/aosp_15_r20/external/pytorch/aten/src/ATen/native/ |
H A D | AdaptiveAveragePooling3d.cpp | 90 TORCH_CHECK(output_size.size() == 3, "adaptive_avg_pool3d: output_size must be 3"); in adaptive_avg_pool3d_out_cpu_template() 95 "adaptive_avg_pool3d(): Expected input to have non-zero size for non-batch dimensions, " in adaptive_avg_pool3d_out_cpu_template() 106 "adaptive_avg_pool3d(): Expected 4D or 5D tensor, but got ", in adaptive_avg_pool3d_out_cpu_template() 310 TORCH_CHECK(output_size.size() == 3, "adaptive_avg_pool3d: output_size must be 3"); in adaptive_avg_pool3d_symint() 313 "adaptive_avg_pool3d: elements of output_size must be greater than or equal to 0 ", in adaptive_avg_pool3d_symint()
|
/aosp_15_r20/external/pytorch/torch/csrc/api/include/torch/nn/functional/ |
H A D | pooling.h | 599 inline Tensor adaptive_avg_pool3d( in adaptive_avg_pool3d() function 604 return torch::adaptive_avg_pool3d(input, output_size_); in adaptive_avg_pool3d() 610 /// https://pytorch.org/docs/main/nn.functional.html#torch.nn.functional.adaptive_avg_pool3d 620 /// F::adaptive_avg_pool3d(x, F::AdaptiveAvgPool3dFuncOptions(3)); 622 inline Tensor adaptive_avg_pool3d( in adaptive_avg_pool3d() function 625 return detail::adaptive_avg_pool3d(input, options.output_size()); in adaptive_avg_pool3d()
|
H A D | upsampling.h | 180 return detail::adaptive_avg_pool3d( in interpolate()
|
/aosp_15_r20/external/pytorch/torch/ao/nn/quantized/ |
H A D | functional.py | 21 "adaptive_avg_pool3d", 153 def adaptive_avg_pool3d(input: Tensor, output_size: BroadcastingList2[int]) -> Tensor: function 168 "Input to 'quantized.functional.adaptive_avg_pool3d' must be quantized!" 170 return torch.nn.functional.adaptive_avg_pool3d(input, output_size)
|
/aosp_15_r20/external/pytorch/torch/ao/ns/fx/ |
H A D | mappings.py | 80 F.adaptive_avg_pool3d, 545 F.adaptive_avg_pool3d,
|
/aosp_15_r20/external/pytorch/torch/csrc/lazy/core/ |
H A D | shape_inference.cpp | 978 output_size.size() == 3, "adaptive_avg_pool3d: output_size must be 3"); in compute_shape__adaptive_avg_pool3d() 981 "adaptive_avg_pool3d: elements of output_size must be greater than or equal to 0 ", in compute_shape__adaptive_avg_pool3d() 993 "adaptive_avg_pool3d(): Expected self to have non-zero size for non-batch dimensions, " in compute_shape__adaptive_avg_pool3d() 1003 "adaptive_avg_pool3d(): Expected 4D or 5D tensor, but got ", in compute_shape__adaptive_avg_pool3d()
|
/aosp_15_r20/external/pytorch/torch/_functorch/ |
H A D | top_operators_github_usage.py | 328 ("nn.functional.adaptive_avg_pool3d", 139), 472 ("nn.AdaptiveAvgPool3d", 2915, "nn.functional.adaptive_avg_pool3d"),
|
/aosp_15_r20/external/pytorch/torch/csrc/api/include/torch/nn/options/ |
H A D | pooling.h | 329 /// Options for `torch::nn::functional::adaptive_avg_pool3d`. 337 /// F::adaptive_avg_pool3d(x, F::AdaptiveAvgPool3dFuncOptions(3));
|
/aosp_15_r20/external/pytorch/torch/csrc/jit/passes/quantization/ |
H A D | helper.cpp | 131 "adaptive_avg_pool3d", 150 "adaptive_avg_pool3d",
|
H A D | quantization_patterns.h | 833 auto adaptive_avg_pool3d = getInputTensorQParamOpFusionInfo( in quant_fusion_pattern_and_replacements() local 834 "aten::adaptive_avg_pool3d", {"%output_size"}); in quant_fusion_pattern_and_replacements() 1053 std::move(adaptive_avg_pool3d), in quant_fusion_pattern_and_replacements()
|
/aosp_15_r20/external/pytorch/docs/source/ |
H A D | nn.functional.rst | 49 adaptive_avg_pool3d
|
H A D | amp.rst | 428 ``adaptive_avg_pool3d``,
|
H A D | quantization-support.rst | 504 adaptive_avg_pool3d
|
/aosp_15_r20/external/pytorch/test/quantization/ao_migration/ |
H A D | test_ao_migration.py | 13 "adaptive_avg_pool3d",
|
/aosp_15_r20/external/pytorch/functorch/op_analysis/ |
H A D | public_api | 443 nn.functional.adaptive_avg_pool3d
|
/aosp_15_r20/external/pytorch/test/mobile/model_test/ |
H A D | coverage.yaml | 51 - aten::adaptive_avg_pool3d 734 aten::adaptive_avg_pool3d: 1
|
H A D | model_ops.yaml | 49 aten::adaptive_avg_pool3d: 1
|
/aosp_15_r20/external/pytorch/torch/csrc/jit/passes/utils/ |
H A D | op_registry.cpp | 33 "aten::adaptive_avg_pool3d(Tensor self, int[] output_size) -> Tensor", in nn_ops_first_input_preserving()
|
/aosp_15_r20/external/pytorch/test/jit/ |
H A D | test_dtype_analysis.py | 41 "nn.functional.adaptive_avg_pool3d",
|
/aosp_15_r20/external/pytorch/test/cpp_api_parity/ |
H A D | parity-tracker.md | 183 F::adaptive_avg_pool3d|Yes|No
|
/aosp_15_r20/external/pytorch/test/lazy/ |
H A D | test_ts_opinfo.py | 368 # Test that adaptive_avg_pool3d gives correct shapes with lazy backend
|
/aosp_15_r20/external/pytorch/aten/src/ATen/functorch/ |
H A D | BatchRulesDecompositions.cpp | 59 m.impl("adaptive_avg_pool3d", native::adaptive_avg_pool3d_symint); in TORCH_LIBRARY_IMPL()
|
/aosp_15_r20/external/pytorch/torch/csrc/api/src/nn/modules/ |
H A D | pooling.cpp | 199 return F::detail::adaptive_avg_pool3d(input, options.output_size()); in forward()
|
/aosp_15_r20/external/pytorch/aten/src/ATen/ |
H A D | autocast_mode.cpp | 383 KERNEL_CPU(adaptive_avg_pool3d, fp32) in TORCH_LIBRARY_IMPL()
|
/aosp_15_r20/external/pytorch/torch/csrc/jit/runtime/ |
H A D | symbolic_script.cpp | 1279 def adaptive_avg_pool3d(self, 1285 return torch.adaptive_avg_pool3d(self, output_size), backward
|