Home
last modified time | relevance | path

Searched full:adaptive_avg_pool2d (Results 1 – 25 of 94) sorted by relevance

1234

/aosp_15_r20/external/pytorch/test/quantization/pt2e/
H A Dtest_metadata_porting.py25 self.adaptive_avg_pool2d = torch.nn.AdaptiveAvgPool2d((1, 1))
30 x = self.adaptive_avg_pool2d(x)
161 annotated_partitions = OP_TO_ANNOTATOR["adaptive_avg_pool2d"](
165 backend_string, "adaptive_avg_pool2d", annotated_partitions
201 torch.ops.aten.adaptive_avg_pool2d.default: "BackendA_adaptive_avg_pool2d_0",
269 annotated_partitions = OP_TO_ANNOTATOR["adaptive_avg_pool2d"](
273 backend_string, "adaptive_avg_pool2d", annotated_partitions
438 OP_TO_ANNOTATOR["adaptive_avg_pool2d"](gm, quantization_config)
H A Dtest_duplicate_dq.py37 self.adaptive_avg_pool2d = torch.nn.AdaptiveAvgPool2d((1, 1))
42 x = self.adaptive_avg_pool2d(x)
71 self.adaptive_avg_pool2d = torch.nn.AdaptiveAvgPool2d((1, 1))
75 w = self.adaptive_avg_pool2d(x)
136 OP_TO_ANNOTATOR["adaptive_avg_pool2d"](gm, quantization_config)
/aosp_15_r20/external/executorch/backends/arm/quantizer/quantization_annotation/
H A Dadaptive_ang_pool2d_annotator.py25 @register_annotator("adaptive_avg_pool2d")
31 """Always annotate adaptive_avg_pool2d op"""
33 gm.graph, [torch.nn.AdaptiveAvgPool2d, F.adaptive_avg_pool2d], filter_fn
41 or pool_node.target != torch.ops.aten.adaptive_avg_pool2d.default
43 raise ValueError(f"{pool_node} is not an aten adaptive_avg_pool2d operator")
/aosp_15_r20/external/pytorch/aten/src/ATen/native/
H A DAdaptiveAveragePooling.cpp29 TORCH_CHECK(output_size.size() == 2, "adaptive_avg_pool2d: output_size must be 2"); in adaptive_avg_pool2d_out_cpu_template()
32 "adaptive_avg_pool2d(): Expected 3D or 4D tensor, but got ", input.sizes()); in adaptive_avg_pool2d_out_cpu_template()
35 "adaptive_avg_pool2d(): Expected input to have non-zero size for non-batch dimensions, " in adaptive_avg_pool2d_out_cpu_template()
110 TORCH_CHECK(output_size.size() == 2, "adaptive_avg_pool2d: output_size must be 2"); in adaptive_avg_pool2d_symint()
113 "adaptive_avg_pool2d: elements of output_size must be greater than or equal to 0 ", in adaptive_avg_pool2d_symint()
H A DPooling.cpp13 #include <ATen/ops/adaptive_avg_pool2d.h>
47 auto output = at::adaptive_avg_pool2d( in adaptive_avg_pool1d()
/aosp_15_r20/external/executorch/backends/arm/test/ops/
H A Dtest_mean_dim.py45 self.adaptive_avg_pool2d = torch.nn.AdaptiveAvgPool2d(output_size=(1, 1))
48 return self.adaptive_avg_pool2d(x)
87 .check(["torch.ops.aten.adaptive_avg_pool2d.default"])
108 .check_count({"torch.ops.aten.adaptive_avg_pool2d.default": 1})
132 .check(["torch.ops.aten.adaptive_avg_pool2d.default"])
H A Dtest_conv_combos.py98 self.adaptive_avg_pool2d = torch.nn.AdaptiveAvgPool2d((1, 1))
105 return self.adaptive_avg_pool2d(x)
/aosp_15_r20/external/pytorch/aten/src/ATen/native/vulkan/ops/
H A DPool.cpp13 Tensor adaptive_avg_pool2d( in adaptive_avg_pool2d() function
18 "Vulkan adaptive_avg_pool2d expects 4-dimensional input!"); in adaptive_avg_pool2d()
66 VK_KERNEL(adaptive_avg_pool2d), in adaptive_avg_pool2d()
288 TORCH_FN(adaptive_avg_pool2d)); in TORCH_LIBRARY_IMPL()
/aosp_15_r20/external/pytorch/torch/ao/quantization/quantizer/
H A Dxnnpack_quantizer_utils.py636 @register_annotator("adaptive_avg_pool2d")
642 """Always annotate adaptive_avg_pool2d op"""
644 gm.graph, [torch.nn.AdaptiveAvgPool2d, F.adaptive_avg_pool2d], filter_fn
652 or pool_node.target != torch.ops.aten.adaptive_avg_pool2d.default
654 raise ValueError(f"{pool_node} is not an aten adaptive_avg_pool2d operator")
1012 torch.ops.aten.adaptive_avg_pool2d.default,
H A Dxnnpack_quantizer.py79 "adaptive_avg_pool2d": [
81 [F.adaptive_avg_pool2d],
255 "adaptive_avg_pool2d",
H A Dx86_inductor_quantizer.py88 torch.ops.aten.adaptive_avg_pool2d.default,
211 [torch.nn.AdaptiveAvgPool2d, F.adaptive_avg_pool2d],
212 torch.ops.aten.adaptive_avg_pool2d.default,
/aosp_15_r20/external/pytorch/aten/src/ATen/native/metal/ops/
H A DMetalPooling.mm72 static Tensor adaptive_avg_pool2d(const Tensor& input, IntArrayRef output_size) {
106 m.impl(TORCH_SELECTIVE_NAME("aten::adaptive_avg_pool2d"), TORCH_FN(adaptive_avg_pool2d));
/aosp_15_r20/external/pytorch/torch/csrc/api/include/torch/nn/functional/
H A Dpooling.h568 inline Tensor adaptive_avg_pool2d( in adaptive_avg_pool2d() function
573 return torch::adaptive_avg_pool2d(input, output_size_); in adaptive_avg_pool2d()
579 /// https://pytorch.org/docs/main/nn.functional.html#torch.nn.functional.adaptive_avg_pool2d
589 /// F::adaptive_avg_pool2d(x, F::AdaptiveAvgPool2dFuncOptions(3));
591 inline Tensor adaptive_avg_pool2d( in adaptive_avg_pool2d() function
594 return detail::adaptive_avg_pool2d(input, options.output_size()); in adaptive_avg_pool2d()
/aosp_15_r20/external/executorch/backends/arm/quantizer/
H A Darm_quantizer.py74 "adaptive_avg_pool2d": [
76 [F.adaptive_avg_pool2d],
265 "adaptive_avg_pool2d",
/aosp_15_r20/external/pytorch/torch/ao/nn/quantized/
H A Dfunctional.py20 "adaptive_avg_pool2d",
133 def adaptive_avg_pool2d(input: Tensor, output_size: BroadcastingList2[int]) -> Tensor: function
148 "Input to 'quantized.functional.adaptive_avg_pool2d' must be quantized!"
150 return torch.nn.functional.adaptive_avg_pool2d(input, output_size)
/aosp_15_r20/external/pytorch/aten/src/ATen/native/cuda/
H A DAdaptiveAveragePooling.cu449 TORCH_CHECK(output_size.size() == 2, "adaptive_avg_pool2d: output_size must be 2"); in adaptive_avg_pool2d_out_cuda_template()
452 "adaptive_avg_pool2d(): Expected 3D or 4D tensor, but got ", input.sizes()); in adaptive_avg_pool2d_out_cuda_template()
455 "adaptive_avg_pool2d(): Expected input to have non-zero size for non-batch dimensions, " in adaptive_avg_pool2d_out_cuda_template()
465 "adaptive_avg_pool2d(): Expected 4D tensor, but got ", in adaptive_avg_pool2d_out_cuda_template()
/aosp_15_r20/external/pytorch/test/
H A Dtest_mkldnn.py929 adaptive_avg_pool2d = torch.nn.AdaptiveAvgPool2d(7)
932 y1 = adaptive_avg_pool2d(x1)
933 y2 = adaptive_avg_pool2d(x2).to_dense()
950 adaptive_avg_pool2d = torch.nn.AdaptiveAvgPool2d(7)
953 y = adaptive_avg_pool2d(x.to_mkldnn()).to_dense()
954 y_bf16 = adaptive_avg_pool2d(x.to_mkldnn()).to_dense(torch.float32)
960 lambda: adaptive_avg_pool2d(x_bf16.to_mkldnn()))
/aosp_15_r20/external/pytorch/aten/src/ATen/native/mps/operations/
H A DAdaptivePooling.mm12 #include <ATen/ops/adaptive_avg_pool2d.h>
66 … "adaptive_avg_pool2d(): Expected input to have non-zero size for non-batch dimensions, "
/aosp_15_r20/external/pytorch/test/jit/
H A Dtest_dtype_analysis.py40 "nn.functional.adaptive_avg_pool2d",
270 return torch._C._nn.adaptive_avg_pool2d(input, output_size)
/aosp_15_r20/external/pytorch/torch/ao/ns/fx/
H A Dmappings.py76 F.adaptive_avg_pool2d,
544 F.adaptive_avg_pool2d,
/aosp_15_r20/external/pytorch/torch/csrc/lazy/core/
H A Dshape_inference.cpp901 output_size.size() == 2, "adaptive_avg_pool2d: output_size must be 2"); in compute_shape__adaptive_avg_pool2d()
904 "adaptive_avg_pool2d: elements of output_size must be greater than or equal to 0 ", in compute_shape__adaptive_avg_pool2d()
914 "adaptive_avg_pool2d(): Expected self to have non-zero size for non-batch dimensions, " in compute_shape__adaptive_avg_pool2d()
924 "adaptive_avg_pool2d(): Expected 3D or 4D tensor, but got ", in compute_shape__adaptive_avg_pool2d()
/aosp_15_r20/external/executorch/backends/example/example_operators/
H A DTARGETS8 "adaptive_avg_pool2d.py",
H A Dops.py9 from executorch.backends.example.example_operators.adaptive_avg_pool2d import (
/aosp_15_r20/external/pytorch/torch/_functorch/
H A Dtop_operators_github_usage.py288 ("nn.functional.adaptive_avg_pool2d", 633),
419 ("nn.AdaptiveAvgPool2d", 59071, "nn.functional.adaptive_avg_pool2d"),
/aosp_15_r20/external/pytorch/torch/csrc/api/include/torch/nn/options/
H A Dpooling.h315 /// Options for `torch::nn::functional::adaptive_avg_pool2d`.
323 /// F::adaptive_avg_pool2d(x, F::AdaptiveAvgPool2dFuncOptions(3));

1234