Home
last modified time | relevance | path

Searched full:avg_pool2d (Results 1 – 25 of 152) sorted by relevance

1234567

/aosp_15_r20/external/pytorch/aten/src/ATen/native/
H A DAveragePool2d.cpp17 TORCH_PRECOMPUTE_META_FUNC(avg_pool2d) in TORCH_PRECOMPUTE_META_FUNC() argument
27 "avg_pool2d: kernel_size must either be a single int, or a tuple of two ints"); in TORCH_PRECOMPUTE_META_FUNC()
32 "avg_pool2d: stride must either be omitted, a single int, or a tuple of two ints"); in TORCH_PRECOMPUTE_META_FUNC()
37 "avg_pool2d: padding must either be a single int, or a tuple of two ints"); in TORCH_PRECOMPUTE_META_FUNC()
93 …return TORCH_PRECOMPUTE_STRUCT(avg_pool2d)().set_kH(kH).set_kW(kW).set_dH(dH).set_dW(dW).set_padH(… in TORCH_PRECOMPUTE_META_FUNC()
108 "avg_pool2d: kernel_size must either be a single int, or a tuple of two ints"); in TORCH_META_FUNC()
113 "avg_pool2d: stride must either be omitted, a single int, or a tuple of two ints"); in TORCH_META_FUNC()
119 "avg_pool2d: padding must either be a single int, or a tuple of two ints"); in TORCH_META_FUNC()
H A DPooling.cpp17 #include <ATen/ops/avg_pool2d.h>
129 auto output = at::avg_pool2d( in avg_pool1d()
/aosp_15_r20/external/executorch/backends/vulkan/runtime/graph/ops/impl/
H A DPool.cpp122 // avg_pool2d
159 std::string kernel_name("avg_pool2d"); in add_avg_pool2d_node()
192 void avg_pool2d(ComputeGraph& graph, const std::vector<ValueRef>& args) { in avg_pool2d() function
206 VK_REGISTER_OP(aten.avg_pool2d.default, avg_pool2d);
/aosp_15_r20/external/executorch/backends/xnnpack/test/ops/
H A Davgpool2d.py35 .check_count({"torch.ops.aten.avg_pool2d.default": 1})
60 .check_count({"torch.ops.aten.avg_pool2d.default": 1})
73 .check_count({"torch.ops.aten.avg_pool2d.default": 1})
86 .check_count({"torch.ops.aten.avg_pool2d.default": 1})
/aosp_15_r20/external/pytorch/aten/src/ATen/native/vulkan/ops/
H A DPool.cpp228 Tensor avg_pool2d( in avg_pool2d() function
243 VK_KERNEL(avg_pool2d)); in avg_pool2d()
289 m.impl(TORCH_SELECTIVE_NAME("aten::avg_pool2d"), TORCH_FN(avg_pool2d)); in TORCH_LIBRARY_IMPL()
/aosp_15_r20/external/executorch/backends/arm/test/ops/
H A Dtest_avg_pool.py63 .check(["torch.ops.aten.avg_pool2d.default"])
87 .check_count({"torch.ops.aten.avg_pool2d.default": 1})
112 .check_count({"torch.ops.aten.avg_pool2d.default": 1})
H A Dtest_conv_combos.py177 self.avg_pool2d = torch.nn.AvgPool2d(kernel_size=(2, 2))
181 x = self.avg_pool2d(x)
/aosp_15_r20/external/pytorch/torch/csrc/api/include/torch/nn/functional/
H A Dpooling.h53 inline Tensor avg_pool2d( in avg_pool2d() function
61 return torch::avg_pool2d( in avg_pool2d()
74 /// https://pytorch.org/docs/main/nn.functional.html#torch.nn.functional.avg_pool2d
83 /// F::avg_pool2d(x, F::AvgPool2dFuncOptions(3).stride(2));
85 inline Tensor avg_pool2d( in avg_pool2d() function
88 return detail::avg_pool2d( in avg_pool2d()
1062 Tensor out = detail::avg_pool2d( in lp_pool2d()
/aosp_15_r20/external/pytorch/aten/src/ATen/native/mps/operations/
H A DAdaptivePooling.mm16 #include <ATen/ops/avg_pool2d.h>
85 output = at::avg_pool2d(input,
167 gradInput = at::avg_pool2d(gradOutput,
H A DPooling.mm10 #include <ATen/ops/avg_pool2d.h>
267 output.copy_(at::avg_pool2d(
514 "avg_pool2d");
/aosp_15_r20/external/pytorch/torch/onnx/
H A Dsymbolic_caffe2.py20 "avg_pool2d",
259 def avg_pool2d( function
270 return opset9.avg_pool2d( # type: ignore[attr-defined]
/aosp_15_r20/external/executorch/backends/vulkan/runtime/graph/ops/glsl/
H A Davg_pool2d.yaml7 avg_pool2d:
18 - NAME: avg_pool2d
/aosp_15_r20/external/executorch/backends/xnnpack/test/models/
H A Dinception_v4.py20 …# "executorch.exir.dialects.edge._ops.aten.avg_pool2d.default", Currently do not have avg_pool2d p…
H A Dinception_v3.py25 …# "executorch.exir.dialects.edge._ops.aten.avg_pool2d.default", Currently do not have avg_pool2d p…
/aosp_15_r20/external/pytorch/aten/src/ATen/native/quantized/cpu/
H A DAveragePool2d.cpp128 "avg_pool2d: kernel_size must either be a single int, or a tuple of two ints"); in get_kernel()
139 "avg_pool2d: stride must either be omitted, a single int, or a tuple of two ints"); in get_stride()
150 "avg_pool2d: padding must either be a single int, or a tuple of two ints"); in get_padding()
/aosp_15_r20/external/executorch/backends/cadence/aot/
H A Dreplace_ops.py1949 Replace the aten avg_pool op with the jarvis custom avg_pool2d op.
1956 exir_ops.edge.aten.avg_pool2d.default,
1960 # Determine if the op is avg_pool1d or avg_pool2d
1965 # Replace avg_pool2d with custom avg_pool2d, and if the input tensor is
1966 # quantized, pass its zero_point tensor as arg to the custom avg_pool2d.
1968 # the native avg_pool2d args. 'channel_last' denotes NCHW vs NHWC layout,
2009 exir_ops.edge.cadence.avg_pool2d.default,
H A Dops_registrations.py126 …"avg_pool2d(Tensor input, int[2] kernel_size, int[2] stride=[], int[2] padding=0, bool ceil_mode=F…
207 "avg_pool2d.out(Tensor input, int[2] kernel_size, int[2] stride=[], int[2] padding=0, "
772 @register_fake("cadence::avg_pool2d")
/aosp_15_r20/external/pytorch/benchmarks/tensorexpr/
H A Dpt_engine.py69 def avg_pool2d(self, data, kernel_size, stride=1): member in TorchTensorEngine
70 return torch.nn.functional.avg_pool2d(data, kernel_size, stride=stride)
/aosp_15_r20/external/pytorch/torch/ao/nn/quantized/
H A Dfunctional.py18 "avg_pool2d",
43 def avg_pool2d( function
77 raise ValueError("Input to 'quantized.avg_pool2d' must be quantized!")
78 return torch.nn.functional.avg_pool2d(
/aosp_15_r20/external/pytorch/torch/ao/pruning/_experimental/pruner/
H A Dbase_structured_sparsifier.py140 F.avg_pool2d,
164 F.avg_pool2d,
/aosp_15_r20/external/pytorch/torch/csrc/jit/passes/quantization/
H A Dhelper.cpp127 "avg_pool2d",
143 // e.g. `aten::avg_pool2d(%input_tensor, ...)`
146 "avg_pool2d",
/aosp_15_r20/external/pytorch/torch/ao/ns/fx/
H A Dmappings.py63 torch._C._nn.avg_pool2d,
557 torch._C._nn.avg_pool2d,
/aosp_15_r20/external/pytorch/torch/_functorch/
H A Dtop_operators_github_usage.py282 ("nn.functional.avg_pool2d", 899),
420 ("nn.AvgPool2d", 58377, "nn.functional.avg_pool2d"),
/aosp_15_r20/external/pytorch/torch/csrc/api/include/torch/nn/options/
H A Dpooling.h77 /// Options for `torch::nn::functional::avg_pool2d`.
85 /// F::avg_pool2d(x, F::AvgPool2dFuncOptions(3).stride(2));
/aosp_15_r20/external/executorch/backends/arm/operators/
H A Dop_avg_pool2d.py21 target = "aten.avg_pool2d.default"

1234567