_stats(const FIRSTPASS_STATS * stats,double * mv_in_out,double * mv_in_out_accumulator,double * abs_mv_in_out_accumulator,double * mv_ratio_accumulator)1884 static void accumulate_frame_motion_stats(const FIRSTPASS_STATS *stats,
1885 double *mv_in_out,
1886 double *mv_in_out_accumulator,
1887 double *abs_mv_in_out_accumulator,
1888 double *mv_ratio_accumulator) {
1889 const double pct = stats->pcnt_motion;
1890
1891 // Accumulate Motion In/Out of frame stats.
1892 *mv_in_out = stats->mv_in_out_count * pct;
1893 *mv_in_out_accumulator += *mv_in_out;
1894 *abs_mv_in_out_accumulator += fabs(*mv_in_out);
1895
1896 // Accumulate a measure of how uniform (or conversely how random) the motion
1897 // field is (a ratio of abs(mv) / mv).
1898 if (pct > 0.05) {
1899 const double mvr_ratio =
1900 fabs(stats->mvr_abs) / DOUBLE_DIVIDE_CHECK(fabs(stats->MVr));
1901 const double mvc_ratio =
1902 fabs(stats->mvc_abs) / DOUBLE_DIVIDE_CHECK(fabs(stats->MVc));
1903
1904 *mv_ratio_accumulator +=
1905 pct * (mvr_ratio < stats->mvr_abs ? mvr_ratio : stats->mvr_abs);
1906 *mv_ratio_accumulator +=
1907 pct * (mvc_ratio < stats->mvc_abs ? mvc_ratio : stats->mvc_abs);
1908 }
1909 }
1910
calc_frame_boost(const FRAME_INFO * frame_info,const FIRSTPASS_STATS * this_frame,const TWO_PASS * const twopass,int avg_frame_qindex,double this_frame_mv_in_out)1911 static double calc_frame_boost(const FRAME_INFO *frame_info,
1912 const FIRSTPASS_STATS *this_frame,
1913 const TWO_PASS *const twopass,
1914 int avg_frame_qindex,
1915 double this_frame_mv_in_out) {
1916 double frame_boost;
1917 const double lq =
1918 vp9_convert_qindex_to_q(avg_frame_qindex, frame_info->bit_depth);
1919 const double boost_q_correction = VPXMIN((0.5 + (lq * 0.015)), 1.5);
1920 const double active_area = calculate_active_area(frame_info, this_frame);
1921
1922 // Frame booost is based on inter error.
1923 frame_boost = (twopass->err_per_mb * active_area) /
1924 DOUBLE_DIVIDE_CHECK(this_frame->coded_error);
1925
1926 // Small adjustment for cases where there is a zoom out
1927 if (this_frame_mv_in_out > 0.0)
1928 frame_boost += frame_boost * (this_frame_mv_in_out * 2.0);
1929
1930 // Q correction and scalling
1931 frame_boost = frame_boost * boost_q_correction;
1932
1933 return VPXMIN(frame_boost, twopass->gf_frame_max_boost * boost_q_correction);
1934 }
1935
calc_kf_frame_boost(VP9_COMP * cpi,const FIRSTPASS_STATS * this_frame,double * sr_accumulator,double this_frame_mv_in_out,double zm_factor)1936 static double calc_kf_frame_boost(VP9_COMP *cpi,
1937 const FIRSTPASS_STATS *this_frame,
1938 double *sr_accumulator,
1939 double this_frame_mv_in_out,
1940 double zm_factor) {
1941 TWO_PASS *const twopass = &cpi->twopass;
1942 double frame_boost;
1943 const double lq = vp9_convert_qindex_to_q(
1944 cpi->rc.avg_frame_qindex[INTER_FRAME], cpi->common.bit_depth);
1945 const double boost_q_correction = VPXMIN((0.50 + (lq * 0.015)), 2.00);
1946 const double active_area =
1947 calculate_active_area(&cpi->frame_info, this_frame);
1948 double max_boost;
1949
1950 // Frame booost is based on inter error.
1951 frame_boost = (twopass->kf_err_per_mb * active_area) /
1952 DOUBLE_DIVIDE_CHECK(this_frame->coded_error + *sr_accumulator);
1953
1954 // Update the accumulator for second ref error difference.
1955 // This is intended to give an indication of how much the coded error is
1956 // increasing over time.
1957 *sr_accumulator += (this_frame->sr_coded_error - this_frame->coded_error);
1958 *sr_accumulator = VPXMAX(0.0, *sr_accumulator);
1959
1960 // Small adjustment for cases where there is a zoom out
1961 if (this_frame_mv_in_out > 0.0)
1962 frame_boost += frame_boost * (this_frame_mv_in_out * 2.0);
1963
1964 // Q correction and scaling
1965 // The 40.0 value here is an experimentally derived baseline minimum.
1966 // This value is in line with the minimum per frame boost in the alt_ref
1967 // boost calculation.
1968 frame_boost =
1969 (frame_boost + twopass->kf_frame_min_boost) * boost_q_correction;
1970
1971 // Maximum allowed boost this frame. May be different for first vs subsequent
1972 // key frames.
1973 max_boost = (cpi->common.current_video_frame == 0)
1974 ? twopass->kf_frame_max_boost_first
1975 : twopass->kf_frame_max_boost_subs;
1976 max_boost *= zm_factor * boost_q_correction;
1977
1978 return VPXMIN(frame_boost, max_boost);
1979 }
1980
compute_arf_boost(const FRAME_INFO * frame_info,TWO_PASS * const twopass,int arf_show_idx,int f_frames,int b_frames,int avg_frame_qindex)1981 static int compute_arf_boost(const FRAME_INFO *frame_info,
1982 TWO_PASS *const twopass, int arf_show_idx,
1983 int f_frames, int b_frames, int avg_frame_qindex) {
1984 const FIRST_PASS_INFO *first_pass_info = &twopass->first_pass_info;
1985 int i;
1986 double boost_score = 0.0;
1987 double mv_ratio_accumulator = 0.0;
1988 double decay_accumulator = 1.0;
1989 double this_frame_mv_in_out = 0.0;
1990 double mv_in_out_accumulator = 0.0;
1991 double abs_mv_in_out_accumulator = 0.0;
1992 int arf_boost;
1993 int flash_detected = 0;
1994
1995 // Search forward from the proposed arf/next gf position.
1996 for (i = 0; i < f_frames; ++i) {
1997 const FIRSTPASS_STATS *this_frame =
1998 fps_get_frame_stats(first_pass_info, arf_show_idx + i);
1999 const FIRSTPASS_STATS *next_frame =
2000 fps_get_frame_stats(first_pass_info, arf_show_idx + i + 1);
2001 if (this_frame == NULL) break;
2002
2003 // Update the motion related elements to the boost calculation.
2004 accumulate_frame_motion_stats(
2005 this_frame, &this_frame_mv_in_out, &mv_in_out_accumulator,
2006 &abs_mv_in_out_accumulator, &mv_ratio_accumulator);
2007
2008 // We want to discount the flash frame itself and the recovery
2009 // frame that follows as both will have poor scores.
2010 flash_detected = detect_flash_from_frame_stats(this_frame) ||
2011 detect_flash_from_frame_stats(next_frame);
2012
2013 // Accumulate the effect of prediction quality decay.
2014 if (!flash_detected) {
2015 decay_accumulator *= get_prediction_decay_rate(twopass, this_frame);
2016 decay_accumulator = decay_accumulator < MIN_DECAY_FACTOR
2017 ? MIN_DECAY_FACTOR
2018 : decay_accumulator;
2019 }
2020 boost_score += decay_accumulator *
2021 calc_frame_boost(frame_info, this_frame, twopass,
2022 avg_frame_qindex, this_frame_mv_in_out);
2023 }
2024
2025 arf_boost = (int)boost_score;
2026
2027 // Reset for backward looking loop.
2028 boost_score = 0.0;
2029 mv_ratio_accumulator = 0.0;
2030 decay_accumulator = 1.0;
2031 this_frame_mv_in_out = 0.0;
2032 mv_in_out_accumulator = 0.0;
2033 abs_mv_in_out_accumulator = 0.0;
2034
2035 // Search backward towards last gf position.
2036 for (i = -1; i >= -b_frames; --i) {
2037 const FIRSTPASS_STATS *this_frame =
2038 fps_get_frame_stats(first_pass_info, arf_show_idx + i);
2039 const FIRSTPASS_STATS *next_frame =
2040 fps_get_frame_stats(first_pass_info, arf_show_idx + i + 1);
2041 if (this_frame == NULL) break;
2042
2043 // Update the motion related elements to the boost calculation.
2044 accumulate_frame_motion_stats(
2045 this_frame, &this_frame_mv_in_out, &mv_in_out_accumulator,
2046 &abs_mv_in_out_accumulator, &mv_ratio_accumulator);
2047
2048 // We want to discount the flash frame itself and the recovery
2049 // frame that follows as both will have poor scores.
2050 flash_detected = detect_flash_from_frame_stats(this_frame) ||
2051 detect_flash_from_frame_stats(next_frame);
2052
2053 // Cumulative effect of prediction quality decay.
2054 if (!flash_detected) {
2055 decay_accumulator *= get_prediction_decay_rate(twopass, this_frame);
2056 decay_accumulator = decay_accumulator < MIN_DECAY_FACTOR
2057 ? MIN_DECAY_FACTOR
2058 : decay_accumulator;
2059 }
2060 boost_score += decay_accumulator *
2061 calc_frame_boost(frame_info, this_frame, twopass,
2062 avg_frame_qindex, this_frame_mv_in_out);
2063 }
2064 arf_boost += (int)boost_score;
2065
2066 if (arf_boost < ((b_frames + f_frames) * 40))
2067 arf_boost = ((b_frames + f_frames) * 40);
2068 arf_boost = VPXMAX(arf_boost, MIN_ARF_GF_BOOST);
2069
2070 return arf_boost;
2071 }
2072
calc_arf_boost(VP9_COMP * cpi,int f_frames,int b_frames)2073 static int calc_arf_boost(VP9_COMP *cpi, int f_frames, int b_frames) {
2074 const FRAME_INFO *frame_info = &cpi->frame_info;
2075 TWO_PASS *const twopass = &cpi->twopass;
2076 const int avg_inter_frame_qindex = cpi->rc.avg_frame_qindex[INTER_FRAME];
2077 int arf_show_idx = get_show_idx(twopass);
2078 return compute_arf_boost(frame_info, twopass, arf_show_idx, f_frames,
2079 b_frames, avg_inter_frame_qindex);
2080 }
2081
2082 // Calculate a section intra ratio used in setting max loop filter.
calculate_section_intra_ratio(const FIRSTPASS_STATS * begin,const FIRSTPASS_STATS * end,int section_length)2083 static int calculate_section_intra_ratio(const FIRSTPASS_STATS *begin,
2084 const FIRSTPASS_STATS *end,
2085 int section_length) {
2086 const FIRSTPASS_STATS *s = begin;
2087 double intra_error = 0.0;
2088 double coded_error = 0.0;
2089 int i = 0;
2090
2091 while (s < end && i < section_length) {
2092 intra_error += s->intra_error;
2093 coded_error += s->coded_error;
2094 ++s;
2095 ++i;
2096 }
2097
2098 return (int)(intra_error / DOUBLE_DIVIDE_CHECK(coded_error));
2099 }
2100
2101 // Calculate the total bits to allocate in this GF/ARF group.
calculate_total_gf_group_bits(VP9_COMP * cpi,double gf_group_err)2102 static int64_t calculate_total_gf_group_bits(VP9_COMP *cpi,
2103 double gf_group_err) {
2104 VP9_COMMON *const cm = &cpi->common;
2105 const RATE_CONTROL *const rc = &cpi->rc;
2106 const TWO_PASS *const twopass = &cpi->twopass;
2107 const int max_bits = frame_max_bits(rc, &cpi->oxcf);
2108 int64_t total_group_bits;
2109 const int is_key_frame = frame_is_intra_only(cm);
2110 const int arf_active_or_kf = is_key_frame || rc->source_alt_ref_active;
2111 int gop_frames =
2112 rc->baseline_gf_interval + rc->source_alt_ref_pending - arf_active_or_kf;
2113
2114 // Calculate the bits to be allocated to the group as a whole.
2115 if ((twopass->kf_group_bits > 0) && (twopass->kf_group_error_left > 0.0)) {
2116 int key_frame_interval = rc->frames_since_key + rc->frames_to_key;
2117 int distance_from_next_key_frame =
2118 rc->frames_to_key -
2119 (rc->baseline_gf_interval + rc->source_alt_ref_pending);
2120 int max_gf_bits_bias = rc->avg_frame_bandwidth;
2121 double gf_interval_bias_bits_normalize_factor =
2122 (double)rc->baseline_gf_interval / 16;
2123 total_group_bits = (int64_t)(twopass->kf_group_bits *
2124 (gf_group_err / twopass->kf_group_error_left));
2125 // TODO(ravi): Experiment with different values of max_gf_bits_bias
2126 total_group_bits +=
2127 (int64_t)((double)distance_from_next_key_frame / key_frame_interval *
2128 max_gf_bits_bias * gf_interval_bias_bits_normalize_factor);
2129 } else {
2130 total_group_bits = 0;
2131 }
2132
2133 // Clamp odd edge cases.
2134 total_group_bits = (total_group_bits < 0) ? 0
2135 : (total_group_bits > twopass->kf_group_bits)
2136 ? twopass->kf_group_bits
2137 : total_group_bits;
2138
2139 // Clip based on user supplied data rate variability limit.
2140 if (total_group_bits > (int64_t)max_bits * gop_frames)
2141 total_group_bits = (int64_t)max_bits * gop_frames;
2142
2143 return total_group_bits;
2144 }
2145
2146 // Calculate the number bits extra to assign to boosted frames in a group.
calculate_boost_bits(int frame_count,int boost,int64_t total_group_bits)2147 static int calculate_boost_bits(int frame_count, int boost,
2148 int64_t total_group_bits) {
2149 int allocation_chunks;
2150
2151 // return 0 for invalid inputs (could arise e.g. through rounding errors)
2152 if (!boost || (total_group_bits <= 0) || (frame_count < 0)) return 0;
2153
2154 allocation_chunks = (frame_count * NORMAL_BOOST) + boost;
2155
2156 // Prevent overflow.
2157 if (boost > 1023) {
2158 int divisor = boost >> 10;
2159 boost /= divisor;
2160 allocation_chunks /= divisor;
2161 }
2162
2163 // Calculate the number of extra bits for use in the boosted frame or frames.
2164 return VPXMAX((int)(((int64_t)boost * total_group_bits) / allocation_chunks),
2165 0);
2166 }
2167
2168 // Used in corpus vbr: Calculates the total normalized group complexity score
2169 // for a given number of frames starting at the current position in the stats
2170 // file.
calculate_group_score(VP9_COMP * cpi,double av_score,int frame_count)2171 static double calculate_group_score(VP9_COMP *cpi, double av_score,
2172 int frame_count) {
2173 VP9EncoderConfig *const oxcf = &cpi->oxcf;
2174 TWO_PASS *const twopass = &cpi->twopass;
2175 const FIRSTPASS_STATS *s = twopass->stats_in;
2176 double score_total = 0.0;
2177 int i = 0;
2178
2179 // We don't ever want to return a 0 score here.
2180 if (frame_count == 0) return 1.0;
2181
2182 while ((i < frame_count) && (s < twopass->stats_in_end)) {
2183 score_total += calculate_norm_frame_score(cpi, twopass, oxcf, s, av_score);
2184 ++s;
2185 ++i;
2186 }
2187
2188 return score_total;
2189 }
2190
find_arf_order(VP9_COMP * cpi,GF_GROUP * gf_group,int * index_counter,int depth,int start,int end)2191 static void find_arf_order(VP9_COMP *cpi, GF_GROUP *gf_group,
2192 int *index_counter, int depth, int start, int end) {
2193 TWO_PASS *twopass = &cpi->twopass;
2194 const FIRSTPASS_STATS *const start_pos = twopass->stats_in;
2195 FIRSTPASS_STATS fpf_frame;
2196 const int mid = (start + end + 1) >> 1;
2197 const int min_frame_interval = 2;
2198 int idx;
2199
2200 // Process regular P frames
2201 if ((end - start < min_frame_interval) ||
2202 (depth > gf_group->allowed_max_layer_depth)) {
2203 for (idx = start; idx <= end; ++idx) {
2204 gf_group->update_type[*index_counter] = LF_UPDATE;
2205 gf_group->arf_src_offset[*index_counter] = 0;
2206 gf_group->frame_gop_index[*index_counter] = idx;
2207 gf_group->rf_level[*index_counter] = INTER_NORMAL;
2208 gf_group->layer_depth[*index_counter] = depth;
2209 gf_group->gfu_boost[*index_counter] = NORMAL_BOOST;
2210 ++(*index_counter);
2211 }
2212 gf_group->max_layer_depth = VPXMAX(gf_group->max_layer_depth, depth);
2213 return;
2214 }
2215
2216 assert(abs(mid - start) >= 1 && abs(mid - end) >= 1);
2217
2218 // Process ARF frame
2219 gf_group->layer_depth[*index_counter] = depth;
2220 gf_group->update_type[*index_counter] = ARF_UPDATE;
2221 gf_group->arf_src_offset[*index_counter] = mid - start;
2222 gf_group->frame_gop_index[*index_counter] = mid;
2223 gf_group->rf_level[*index_counter] = GF_ARF_LOW;
2224
2225 for (idx = 0; idx <= mid; ++idx)
2226 if (EOF == input_stats(twopass, &fpf_frame)) break;
2227
2228 gf_group->gfu_boost[*index_counter] =
2229 VPXMAX(MIN_ARF_GF_BOOST,
2230 calc_arf_boost(cpi, end - mid + 1, mid - start) >> depth);
2231
2232 reset_fpf_position(twopass, start_pos);
2233
2234 ++(*index_counter);
2235
2236 find_arf_order(cpi, gf_group, index_counter, depth + 1, start, mid - 1);
2237
2238 gf_group->update_type[*index_counter] = USE_BUF_FRAME;
2239 gf_group->arf_src_offset[*index_counter] = 0;
2240 gf_group->frame_gop_index[*index_counter] = mid;
2241 gf_group->rf_level[*index_counter] = INTER_NORMAL;
2242 gf_group->layer_depth[*index_counter] = depth;
2243 ++(*index_counter);
2244
2245 find_arf_order(cpi, gf_group, index_counter, depth + 1, mid + 1, end);
2246 }
2247
set_gf_overlay_frame_type(GF_GROUP * gf_group,int frame_index,int source_alt_ref_active)2248 static INLINE void set_gf_overlay_frame_type(GF_GROUP *gf_group,
2249 int frame_index,
2250 int source_alt_ref_active) {
2251 if (source_alt_ref_active) {
2252 gf_group->update_type[frame_index] = OVERLAY_UPDATE;
2253 gf_group->rf_level[frame_index] = INTER_NORMAL;
2254 gf_group->layer_depth[frame_index] = MAX_ARF_LAYERS - 1;
2255 gf_group->gfu_boost[frame_index] = NORMAL_BOOST;
2256 } else {
2257 gf_group->update_type[frame_index] = GF_UPDATE;
2258 gf_group->rf_level[frame_index] = GF_ARF_STD;
2259 gf_group->layer_depth[frame_index] = 0;
2260 }
2261 }
2262
define_gf_group_structure(VP9_COMP * cpi)2263 static void define_gf_group_structure(VP9_COMP *cpi) {
2264 RATE_CONTROL *const rc = &cpi->rc;
2265 TWO_PASS *const twopass = &cpi->twopass;
2266 GF_GROUP *const gf_group = &twopass->gf_group;
2267 int frame_index = 0;
2268 int key_frame = cpi->common.frame_type == KEY_FRAME;
2269 int layer_depth = 1;
2270 int gop_frames =
2271 rc->baseline_gf_interval - (key_frame || rc->source_alt_ref_pending);
2272
2273 gf_group->frame_start = cpi->common.current_video_frame;
2274 gf_group->frame_end = gf_group->frame_start + rc->baseline_gf_interval;
2275 gf_group->max_layer_depth = 0;
2276 gf_group->allowed_max_layer_depth = 0;
2277
2278 // For key frames the frame target rate is already set and it
2279 // is also the golden frame.
2280 // === [frame_index == 0] ===
2281 if (!key_frame)
2282 set_gf_overlay_frame_type(gf_group, frame_index, rc->source_alt_ref_active);
2283
2284 ++frame_index;
2285
2286 // === [frame_index == 1] ===
2287 if (rc->source_alt_ref_pending) {
2288 gf_group->update_type[frame_index] = ARF_UPDATE;
2289 gf_group->rf_level[frame_index] = GF_ARF_STD;
2290 gf_group->layer_depth[frame_index] = layer_depth;
2291 gf_group->arf_src_offset[frame_index] =
2292 (unsigned char)(rc->baseline_gf_interval - 1);
2293 gf_group->frame_gop_index[frame_index] = rc->baseline_gf_interval;
2294 gf_group->max_layer_depth = 1;
2295 ++frame_index;
2296 ++layer_depth;
2297 gf_group->allowed_max_layer_depth = cpi->oxcf.enable_auto_arf;
2298 }
2299
2300 find_arf_order(cpi, gf_group, &frame_index, layer_depth, 1, gop_frames);
2301
2302 // TODO(b/345523905): Why do we need to set an overlay frame in the end?
2303 set_gf_overlay_frame_type(gf_group, frame_index, rc->source_alt_ref_pending);
2304 gf_group->arf_src_offset[frame_index] = 0;
2305 gf_group->frame_gop_index[frame_index] = rc->baseline_gf_interval;
2306
2307 // Set the frame ops number.
2308 gf_group->gf_group_size = frame_index;
2309 }
2310
gf_group_set_overlay_frame(GF_GROUP * gf_group,int frame_index,int show_frame_index)2311 static INLINE void gf_group_set_overlay_frame(GF_GROUP *gf_group,
2312 int frame_index,
2313 int show_frame_index) {
2314 gf_group->update_type[frame_index] = OVERLAY_UPDATE;
2315 gf_group->arf_src_offset[frame_index] = 0;
2316 gf_group->frame_gop_index[frame_index] = show_frame_index;
2317 gf_group->rf_level[frame_index] = INTER_NORMAL;
2318 gf_group->layer_depth[frame_index] = MAX_ARF_LAYERS - 1;
2319 }
2320
gf_group_set_key_frame(GF_GROUP * gf_group,int frame_index,int show_frame_index)2321 static INLINE void gf_group_set_key_frame(GF_GROUP *gf_group, int frame_index,
2322 int show_frame_index) {
2323 gf_group->update_type[frame_index] = KF_UPDATE;
2324 gf_group->arf_src_offset[frame_index] = 0;
2325 gf_group->frame_gop_index[frame_index] = show_frame_index;
2326 gf_group->rf_level[frame_index] = KF_STD;
2327 gf_group->layer_depth[frame_index] = 0;
2328 }
2329
gf_group_set_arf_frame(GF_GROUP * gf_group,int frame_index,int show_frame_index)2330 static INLINE void gf_group_set_arf_frame(GF_GROUP *gf_group, int frame_index,
2331 int show_frame_index) {
2332 gf_group->update_type[frame_index] = ARF_UPDATE;
2333 gf_group->arf_src_offset[frame_index] =
2334 (unsigned char)(show_frame_index - frame_index);
2335 gf_group->frame_gop_index[frame_index] = show_frame_index;
2336 gf_group->rf_level[frame_index] = GF_ARF_STD;
2337 gf_group->layer_depth[frame_index] = 1;
2338 }
2339
gf_group_set_inter_normal_frame(GF_GROUP * gf_group,int frame_index,int show_frame_index)2340 static INLINE void gf_group_set_inter_normal_frame(GF_GROUP *gf_group,
2341 int frame_index,
2342 int show_frame_index) {
2343 gf_group->update_type[frame_index] = LF_UPDATE;
2344 gf_group->arf_src_offset[frame_index] = 0;
2345 gf_group->frame_gop_index[frame_index] = show_frame_index;
2346 gf_group->rf_level[frame_index] = INTER_NORMAL;
2347 gf_group->layer_depth[frame_index] = 2;
2348 }
2349
set_gf_frame_type(vpx_rc_frame_update_type_t update_type,int show_frame_count,GF_GROUP * gf_group,int * frame_index,int * show_frame_index)2350 static INLINE void set_gf_frame_type(vpx_rc_frame_update_type_t update_type,
2351 int show_frame_count, GF_GROUP *gf_group,
2352 int *frame_index, int *show_frame_index) {
2353 if (update_type == VPX_RC_KF_UPDATE) {
2354 gf_group_set_key_frame(gf_group, *frame_index, *show_frame_index);
2355 ++(*frame_index);
2356 ++(*show_frame_index);
2357 } else if (update_type == VPX_RC_OVERLAY_UPDATE) {
2358 gf_group_set_overlay_frame(gf_group, *frame_index, *show_frame_index);
2359 ++(*frame_index);
2360 ++(*show_frame_index);
2361 } else if (update_type == VPX_RC_ARF_UPDATE) {
2362 gf_group_set_arf_frame(gf_group, *frame_index, show_frame_count);
2363 ++(*frame_index);
2364 } else if (update_type == VPX_RC_LF_UPDATE) {
2365 gf_group_set_inter_normal_frame(gf_group, *frame_index, *show_frame_index);
2366 ++(*frame_index);
2367 ++(*show_frame_index);
2368 } else {
2369 assert(0);
2370 }
2371 }
2372
ext_rc_define_gf_group_structure(const vpx_rc_gop_decision_t * gop_decision,GF_GROUP * gf_group)2373 static void ext_rc_define_gf_group_structure(
2374 const vpx_rc_gop_decision_t *gop_decision, GF_GROUP *gf_group) {
2375 const int gop_coding_frames = gop_decision->gop_coding_frames;
2376
2377 const int show_frame_count = gop_coding_frames - gop_decision->use_alt_ref;
2378 int frame_index = 0;
2379 int show_frame_index = 0;
2380
2381 for (int i = frame_index; i < gop_coding_frames; i++) {
2382 set_gf_frame_type(gop_decision->update_type[i], show_frame_count, gf_group,
2383 &frame_index, &show_frame_index);
2384
2385 gf_group->update_ref_idx[i] = gop_decision->update_ref_index[i];
2386
2387 gf_group->ext_rc_ref[i].last_index = 0;
2388 gf_group->ext_rc_ref[i].golden_index = 0;
2389 gf_group->ext_rc_ref[i].altref_index = 0;
2390 for (int ref_frame = 0; ref_frame < 3; ref_frame++) {
2391 const vpx_rc_ref_frame_t *const ext_ref_frame =
2392 &gop_decision->ref_frame_list[i];
2393 const int ref_index = ext_ref_frame->index[ref_frame];
2394 gf_group->ref_frame_list[i][ref_frame] = ext_ref_frame->index[ref_frame];
2395 switch (ext_ref_frame->name[ref_frame]) {
2396 case VPX_RC_LAST_FRAME:
2397 gf_group->ext_rc_ref[i].last_index = ref_index;
2398 break;
2399 case VPX_RC_GOLDEN_FRAME:
2400 gf_group->ext_rc_ref[i].golden_index = ref_index;
2401 break;
2402 case VPX_RC_ALTREF_FRAME:
2403 gf_group->ext_rc_ref[i].altref_index = ref_index;
2404 break;
2405 default: break;
2406 }
2407 }
2408 if (gf_group->update_type[i] == OVERLAY_UPDATE) {
2409 // From ext_rc, overlay may not update any ref. But here we force it to
2410 // update its arf's slot. This is probably OK since the arf and this
2411 // overlay frame should be very similar.
2412 gf_group->update_ref_idx[i] = gf_group->ext_rc_ref[i].altref_index;
2413 }
2414 }
2415 // max_layer_depth is hardcoded to match the behavior of
2416 // define_gf_group_structure()
2417 // TODO(angiebird): Check whether max_layer_depth has performance impact.
2418 gf_group->max_layer_depth = 2;
2419 gf_group->allowed_max_layer_depth = 1;
2420 gf_group->gf_group_size = gop_coding_frames;
2421
2422 // TODO(b/345523905): Why do we need to set an overlay frame in the end?
2423 assert(show_frame_count == show_frame_index);
2424 if (gop_decision->use_alt_ref) {
2425 gf_group_set_overlay_frame(gf_group, gf_group->gf_group_size,
2426 show_frame_index);
2427 } else {
2428 gf_group_set_inter_normal_frame(gf_group, gf_group->gf_group_size,
2429 show_frame_index);
2430 }
2431
2432 gf_group->frame_start = 0;
2433 gf_group->frame_end = gf_group->gf_group_size - gop_decision->use_alt_ref;
2434 }
2435
allocate_gf_group_bits(VP9_COMP * cpi,int64_t gf_group_bits,int gf_arf_bits)2436 static void allocate_gf_group_bits(VP9_COMP *cpi, int64_t gf_group_bits,
2437 int gf_arf_bits) {
2438 VP9EncoderConfig *const oxcf = &cpi->oxcf;
2439 RATE_CONTROL *const rc = &cpi->rc;
2440 TWO_PASS *const twopass = &cpi->twopass;
2441 GF_GROUP *const gf_group = &twopass->gf_group;
2442 FIRSTPASS_STATS frame_stats;
2443 int i;
2444 int frame_index = 0;
2445 int target_frame_size;
2446 int key_frame;
2447 const int max_bits = frame_max_bits(&cpi->rc, oxcf);
2448 int64_t total_group_bits = gf_group_bits;
2449 int mid_frame_idx;
2450 int normal_frames;
2451 int normal_frame_bits;
2452 int last_frame_reduction = 0;
2453 double av_score = 1.0;
2454 double tot_norm_frame_score = 1.0;
2455 double this_frame_score = 1.0;
2456
2457 // Define the GF structure and specify
2458 int gop_frames = gf_group->gf_group_size;
2459
2460 key_frame = cpi->common.frame_type == KEY_FRAME;
2461
2462 // For key frames the frame target rate is already set and it
2463 // is also the golden frame.
2464 // === [frame_index == 0] ===
2465 if (!key_frame) {
2466 gf_group->bit_allocation[frame_index] =
2467 rc->source_alt_ref_active ? 0 : gf_arf_bits;
2468 }
2469
2470 // Deduct the boost bits for arf (or gf if it is not a key frame)
2471 // from the group total.
2472 if (rc->source_alt_ref_pending || !key_frame) total_group_bits -= gf_arf_bits;
2473
2474 ++frame_index;
2475
2476 // === [frame_index == 1] ===
2477 // Store the bits to spend on the ARF if there is one.
2478 if (rc->source_alt_ref_pending) {
2479 gf_group->bit_allocation[frame_index] = gf_arf_bits;
2480
2481 ++frame_index;
2482 }
2483
2484 // Define middle frame
2485 mid_frame_idx = frame_index + (rc->baseline_gf_interval >> 1) - 1;
2486
2487 normal_frames = (rc->baseline_gf_interval - 1);
2488 if (normal_frames > 1)
2489 normal_frame_bits = (int)(total_group_bits / normal_frames);
2490 else
2491 normal_frame_bits = (int)total_group_bits;
2492
2493 gf_group->gfu_boost[1] = rc->gfu_boost;
2494
2495 if (cpi->multi_layer_arf) {
2496 int idx;
2497 int arf_depth_bits[MAX_ARF_LAYERS] = { 0 };
2498 int arf_depth_count[MAX_ARF_LAYERS] = { 0 };
2499 int arf_depth_boost[MAX_ARF_LAYERS] = { 0 };
2500 int total_arfs = 1; // Account for the base layer ARF.
2501
2502 for (idx = 0; idx < gop_frames; ++idx) {
2503 if (gf_group->update_type[idx] == ARF_UPDATE) {
2504 arf_depth_boost[gf_group->layer_depth[idx]] += gf_group->gfu_boost[idx];
2505 ++arf_depth_count[gf_group->layer_depth[idx]];
2506 }
2507 }
2508
2509 for (idx = 2; idx < MAX_ARF_LAYERS; ++idx) {
2510 if (arf_depth_boost[idx] == 0) break;
2511 arf_depth_bits[idx] = calculate_boost_bits(
2512 rc->baseline_gf_interval - total_arfs - arf_depth_count[idx],
2513 arf_depth_boost[idx], total_group_bits);
2514
2515 total_group_bits -= arf_depth_bits[idx];
2516 total_arfs += arf_depth_count[idx];
2517 }
2518
2519 // offset the base layer arf
2520 normal_frames -= (total_arfs - 1);
2521 if (normal_frames > 1)
2522 normal_frame_bits = (int)(total_group_bits / normal_frames);
2523 else
2524 normal_frame_bits = (int)total_group_bits;
2525
2526 target_frame_size = normal_frame_bits;
2527 target_frame_size =
2528 clamp(target_frame_size, 0, VPXMIN(max_bits, (int)total_group_bits));
2529
2530 // The first layer ARF has its bit allocation assigned.
2531 for (idx = frame_index; idx < gop_frames; ++idx) {
2532 switch (gf_group->update_type[idx]) {
2533 case ARF_UPDATE:
2534 gf_group->bit_allocation[idx] =
2535 (int)(((int64_t)arf_depth_bits[gf_group->layer_depth[idx]] *
2536 gf_group->gfu_boost[idx]) /
2537 arf_depth_boost[gf_group->layer_depth[idx]]);
2538 break;
2539 case USE_BUF_FRAME: gf_group->bit_allocation[idx] = 0; break;
2540 default: gf_group->bit_allocation[idx] = target_frame_size; break;
2541 }
2542 }
2543 gf_group->bit_allocation[idx] = 0;
2544
2545 return;
2546 }
2547
2548 if (oxcf->vbr_corpus_complexity) {
2549 av_score = get_distribution_av_err(cpi, twopass);
2550 tot_norm_frame_score = calculate_group_score(cpi, av_score, normal_frames);
2551 }
2552
2553 // Allocate bits to the other frames in the group.
2554 for (i = 0; i < normal_frames; ++i) {
2555 if (EOF == input_stats(twopass, &frame_stats)) break;
2556 if (oxcf->vbr_corpus_complexity) {
2557 this_frame_score = calculate_norm_frame_score(cpi, twopass, oxcf,
2558 &frame_stats, av_score);
2559 normal_frame_bits = (int)((double)total_group_bits *
2560 (this_frame_score / tot_norm_frame_score));
2561 }
2562
2563 target_frame_size = normal_frame_bits;
2564 if ((i == (normal_frames - 1)) && (i >= 1)) {
2565 last_frame_reduction = normal_frame_bits / 16;
2566 target_frame_size -= last_frame_reduction;
2567 }
2568
2569 target_frame_size =
2570 clamp(target_frame_size, 0, VPXMIN(max_bits, (int)total_group_bits));
2571
2572 gf_group->bit_allocation[frame_index] = target_frame_size;
2573 ++frame_index;
2574 }
2575
2576 // Add in some extra bits for the middle frame in the group.
2577 gf_group->bit_allocation[mid_frame_idx] += last_frame_reduction;
2578
2579 // Note:
2580 // We need to configure the frame at the end of the sequence + 1 that will be
2581 // the start frame for the next group. Otherwise prior to the call to
2582 // vp9_rc_get_second_pass_params() the data will be undefined.
2583 }
2584
2585 // Adjusts the ARNF filter for a GF group.
adjust_group_arnr_filter(VP9_COMP * cpi,double section_noise,double section_inter,double section_motion)2586 static void adjust_group_arnr_filter(VP9_COMP *cpi, double section_noise,
2587 double section_inter,
2588 double section_motion) {
2589 TWO_PASS *const twopass = &cpi->twopass;
2590 double section_zeromv = section_inter - section_motion;
2591
2592 twopass->arnr_strength_adjustment = 0;
2593
2594 if (section_noise < 150) {
2595 twopass->arnr_strength_adjustment -= 1;
2596 if (section_noise < 75) twopass->arnr_strength_adjustment -= 1;
2597 } else if (section_noise > 250)
2598 twopass->arnr_strength_adjustment += 1;
2599
2600 if (section_zeromv > 0.50) twopass->arnr_strength_adjustment += 1;
2601 }
2602
2603 // Analyse and define a gf/arf group.
2604 #define ARF_ABS_ZOOM_THRESH 4.0
2605
2606 #define MAX_GF_BOOST 5400
2607
2608 typedef struct RANGE {
2609 int min;
2610 int max;
2611 } RANGE;
2612
2613 /* get_gop_coding_frame_num() depends on several fields in RATE_CONTROL *rc as
2614 * follows.
2615 * Static fields:
2616 * (The following fields will remain unchanged after initialization of encoder.)
2617 * rc->static_scene_max_gf_interval
2618 * rc->min_gf_interval
2619 * twopass->sr_diff_factor
2620 * twopass->sr_default_decay_limit
2621 * twopass->zm_factor
2622 *
2623 * Dynamic fields:
2624 * (The following fields will be updated before or after coding each frame.)
2625 * rc->frames_to_key
2626 * rc->frames_since_key
2627 * rc->source_alt_ref_active
2628 *
2629 * Special case: if CONFIG_RATE_CTRL is true, the external arf indexes will
2630 * determine the arf position.
2631 *
2632 * TODO(angiebird): Separate the dynamic fields and static fields into two
2633 * structs.
2634 */
get_gop_coding_frame_num(int * use_alt_ref,const FRAME_INFO * frame_info,const TWO_PASS * const twopass,const RATE_CONTROL * rc,int gf_start_show_idx,const RANGE * active_gf_interval,double gop_intra_factor,int lag_in_frames,int * end_of_sequence)2635 static int get_gop_coding_frame_num(
2636 int *use_alt_ref, const FRAME_INFO *frame_info,
2637 const TWO_PASS *const twopass, const RATE_CONTROL *rc,
2638 int gf_start_show_idx, const RANGE *active_gf_interval,
2639 double gop_intra_factor, int lag_in_frames, int *end_of_sequence) {
2640 const FIRST_PASS_INFO *first_pass_info = &twopass->first_pass_info;
2641 double loop_decay_rate = 1.00;
2642 double mv_ratio_accumulator = 0.0;
2643 double this_frame_mv_in_out = 0.0;
2644 double mv_in_out_accumulator = 0.0;
2645 double abs_mv_in_out_accumulator = 0.0;
2646 double sr_accumulator = 0.0;
2647 // Motion breakout threshold for loop below depends on image size.
2648 double mv_ratio_accumulator_thresh =
2649 (frame_info->frame_height + frame_info->frame_width) / 4.0;
2650 double zero_motion_accumulator = 1.0;
2651 int gop_coding_frames;
2652
2653 *use_alt_ref = 1;
2654 gop_coding_frames = 0;
2655 while (gop_coding_frames < rc->static_scene_max_gf_interval &&
2656 gop_coding_frames < rc->frames_to_key) {
2657 const FIRSTPASS_STATS *next_next_frame;
2658 const FIRSTPASS_STATS *next_frame;
2659 int flash_detected;
2660 ++gop_coding_frames;
2661
2662 next_frame = fps_get_frame_stats(first_pass_info,
2663 gf_start_show_idx + gop_coding_frames);
2664 if (next_frame == NULL) {
2665 *end_of_sequence = gop_coding_frames == 1 && rc->source_alt_ref_active;
2666 break;
2667 }
2668
2669 // Test for the case where there is a brief flash but the prediction
2670 // quality back to an earlier frame is then restored.
2671 next_next_frame = fps_get_frame_stats(
2672 first_pass_info, gf_start_show_idx + gop_coding_frames + 1);
2673 flash_detected = detect_flash_from_frame_stats(next_next_frame);
2674
2675 // Update the motion related elements to the boost calculation.
2676 accumulate_frame_motion_stats(
2677 next_frame, &this_frame_mv_in_out, &mv_in_out_accumulator,
2678 &abs_mv_in_out_accumulator, &mv_ratio_accumulator);
2679
2680 // Monitor for static sections.
2681 if ((rc->frames_since_key + gop_coding_frames - 1) > 1) {
2682 zero_motion_accumulator = VPXMIN(
2683 zero_motion_accumulator, get_zero_motion_factor(twopass, next_frame));
2684 }
2685
2686 // Accumulate the effect of prediction quality decay.
2687 if (!flash_detected) {
2688 double last_loop_decay_rate = loop_decay_rate;
2689 loop_decay_rate = get_prediction_decay_rate(twopass, next_frame);
2690
2691 // Break clause to detect very still sections after motion. For example,
2692 // a static image after a fade or other transition.
2693 if (gop_coding_frames > rc->min_gf_interval && loop_decay_rate >= 0.999 &&
2694 last_loop_decay_rate < 0.9) {
2695 int still_interval = 5;
2696 if (check_transition_to_still(first_pass_info,
2697 gf_start_show_idx + gop_coding_frames,
2698 still_interval)) {
2699 *use_alt_ref = 0;
2700 break;
2701 }
2702 }
2703
2704 // Update the accumulator for second ref error difference.
2705 // This is intended to give an indication of how much the coded error is
2706 // increasing over time.
2707 if (gop_coding_frames == 1) {
2708 sr_accumulator += next_frame->coded_error;
2709 } else {
2710 sr_accumulator +=
2711 (next_frame->sr_coded_error - next_frame->coded_error);
2712 }
2713 }
2714
2715 // Break out conditions.
2716 // Break at maximum of active_gf_interval->max unless almost totally
2717 // static.
2718 //
2719 // Note that the addition of a test of rc->source_alt_ref_active is
2720 // deliberate. The effect of this is that after a normal altref group even
2721 // if the material is static there will be one normal length GF group
2722 // before allowing longer GF groups. The reason for this is that in cases
2723 // such as slide shows where slides are separated by a complex transition
2724 // such as a fade, the arf group spanning the transition may not be coded
2725 // at a very high quality and hence this frame (with its overlay) is a
2726 // poor golden frame to use for an extended group.
2727 if ((gop_coding_frames >= active_gf_interval->max) &&
2728 ((zero_motion_accumulator < 0.995) || (rc->source_alt_ref_active))) {
2729 break;
2730 }
2731 if (
2732 // Don't break out with a very short interval.
2733 (gop_coding_frames >= active_gf_interval->min) &&
2734 // If possible don't break very close to a kf
2735 ((rc->frames_to_key - gop_coding_frames) >= rc->min_gf_interval) &&
2736 (gop_coding_frames & 0x01) && (!flash_detected) &&
2737 ((mv_ratio_accumulator > mv_ratio_accumulator_thresh) ||
2738 (abs_mv_in_out_accumulator > ARF_ABS_ZOOM_THRESH) ||
2739 (sr_accumulator > gop_intra_factor * next_frame->intra_error))) {
2740 break;
2741 }
2742 }
2743 *use_alt_ref &= zero_motion_accumulator < 0.995;
2744 *use_alt_ref &= gop_coding_frames < lag_in_frames;
2745 *use_alt_ref &= gop_coding_frames >= rc->min_gf_interval;
2746 return gop_coding_frames;
2747 }
2748
get_active_gf_inverval_range_simple(int min_gf_interval,int arf_active_or_kf,int frames_to_key)2749 static RANGE get_active_gf_inverval_range_simple(int min_gf_interval,
2750 int arf_active_or_kf,
2751 int frames_to_key) {
2752 RANGE active_gf_interval;
2753 active_gf_interval.min = min_gf_interval + arf_active_or_kf + 2;
2754 active_gf_interval.max = 16 + arf_active_or_kf;
2755
2756 if ((active_gf_interval.max <= frames_to_key) &&
2757 (active_gf_interval.max >= (frames_to_key - min_gf_interval))) {
2758 active_gf_interval.min = frames_to_key / 2;
2759 active_gf_interval.max = frames_to_key / 2;
2760 }
2761 return active_gf_interval;
2762 }
2763
get_active_gf_inverval_range(const FRAME_INFO * frame_info,const RATE_CONTROL * rc,int arf_active_or_kf,int gf_start_show_idx,int active_worst_quality,int last_boosted_qindex)2764 static RANGE get_active_gf_inverval_range(
2765 const FRAME_INFO *frame_info, const RATE_CONTROL *rc, int arf_active_or_kf,
2766 int gf_start_show_idx, int active_worst_quality, int last_boosted_qindex) {
2767 RANGE active_gf_interval;
2768 int int_max_q = (int)(vp9_convert_qindex_to_q(active_worst_quality,
2769 frame_info->bit_depth));
2770 int q_term = (gf_start_show_idx == 0)
2771 ? int_max_q / 32
2772 : (int)(vp9_convert_qindex_to_q(last_boosted_qindex,
2773 frame_info->bit_depth) /
2774 6);
2775 active_gf_interval.min =
2776 rc->min_gf_interval + arf_active_or_kf + VPXMIN(2, int_max_q / 200);
2777 active_gf_interval.min =
2778 VPXMIN(active_gf_interval.min, rc->max_gf_interval + arf_active_or_kf);
2779
2780 // The value chosen depends on the active Q range. At low Q we have
2781 // bits to spare and are better with a smaller interval and smaller boost.
2782 // At high Q when there are few bits to spare we are better with a longer
2783 // interval to spread the cost of the GF.
2784 active_gf_interval.max = 11 + arf_active_or_kf + VPXMIN(5, q_term);
2785
2786 // Force max GF interval to be odd.
2787 active_gf_interval.max = active_gf_interval.max | 0x01;
2788
2789 // We have: active_gf_interval.min <=
2790 // rc->max_gf_interval + arf_active_or_kf.
2791 if (active_gf_interval.max < active_gf_interval.min) {
2792 active_gf_interval.max = active_gf_interval.min;
2793 } else {
2794 active_gf_interval.max =
2795 VPXMIN(active_gf_interval.max, rc->max_gf_interval + arf_active_or_kf);
2796 }
2797
2798 // Would the active max drop us out just before the near the next kf?
2799 if ((active_gf_interval.max <= rc->frames_to_key) &&
2800 (active_gf_interval.max >= (rc->frames_to_key - rc->min_gf_interval))) {
2801 active_gf_interval.max = rc->frames_to_key / 2;
2802 }
2803 active_gf_interval.max =
2804 VPXMAX(active_gf_interval.max, active_gf_interval.min);
2805 return active_gf_interval;
2806 }
2807
get_arf_layers(int multi_layer_arf,int max_layers,int coding_frame_num)2808 static int get_arf_layers(int multi_layer_arf, int max_layers,
2809 int coding_frame_num) {
2810 assert(max_layers <= MAX_ARF_LAYERS);
2811 if (multi_layer_arf) {
2812 int layers = 0;
2813 int i;
2814 for (i = coding_frame_num; i > 0; i >>= 1) {
2815 ++layers;
2816 }
2817 layers = VPXMIN(max_layers, layers);
2818 return layers;
2819 } else {
2820 return 1;
2821 }
2822 }
2823
define_gf_group(VP9_COMP * cpi,int gf_start_show_idx)2824 static void define_gf_group(VP9_COMP *cpi, int gf_start_show_idx) {
2825 VP9_COMMON *const cm = &cpi->common;
2826 RATE_CONTROL *const rc = &cpi->rc;
2827 VP9EncoderConfig *const oxcf = &cpi->oxcf;
2828 TWO_PASS *const twopass = &cpi->twopass;
2829 const FRAME_INFO *frame_info = &cpi->frame_info;
2830 const FIRST_PASS_INFO *first_pass_info = &twopass->first_pass_info;
2831 const FIRSTPASS_STATS *const start_pos = twopass->stats_in;
2832 int gop_coding_frames;
2833
2834 double gf_group_err = 0.0;
2835 double gf_group_raw_error = 0.0;
2836 double gf_group_noise = 0.0;
2837 double gf_group_skip_pct = 0.0;
2838 double gf_group_inactive_zone_rows = 0.0;
2839 double gf_group_inter = 0.0;
2840 double gf_group_motion = 0.0;
2841
2842 int allow_alt_ref = is_altref_enabled(cpi);
2843 int use_alt_ref;
2844
2845 int64_t gf_group_bits;
2846 int gf_arf_bits;
2847 int is_key_frame = frame_is_intra_only(cm);
2848
2849 vpx_rc_gop_decision_t gop_decision;
2850 int gop_decision_ready = 0;
2851 if (cpi->ext_ratectrl.ready &&
2852 (cpi->ext_ratectrl.funcs.rc_type & VPX_RC_GOP) != 0 &&
2853 cpi->ext_ratectrl.funcs.get_gop_decision != NULL) {
2854 vpx_codec_err_t codec_status =
2855 vp9_extrc_get_gop_decision(&cpi->ext_ratectrl, &gop_decision);
2856 if (codec_status != VPX_CODEC_OK) {
2857 vpx_internal_error(&cm->error, codec_status,
2858 "vp9_extrc_get_gop_decision() failed");
2859 }
2860 is_key_frame = gop_decision.use_key_frame;
2861 gop_decision_ready = 1;
2862 }
2863
2864 // If this is a key frame or the overlay from a previous arf then
2865 // the error score / cost of this frame has already been accounted for.
2866 const int arf_active_or_kf = is_key_frame || rc->source_alt_ref_active;
2867 int is_alt_ref_flash = 0;
2868
2869 double gop_intra_factor;
2870 int gop_frames;
2871 RANGE active_gf_interval;
2872 // Whether this is at the end of last GOP of this sequence.
2873 int end_of_sequence = 0;
2874
2875 // Reset the GF group data structures unless this is a key
2876 // frame in which case it will already have been done.
2877 if (is_key_frame == 0) {
2878 vp9_zero(twopass->gf_group);
2879 ++rc->gop_global_index;
2880 } else {
2881 rc->gop_global_index = 0;
2882 }
2883
2884 vpx_clear_system_state();
2885
2886 if (oxcf->use_simple_encode_api) {
2887 active_gf_interval = get_active_gf_inverval_range_simple(
2888 rc->min_gf_interval, arf_active_or_kf, rc->frames_to_key);
2889 } else {
2890 active_gf_interval = get_active_gf_inverval_range(
2891 frame_info, rc, arf_active_or_kf, gf_start_show_idx,
2892 twopass->active_worst_quality, rc->last_boosted_qindex);
2893 }
2894
2895 if (cpi->multi_layer_arf) {
2896 int arf_layers = get_arf_layers(cpi->multi_layer_arf, oxcf->enable_auto_arf,
2897 active_gf_interval.max);
2898 gop_intra_factor = 1.0 + 0.25 * arf_layers;
2899 } else {
2900 gop_intra_factor = 1.0;
2901 }
2902
2903 gop_coding_frames = get_gop_coding_frame_num(
2904 &use_alt_ref, frame_info, twopass, rc, gf_start_show_idx,
2905 &active_gf_interval, gop_intra_factor, cpi->oxcf.lag_in_frames,
2906 &end_of_sequence);
2907 use_alt_ref &= allow_alt_ref;
2908
2909 if (gop_decision_ready) {
2910 gop_coding_frames = gop_decision.gop_coding_frames;
2911 use_alt_ref = gop_decision.use_alt_ref;
2912 }
2913
2914 #if CONFIG_RATE_CTRL
2915 // If the external gop_command is on, we will override the decisions
2916 // of gop_coding_frames and use_alt_ref.
2917 if (cpi->oxcf.use_simple_encode_api) {
2918 const GOP_COMMAND *gop_command = &cpi->encode_command.gop_command;
2919 assert(allow_alt_ref == 1);
2920 if (gop_command->use) {
2921 gop_coding_frames = gop_command_coding_frame_count(gop_command);
2922 use_alt_ref = gop_command->use_alt_ref;
2923 }
2924 }
2925 #endif
2926
2927 // Was the group length constrained by the requirement for a new KF?
2928 rc->constrained_gf_group = (gop_coding_frames >= rc->frames_to_key) ? 1 : 0;
2929
2930 // Should we use the alternate reference frame.
2931 if (use_alt_ref) {
2932 const int f_frames =
2933 (rc->frames_to_key - gop_coding_frames >= gop_coding_frames - 1)
2934 ? gop_coding_frames - 1
2935 : VPXMAX(0, rc->frames_to_key - gop_coding_frames);
2936 const int b_frames = gop_coding_frames - 1;
2937 const int avg_inter_frame_qindex = rc->avg_frame_qindex[INTER_FRAME];
2938 // TODO(angiebird): figure out why arf's location is assigned this way
2939 const int arf_show_idx = VPXMIN(gf_start_show_idx + gop_coding_frames + 1,
2940 fps_get_num_frames(first_pass_info));
2941
2942 // Calculate the boost for alt ref.
2943 rc->gfu_boost =
2944 compute_arf_boost(frame_info, twopass, arf_show_idx, f_frames, b_frames,
2945 avg_inter_frame_qindex);
2946 rc->source_alt_ref_pending = 1;
2947 } else {
2948 const int f_frames = gop_coding_frames - 1;
2949 const int b_frames = 0;
2950 const int avg_inter_frame_qindex = rc->avg_frame_qindex[INTER_FRAME];
2951 // TODO(angiebird): figure out why arf's location is assigned this way
2952 const int gld_show_idx =
2953 VPXMIN(gf_start_show_idx + 1, fps_get_num_frames(first_pass_info));
2954 const int arf_boost =
2955 compute_arf_boost(frame_info, twopass, gld_show_idx, f_frames, b_frames,
2956 avg_inter_frame_qindex);
2957 rc->gfu_boost = VPXMIN((int)twopass->gf_max_total_boost, arf_boost);
2958 rc->source_alt_ref_pending = 0;
2959 }
2960
2961 #define LAST_ALR_ACTIVE_BEST_QUALITY_ADJUSTMENT_FACTOR 0.2
2962 rc->arf_active_best_quality_adjustment_factor = 1.0;
2963 rc->arf_increase_active_best_quality = 0;
2964
2965 if (!is_lossless_requested(&cpi->oxcf)) {
2966 if (rc->frames_since_key >= rc->frames_to_key) {
2967 // Increase the active best quality in the second half of key frame
2968 // interval.
2969 rc->arf_active_best_quality_adjustment_factor =
2970 LAST_ALR_ACTIVE_BEST_QUALITY_ADJUSTMENT_FACTOR +
2971 (1.0 - LAST_ALR_ACTIVE_BEST_QUALITY_ADJUSTMENT_FACTOR) *
2972 (rc->frames_to_key - gop_coding_frames) /
2973 (VPXMAX(1, ((rc->frames_to_key + rc->frames_since_key) / 2 -
2974 gop_coding_frames)));
2975 rc->arf_increase_active_best_quality = 1;
2976 } else if ((rc->frames_to_key - gop_coding_frames) > 0) {
2977 // Reduce the active best quality in the first half of key frame interval.
2978 rc->arf_active_best_quality_adjustment_factor =
2979 LAST_ALR_ACTIVE_BEST_QUALITY_ADJUSTMENT_FACTOR +
2980 (1.0 - LAST_ALR_ACTIVE_BEST_QUALITY_ADJUSTMENT_FACTOR) *
2981 (rc->frames_since_key + gop_coding_frames) /
2982 (VPXMAX(1, (rc->frames_to_key + rc->frames_since_key) / 2 +
2983 gop_coding_frames));
2984 rc->arf_increase_active_best_quality = -1;
2985 }
2986 }
2987
2988 #ifdef AGGRESSIVE_VBR
2989 // Limit maximum boost based on interval length.
2990 rc->gfu_boost = VPXMIN((int)rc->gfu_boost, gop_coding_frames * 140);
2991 #else
2992 rc->gfu_boost = VPXMIN((int)rc->gfu_boost, gop_coding_frames * 200);
2993 #endif
2994
2995 // Cap the ARF boost when perceptual quality AQ mode is enabled. This is
2996 // designed to improve the perceptual quality of high value content and to
2997 // make consistent quality across consecutive frames. It will hurt objective
2998 // quality.
2999 if (oxcf->aq_mode == PERCEPTUAL_AQ)
3000 rc->gfu_boost = VPXMIN(rc->gfu_boost, MIN_ARF_GF_BOOST);
3001
3002 rc->baseline_gf_interval = gop_coding_frames - rc->source_alt_ref_pending;
3003
3004 if (rc->source_alt_ref_pending)
3005 is_alt_ref_flash = detect_flash(twopass, rc->baseline_gf_interval);
3006
3007 {
3008 const double av_err = get_distribution_av_err(cpi, twopass);
3009 const double mean_mod_score = twopass->mean_mod_score;
3010 // If the first frame is a key frame or the overlay from a previous arf then
3011 // the error score / cost of this frame has already been accounted for.
3012 int start_idx = arf_active_or_kf ? 1 : 0;
3013 int j;
3014 for (j = start_idx; j < gop_coding_frames; ++j) {
3015 int show_idx = gf_start_show_idx + j;
3016 const FIRSTPASS_STATS *frame_stats =
3017 fps_get_frame_stats(first_pass_info, show_idx);
3018 // TODO(b/345831640): Why do we set gop_coding_frames as the upperbound of
3019 // the for loop here? gop_coding_frames does not reflect the "show frame
3020 // count" in a GOP. Therefore, it's possible to get a NULL pointer from
3021 // fps_get_frame_stats(). Here we mitigate the issue using break whenever
3022 // frame_stats == NULL. Show we set the upperbound to show frame count?
3023 if (frame_stats == NULL) {
3024 if (cpi->ext_ratectrl.ready &&
3025 (cpi->ext_ratectrl.funcs.rc_type & VPX_RC_GOP) != 0 &&
3026 cpi->ext_ratectrl.funcs.get_gop_decision != NULL) {
3027 // Since in ext_ratectrl, gop_coding_frames means the count of both
3028 // show and no show frames. Using this variable to access
3029 // first_pass_info will trigger out-of-range error because
3030 // first_pass_info only contains show frames. This part is used for
3031 // computing gf_group_err which will be used to compute gf_group_bits
3032 // for libvpx internal rate control. Since ext_ratectrl is using
3033 // external rate control module, this part becomes non-critical.
3034 // Hence, we can safely turn off this error reporting. In the future,
3035 // we should refactor the code so that this part is not used by
3036 // ext_ratectrl.
3037 break;
3038 }
3039 vpx_internal_error(&cm->error, VPX_CODEC_ERROR,
3040 "In define_gf_group(), frame_stats is NULL when "
3041 "calculating gf_group_err.");
3042 break;
3043 }
3044 // Accumulate error score of frames in this gf group.
3045 gf_group_err += calc_norm_frame_score(oxcf, frame_info, frame_stats,
3046 mean_mod_score, av_err);
3047 gf_group_raw_error += frame_stats->coded_error;
3048 gf_group_noise += frame_stats->frame_noise_energy;
3049 gf_group_skip_pct += frame_stats->intra_skip_pct;
3050 gf_group_inactive_zone_rows += frame_stats->inactive_zone_rows;
3051 gf_group_inter += frame_stats->pcnt_inter;
3052 gf_group_motion += frame_stats->pcnt_motion;
3053 }
3054 }
3055
3056 // Calculate the bits to be allocated to the gf/arf group as a whole
3057 gf_group_bits = calculate_total_gf_group_bits(cpi, gf_group_err);
3058
3059 gop_frames =
3060 rc->baseline_gf_interval + rc->source_alt_ref_pending - arf_active_or_kf;
3061
3062 // Store the average moise level measured for the group
3063 // TODO(any): Experiment with removal of else condition (gop_frames = 0) so
3064 // that consumption of group noise energy is based on previous gf group
3065 if (gop_frames > 0)
3066 twopass->gf_group.group_noise_energy = (int)(gf_group_noise / gop_frames);
3067 else
3068 twopass->gf_group.group_noise_energy = 0;
3069
3070 // Calculate an estimate of the maxq needed for the group.
3071 // We are more aggressive about correcting for sections
3072 // where there could be significant overshoot than for easier
3073 // sections where we do not wish to risk creating an overshoot
3074 // of the allocated bit budget.
3075 if ((cpi->oxcf.rc_mode != VPX_Q) && (rc->baseline_gf_interval > 1)) {
3076 const int vbr_group_bits_per_frame = (int)(gf_group_bits / gop_frames);
3077 const double group_av_err = gf_group_raw_error / gop_frames;
3078 const double group_av_noise = gf_group_noise / gop_frames;
3079 const double group_av_skip_pct = gf_group_skip_pct / gop_frames;
3080 const double group_av_inactive_zone = ((gf_group_inactive_zone_rows * 2) /
3081 (gop_frames * (double)cm->mb_rows));
3082 int tmp_q = get_twopass_worst_quality(
3083 cpi, group_av_err, (group_av_skip_pct + group_av_inactive_zone),
3084 group_av_noise, vbr_group_bits_per_frame);
3085 twopass->active_worst_quality =
3086 (int)((tmp_q + (twopass->active_worst_quality *
3087 (twopass->active_wq_factor - 1))) /
3088 twopass->active_wq_factor);
3089
3090 #if CONFIG_ALWAYS_ADJUST_BPM
3091 // Reset rolling actual and target bits counters for ARF groups.
3092 twopass->rolling_arf_group_target_bits = 0;
3093 twopass->rolling_arf_group_actual_bits = 0;
3094 #endif
3095 }
3096
3097 // Context Adjustment of ARNR filter strength
3098 if (rc->baseline_gf_interval > 1) {
3099 adjust_group_arnr_filter(cpi, (gf_group_noise / gop_frames),
3100 (gf_group_inter / gop_frames),
3101 (gf_group_motion / gop_frames));
3102 } else {
3103 twopass->arnr_strength_adjustment = 0;
3104 }
3105
3106 // Calculate the extra bits to be used for boosted frame(s)
3107 gf_arf_bits = calculate_boost_bits((rc->baseline_gf_interval - 1),
3108 rc->gfu_boost, gf_group_bits);
3109
3110 // Adjust KF group bits and error remaining.
3111 twopass->kf_group_error_left -= gf_group_err;
3112
3113 // Decide GOP structure.
3114 if (gop_decision_ready) {
3115 ext_rc_define_gf_group_structure(&gop_decision, &twopass->gf_group);
3116 // Set the fb idx for the first frame in this GOP.
3117 cpi->lst_fb_idx = twopass->gf_group.ext_rc_ref[0].last_index;
3118 cpi->gld_fb_idx = twopass->gf_group.ext_rc_ref[0].golden_index;
3119 cpi->alt_fb_idx = twopass->gf_group.ext_rc_ref[0].altref_index;
3120 } else {
3121 define_gf_group_structure(cpi);
3122 }
3123
3124 // Allocate bits to each of the frames in the GF group.
3125 allocate_gf_group_bits(cpi, gf_group_bits, gf_arf_bits);
3126
3127 // Reset the file position.
3128 reset_fpf_position(twopass, start_pos);
3129
3130 // Calculate a section intra ratio used in setting max loop filter.
3131 twopass->section_intra_rating = calculate_section_intra_ratio(
3132 start_pos, twopass->stats_in_end, rc->baseline_gf_interval);
3133
3134 if (oxcf->resize_mode == RESIZE_DYNAMIC) {
3135 // Default to starting GF groups at normal frame size.
3136 cpi->rc.next_frame_size_selector = UNSCALED;
3137 }
3138 #if !CONFIG_ALWAYS_ADJUST_BPM
3139 // Reset rolling actual and target bits counters for ARF groups.
3140 twopass->rolling_arf_group_target_bits = 0;
3141 twopass->rolling_arf_group_actual_bits = 0;
3142 #endif
3143 rc->preserve_arf_as_gld = rc->preserve_next_arf_as_gld;
3144 rc->preserve_next_arf_as_gld = 0;
3145 // If alt ref frame is flash do not set preserve_arf_as_gld
3146 if (!is_lossless_requested(&cpi->oxcf) && !cpi->use_svc &&
3147 cpi->oxcf.aq_mode == NO_AQ && cpi->multi_layer_arf && !is_alt_ref_flash)
3148 rc->preserve_next_arf_as_gld = 1;
3149 }
3150
3151 // Intra / Inter threshold very low
3152 #define VERY_LOW_II 1.5
3153 // Clean slide transitions we expect a sharp single frame spike in error.
3154 #define ERROR_SPIKE 5.0
3155
3156 // Slide show transition detection.
3157 // Tests for case where there is very low error either side of the current frame
3158 // but much higher just for this frame. This can help detect key frames in
3159 // slide shows even where the slides are pictures of different sizes.
3160 // Also requires that intra and inter errors are very similar to help eliminate
3161 // harmful false positives.
3162 // It will not help if the transition is a fade or other multi-frame effect.
slide_transition(const FIRSTPASS_STATS * this_frame,const FIRSTPASS_STATS * last_frame,const FIRSTPASS_STATS * next_frame)3163 static int slide_transition(const FIRSTPASS_STATS *this_frame,
3164 const FIRSTPASS_STATS *last_frame,
3165 const FIRSTPASS_STATS *next_frame) {
3166 return (this_frame->intra_error < (this_frame->coded_error * VERY_LOW_II)) &&
3167 (this_frame->coded_error > (last_frame->coded_error * ERROR_SPIKE)) &&
3168 (this_frame->coded_error > (next_frame->coded_error * ERROR_SPIKE));
3169 }
3170
3171 // This test looks for anomalous changes in the nature of the intra signal
3172 // related to the previous and next frame as an indicator for coding a key
3173 // frame. This test serves to detect some additional scene cuts,
3174 // especially in lowish motion and low contrast sections, that are missed
3175 // by the other tests.
intra_step_transition(const FIRSTPASS_STATS * this_frame,const FIRSTPASS_STATS * last_frame,const FIRSTPASS_STATS * next_frame)3176 static int intra_step_transition(const FIRSTPASS_STATS *this_frame,
3177 const FIRSTPASS_STATS *last_frame,
3178 const FIRSTPASS_STATS *next_frame) {
3179 double last_ii_ratio;
3180 double this_ii_ratio;
3181 double next_ii_ratio;
3182 double last_pcnt_intra = 1.0 - last_frame->pcnt_inter;
3183 double this_pcnt_intra = 1.0 - this_frame->pcnt_inter;
3184 double next_pcnt_intra = 1.0 - next_frame->pcnt_inter;
3185 double mod_this_intra = this_pcnt_intra + this_frame->pcnt_neutral;
3186
3187 // Calculate ii ratio for this frame last frame and next frame.
3188 last_ii_ratio =
3189 last_frame->intra_error / DOUBLE_DIVIDE_CHECK(last_frame->coded_error);
3190 this_ii_ratio =
3191 this_frame->intra_error / DOUBLE_DIVIDE_CHECK(this_frame->coded_error);
3192 next_ii_ratio =
3193 next_frame->intra_error / DOUBLE_DIVIDE_CHECK(next_frame->coded_error);
3194
3195 // Return true the intra/inter ratio for the current frame is
3196 // low but better in the next and previous frame and the relative usage of
3197 // intra in the current frame is markedly higher than the last and next frame.
3198 if ((this_ii_ratio < 2.0) && (last_ii_ratio > 2.25) &&
3199 (next_ii_ratio > 2.25) && (this_pcnt_intra > (3 * last_pcnt_intra)) &&
3200 (this_pcnt_intra > (3 * next_pcnt_intra)) &&
3201 ((this_pcnt_intra > 0.075) || (mod_this_intra > 0.85))) {
3202 return 1;
3203 // Very low inter intra ratio (i.e. not much gain from inter coding), most
3204 // blocks neutral on coding method and better inter prediction either side
3205 } else if ((this_ii_ratio < 1.25) && (mod_this_intra > 0.85) &&
3206 (this_ii_ratio < last_ii_ratio * 0.9) &&
3207 (this_ii_ratio < next_ii_ratio * 0.9)) {
3208 return 1;
3209 } else {
3210 return 0;
3211 }
3212 }
3213
3214 // Minimum % intra coding observed in first pass (1.0 = 100%)
3215 #define MIN_INTRA_LEVEL 0.25
3216 // Threshold for use of the lagging second reference frame. Scene cuts do not
3217 // usually have a high second ref usage.
3218 #define SECOND_REF_USAGE_THRESH 0.2
3219 // Hard threshold where the first pass chooses intra for almost all blocks.
3220 // In such a case even if the frame is not a scene cut coding a key frame
3221 // may be a good option.
3222 #define VERY_LOW_INTER_THRESH 0.05
3223 // Maximum threshold for the relative ratio of intra error score vs best
3224 // inter error score.
3225 #define KF_II_ERR_THRESHOLD 2.5
3226 #define KF_II_MAX 128.0
3227 #define II_FACTOR 12.5
3228 // Test for very low intra complexity which could cause false key frames
3229 #define V_LOW_INTRA 0.5
3230
test_candidate_kf(const FIRST_PASS_INFO * first_pass_info,int show_idx)3231 static int test_candidate_kf(const FIRST_PASS_INFO *first_pass_info,
3232 int show_idx) {
3233 const FIRSTPASS_STATS *last_frame =
3234 fps_get_frame_stats(first_pass_info, show_idx - 1);
3235 const FIRSTPASS_STATS *this_frame =
3236 fps_get_frame_stats(first_pass_info, show_idx);
3237 const FIRSTPASS_STATS *next_frame =
3238 fps_get_frame_stats(first_pass_info, show_idx + 1);
3239 int is_viable_kf = 0;
3240 double pcnt_intra = 1.0 - this_frame->pcnt_inter;
3241
3242 // Does the frame satisfy the primary criteria of a key frame?
3243 // See above for an explanation of the test criteria.
3244 // If so, then examine how well it predicts subsequent frames.
3245 detect_flash_from_frame_stats(next_frame);
3246 if (!detect_flash_from_frame_stats(this_frame) &&
3247 !detect_flash_from_frame_stats(next_frame) &&
3248 (this_frame->pcnt_second_ref < SECOND_REF_USAGE_THRESH) &&
3249 ((this_frame->pcnt_inter < VERY_LOW_INTER_THRESH) ||
3250 (slide_transition(this_frame, last_frame, next_frame)) ||
3251 (intra_step_transition(this_frame, last_frame, next_frame)) ||
3252 (((this_frame->coded_error > (next_frame->coded_error * 1.2)) &&
3253 (this_frame->coded_error > (last_frame->coded_error * 1.2))) &&
3254 (pcnt_intra > MIN_INTRA_LEVEL) &&
3255 ((pcnt_intra + this_frame->pcnt_neutral) > 0.5) &&
3256 ((this_frame->intra_error /
3257 DOUBLE_DIVIDE_CHECK(this_frame->coded_error)) <
3258 KF_II_ERR_THRESHOLD)))) {
3259 int i;
3260 double boost_score = 0.0;
3261 double old_boost_score = 0.0;
3262 double decay_accumulator = 1.0;
3263
3264 // Examine how well the key frame predicts subsequent frames.
3265 for (i = 0; i < 16; ++i) {
3266 const FIRSTPASS_STATS *frame_stats =
3267 fps_get_frame_stats(first_pass_info, show_idx + 1 + i);
3268 double next_iiratio = (II_FACTOR * frame_stats->intra_error /
3269 DOUBLE_DIVIDE_CHECK(frame_stats->coded_error));
3270
3271 if (next_iiratio > KF_II_MAX) next_iiratio = KF_II_MAX;
3272
3273 // Cumulative effect of decay in prediction quality.
3274 if (frame_stats->pcnt_inter > 0.85)
3275 decay_accumulator *= frame_stats->pcnt_inter;
3276 else
3277 decay_accumulator *= (0.85 + frame_stats->pcnt_inter) / 2.0;
3278
3279 // Keep a running total.
3280 boost_score += (decay_accumulator * next_iiratio);
3281
3282 // Test various breakout clauses.
3283 if ((frame_stats->pcnt_inter < 0.05) || (next_iiratio < 1.5) ||
3284 (((frame_stats->pcnt_inter - frame_stats->pcnt_neutral) < 0.20) &&
3285 (next_iiratio < 3.0)) ||
3286 ((boost_score - old_boost_score) < 3.0) ||
3287 (frame_stats->intra_error < V_LOW_INTRA)) {
3288 break;
3289 }
3290
3291 old_boost_score = boost_score;
3292
3293 // Get the next frame details
3294 if (show_idx + 1 + i == fps_get_num_frames(first_pass_info) - 1) break;
3295 }
3296
3297 // If there is tolerable prediction for at least the next 3 frames then
3298 // break out else discard this potential key frame and move on
3299 if (boost_score > 30.0 && (i > 3)) {
3300 is_viable_kf = 1;
3301 } else {
3302 is_viable_kf = 0;
3303 }
3304 }
3305
3306 return is_viable_kf;
3307 }
3308
3309 #define FRAMES_TO_CHECK_DECAY 8
3310 #define MIN_KF_TOT_BOOST 300
3311 #define DEFAULT_SCAN_FRAMES_FOR_KF_BOOST 32
3312 #define MAX_SCAN_FRAMES_FOR_KF_BOOST 48
3313 #define MIN_SCAN_FRAMES_FOR_KF_BOOST 32
3314 #define KF_ABS_ZOOM_THRESH 6.0
3315
vp9_get_frames_to_next_key(const VP9EncoderConfig * oxcf,const TWO_PASS * const twopass,int kf_show_idx,int min_gf_interval)3316 int vp9_get_frames_to_next_key(const VP9EncoderConfig *oxcf,
3317 const TWO_PASS *const twopass, int kf_show_idx,
3318 int min_gf_interval) {
3319 const FIRST_PASS_INFO *first_pass_info = &twopass->first_pass_info;
3320 double recent_loop_decay[FRAMES_TO_CHECK_DECAY];
3321 int j;
3322 int frames_to_key;
3323 int max_frames_to_key = first_pass_info->num_frames - kf_show_idx;
3324 max_frames_to_key = VPXMIN(max_frames_to_key, oxcf->key_freq);
3325
3326 // Initialize the decay rates for the recent frames to check
3327 for (j = 0; j < FRAMES_TO_CHECK_DECAY; ++j) recent_loop_decay[j] = 1.0;
3328 // Find the next keyframe.
3329 if (!oxcf->auto_key) {
3330 frames_to_key = max_frames_to_key;
3331 } else {
3332 frames_to_key = 1;
3333 while (frames_to_key < max_frames_to_key) {
3334 // Provided that we are not at the end of the file...
3335 if (kf_show_idx + frames_to_key + 1 < first_pass_info->num_frames) {
3336 double loop_decay_rate;
3337 double decay_accumulator;
3338 const FIRSTPASS_STATS *next_frame = fps_get_frame_stats(
3339 first_pass_info, kf_show_idx + frames_to_key + 1);
3340
3341 // Check for a scene cut.
3342 if (test_candidate_kf(first_pass_info, kf_show_idx + frames_to_key))
3343 break;
3344
3345 // How fast is the prediction quality decaying?
3346 loop_decay_rate = get_prediction_decay_rate(twopass, next_frame);
3347
3348 // We want to know something about the recent past... rather than
3349 // as used elsewhere where we are concerned with decay in prediction
3350 // quality since the last GF or KF.
3351 recent_loop_decay[(frames_to_key - 1) % FRAMES_TO_CHECK_DECAY] =
3352 loop_decay_rate;
3353 decay_accumulator = 1.0;
3354 for (j = 0; j < FRAMES_TO_CHECK_DECAY; ++j)
3355 decay_accumulator *= recent_loop_decay[j];
3356
3357 // Special check for transition or high motion followed by a
3358 // static scene.
3359 if ((frames_to_key - 1) > min_gf_interval && loop_decay_rate >= 0.999 &&
3360 decay_accumulator < 0.9) {
3361 int still_interval = oxcf->key_freq - (frames_to_key - 1);
3362 // TODO(angiebird): Figure out why we use "+1" here
3363 int show_idx = kf_show_idx + frames_to_key;
3364 if (check_transition_to_still(first_pass_info, show_idx,
3365 still_interval)) {
3366 break;
3367 }
3368 }
3369 }
3370 ++frames_to_key;
3371 }
3372 }
3373 return frames_to_key;
3374 }
3375
find_next_key_frame(VP9_COMP * cpi,int kf_show_idx)3376 static void find_next_key_frame(VP9_COMP *cpi, int kf_show_idx) {
3377 int i;
3378 RATE_CONTROL *const rc = &cpi->rc;
3379 TWO_PASS *const twopass = &cpi->twopass;
3380 GF_GROUP *const gf_group = &twopass->gf_group;
3381 const VP9EncoderConfig *const oxcf = &cpi->oxcf;
3382 const FIRST_PASS_INFO *first_pass_info = &twopass->first_pass_info;
3383 const FRAME_INFO *frame_info = &cpi->frame_info;
3384 const FIRSTPASS_STATS *const start_position = twopass->stats_in;
3385 const FIRSTPASS_STATS *keyframe_stats =
3386 fps_get_frame_stats(first_pass_info, kf_show_idx);
3387 FIRSTPASS_STATS next_frame;
3388 int kf_bits = 0;
3389 int64_t max_kf_bits;
3390 double zero_motion_accumulator = 1.0;
3391 double zero_motion_sum = 0.0;
3392 double zero_motion_avg;
3393 double motion_compensable_sum = 0.0;
3394 double motion_compensable_avg;
3395 int num_frames = 0;
3396 int kf_boost_scan_frames = DEFAULT_SCAN_FRAMES_FOR_KF_BOOST;
3397 double boost_score = 0.0;
3398 double kf_mod_err = 0.0;
3399 double kf_raw_err = 0.0;
3400 double kf_group_err = 0.0;
3401 double sr_accumulator = 0.0;
3402 double abs_mv_in_out_accumulator = 0.0;
3403 const double av_err = get_distribution_av_err(cpi, twopass);
3404 const double mean_mod_score = twopass->mean_mod_score;
3405 vp9_zero(next_frame);
3406
3407 cpi->common.frame_type = KEY_FRAME;
3408 rc->frames_since_key = 0;
3409
3410 // Reset the GF group data structures.
3411 vp9_zero(*gf_group);
3412
3413 // Is this a forced key frame by interval.
3414 rc->this_key_frame_forced = rc->next_key_frame_forced;
3415
3416 // Clear the alt ref active flag and last group multi arf flags as they
3417 // can never be set for a key frame.
3418 rc->source_alt_ref_active = 0;
3419
3420 // KF is always a GF so clear frames till next gf counter.
3421 rc->frames_till_gf_update_due = 0;
3422
3423 rc->frames_to_key = 1;
3424
3425 twopass->kf_group_bits = 0; // Total bits available to kf group
3426 twopass->kf_group_error_left = 0.0; // Group modified error score.
3427
3428 kf_raw_err = keyframe_stats->intra_error;
3429 kf_mod_err = calc_norm_frame_score(oxcf, frame_info, keyframe_stats,
3430 mean_mod_score, av_err);
3431
3432 if (cpi->ext_ratectrl.ready &&
3433 (cpi->ext_ratectrl.funcs.rc_type & VPX_RC_GOP) != 0 &&
3434 cpi->ext_ratectrl.funcs.get_key_frame_decision != NULL) {
3435 vpx_rc_key_frame_decision_t key_frame_decision;
3436 vpx_codec_err_t codec_status = vp9_extrc_get_key_frame_decision(
3437 &cpi->ext_ratectrl, &key_frame_decision);
3438 if (codec_status == VPX_CODEC_OK) {
3439 rc->frames_to_key = key_frame_decision.key_frame_group_size;
3440 } else {
3441 vpx_internal_error(&cpi->common.error, codec_status,
3442 "vp9_extrc_get_key_frame_decision() failed");
3443 }
3444 } else {
3445 rc->frames_to_key = vp9_get_frames_to_next_key(oxcf, twopass, kf_show_idx,
3446 rc->min_gf_interval);
3447 }
3448
3449 // If there is a max kf interval set by the user we must obey it.
3450 // We already breakout of the loop above at 2x max.
3451 // This code centers the extra kf if the actual natural interval
3452 // is between 1x and 2x.
3453 if (rc->frames_to_key >= cpi->oxcf.key_freq) {
3454 rc->next_key_frame_forced = 1;
3455 } else {
3456 rc->next_key_frame_forced = 0;
3457 }
3458
3459 for (i = 0; i < rc->frames_to_key; ++i) {
3460 const FIRSTPASS_STATS *frame_stats =
3461 fps_get_frame_stats(first_pass_info, kf_show_idx + i);
3462 // Accumulate kf group error.
3463 kf_group_err += calc_norm_frame_score(oxcf, frame_info, frame_stats,
3464 mean_mod_score, av_err);
3465 }
3466
3467 // Calculate the number of bits that should be assigned to the kf group.
3468 if (twopass->bits_left > 0 && twopass->normalized_score_left > 0.0) {
3469 // Maximum number of bits for a single normal frame (not key frame).
3470 const int max_bits = frame_max_bits(rc, &cpi->oxcf);
3471
3472 // Maximum number of bits allocated to the key frame group.
3473 int64_t max_grp_bits;
3474
3475 // Default allocation based on bits left and relative
3476 // complexity of the section.
3477 twopass->kf_group_bits =
3478 (int64_t)(twopass->bits_left *
3479 (kf_group_err / twopass->normalized_score_left));
3480
3481 // Clip based on maximum per frame rate defined by the user.
3482 max_grp_bits = (int64_t)max_bits * (int64_t)rc->frames_to_key;
3483 if (twopass->kf_group_bits > max_grp_bits)
3484 twopass->kf_group_bits = max_grp_bits;
3485 } else {
3486 twopass->kf_group_bits = 0;
3487 }
3488 twopass->kf_group_bits = VPXMAX(0, twopass->kf_group_bits);
3489
3490 // Scan through the kf group collating various stats used to determine
3491 // how many bits to spend on it.
3492 boost_score = 0.0;
3493
3494 for (i = 0; i < VPXMIN(MAX_SCAN_FRAMES_FOR_KF_BOOST, (rc->frames_to_key - 1));
3495 ++i) {
3496 if (EOF == input_stats(twopass, &next_frame)) break;
3497
3498 zero_motion_sum += next_frame.pcnt_inter - next_frame.pcnt_motion;
3499 motion_compensable_sum +=
3500 1 - (double)next_frame.coded_error / next_frame.intra_error;
3501 num_frames++;
3502 }
3503
3504 if (num_frames >= MIN_SCAN_FRAMES_FOR_KF_BOOST) {
3505 zero_motion_avg = zero_motion_sum / num_frames;
3506 motion_compensable_avg = motion_compensable_sum / num_frames;
3507 kf_boost_scan_frames = (int)(VPXMAX(64 * zero_motion_avg - 16,
3508 160 * motion_compensable_avg - 112));
3509 kf_boost_scan_frames =
3510 VPXMAX(VPXMIN(kf_boost_scan_frames, MAX_SCAN_FRAMES_FOR_KF_BOOST),
3511 MIN_SCAN_FRAMES_FOR_KF_BOOST);
3512 }
3513 reset_fpf_position(twopass, start_position);
3514
3515 for (i = 0; i < (rc->frames_to_key - 1); ++i) {
3516 if (EOF == input_stats(twopass, &next_frame)) break;
3517
3518 // The zero motion test here insures that if we mark a kf group as static
3519 // it is static throughout not just the first KF_BOOST_SCAN_MAX_FRAMES.
3520 // It also allows for a larger boost on long static groups.
3521 if ((i <= kf_boost_scan_frames) || (zero_motion_accumulator >= 0.99)) {
3522 double frame_boost;
3523 double zm_factor;
3524
3525 // Monitor for static sections.
3526 // First frame in kf group the second ref indicator is invalid.
3527 if (i > 0) {
3528 zero_motion_accumulator =
3529 VPXMIN(zero_motion_accumulator,
3530 get_zero_motion_factor(twopass, &next_frame));
3531 } else {
3532 zero_motion_accumulator =
3533 next_frame.pcnt_inter - next_frame.pcnt_motion;
3534 }
3535
3536 // Factor 0.75-1.25 based on how much of frame is static.
3537 zm_factor = (0.75 + (zero_motion_accumulator / 2.0));
3538
3539 // The second (lagging) ref error is not valid immediately after
3540 // a key frame because either the lag has not built up (in the case of
3541 // the first key frame or it points to a reference before the new key
3542 // frame.
3543 if (i < 2) sr_accumulator = 0.0;
3544 frame_boost =
3545 calc_kf_frame_boost(cpi, &next_frame, &sr_accumulator, 0, zm_factor);
3546
3547 boost_score += frame_boost;
3548
3549 // Measure of zoom. Large zoom tends to indicate reduced boost.
3550 abs_mv_in_out_accumulator +=
3551 fabs(next_frame.mv_in_out_count * next_frame.pcnt_motion);
3552
3553 if ((frame_boost < 25.00) ||
3554 (abs_mv_in_out_accumulator > KF_ABS_ZOOM_THRESH) ||
3555 (sr_accumulator > (kf_raw_err * 1.50)))
3556 break;
3557 } else {
3558 break;
3559 }
3560 }
3561
3562 reset_fpf_position(twopass, start_position);
3563
3564 // Store the zero motion percentage
3565 twopass->kf_zeromotion_pct = (int)(zero_motion_accumulator * 100.0);
3566
3567 // Calculate a section intra ratio used in setting max loop filter.
3568 twopass->key_frame_section_intra_rating = calculate_section_intra_ratio(
3569 start_position, twopass->stats_in_end, rc->frames_to_key);
3570
3571 // Special case for static / slide show content but don't apply
3572 // if the kf group is very short.
3573 if ((zero_motion_accumulator > 0.99) && (rc->frames_to_key > 8)) {
3574 rc->kf_boost = (int)(twopass->kf_max_total_boost);
3575 } else {
3576 // Apply various clamps for min and max oost
3577 rc->kf_boost = VPXMAX((int)boost_score, (rc->frames_to_key * 3));
3578 rc->kf_boost = VPXMAX(rc->kf_boost, MIN_KF_TOT_BOOST);
3579 rc->kf_boost = VPXMIN(rc->kf_boost, (int)(twopass->kf_max_total_boost));
3580 }
3581
3582 // Work out how many bits to allocate for the key frame itself.
3583 kf_bits = calculate_boost_bits((rc->frames_to_key - 1), rc->kf_boost,
3584 twopass->kf_group_bits);
3585 // Based on the spatial complexity, increase the bits allocated to key frame.
3586 kf_bits +=
3587 (int)((twopass->kf_group_bits - kf_bits) * (kf_mod_err / kf_group_err));
3588 max_kf_bits =
3589 twopass->kf_group_bits - (rc->frames_to_key - 1) * FRAME_OVERHEAD_BITS;
3590 max_kf_bits = lclamp(max_kf_bits, 0, INT_MAX);
3591 kf_bits = VPXMIN(kf_bits, (int)max_kf_bits);
3592
3593 twopass->kf_group_bits -= kf_bits;
3594
3595 // Save the bits to spend on the key frame.
3596 gf_group->bit_allocation[0] = kf_bits;
3597 gf_group->update_type[0] = KF_UPDATE;
3598 gf_group->rf_level[0] = KF_STD;
3599 gf_group->layer_depth[0] = 0;
3600
3601 // Note the total error score of the kf group minus the key frame itself.
3602 twopass->kf_group_error_left = (kf_group_err - kf_mod_err);
3603
3604 // Adjust the count of total modified error left.
3605 // The count of bits left is adjusted elsewhere based on real coded frame
3606 // sizes.
3607 twopass->normalized_score_left -= kf_group_err;
3608
3609 if (oxcf->resize_mode == RESIZE_DYNAMIC) {
3610 // Default to normal-sized frame on keyframes.
3611 cpi->rc.next_frame_size_selector = UNSCALED;
3612 }
3613 }
3614
3615 // Configure image size specific vizier parameters.
3616 // Later these will be set via additional command line options
vp9_init_vizier_params(TWO_PASS * const twopass,int screen_area)3617 void vp9_init_vizier_params(TWO_PASS *const twopass, int screen_area) {
3618 // When |use_vizier_rc_params| is 1, we expect the rc parameters below to
3619 // have been initialised on the command line as adjustment factors such
3620 // that a factor of 1.0 will match the default behavior when
3621 // |use_vizier_rc_params| is 0
3622 if (twopass->use_vizier_rc_params) {
3623 twopass->active_wq_factor *= AV_WQ_FACTOR;
3624 twopass->err_per_mb *= BASELINE_ERR_PER_MB;
3625 twopass->sr_default_decay_limit *= DEFAULT_DECAY_LIMIT;
3626 if (twopass->sr_default_decay_limit > 1.0) // > 1.0 here makes no sense
3627 twopass->sr_default_decay_limit = 1.0;
3628 twopass->sr_diff_factor *= 1.0;
3629 twopass->gf_frame_max_boost *= GF_MAX_FRAME_BOOST;
3630 twopass->gf_max_total_boost *= MAX_GF_BOOST;
3631 // NOTE: In use max boost has precedence over min boost. So even if min is
3632 // somehow set higher than max the final boost value will be clamped to the
3633 // appropriate maximum.
3634 twopass->kf_frame_min_boost *= KF_MIN_FRAME_BOOST;
3635 twopass->kf_frame_max_boost_first *= KF_MAX_FRAME_BOOST;
3636 twopass->kf_frame_max_boost_subs *= KF_MAX_FRAME_BOOST;
3637 twopass->kf_max_total_boost *= MAX_KF_TOT_BOOST;
3638 twopass->zm_factor *= DEFAULT_ZM_FACTOR;
3639 if (twopass->zm_factor > 1.0) // > 1.0 here makes no sense
3640 twopass->zm_factor = 1.0;
3641
3642 // Correction for the fact that the kf_err_per_mb_factor default is
3643 // already different for different video formats and ensures that a passed
3644 // in value of 1.0 on the vizier command line will still match the current
3645 // default.
3646 if (screen_area < 1280 * 720) {
3647 twopass->kf_err_per_mb *= 2000.0;
3648 } else if (screen_area < 1920 * 1080) {
3649 twopass->kf_err_per_mb *= 500.0;
3650 } else {
3651 twopass->kf_err_per_mb *= 250.0;
3652 }
3653 } else {
3654 // When |use_vizier_rc_params| is 0, use defaults.
3655 twopass->active_wq_factor = AV_WQ_FACTOR;
3656 twopass->err_per_mb = BASELINE_ERR_PER_MB;
3657 twopass->sr_default_decay_limit = DEFAULT_DECAY_LIMIT;
3658 twopass->sr_diff_factor = 1.0;
3659 twopass->gf_frame_max_boost = GF_MAX_FRAME_BOOST;
3660 twopass->gf_max_total_boost = MAX_GF_BOOST;
3661 twopass->kf_frame_min_boost = KF_MIN_FRAME_BOOST;
3662 twopass->kf_frame_max_boost_first = KF_MAX_FRAME_BOOST;
3663 twopass->kf_frame_max_boost_subs = KF_MAX_FRAME_BOOST;
3664 twopass->kf_max_total_boost = MAX_KF_TOT_BOOST;
3665 twopass->zm_factor = DEFAULT_ZM_FACTOR;
3666
3667 if (screen_area < 1280 * 720) {
3668 twopass->kf_err_per_mb = 2000.0;
3669 } else if (screen_area < 1920 * 1080) {
3670 twopass->kf_err_per_mb = 500.0;
3671 } else {
3672 twopass->kf_err_per_mb = 250.0;
3673 }
3674 }
3675 }
3676
vp9_rc_get_second_pass_params(VP9_COMP * cpi)3677 void vp9_rc_get_second_pass_params(VP9_COMP *cpi) {
3678 VP9_COMMON *const cm = &cpi->common;
3679 RATE_CONTROL *const rc = &cpi->rc;
3680 TWO_PASS *const twopass = &cpi->twopass;
3681 GF_GROUP *const gf_group = &twopass->gf_group;
3682 FIRSTPASS_STATS this_frame;
3683 const int show_idx = cm->current_video_frame;
3684
3685 if (cpi->common.current_frame_coding_index == 0 &&
3686 cpi->ext_ratectrl.funcs.send_firstpass_stats != NULL) {
3687 const vpx_codec_err_t codec_status = vp9_extrc_send_firstpass_stats(
3688 &cpi->ext_ratectrl, &cpi->twopass.first_pass_info);
3689 if (codec_status != VPX_CODEC_OK) {
3690 vpx_internal_error(&cm->error, codec_status,
3691 "vp9_extrc_send_firstpass_stats() failed");
3692 }
3693 }
3694
3695 if (!twopass->stats_in) return;
3696
3697 // Configure image size specific vizier parameters
3698 if (cm->current_video_frame == 0) {
3699 unsigned int screen_area = (cm->width * cm->height);
3700
3701 vp9_init_vizier_params(twopass, screen_area);
3702 }
3703
3704 // If this is an arf frame then we don't want to read the stats file or
3705 // advance the input pointer as we already have what we need.
3706 if (gf_group->update_type[gf_group->index] == ARF_UPDATE) {
3707 int target_rate;
3708
3709 vp9_zero(this_frame);
3710 this_frame =
3711 cpi->twopass.stats_in_start[cm->current_video_frame +
3712 gf_group->arf_src_offset[gf_group->index]];
3713
3714 vp9_configure_buffer_updates(cpi, gf_group->index);
3715
3716 target_rate = gf_group->bit_allocation[gf_group->index];
3717 target_rate = vp9_rc_clamp_pframe_target_size(cpi, target_rate);
3718 rc->base_frame_target = target_rate;
3719
3720 cm->frame_type = INTER_FRAME;
3721
3722 // The multiplication by 256 reverses a scaling factor of (>> 8)
3723 // applied when combining MB error values for the frame.
3724 twopass->mb_av_energy = log((this_frame.intra_error * 256.0) + 1.0);
3725 twopass->mb_smooth_pct = this_frame.intra_smooth_pct;
3726
3727 return;
3728 }
3729
3730 vpx_clear_system_state();
3731
3732 if (cpi->oxcf.rc_mode == VPX_Q) {
3733 twopass->active_worst_quality = cpi->oxcf.cq_level;
3734 } else if (cm->current_video_frame == 0) {
3735 const int frames_left =
3736 (int)(twopass->total_stats.count - cm->current_video_frame);
3737 // Special case code for first frame.
3738 int64_t section_target_bandwidth = twopass->bits_left / frames_left;
3739 section_target_bandwidth = VPXMIN(section_target_bandwidth, INT_MAX);
3740 const double section_length = twopass->total_left_stats.count;
3741 const double section_error =
3742 twopass->total_left_stats.coded_error / section_length;
3743 const double section_intra_skip =
3744 twopass->total_left_stats.intra_skip_pct / section_length;
3745 const double section_inactive_zone =
3746 (twopass->total_left_stats.inactive_zone_rows * 2) /
3747 ((double)cm->mb_rows * section_length);
3748 const double section_noise =
3749 twopass->total_left_stats.frame_noise_energy / section_length;
3750 int tmp_q;
3751
3752 tmp_q = get_twopass_worst_quality(
3753 cpi, section_error, section_intra_skip + section_inactive_zone,
3754 section_noise, (int)section_target_bandwidth);
3755
3756 twopass->active_worst_quality = tmp_q;
3757 twopass->baseline_active_worst_quality = tmp_q;
3758 rc->ni_av_qi = tmp_q;
3759 rc->last_q[INTER_FRAME] = tmp_q;
3760 rc->avg_q = vp9_convert_qindex_to_q(tmp_q, cm->bit_depth);
3761 rc->avg_frame_qindex[INTER_FRAME] = tmp_q;
3762 rc->last_q[KEY_FRAME] = (tmp_q + cpi->oxcf.best_allowed_q) / 2;
3763 rc->avg_frame_qindex[KEY_FRAME] = rc->last_q[KEY_FRAME];
3764 }
3765 vp9_zero(this_frame);
3766 if (EOF == input_stats(twopass, &this_frame)) return;
3767
3768 // Set the frame content type flag.
3769 if (this_frame.intra_skip_pct >= FC_ANIMATION_THRESH)
3770 twopass->fr_content_type = FC_GRAPHICS_ANIMATION;
3771 else
3772 twopass->fr_content_type = FC_NORMAL;
3773
3774 // Keyframe and section processing.
3775 if (rc->frames_to_key == 0 || (cpi->frame_flags & FRAMEFLAGS_KEY)) {
3776 // Define next KF group and assign bits to it.
3777 find_next_key_frame(cpi, show_idx);
3778 } else {
3779 cm->frame_type = INTER_FRAME;
3780 }
3781
3782 // Define a new GF/ARF group. (Should always enter here for key frames).
3783 if (rc->frames_till_gf_update_due == 0) {
3784 define_gf_group(cpi, show_idx);
3785
3786 #if ARF_STATS_OUTPUT
3787 {
3788 FILE *fpfile;
3789 fpfile = fopen("arf.stt", "a");
3790 ++arf_count;
3791 fprintf(fpfile, "%10d %10ld %10d %10d %10ld %10ld\n",
3792 cm->current_video_frame, rc->baseline_gf_interval, rc->kf_boost,
3793 arf_count, rc->gfu_boost, cm->frame_type);
3794
3795 fclose(fpfile);
3796 }
3797 #endif
3798 }
3799
3800 if (rc->frames_till_gf_update_due == 0) {
3801 if (cpi->ext_ratectrl.ready && cpi->ext_ratectrl.log_file) {
3802 fprintf(cpi->ext_ratectrl.log_file, "GOP_INFO show_frame_count %d\n",
3803 rc->baseline_gf_interval);
3804 }
3805 rc->frames_till_gf_update_due = rc->baseline_gf_interval;
3806 }
3807
3808 vp9_configure_buffer_updates(cpi, gf_group->index);
3809
3810 rc->base_frame_target = gf_group->bit_allocation[gf_group->index];
3811
3812 // The multiplication by 256 reverses a scaling factor of (>> 8)
3813 // applied when combining MB error values for the frame.
3814 twopass->mb_av_energy = log((this_frame.intra_error * 256.0) + 1.0);
3815 twopass->mb_smooth_pct = this_frame.intra_smooth_pct;
3816
3817 // Update the total stats remaining structure.
3818 subtract_stats(&twopass->total_left_stats, &this_frame);
3819 }
3820
vp9_twopass_postencode_update(VP9_COMP * cpi)3821 void vp9_twopass_postencode_update(VP9_COMP *cpi) {
3822 TWO_PASS *const twopass = &cpi->twopass;
3823 RATE_CONTROL *const rc = &cpi->rc;
3824 VP9_COMMON *const cm = &cpi->common;
3825 const int bits_used = rc->base_frame_target;
3826
3827 // VBR correction is done through rc->vbr_bits_off_target. Based on the
3828 // sign of this value, a limited % adjustment is made to the target rate
3829 // of subsequent frames, to try and push it back towards 0. This method
3830 // is designed to prevent extreme behaviour at the end of a clip
3831 // or group of frames.
3832 rc->vbr_bits_off_target += rc->base_frame_target - rc->projected_frame_size;
3833 twopass->bits_left = VPXMAX(twopass->bits_left - bits_used, 0);
3834
3835 // Target vs actual bits for this arf group.
3836 twopass->rolling_arf_group_target_bits += rc->this_frame_target;
3837 twopass->rolling_arf_group_actual_bits += rc->projected_frame_size;
3838
3839 // Calculate the pct rc error.
3840 if (rc->total_actual_bits) {
3841 rc->rate_error_estimate =
3842 (int)((rc->vbr_bits_off_target * 100) / rc->total_actual_bits);
3843 rc->rate_error_estimate = clamp(rc->rate_error_estimate, -100, 100);
3844 } else {
3845 rc->rate_error_estimate = 0;
3846 }
3847
3848 if (cpi->common.frame_type != KEY_FRAME) {
3849 twopass->kf_group_bits -= bits_used;
3850 twopass->last_kfgroup_zeromotion_pct = twopass->kf_zeromotion_pct;
3851 }
3852 twopass->kf_group_bits = VPXMAX(twopass->kf_group_bits, 0);
3853
3854 // Increment the gf group index ready for the next frame.
3855 ++twopass->gf_group.index;
3856
3857 // If the rate control is drifting consider adjustment to min or maxq.
3858 if ((cpi->oxcf.rc_mode != VPX_Q) && !cpi->rc.is_src_frame_alt_ref) {
3859 const int maxq_adj_limit =
3860 rc->worst_quality - twopass->active_worst_quality;
3861 const int minq_adj_limit =
3862 (cpi->oxcf.rc_mode == VPX_CQ ? MINQ_ADJ_LIMIT_CQ : MINQ_ADJ_LIMIT);
3863 int aq_extend_min = 0;
3864 int aq_extend_max = 0;
3865
3866 // Extend min or Max Q range to account for imbalance from the base
3867 // value when using AQ.
3868 if (cpi->oxcf.aq_mode != NO_AQ && cpi->oxcf.aq_mode != PSNR_AQ &&
3869 cpi->oxcf.aq_mode != PERCEPTUAL_AQ) {
3870 if (cm->seg.aq_av_offset < 0) {
3871 // The balance of the AQ map tends towarda lowering the average Q.
3872 aq_extend_min = 0;
3873 aq_extend_max = VPXMIN(maxq_adj_limit, -cm->seg.aq_av_offset);
3874 } else {
3875 // The balance of the AQ map tends towards raising the average Q.
3876 aq_extend_min = VPXMIN(minq_adj_limit, cm->seg.aq_av_offset);
3877 aq_extend_max = 0;
3878 }
3879 }
3880
3881 // Undershoot.
3882 if (rc->rate_error_estimate > cpi->oxcf.under_shoot_pct) {
3883 --twopass->extend_maxq;
3884 if (rc->rolling_target_bits >= rc->rolling_actual_bits)
3885 ++twopass->extend_minq;
3886 // Overshoot.
3887 } else if (rc->rate_error_estimate < -cpi->oxcf.over_shoot_pct) {
3888 --twopass->extend_minq;
3889 if (rc->rolling_target_bits < rc->rolling_actual_bits)
3890 ++twopass->extend_maxq;
3891 } else {
3892 // Adjustment for extreme local overshoot.
3893 if (rc->projected_frame_size > (2 * rc->base_frame_target) &&
3894 rc->projected_frame_size > (2 * rc->avg_frame_bandwidth))
3895 ++twopass->extend_maxq;
3896
3897 // Unwind undershoot or overshoot adjustment.
3898 if (rc->rolling_target_bits < rc->rolling_actual_bits)
3899 --twopass->extend_minq;
3900 else if (rc->rolling_target_bits > rc->rolling_actual_bits)
3901 --twopass->extend_maxq;
3902 }
3903
3904 twopass->extend_minq =
3905 clamp(twopass->extend_minq, aq_extend_min, minq_adj_limit);
3906 twopass->extend_maxq =
3907 clamp(twopass->extend_maxq, aq_extend_max, maxq_adj_limit);
3908
3909 // If there is a big and undexpected undershoot then feed the extra
3910 // bits back in quickly. One situation where this may happen is if a
3911 // frame is unexpectedly almost perfectly predicted by the ARF or GF
3912 // but not very well predcited by the previous frame.
3913 if (!frame_is_kf_gf_arf(cpi) && !cpi->rc.is_src_frame_alt_ref) {
3914 int fast_extra_thresh = rc->base_frame_target / HIGH_UNDERSHOOT_RATIO;
3915 if (rc->projected_frame_size < fast_extra_thresh) {
3916 rc->vbr_bits_off_target_fast +=
3917 fast_extra_thresh - rc->projected_frame_size;
3918 rc->vbr_bits_off_target_fast =
3919 VPXMIN(rc->vbr_bits_off_target_fast,
3920 (4 * (int64_t)rc->avg_frame_bandwidth));
3921
3922 // Fast adaptation of minQ if necessary to use up the extra bits.
3923 if (rc->avg_frame_bandwidth) {
3924 twopass->extend_minq_fast =
3925 (int)(rc->vbr_bits_off_target_fast * 8 / rc->avg_frame_bandwidth);
3926 }
3927 twopass->extend_minq_fast = VPXMIN(
3928 twopass->extend_minq_fast, minq_adj_limit - twopass->extend_minq);
3929 } else if (rc->vbr_bits_off_target_fast) {
3930 twopass->extend_minq_fast = VPXMIN(
3931 twopass->extend_minq_fast, minq_adj_limit - twopass->extend_minq);
3932 } else {
3933 twopass->extend_minq_fast = 0;
3934 }
3935 }
3936 }
3937 }
3938
3939 #if CONFIG_RATE_CTRL
vp9_get_next_group_of_picture(const VP9_COMP * cpi,int * first_is_key_frame,int * use_alt_ref,int * coding_frame_count,int * first_show_idx,int * last_gop_use_alt_ref)3940 void vp9_get_next_group_of_picture(const VP9_COMP *cpi, int *first_is_key_frame,
3941 int *use_alt_ref, int *coding_frame_count,
3942 int *first_show_idx,
3943 int *last_gop_use_alt_ref) {
3944 const GOP_COMMAND *gop_command = &cpi->encode_command.gop_command;
3945 // We make a copy of rc here because we want to get information from the
3946 // encoder without changing its state.
3947 // TODO(angiebird): Avoid copying rc here.
3948 RATE_CONTROL rc = cpi->rc;
3949 const int multi_layer_arf = 0;
3950 const int allow_alt_ref = 1;
3951 // We assume that current_video_frame is updated to the show index of the
3952 // frame we are about to called. Note that current_video_frame is updated at
3953 // the end of encode_frame_to_data_rate().
3954 // TODO(angiebird): Avoid this kind of fragile style.
3955 *first_show_idx = cpi->common.current_video_frame;
3956 *last_gop_use_alt_ref = rc.source_alt_ref_active;
3957
3958 *first_is_key_frame = 0;
3959 if (rc.frames_to_key == 0) {
3960 rc.frames_to_key = vp9_get_frames_to_next_key(
3961 &cpi->oxcf, &cpi->twopass, *first_show_idx, rc.min_gf_interval);
3962 rc.frames_since_key = 0;
3963 *first_is_key_frame = 1;
3964 }
3965
3966 if (gop_command->use) {
3967 *coding_frame_count = gop_command_coding_frame_count(gop_command);
3968 *use_alt_ref = gop_command->use_alt_ref;
3969 assert(gop_command->show_frame_count <= rc.frames_to_key);
3970 } else {
3971 *coding_frame_count = vp9_get_gop_coding_frame_count(
3972 &cpi->oxcf, &cpi->twopass, &cpi->frame_info, &rc, *first_show_idx,
3973 multi_layer_arf, allow_alt_ref, *first_is_key_frame,
3974 *last_gop_use_alt_ref, use_alt_ref);
3975 }
3976 }
3977
vp9_get_gop_coding_frame_count(const VP9EncoderConfig * oxcf,const TWO_PASS * const twopass,const FRAME_INFO * frame_info,const RATE_CONTROL * rc,int show_idx,int multi_layer_arf,int allow_alt_ref,int first_is_key_frame,int last_gop_use_alt_ref,int * use_alt_ref)3978 int vp9_get_gop_coding_frame_count(const VP9EncoderConfig *oxcf,
3979 const TWO_PASS *const twopass,
3980 const FRAME_INFO *frame_info,
3981 const RATE_CONTROL *rc, int show_idx,
3982 int multi_layer_arf, int allow_alt_ref,
3983 int first_is_key_frame,
3984 int last_gop_use_alt_ref, int *use_alt_ref) {
3985 int frame_count;
3986 double gop_intra_factor;
3987 const int arf_active_or_kf = last_gop_use_alt_ref || first_is_key_frame;
3988 RANGE active_gf_interval;
3989 int arf_layers;
3990 int end_of_sequence = 0;
3991 if (oxcf->use_simple_encode_api) {
3992 active_gf_interval = get_active_gf_inverval_range_simple(
3993 rc->min_gf_interval, arf_active_or_kf, rc->frames_to_key);
3994 } else {
3995 active_gf_interval = get_active_gf_inverval_range(
3996 frame_info, rc, arf_active_or_kf, show_idx, /*active_worst_quality=*/0,
3997 /*last_boosted_qindex=*/0);
3998 }
3999
4000 arf_layers = get_arf_layers(multi_layer_arf, oxcf->enable_auto_arf,
4001 active_gf_interval.max);
4002 if (multi_layer_arf) {
4003 gop_intra_factor = 1.0 + 0.25 * arf_layers;
4004 } else {
4005 gop_intra_factor = 1.0;
4006 }
4007
4008 frame_count = get_gop_coding_frame_num(
4009 use_alt_ref, frame_info, twopass, rc, show_idx, &active_gf_interval,
4010 gop_intra_factor, oxcf->lag_in_frames, &end_of_sequence);
4011 *use_alt_ref &= allow_alt_ref;
4012 return frame_count;
4013 }
4014
4015 // Under CONFIG_RATE_CTRL, once the first_pass_info is ready, the number of
4016 // coding frames (including show frame and alt ref) can be determined.
vp9_get_coding_frame_num(const VP9EncoderConfig * oxcf,const TWO_PASS * const twopass,const FRAME_INFO * frame_info,int multi_layer_arf,int allow_alt_ref)4017 int vp9_get_coding_frame_num(const VP9EncoderConfig *oxcf,
4018 const TWO_PASS *const twopass,
4019 const FRAME_INFO *frame_info, int multi_layer_arf,
4020 int allow_alt_ref) {
4021 const FIRST_PASS_INFO *first_pass_info = &twopass->first_pass_info;
4022 int coding_frame_num = 0;
4023 RATE_CONTROL rc;
4024 int gop_coding_frame_count;
4025 int gop_show_frames;
4026 int show_idx = 0;
4027 int last_gop_use_alt_ref = 0;
4028 vp9_rc_init(oxcf, 1, &rc);
4029
4030 while (show_idx < first_pass_info->num_frames) {
4031 int use_alt_ref;
4032 int first_is_key_frame = 0;
4033 if (rc.frames_to_key == 0) {
4034 rc.frames_to_key = vp9_get_frames_to_next_key(oxcf, twopass, show_idx,
4035 rc.min_gf_interval);
4036 rc.frames_since_key = 0;
4037 first_is_key_frame = 1;
4038 }
4039
4040 gop_coding_frame_count = vp9_get_gop_coding_frame_count(
4041 oxcf, twopass, frame_info, &rc, show_idx, multi_layer_arf,
4042 allow_alt_ref, first_is_key_frame, last_gop_use_alt_ref, &use_alt_ref);
4043
4044 rc.source_alt_ref_active = use_alt_ref;
4045 last_gop_use_alt_ref = use_alt_ref;
4046 gop_show_frames = gop_coding_frame_count - use_alt_ref;
4047 rc.frames_to_key -= gop_show_frames;
4048 rc.frames_since_key += gop_show_frames;
4049 show_idx += gop_show_frames;
4050 coding_frame_num += gop_show_frames + use_alt_ref;
4051 }
4052 return coding_frame_num;
4053 }
4054
vp9_get_key_frame_map(const VP9EncoderConfig * oxcf,const TWO_PASS * const twopass,int * key_frame_map)4055 void vp9_get_key_frame_map(const VP9EncoderConfig *oxcf,
4056 const TWO_PASS *const twopass, int *key_frame_map) {
4057 const FIRST_PASS_INFO *first_pass_info = &twopass->first_pass_info;
4058 int show_idx = 0;
4059 RATE_CONTROL rc;
4060 vp9_rc_init(oxcf, 1, &rc);
4061
4062 // key_frame_map points to an int array with size equal to
4063 // first_pass_info->num_frames, which is also the number of show frames in the
4064 // video.
4065 memset(key_frame_map, 0,
4066 sizeof(*key_frame_map) * first_pass_info->num_frames);
4067 while (show_idx < first_pass_info->num_frames) {
4068 int key_frame_group_size;
4069 key_frame_map[show_idx] = 1;
4070 key_frame_group_size =
4071 vp9_get_frames_to_next_key(oxcf, twopass, show_idx, rc.min_gf_interval);
4072 assert(key_frame_group_size > 0);
4073 show_idx += key_frame_group_size;
4074 }
4075 assert(show_idx == first_pass_info->num_frames);
4076 }
4077 #endif // CONFIG_RATE_CTRL
4078
vp9_get_frame_stats(const TWO_PASS * twopass)4079 FIRSTPASS_STATS vp9_get_frame_stats(const TWO_PASS *twopass) {
4080 return twopass->this_frame_stats;
4081 }
vp9_get_total_stats(const TWO_PASS * twopass)4082 FIRSTPASS_STATS vp9_get_total_stats(const TWO_PASS *twopass) {
4083 return twopass->total_stats;
4084 }
4085