/aosp_15_r20/external/python/cpython3/Lib/test/ |
D | math_testcases.txt | 374 -- log1p: log(1 + x), without precision loss for small x -- 378 log1p0000 log1p 0.0 -> 0.0 379 log1p0001 log1p -0.0 -> -0.0 380 log1p0002 log1p inf -> inf 381 log1p0003 log1p -inf -> nan invalid 382 log1p0004 log1p nan -> nan 385 log1p0010 log1p -1.0 -> -inf divide-by-zero 386 log1p0011 log1p -0.9999999999999999 -> -36.736800569677101 389 log1p0020 log1p -1.0000000000000002 -> nan invalid 390 log1p0021 log1p -1.1 -> nan invalid [all …]
|
/aosp_15_r20/external/arm-optimized-routines/pl/math/ |
H A D | log1p_2u.c | 34 /* log1p approximation using polynomial on reduced interval. Largest 38 log1p(-0x1.2e1aea97b3e5cp-2) got -0x1.65fb8659a2f9p-2 41 log1p (double x) in log1p() function 53 /* x == -0 => log1p(x) = -0. in log1p() 54 x == Inf => log1p(x) = Inf. */ in log1p() 59 /* x == -1 => log1p(x) = -Inf. */ in log1p() 65 /* x == +/-NaN => log1p(x) = NaN. */ in log1p() 68 /* x < -1 => log1p(x) = NaN. in log1p() 69 x == -Inf => log1p(x) = NaN. */ in log1p() 75 log1p(x) = k*log(2) + log1p(f). in log1p() [all …]
|
H A D | v_log1p_2u5.c | 46 return v_call_f64 (log1p, x, y, special); in special_case() 49 /* Vector log1p approximation using polynomial on reduced interval. Routine is 50 a modification of the algorithm used in scalar log1p, with no shortcut for 54 VPCS_ATTR float64x2_t V_NAME_D1 (log1p) (float64x2_t x) in V_NAME_D1() argument 72 log1p(x) = k*log(2) + log1p(f). in V_NAME_D1() 76 c << m: at very small x, log1p(x) ~ x, hence: in V_NAME_D1() 79 We therefore calculate log1p(x) by k*log2 + log1p(f) + c/m. */ in V_NAME_D1() 101 /* Approximate log1p(x) on the reduced input using a polynomial. Because in V_NAME_D1() 102 log1p(0)=0 we choose an approximation of the form: in V_NAME_D1() 121 PL_SIG (V, D, 1, log1p, -0.9, 10.0) [all …]
|
H A D | sv_log1p_2u5.c | 44 return sv_call_f64 (log1p, x, y, special); in special_case() 47 /* Vector approximation for log1p using polynomial on reduced interval. Maximum 51 svfloat64_t SV_NAME_D1 (log1p) (svfloat64_t x, svbool_t pg) in SV_NAME_D1() argument 61 log1p(x) = k*log(2) + log1p(f). in SV_NAME_D1() 65 c << m: at very small x, log1p(x) ~ x, hence: in SV_NAME_D1() 68 We therefore calculate log1p(x) by k*log2 + log1p(f) + c/m. */ in SV_NAME_D1() 90 /* Approximate log1p(x) on the reduced input using a polynomial. Because in SV_NAME_D1() 91 log1p(0)=0 we choose an approximation of the form: in SV_NAME_D1() 110 PL_SIG (SV, D, 1, log1p, -0.9, 10.0) 111 PL_TEST_ULP (SV_NAME_D1 (log1p), 1.97) [all …]
|
H A D | v_log1pf_2u1.c | 61 VPCS_ATTR float32x4_t V_NAME_F1 (log1p) (float32x4_t x) in V_NAME_F1() argument 81 log1p(x) = log(t) + log(2^k) = log1p(m) + k*log(2). in V_NAME_F1() 83 We approximate log1p(m) with a polynomial, then scale by in V_NAME_F1() 120 PL_SIG (V, F, 1, log1p, -0.9, 10.0) 121 PL_TEST_ULP (V_NAME_F1 (log1p), 1.53) 122 PL_TEST_EXPECT_FENV (V_NAME_F1 (log1p), WANT_SIMD_EXCEPT) 123 PL_TEST_SYM_INTERVAL (V_NAME_F1 (log1p), 0.0, 0x1p-23, 30000) 124 PL_TEST_SYM_INTERVAL (V_NAME_F1 (log1p), 0x1p-23, 1, 50000) 125 PL_TEST_INTERVAL (V_NAME_F1 (log1p), 1, inf, 50000) 126 PL_TEST_INTERVAL (V_NAME_F1 (log1p), -1.0, -inf, 1000)
|
H A D | sv_log1pf_1u3.c | 41 svfloat32_t SV_NAME_F1 (log1p) (svfloat32_t x, svbool_t pg) in SV_NAME_F1() argument 50 log1p(x) = log(t) + log(2^k) = log1p(m) + k*log(2). in SV_NAME_F1() 52 We approximate log1p(m) with a polynomial, then scale by in SV_NAME_F1() 92 PL_SIG (SV, F, 1, log1p, -0.9, 10.0) 93 PL_TEST_ULP (SV_NAME_F1 (log1p), 0.77) 94 PL_TEST_SYM_INTERVAL (SV_NAME_F1 (log1p), 0, 0x1p-23, 5000) 95 PL_TEST_SYM_INTERVAL (SV_NAME_F1 (log1p), 0x1p-23, 1, 5000) 96 PL_TEST_INTERVAL (SV_NAME_F1 (log1p), 1, inf, 10000) 97 PL_TEST_INTERVAL (SV_NAME_F1 (log1p), -1, -inf, 10)
|
/aosp_15_r20/external/llvm-libc/test/src/math/ |
H A D | log1p_test.cpp | 1 //===-- Unittests for log1p -----------------------------------------------===// 12 #include "src/math/log1p.h" 25 EXPECT_FP_EQ(aNaN, LIBC_NAMESPACE::log1p(aNaN)); in TEST_F() 26 EXPECT_FP_EQ(inf, LIBC_NAMESPACE::log1p(inf)); in TEST_F() 27 EXPECT_FP_IS_NAN_WITH_EXCEPTION(LIBC_NAMESPACE::log1p(neg_inf), FE_INVALID); in TEST_F() 28 EXPECT_FP_IS_NAN_WITH_EXCEPTION(LIBC_NAMESPACE::log1p(-2.0), FE_INVALID); in TEST_F() 29 EXPECT_FP_EQ(zero, LIBC_NAMESPACE::log1p(0.0)); in TEST_F() 30 EXPECT_FP_EQ(neg_zero, LIBC_NAMESPACE::log1p(-0.0)); in TEST_F() 31 EXPECT_FP_EQ_WITH_EXCEPTION(neg_inf, LIBC_NAMESPACE::log1p(-1.0), in TEST_F() 71 EXPECT_MPFR_MATCH_ALL_ROUNDING(mpfr::Operation::Log1p, x, in TEST_F() [all …]
|
/aosp_15_r20/external/llvm-libc/test/src/math/smoke/ |
H A D | log1p_test.cpp | 1 //===-- Unittests for log1p -----------------------------------------------===// 12 #include "src/math/log1p.h" 19 EXPECT_FP_EQ(aNaN, LIBC_NAMESPACE::log1p(aNaN)); in TEST_F() 20 EXPECT_FP_EQ(inf, LIBC_NAMESPACE::log1p(inf)); in TEST_F() 21 EXPECT_FP_IS_NAN_WITH_EXCEPTION(LIBC_NAMESPACE::log1p(neg_inf), FE_INVALID); in TEST_F() 22 EXPECT_FP_IS_NAN_WITH_EXCEPTION(LIBC_NAMESPACE::log1p(-2.0), FE_INVALID); in TEST_F() 23 EXPECT_FP_EQ(zero, LIBC_NAMESPACE::log1p(0.0)); in TEST_F() 24 EXPECT_FP_EQ(neg_zero, LIBC_NAMESPACE::log1p(-0.0)); in TEST_F() 25 EXPECT_FP_EQ_WITH_EXCEPTION(neg_inf, LIBC_NAMESPACE::log1p(-1.0), in TEST_F() 29 LIBC_NAMESPACE::log1p(0x1.9b536cac3a09dp1023)); in TEST_F() [all …]
|
/aosp_15_r20/prebuilts/go/linux-x86/src/math/ |
D | log1p.go | 22 // double log1p(double x) 36 // 2. Approximation of log1p(f). 54 // log1p(f) = f - (hfsq - s*(hfsq+R)). 56 // 3. Finally, log1p(x) = k*ln2 + log1p(f). 63 // log1p(x) is NaN with signal if x < -1 (including -INF) ; 64 // log1p(+INF) is +INF; log1p(-1) is -INF with signal; 65 // log1p(NaN) is that NaN with no signal. 78 // algorithm can be used to compute log1p(x) to within a few ULP: 86 // Log1p returns the natural logarithm of 1 plus its argument x. 91 // Log1p(+Inf) = +Inf [all …]
|
/aosp_15_r20/libcore/ojluni/src/test/java/lang/Math/ |
H A D | Log1pTests.java | 30 * @summary Tests for {Math, StrictMath}.log1p (use -Dseed=X to set PRNG seed) 65 * Therefore, for small values of x, log1p(x) ~= x. For large 66 * values of x, log1p(x) ~= log(x). 99 // For |x| < 2^-54 log1p(x) ~= x in testLog1p() 106 // For x > 2^53 log1p(x) ~= log(x) in testLog1p() 138 // and we test that log1p(pcNeighbors[i]) <= log1p(pcNeighbors[i+1]) in testLog1p() 154 pcNeighborsLog1p[j] = Math.log1p(pcNeighbors[j]); in testLog1p() 155 pcNeighborsStrictLog1p[j] = StrictMath.log1p(pcNeighbors[j]); in testLog1p() 160 Assert.fail("Monotonicity failure for Math.log1p on " + in testLog1p() 168 Assert.fail("Monotonicity failure for StrictMath.log1p on " + in testLog1p() [all …]
|
/aosp_15_r20/external/arm-optimized-routines/pl/math/test/testcases/directed/ |
H A D | log1p.tst | 1 ; log1p.tst 6 func=log1p op1=7ff80000.00000001 result=7ff80000.00000001 errno=0 7 func=log1p op1=fff80000.00000001 result=7ff80000.00000001 errno=0 8 func=log1p op1=7ff00000.00000001 result=7ff80000.00000001 errno=0 status=i 9 func=log1p op1=fff00000.00000001 result=7ff80000.00000001 errno=0 status=i 10 func=log1p op1=fff02000.00000000 result=7ff80000.00000001 errno=0 status=i 11 func=log1p op1=7ff00000.00000000 result=7ff00000.00000000 errno=0 15 func=log1p op1=00000000.00000000 result=00000000.00000000 errno=0 16 func=log1p op1=80000000.00000000 result=80000000.00000000 errno=0 21 func=log1p op1=00000000.00000001 result=00000000.00000001 errno=0 maybestatus=ux [all …]
|
/aosp_15_r20/bionic/libm/upstream-freebsd/lib/msun/src/ |
H A D | s_log1p.c | 12 /* double log1p(double x) 26 * 2. Approximation of log1p(f). 44 * log1p(f) = f - (hfsq - s*(hfsq+R)). 46 * 3. Finally, log1p(x) = k*ln2 + log1p(f). 53 * log1p(x) is NaN with signal if x < -1 (including -INF) ; 54 * log1p(+INF) is +INF; log1p(-1) is -INF with signal; 55 * log1p(NaN) is that NaN with no signal. 68 * algorithm can be used to compute log1p(x) to within a few ULP: 98 log1p(double x) in log1p() function 109 if(x==-1.0) return -two54/vzero; /* log1p(-1)=+inf */ in log1p() [all …]
|
/aosp_15_r20/art/test/123-inline-execute2/ |
H A D | expected-stdout.txt | 92 Math.log1p(-3.0) = NaN 100 Math.log1p(-2.0) = NaN 108 Math.log1p(-1.0) = -Infinity 116 Math.log1p(0.0) = 0.000000000000 124 Math.log1p(1.0) = 0.693147180560 132 Math.log1p(2.0) = 1.098612288668 140 Math.log1p(3.0) = 1.386294361120 243 StrictMath.log1p(-3.0) = NaN 251 StrictMath.log1p(-2.0) = NaN 259 StrictMath.log1p(-1.0) = -Infinity [all …]
|
/aosp_15_r20/external/trusty/musl/src/math/ |
D | log1p.c | 12 /* double log1p(double x) 29 * 3. Finally, log1p(x) = k*ln2 + log(1+f) + c/u. See log.c 32 * log1p(x) is NaN with signal if x < -1 (including -INF) ; 33 * log1p(+INF) is +INF; log1p(-1) is -INF with signal; 34 * log1p(NaN) is that NaN with no signal. 47 * algorithm can be used to compute log1p(x) to within a few ULP: 69 double log1p(double x) in log1p() function 81 return x/0.0; /* log1p(-1) = -inf */ in log1p() 82 return (x-x)/0.0; /* log1p(x<-1) = NaN */ in log1p()
|
/aosp_15_r20/external/musl/src/math/ |
H A D | log1p.c | 12 /* double log1p(double x) 29 * 3. Finally, log1p(x) = k*ln2 + log(1+f) + c/u. See log.c 32 * log1p(x) is NaN with signal if x < -1 (including -INF) ; 33 * log1p(+INF) is +INF; log1p(-1) is -INF with signal; 34 * log1p(NaN) is that NaN with no signal. 47 * algorithm can be used to compute log1p(x) to within a few ULP: 69 double log1p(double x) in log1p() function 81 return x/0.0; /* log1p(-1) = -inf */ in log1p() 82 return (x-x)/0.0; /* log1p(x<-1) = NaN */ in log1p()
|
/aosp_15_r20/prebuilts/rust/linux-x86/1.81.0.u1/lib/rustlib/src/rust/vendor/compiler_builtins/libm/src/math/ |
H A D | log1p.rs | 12 /* double log1p(double x) 29 * 3. Finally, log1p(x) = k*ln2 + log(1+f) + c/u. See log.c 32 * log1p(x) is NaN with signal if x < -1 (including -INF) ; 33 * log1p(+INF) is +INF; log1p(-1) is -INF with signal; 34 * log1p(NaN) is that NaN with no signal. 47 * algorithm can be used to compute log1p(x) to within a few ULP: 69 pub fn log1p(x: f64) -> f64 { in log1p() function 92 return x / 0.0; /* log1p(-1) = -inf */ in log1p() 94 return (x - x) / 0.0; /* log1p(x<-1) = NaN */ in log1p()
|
/aosp_15_r20/prebuilts/rust/linux-x86/1.80.1/lib/rustlib/src/rust/vendor/compiler_builtins/libm/src/math/ |
H A D | log1p.rs | 12 /* double log1p(double x) 29 * 3. Finally, log1p(x) = k*ln2 + log(1+f) + c/u. See log.c 32 * log1p(x) is NaN with signal if x < -1 (including -INF) ; 33 * log1p(+INF) is +INF; log1p(-1) is -INF with signal; 34 * log1p(NaN) is that NaN with no signal. 47 * algorithm can be used to compute log1p(x) to within a few ULP: 69 pub fn log1p(x: f64) -> f64 { in log1p() function 92 return x / 0.0; /* log1p(-1) = -inf */ in log1p() 94 return (x - x) / 0.0; /* log1p(x<-1) = NaN */ in log1p()
|
/aosp_15_r20/prebuilts/rust/linux-musl-x86/1.80.1/lib/rustlib/src/rust/vendor/compiler_builtins/libm/src/math/ |
H A D | log1p.rs | 12 /* double log1p(double x) 29 * 3. Finally, log1p(x) = k*ln2 + log(1+f) + c/u. See log.c 32 * log1p(x) is NaN with signal if x < -1 (including -INF) ; 33 * log1p(+INF) is +INF; log1p(-1) is -INF with signal; 34 * log1p(NaN) is that NaN with no signal. 47 * algorithm can be used to compute log1p(x) to within a few ULP: 69 pub fn log1p(x: f64) -> f64 { in log1p() function 92 return x / 0.0; /* log1p(-1) = -inf */ in log1p() 94 return (x - x) / 0.0; /* log1p(x<-1) = NaN */ in log1p()
|
/aosp_15_r20/prebuilts/rust/linux-x86/1.81.0/lib/rustlib/src/rust/vendor/compiler_builtins/libm/src/math/ |
H A D | log1p.rs | 12 /* double log1p(double x) 29 * 3. Finally, log1p(x) = k*ln2 + log(1+f) + c/u. See log.c 32 * log1p(x) is NaN with signal if x < -1 (including -INF) ; 33 * log1p(+INF) is +INF; log1p(-1) is -INF with signal; 34 * log1p(NaN) is that NaN with no signal. 47 * algorithm can be used to compute log1p(x) to within a few ULP: 69 pub fn log1p(x: f64) -> f64 { in log1p() function 92 return x / 0.0; /* log1p(-1) = -inf */ in log1p() 94 return (x - x) / 0.0; /* log1p(x<-1) = NaN */ in log1p()
|
/aosp_15_r20/prebuilts/rust/linux-musl-x86/1.81.0/lib/rustlib/src/rust/vendor/compiler_builtins/libm/src/math/ |
H A D | log1p.rs | 12 /* double log1p(double x) 29 * 3. Finally, log1p(x) = k*ln2 + log(1+f) + c/u. See log.c 32 * log1p(x) is NaN with signal if x < -1 (including -INF) ; 33 * log1p(+INF) is +INF; log1p(-1) is -INF with signal; 34 * log1p(NaN) is that NaN with no signal. 47 * algorithm can be used to compute log1p(x) to within a few ULP: 69 pub fn log1p(x: f64) -> f64 { in log1p() function 92 return x / 0.0; /* log1p(-1) = -inf */ in log1p() 94 return (x - x) / 0.0; /* log1p(x<-1) = NaN */ in log1p()
|
/aosp_15_r20/external/rust/android-crates-io/crates/libm/src/math/ |
D | log1p.rs | 12 /* double log1p(double x) 29 * 3. Finally, log1p(x) = k*ln2 + log(1+f) + c/u. See log.c 32 * log1p(x) is NaN with signal if x < -1 (including -INF) ; 33 * log1p(+INF) is +INF; log1p(-1) is -INF with signal; 34 * log1p(NaN) is that NaN with no signal. 47 * algorithm can be used to compute log1p(x) to within a few ULP: 69 pub fn log1p(x: f64) -> f64 { in log1p() function 92 return x / 0.0; /* log1p(-1) = -inf */ in log1p() 94 return (x - x) / 0.0; /* log1p(x<-1) = NaN */ in log1p()
|
/aosp_15_r20/cts/tests/tests/renderscript/src/android/renderscript/cts/generated/ |
H A D | TestLog1p.rscript | 24 return log1p(inV); 28 return log1p(inV); 32 return log1p(inV); 36 return log1p(inV); 40 return log1p(inV); 44 return log1p(inV); 48 return log1p(inV); 52 return log1p(inV);
|
/aosp_15_r20/external/pytorch/c10/test/util/ |
H A D | complex_math_test_common.h | 205 // log1p(x) = log(1 + x) in C10_DEFINE_TEST() 208 c10::complex<float> l1 = std::log1p(x); in C10_DEFINE_TEST() 215 c10::complex<double> l1 = std::log1p(x); in C10_DEFINE_TEST() 226 c10::complex<float> l = std::log1p(x); in C10_DEFINE_TEST() 232 c10::complex<double> l = std::log1p(x); in C10_DEFINE_TEST() 242 c10::complex<float> l = std::log1p(x); in C10_DEFINE_TEST() 248 c10::complex<float> l = std::log1p(x); in C10_DEFINE_TEST() 254 c10::complex<float> l = std::log1p(x); in C10_DEFINE_TEST() 260 c10::complex<float> l = std::log1p(x); in C10_DEFINE_TEST() 266 c10::complex<float> l = std::log1p(x); in C10_DEFINE_TEST() [all …]
|
/aosp_15_r20/external/python/cpython2/Modules/ |
D | _math.c | 33 * acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1. 84 * := sign(x)*log1p(|x| + x^2/(1 + sqrt(1+x^2))) 118 * atanh(x) = --- * log(1 + -------) = 0.5 * log1p(2 * -------) 122 * atanh(x) = 0.5*log1p(2x+2x*x/(1-x)) 187 /* log1p(x) = log(1+x). The log1p function is designed to avoid the 196 /* Some platforms supply a log1p function but don't respect the sign of in _Py_log1p() 197 zero: log1p(-0.0) gives 0.0 instead of the correct result of -0.0. in _Py_log1p() 206 return log1p(x); in _Py_log1p() 243 happens, then results from log1p will be inaccurate in _Py_log1p()
|
/aosp_15_r20/external/tensorflow/tensorflow/compiler/mlir/tfrt/python_tests/ |
H A D | tf_log1p_test.py | 15 """Tests for tf.Log1p JIT compilation.""" 31 func.func @log1p(%arg0: tensor<?xf32>) -> tensor<?xf32> { 32 %0 = "tf.Log1p"(%arg0): (tensor<?xf32>) -> tensor<?xf32> 39 func.func @log1p(%arg0: tensor<?x?xf32>) -> tensor<?x?xf32> { 40 %0 = "tf.Log1p"(%arg0): (tensor<?x?xf32>) -> tensor<?x?xf32> 50 compiled = jitrt.compile(fn(), "log1p", specialize) 57 np.testing.assert_allclose(res, np.log1p(arg), atol=1e-06)
|