/aosp_15_r20/external/mesa3d/src/etnaviv/ci/ |
H A D | etnaviv-vipnano-fails.txt | 1 Conv2D.Op/input_size_112_weight_size_5_input_channels_1_output_channels_120_stride_2_padding_same_1… 2 Conv2D.Op/input_size_112_weight_size_5_input_channels_1_output_channels_128_stride_2_padding_same_1… 3 Conv2D.Op/input_size_112_weight_size_5_input_channels_1_output_channels_160_stride_2_padding_same_1… 4 Conv2D.Op/input_size_112_weight_size_5_input_channels_1_output_channels_1_stride_2_padding_same_1_i… 5 Conv2D.Op/input_size_112_weight_size_5_input_channels_1_output_channels_256_stride_2_padding_same_1… 6 Conv2D.Op/input_size_112_weight_size_5_input_channels_1_output_channels_32_stride_2_padding_same_1_… 7 Conv2D.Op/input_size_112_weight_size_5_input_channels_256_output_channels_120_stride_1_padding_same… 8 Conv2D.Op/input_size_112_weight_size_5_input_channels_256_output_channels_120_stride_1_padding_same… 9 Conv2D.Op/input_size_80_weight_size_5_input_channels_1_output_channels_120_stride_2_padding_same_1_… 10 Conv2D.Op/input_size_80_weight_size_5_input_channels_1_output_channels_128_stride_2_padding_same_1_… [all …]
|
/aosp_15_r20/external/pytorch/torch/testing/_internal/ |
H A D | common_pruning.py | 150 r"""Model with only Conv2d layers, all without bias, some in a Sequential and some following. 151 Used to test pruned Conv2d-Conv2d fusion.""" 156 nn.Conv2d(1, 32, 3, 1, bias=False), 157 nn.Conv2d(32, 64, 3, 1, bias=False), 159 self.conv2d1 = nn.Conv2d(64, 48, 3, 1, bias=False) 160 self.conv2d2 = nn.Conv2d(48, 52, 3, 1, bias=False) 170 r"""Model with only Conv2d layers, some with bias, some in a Sequential and some outside. 171 Used to test pruned Conv2d-Bias-Conv2d fusion.""" 176 nn.Conv2d(1, 32, 3, 1, bias=True), 177 nn.Conv2d(32, 32, 3, 1, bias=True), [all …]
|
/aosp_15_r20/external/tensorflow/tensorflow/core/grappler/optimizers/ |
H A D | generic_layout_optimizer_transposer_test.cc | 111 auto conv2d = ops::Conv2D( in SimpleConv2D() local 112 scope->WithOpName("conv2d").WithDevice("/device:GPU:0"), input, filter, in SimpleConv2D() 113 {1, kStride1, kStride2, 1}, "SAME", ops::Conv2D::DataFormat(kSrcFormat)); in SimpleConv2D() 115 return conv2d; in SimpleConv2D() 121 auto conv2d = SimpleConv2D(&scope, data_type); in CreateSimpleConv2DGraph() local 122 auto output = ops::Identity(scope.WithOpName("output"), conv2d); in CreateSimpleConv2DGraph() 296 Output conv2d = ops::Conv2D( in CreateSimpleAddN() local 297 scope.WithOpName("conv2d").WithDevice("/device:GPU:0"), input, filter, in CreateSimpleAddN() 298 {1, 2, 4, 1}, "SAME", ops::Conv2D::DataFormat(kSrcFormat)); in CreateSimpleAddN() 306 {a, b, c, conv2d}); in CreateSimpleAddN() [all …]
|
/aosp_15_r20/external/pytorch/torch/ao/pruning/_experimental/pruner/ |
H A D | base_structured_sparsifier.py | 33 nn.Conv2d, 100 …Returns the patterns for conv2d / linear conversion for each element in the activation functions/m… 109 # conv2d -> conv2d 110 (nn.Conv2d, "output"): prune_conv2d, 111 (nn.Conv2d, nn.Conv2d): prune_conv2d_conv2d, 128 # conv2d -> activation -> conv2d 129 (nn.Conv2d, activation, nn.Conv2d): prune_conv2d_activation_conv2d, 130 # conv2d -> activation -> pool -> conv2d 132 nn.Conv2d, 135 nn.Conv2d, [all …]
|
H A D | prune_functions.py | 3 Collection of conversion functions for linear / conv2d structured pruning 43 if isinstance(next_layer, nn.Conv2d): # checking for Conv2d 45 # involves more steps since the Conv2d scaling weight has extra dimensions, 171 # CONV2D 172 def _prune_conv2d_helper(conv2d: nn.Conv2d) -> Tensor: argument 173 parametrization_dict = cast(nn.ModuleDict, conv2d.parametrizations) 180 parametrize.remove_parametrizations(conv2d, "weight", leave_parametrized=True) 181 conv2d.weight = nn.Parameter(conv2d.weight[mask]) # type: ignore[possibly-undefined] 182 conv2d.out_channels = conv2d.weight.shape[0] 184 _remove_bias_handles(conv2d) [all …]
|
/aosp_15_r20/external/pytorch/test/inductor/ |
H A D | test_mkldnn_pattern_matcher.py | 88 # while testing conv2d/3d/deconv2d 276 self.conv = torch.nn.Conv2d(3, 16, kernel_size=3, stride=1) 509 self.conv1 = torch.nn.Conv2d(3, 16, kernel_size=3, stride=1) 510 self.conv2 = torch.nn.Conv2d(3, 16, kernel_size=3, stride=1) 666 self.conv = torch.nn.Conv2d(3, 128, kernel_size=3, stride=1) 667 self.conv2 = torch.nn.Conv2d(128, 128, kernel_size=3, stride=1) 676 # 1. Dequant-Conv2D pattern matched in QConv2D weight prepack * 1 701 This testcase will quantize a single Conv2d module. 711 This testcase will quantize a single Conv2d module with int8_mixed_bf16 quantization. 727 self.conv = torch.nn.Conv2d(3, 128, kernel_size=3, stride=1) [all …]
|
/aosp_15_r20/external/pytorch/test/quantization/jit/ |
H A D | test_quantize_jit.py | 91 self.conv = torch.nn.Conv2d(3, 5, 3).float() 122 "aten::conv2d" 133 conv_module = {2: torch.nn.Conv2d, 3: torch.nn.Conv3d} 176 conv_module = {2: torch.nn.Conv2d, 3: torch.nn.Conv3d} 220 conv_module = {2: torch.nn.Conv2d, 3: torch.nn.Conv3d} 263 conv_module = {2: torch.nn.Conv2d, 3: torch.nn.Conv3d} 323 # This test case attempt to try combinations of conv2d/conv3d with bias/nobias 328 conv_module = {2: torch.nn.Conv2d, 3: torch.nn.Conv3d} 447 self.conv = torch.nn.Conv2d(3, 5, 3) 480 self.conv = torch.nn.Conv2d(3, 5, 3) [all …]
|
/aosp_15_r20/external/executorch/backends/xnnpack/test/ops/ |
H A D | conv2d.py | 20 class Conv2d(torch.nn.Module): class 44 self.conv = torch.nn.Conv2d( 70 self.first = torch.nn.Conv2d( 77 self.second = torch.nn.Conv2d( 96 self.conv1 = torch.nn.Conv2d( 106 self.conv2 = torch.nn.Conv2d( 131 self.conv = torch.nn.Conv2d( 168 .check_count({"torch.ops.aten.conv2d": conv_count}) 184 self._test(Conv2d(bias=has_bias, dtype=torch.float16)) 188 self._test(Conv2d(bias=has_bias)) [all …]
|
/aosp_15_r20/external/ComputeLibrary/examples/ |
H A D | graph_inception_v4.cpp | 86 .set_name("Conv2d_1a_3x3/Conv2D") in do_setup() 98 .set_name("Conv2d_2a_3x3/Conv2D") in do_setup() 110 .set_name("Conv2d_2b_3x3/Conv2D") in do_setup() 210 .set_name("Mixed_3a/Branch_1/Conv2d_0a_3x3/Conv2D") in get_mixed_3a() 230 .set_name("Mixed_4a/Branch_0/Conv2d_0a_1x1/Conv2D") in get_mixed_4a() 241 .set_name("Mixed_4a/Branch_0/Conv2d_1a_3x3/Conv2D") in get_mixed_4a() 254 .set_name("Mixed_4a/Branch_1/Conv2d_0a_1x1/Conv2D") in get_mixed_4a() 265 .set_name("Mixed_4a/Branch_1/Conv2d_0b_1x7/Conv2D") in get_mixed_4a() 276 .set_name("Mixed_4a/Branch_1/Conv2d_0c_7x1/Conv2D") in get_mixed_4a() 287 .set_name("Mixed_4a/Branch_1/Conv2d_1a_3x3/Conv2D") in get_mixed_4a() [all …]
|
/aosp_15_r20/external/tensorflow/tensorflow/core/kernels/ |
H A D | conv_ops_benchmark_test.cc | 46 Node* conv2d; member 51 Node* conv2d; member 57 Node* conv2d; member 64 Node* conv2d; member 70 Node* conv2d; member 82 // Creates a simple Tensorflow graph with single Conv2D node. 84 static Conv2DGraph Conv2D(int batch, int height, int width, int in_depth, in Conv2D() function 100 Node* conv2d; in Conv2D() local 104 : NodeBuilder(graph->NewName("conv"), "Conv2D"); in Conv2D() 111 .Finalize(graph, &conv2d)); in Conv2D() [all …]
|
/aosp_15_r20/external/pytorch/test/nn/ |
H A D | test_convolution.py | 83 # m = nn.Conv2d(1, 1, 1) 132 r"Expected 3D \(unbatched\) or 4D \(batched\) input to conv2d, but got " 135 F.conv2d(x, w) 147 y = torch.nn.functional.conv2d(x, weight, None) 151 y_ = torch.nn.functional.conv2d(x, weight, None) 164 module = torch.nn.Conv2d(1, 1, kernel_size=3, dilation=2, stride=2).to( 170 module = nn.Conv2d( 182 module = nn.Conv2d( 192 module = nn.Conv2d( 228 torch.nn.Conv2d(1, 1, kernel_size=3, dilation=2, stride=2, groups=-1) [all …]
|
/aosp_15_r20/external/pytorch/torch/ao/quantization/backend_config/ |
H A D | onednn.py | 122 # (1) Conv2d + Add 124 # conv2d Y 129 # conv2d conv2d 151 # conv2d 192 (add_op, (nn.BatchNorm2d, nn.Conv2d), MatchAllNode) 205 (add_op, nn.Conv2d, MatchAllNode) 215 # Y conv2d 237 # conv2d 278 (add_op, MatchAllNode, (nn.BatchNorm2d, nn.Conv2d)) 291 (add_op, MatchAllNode, nn.Conv2d) [all …]
|
/aosp_15_r20/external/pytorch/test/quantization/pt2e/ |
H A D | test_duplicate_dq.py | 35 self.conv = torch.nn.Conv2d(3, 3, 3) 51 self.conv1 = torch.nn.Conv2d(3, 3, 3) 52 self.conv2 = torch.nn.Conv2d(3, 3, 1) 69 self.conv1 = torch.nn.Conv2d(3, 3, 3) 70 self.conv2 = torch.nn.Conv2d(3, 3, 1) 124 conv2d -> avgpool -> hardtanh -> linear 125 Check quantization tags on conv2d, avgpool and linear are correctly set 151 conv2d -> conv2d -> add 159 first conv2d is fed to next conv2d, add, and view_copy + linear. 187 conv2d -> conv2d -> add [all …]
|
H A D | test_x86inductor_quantizer.py | 46 self.conv = nn.Conv2d(3, 6, (2, 2), stride=(1, 1), padding=(1, 1)) 59 self.conv = nn.Conv2d( 84 self.conv = torch.nn.Conv2d( 92 self.conv2 = torch.nn.Conv2d( 144 self.conv = torch.nn.Conv2d( 152 self.conv2 = torch.nn.Conv2d( 198 self.conv = nn.Conv2d(2, 2, 1) 207 """Serials of 2 Conv2d -> Add -> ReLU Pattern.""" 213 self.conv = torch.nn.Conv2d( 221 self.conv2 = torch.nn.Conv2d( [all …]
|
/aosp_15_r20/external/pytorch/test/fx/ |
H A D | test_source_matcher_utils.py | 79 self.conv1 = torch.nn.Conv2d( 82 self.conv2 = torch.nn.Conv2d( 85 self.conv3 = torch.nn.Conv2d( 105 gm.graph, [torch.nn.Conv2d, torch.nn.ReLU, torch.nn.MaxPool2d] 109 self.assertEqual(len(module_partitions[torch.nn.Conv2d]), 3) 115 module_partitions[torch.nn.Conv2d][0], 121 module_partitions[torch.nn.Conv2d][1], 127 module_partitions[torch.nn.Conv2d][2], 155 return torch.nn.functional.conv2d( 182 gm.graph, [torch.nn.functional.conv2d] [all …]
|
/aosp_15_r20/external/pytorch/torch/ao/quantization/quantizer/ |
H A D | x86_inductor_quantizer.py | 99 torch.ops.aten.conv2d.default, 200 ([torch.nn.Conv2d, F.conv2d], torch.ops.aten.conv2d.default), 284 "conv2d": [ 285 [torch.nn.Conv2d], 286 [F.conv2d], 292 [torch.nn.Conv2d, F.conv2d], 299 supported_operators["conv2d"].append([conv_op, relu_op]) # type: ignore[list-item] 302 supported_operators["conv2d"].append([conv_op, add_op]) # type: ignore[list-item] 305 … supported_operators["conv2d"].append([conv_op, add_op, relu_op]) # type: ignore[list-item] 817 gm, [torch.nn.Conv2d, torch.nn.BatchNorm2d, operator.add, torch.nn.ReLU] [all …]
|
/aosp_15_r20/external/pytorch/torch/ao/quantization/ |
H A D | fuser_method_mappings.py | 27 conv: Module instance of type conv2d/conv3d 32 >>> m1 = nn.Conv2d(10, 20, 3) 43 nn.Conv2d: nni.ConvBn2d, 50 ), "Output channel of Conv2d must match num_features of BatchNorm2d" 72 conv: Module instance of type conv2d/conv3d 77 >>> m1 = nn.Conv2d(10, 20, 3) 90 nn.Conv2d: nni.ConvBnReLU2d, 108 nn.Conv2d: nni.ConvReLU2d, 197 (nn.Conv2d, nn.BatchNorm2d): fuse_conv_bn, 198 (nn.Conv2d, nn.BatchNorm2d, nn.ReLU): fuse_conv_bn_relu, [all …]
|
/aosp_15_r20/external/executorch/backends/arm/test/ops/ |
H A D | test_conv_combos.py | 40 # 1. 1x1 CONV2d + ReLU6 (Pointwise) 41 self.pointwise_conv2d = torch.nn.Conv2d( 48 self.depthwise_conv2d = torch.nn.Conv2d( 57 # 3. Linear 1x1 Conv2d 58 self.pointwise_conv2d_linear = torch.nn.Conv2d( 67 # 1x1 CONV2d + ReLU6 (Pointwise) 77 # Linear 1x1 Conv2d 94 self.conv2d = torch.nn.Conv2d( 104 x = self.conv2d(x) 117 self.conv2d = torch.nn.Conv2d( [all …]
|
/aosp_15_r20/external/tensorflow/tensorflow/compiler/mlir/quantization/tensorflow/tests/ |
H A D | prepare_lifting.mlir | 45 …%0 = "tf.Conv2D"(%arg0, %cst) {data_format = "NHWC", dilations = [1, 1, 2, 1], explicit_paddings =… 52 // CHECK: %[[CONV2D:.*]] = "tf.Conv2D"(%arg0, %[[CONST]]) {data_format = "NHWC", dilations = [1, 1,… 53 // CHECK-NEXT: %[[BIASADD:.*]] = "tf.BiasAdd"(%[[CONV2D]], %[[CONST_0]]) {data_format = "NHWC"} : (… 59 …%0 = "tf.Conv2D"(%arg0, %cst) {data_format = "NHWC", dilations = [1, 1, 2, 1], explicit_paddings =… 66 // CHECK-NEXT: %[[CONV2D:.*]] = "tf.Conv2D"(%arg0, %[[CONST]]) {data_format = "NHWC", dilations = [… 67 // CHECK-NEXT: %[[ADD:.*]] = "tf.Add"(%[[CONV2D]], %[[CONST_0]]) : (tensor<1x3x2x3xf32>, tensor<1x3… 73 …%0 = "tf.Conv2D"(%arg0, %cst) {data_format = "NHWC", dilations = [1, 1, 2, 1], explicit_paddings =… 79 // CHECK-NEXT: %[[CONV2D:.*]] = "tf.Conv2D"(%arg0, %[[CONST]]) {data_format = "NHWC", dilations = [… 80 // CHECK-NEXT: return %[[CONV2D]] : tensor<1x3x2x2xf32> 85 …%0 = "tf.Conv2D"(%arg0, %cst) {data_format = "NHWC", dilations = [1, 1, 2, 1], explicit_paddings =… [all …]
|
/aosp_15_r20/external/tensorflow/tensorflow/compiler/mlir/tensorflow/transforms/ |
H A D | tpu_space_to_depth_pass.cc | 150 void HandleConv2DStride(TF::Conv2DOp conv2d) { in HandleConv2DStride() argument 151 MLIRContext* context = conv2d.getContext(); in HandleConv2DStride() 158 conv2d->setAttr("strides", strides); in HandleConv2DStride() 162 void HandleConv2DInput(TF::Conv2DOp conv2d, int64_t block_size) { in HandleConv2DInput() argument 163 auto input = conv2d.input(); in HandleConv2DInput() 217 void HandleConv2DFilter(TF::Conv2DOp conv2d, int64_t block_size) { in HandleConv2DFilter() argument 224 auto filter = conv2d.filter(); in HandleConv2DFilter() 225 OpBuilder builder(conv2d); in HandleConv2DFilter() 226 builder.setInsertionPoint(conv2d); in HandleConv2DFilter() 263 // Update filter of Conv2D. in HandleConv2DFilter() [all …]
|
/aosp_15_r20/external/pytorch/test/quantization/fx/ |
H A D | test_numeric_suite_fx.py | 167 # conv2d 168 self.conv2d_0 = nn.Conv2d(1, 1, 1) 169 # conv2d - relu 170 self.conv2d_1 = nn.Conv2d(1, 1, 1) 172 # conv2d - bn (qat only) 173 self.conv2d_2 = nn.Conv2d(1, 1, 1) 175 # conv2d - bn - relu (qat only) 176 self.conv2d_3 = nn.Conv2d(1, 1, 1) 207 # conv2d 263 x = F.conv2d( [all …]
|
H A D | test_quantize_fx.py | 213 self.conv1 = torch.nn.Conv2d(1, 1, 1).float() 214 self.conv2 = torch.nn.Conv2d(1, 1, 1).float() 246 self.conv1 = torch.nn.Conv2d(1, 1, 1).float() 247 self.conv2 = torch.nn.Conv2d(1, 1, 1).float() 275 self.conv2d = nn.Conv2d(1, 1, 1) 281 self.conv2d2 = nn.Conv2d(1, 1, 1) 291 x = self.conv2d(x) 335 ns.call_module(nn.Conv2d), 504 ns.call_module(nn.Conv2d), 523 """ Test fusion and lowering of Conv2d - (bn -) ReLU [all …]
|
/aosp_15_r20/external/tensorflow/tensorflow/compiler/jit/tests/ |
H A D | keras_imagenet_main.pbtxt | 18194 name: "res5a_branch1_1/Conv2D/ReadVariableOp" 18242 name: "res4a_branch1_1/Conv2D/ReadVariableOp" 18290 name: "res3a_branch1_1/Conv2D/ReadVariableOp" 18338 name: "res2a_branch1_1/Conv2D/ReadVariableOp" 18386 name: "conv1_1/Conv2D/ReadVariableOp" 18453 name: "res2a_branch2c_1/Conv2D/ReadVariableOp" 18501 name: "res2a_branch2b_1/Conv2D/ReadVariableOp" 18549 name: "res2a_branch2a_1/Conv2D/ReadVariableOp" 18597 name: "res2b_branch2c_1/Conv2D/ReadVariableOp" 18645 name: "res2b_branch2b_1/Conv2D/ReadVariableOp" [all …]
|
/aosp_15_r20/external/armnn/src/profiling/test/ |
H A D | ProfilingTestUtils.cpp | 428 IConnectableLayer* conv2d = net->AddConvolution2dLayer(conv2dDesc); in VerifyPostOptimisationStructureTestImpl() local 434 weightsLayer->GetOutputSlot(0).Connect(conv2d->GetInputSlot(1u)); in VerifyPostOptimisationStructureTestImpl() 437 biasLayer->GetOutputSlot(0).Connect(conv2d->GetInputSlot(2u)); in VerifyPostOptimisationStructureTestImpl() 446 input->GetOutputSlot(0).Connect(conv2d->GetInputSlot(0)); in VerifyPostOptimisationStructureTestImpl() 447 conv2d->GetOutputSlot(0).Connect(abs->GetInputSlot(0)); in VerifyPostOptimisationStructureTestImpl() 451 conv2d->GetOutputSlot(0).SetTensorInfo(outputInfo); in VerifyPostOptimisationStructureTestImpl() 712 // Conv2d layer in VerifyPostOptimisationStructureTestImpl() 713 // Conv2d layer entity in VerifyPostOptimisationStructureTestImpl() 714 VerifyTimelineEntityBinaryPacketData(conv2d->GetGuid(), readableData, offset); in VerifyPostOptimisationStructureTestImpl() 723 conv2d->GetGuid(), in VerifyPostOptimisationStructureTestImpl() [all …]
|
/aosp_15_r20/external/tensorflow/tensorflow/compiler/mlir/lite/tests/ |
H A D | dilated-conv.mlir | 7 …%1 = "tf.Conv2D"(%0, %arg1) {padding = "VALID", strides = [1, 1, 1, 1]} : (tensor<4x68x68x3xf32>, … 13 …// CHECK-NEXT: [[RESULT:%.*]] = "tf.Conv2D"([[INPUT]], [[FILTER]]) {dilations = [1, 2, 2, 1], padd… 21 …%1 = "tf.Conv2D"(%0, %arg1) {padding = "VALID", strides = [1, 1, 1, 1]} : (tensor<4x64x64x3xf32>, … 27 …// CHECK-NEXT: [[RESULT:%.*]] = "tf.Conv2D"([[INPUT]], [[FILTER]]) {dilations = [1, 2, 2, 1], padd… 36 …%1 = "tf.Conv2D"(%0, %arg1) {padding = "VALID", strides = [1, 1, 1, 1]} : (tensor<4x68x68x3xf32>, … 42 …// CHECK-NEXT: [[RESULT:%.*]] = "tf.Conv2D"([[INPUT]], [[FILTER]]) {dilations = [1, 2, 2, 1], padd… 51 …%1 = "tf.Conv2D"(%0, %arg1) {padding = "VALID", dilations = [1, 2, 2, 1], strides = [1, 1, 1, 1]} … 57 // CHECK-NEXT: [[CONV:%.*]] = "tf.Conv2D" 83 …%1 = "tf.Conv2D"(%0, %arg1) {padding = "VALID", strides = [1, 1, 1, 1]} : (tensor<4x68x68x3xf32>, … 91 …// CHECK-NEXT: [[CONV:%.*]] = "tf.Conv2D"([[INPUT]], [[FILTER]]) {dilations = [1, 2, 2, 1], paddin… [all …]
|