/aosp_15_r20/external/pytorch/torch/_inductor/fx_passes/ |
H A D | micro_pipeline_tp.py | 307 Replace the matmul with the new node. 319 # An ND-matmul is reshape -> mm -> reshape sequence. We first replace 436 matmul = _Matmul.from_match(match) 437 matmuls.append(matmul) 439 matmul = _ScaledMatmul.from_match(match) 440 matmuls.append(matmul) 460 matmul = _Matmul.from_match(match=[user]) 461 matmuls.append(matmul) 463 matmul = _ScaledMatmul.from_match([user]) 464 matmuls.append(matmul) [all …]
|
/aosp_15_r20/external/tensorflow/tensorflow/compiler/mlir/lite/tests/end2end/ |
H A D | back2back_fake_quant.pbtxt | 31 name: "sequential/quant_dense/MatMul/ReadVariableOp/resource" 58 name: "sequential/quant_dense/MatMul/ReadVariableOp" 60 input: "sequential/quant_dense/MatMul/ReadVariableOp/resource" 69 name: "sequential/quant_dense/MatMul/kquant/FakeQuantWithMinMaxVars/ReadVariableOp/resource" 90 name: "sequential/quant_dense/MatMul/kquant/FakeQuantWithMinMaxVars/ReadVariableOp" 92 input: "sequential/quant_dense/MatMul/kquant/FakeQuantWithMinMaxVars/ReadVariableOp/resource" 101 name: "sequential/quant_dense/MatMul/kquant/FakeQuantWithMinMaxVars/ReadVariableOp_1/resource" 122 name: "sequential/quant_dense/MatMul/kquant/FakeQuantWithMinMaxVars/ReadVariableOp_1" 124 input: "sequential/quant_dense/MatMul/kquant/FakeQuantWithMinMaxVars/ReadVariableOp_1/resource" 133 name: "sequential/quant_dense/MatMul/kquant/FakeQuantWithMinMaxVars" [all …]
|
/aosp_15_r20/external/tensorflow/tensorflow/python/ops/linalg/sparse/ |
H A D | sparse_csr_matrix_grad.py | 228 def matmul(x, y, **kwargs): # pylint: disable=invalid-name function 244 grad_a = matmul(grad, b, transpose_b=not t_b) 246 grad_a = matmul(b, grad, transpose_a=t_b, transpose_b=True) 250 grad_a = matmul(grad, b, adjoint_b=not adj_b) 252 grad_a = matmul(b, grad, adjoint_a=adj_b, adjoint_b=True) 260 grad_a = matmul(b, grad, transpose_a=True, adjoint_b=True) 263 grad_a = matmul(b, grad, transpose_a=True, transpose_b=True) 272 grad_a = matmul(grad, b, transpose_a=True, transpose_b=not t_b) 274 grad_a = matmul(b, grad, transpose_a=t_b) 279 grad_a = matmul(grad, b, transpose_a=True, adjoint_b=not adj_b) [all …]
|
/aosp_15_r20/external/tensorflow/tensorflow/compiler/aot/tests/ |
H A D | tfcompile_test.cc | 266 foo::bar::MatMulComp matmul; in TEST() local 267 matmul.set_thread_pool(&device); in TEST() 268 EXPECT_EQ(matmul.arg0_data(), matmul.arg_data(0)); in TEST() 269 EXPECT_EQ(matmul.arg1_data(), matmul.arg_data(1)); in TEST() 273 matmul.arg0(0, 0) = 1; in TEST() 274 matmul.arg0(0, 1) = 2; in TEST() 275 matmul.arg0(0, 2) = 3; in TEST() 276 matmul.arg0(1, 0) = 4; in TEST() 277 matmul.arg0(1, 1) = 5; in TEST() 278 matmul.arg0(1, 2) = 6; in TEST() [all …]
|
/aosp_15_r20/external/tensorflow/tensorflow/cc/framework/ |
H A D | gradients_test.cc | 34 using ops::MatMul; 64 // dy| dx| (MatMul Gradient Graph) 75 // | z| | (MatMul Forward Graph) 93 auto z = MatMul(scope, x, y); in TEST_F() 100 auto dx = MatMul(scope, dz, y, MatMul::TransposeB(true)); in TEST_F() 101 auto dy = MatMul(scope, x, dz, MatMul::TransposeA(true)); in TEST_F() 119 auto z = MatMul(scope, x, y); in TEST_F() 128 auto dx = MatMul(scope, dz, y, MatMul::TransposeB(true)); in TEST_F() 129 auto dy = MatMul(scope, x, dz, MatMul::TransposeA(true)); in TEST_F() 145 auto x = MatMul(scope, u, v); in TEST_F() [all …]
|
/aosp_15_r20/external/tensorflow/tensorflow/python/ops/ |
H A D | linalg_grad.py | 51 return -math_ops.matmul( # pylint: disable=invalid-unary-operand-type 53 math_ops.matmul(grad, ainv, adjoint_a=op_adjoint, 475 middle = math_ops.matmul(l, grad, adjoint_a=True) 480 grad_a = math_ops.matmul( 481 math_ops.matmul(l_inverse, middle, adjoint_a=True), l_inverse) 508 """Equiv to matmul(x, adjoint(matrix_inverse(r))) if r is upper-tri.""" 517 qdq = math_ops.matmul(q, dq, adjoint_a=True) 519 rdr = math_ops.matmul(r, dr, adjoint_b=True) 523 grad_a = math_ops.matmul(q, dr + _TriangularSolve(tril, r)) 524 grad_b = _TriangularSolve(dq - math_ops.matmul(q, qdq), r) [all …]
|
/aosp_15_r20/external/tensorflow/tensorflow/python/kernel_tests/math_ops/ |
H A D | matmul_op_test.py | 15 """Tests for tensorflow.ops.math_ops.matmul.""" 33 # TODO(yangzihao): Currently matmul autotuning is disabled by default. Use 39 """Simple test for tf.matmul where Tout is different from T.""" 42 # TODO(shivaniagrawal): uint8 is not supported for mixed matmul type in XLA. 51 # TODO(shivaniagrawal): uint8 is not supported for mixed matmul type in XLA. 62 """Simple test for matvec, which is sugar on top of matmul.""" 75 np.matmul(full.T, empty), math_ops.matmul(full, empty, adjoint_a=True)) 77 np.matmul(empty.T, full), math_ops.matmul(empty, full, adjoint_a=True)) 103 @test_util.run_without_tensor_float_32("Tests matmul") 111 print("Built without fp16 matmul support for Cuda, running test on CPU.") [all …]
|
/aosp_15_r20/external/tensorflow/tensorflow/compiler/mlir/tfrt/python_tests/ |
H A D | tf_matmul_test.py | 15 """Tests for tf.MatMul JIT compilation.""" 23 def matmul(): function 25 func.func @matmul(%arg0: tensor<?x?xf32>, 27 %0 = "tf.MatMul"(%arg0, %arg1) { 43 np.testing.assert_allclose(res, np.matmul(lhs, rhs), rtol=1e-05) 48 # Matmul: [1, k] x [k, 1] 50 compiled = jitrt.compile(matmul(), "matmul") 55 # Matmul: [1, k] x [k, n] 57 compiled = jitrt.compile(matmul(), "matmul") 63 # Matmul: [n, k] x [k, 1] [all …]
|
/aosp_15_r20/external/pytorch/test/distributed/ |
H A D | test_compute_comm_reordering.py | 111 b = torch.matmul(a, a) 112 return torch.matmul(ar, b) 120 # Verify that the wait_tensor is sinked below the 1st matmul but 121 # above the 2nd matmul. 149 b = torch.matmul(a, a) 151 d = torch.matmul(c, c) 153 return torch.matmul(d, e) 162 # Verify that the all_reduce_ has been raised above the 2nd matmul 163 # but below the 1st matmul. Note that the all_reduce_ directly 164 # writes to the output buffer of the 1st matmul, which is an input [all …]
|
/aosp_15_r20/external/pytorch/test/inductor/ |
H A D | test_fused_attention.py | 115 torch.matmul(query, key.transpose(-2, -1)) 118 .matmul(value) 143 torch.matmul(query, key.transpose(-2, -1)) 146 .matmul(value) 253 torch.matmul(query, key.transpose(-2, -1)) 257 return attn_weights.matmul(value), attn_weights 274 torch.matmul(query, key.transpose(-2, -1)) 277 .matmul(value) 289 torch.matmul(query, key.transpose(-2, -1)).div(3.0).softmax(dim=-1), 293 ).matmul(value) [all …]
|
/aosp_15_r20/external/tensorflow/tensorflow/compiler/mlir/tensorflow/tests/ |
H A D | unroll-batch-matmul.mlir | 1 // RUN: tf-opt -split-input-file -verify-diagnostics -tf-unroll-batch-matmul %s | FileCheck %s 35 …// CHECK: %[[MATMUL_1:.*]] = "tf.MatMul"(%[[LHS_1]], %[[RHS_1]]) {transpose_a = false, transpose_b… 36 …// CHECK: %[[MATMUL_2:.*]] = "tf.MatMul"(%[[LHS_2]], %[[RHS_2]]) {transpose_a = false, transpose_b… 37 …// CHECK: %[[MATMUL_3:.*]] = "tf.MatMul"(%[[LHS_3]], %[[RHS_3]]) {transpose_a = false, transpose_b… 38 …// CHECK: %[[MATMUL_4:.*]] = "tf.MatMul"(%[[LHS_4]], %[[RHS_4]]) {transpose_a = false, transpose_b… 39 …// CHECK: %[[MATMUL_5:.*]] = "tf.MatMul"(%[[LHS_5]], %[[RHS_5]]) {transpose_a = false, transpose_b… 40 …// CHECK: %[[MATMUL_6:.*]] = "tf.MatMul"(%[[LHS_6]], %[[RHS_6]]) {transpose_a = false, transpose_b… 79 …// CHECK: %[[MATMUL_1:.*]] = "tf.MatMul"(%[[LHS_1]], %[[RHS_1]]) {transpose_a = true, transpose_b … 80 …// CHECK: %[[MATMUL_2:.*]] = "tf.MatMul"(%[[LHS_2]], %[[RHS_2]]) {transpose_a = true, transpose_b … 81 …// CHECK: %[[MATMUL_3:.*]] = "tf.MatMul"(%[[LHS_3]], %[[RHS_3]]) {transpose_a = true, transpose_b … [all …]
|
H A D | device_copy.mlir | 5 // CHECK: tf.MatMul 6 …%outputs = "tf.MatMul"(%arg0, %arg1) {device = "/device:CPU:0", transpose_a = false, transpose_b =… 14 // CHECK: tf.MatMul 15 …%outputs = "tf.MatMul"(%arg0, %arg1) {device = "", transpose_a = false, transpose_b = false} : (te… 23 // CHECK: tf.MatMul 24 …%outputs = "tf.MatMul"(%arg0, %arg1) {device = "/device:GPU:0", transpose_a = false, transpose_b =… 32 // CHECK: tf.MatMul 33 …%outputs = "tf.MatMul"(%arg0, %arg1) {device = "/device:GPU:0", transpose_a = false, transpose_b =… 41 // CHECK: tf.MatMul 42 …%outputs = "tf.MatMul"(%arg0, %arg1) {device = "", transpose_a = false, transpose_b = false} : (te… [all …]
|
/aosp_15_r20/external/tensorflow/tensorflow/compiler/jit/tests/ |
H A D | opens2s_gnmt_mixed_precision.golden_summary | 119 MatMul 1 130 MatMul 2 194 MatMul 10 227 MatMul 20 248 MatMul 1 264 MatMul 2 289 MatMul 1 305 MatMul 2 321 MatMul 1 335 MatMul 1 [all …]
|
/aosp_15_r20/external/pytorch/test/dynamo/ |
H A D | test_activation_checkpointing.py | 205 return torch.sigmoid(torch.matmul(x, y)) 225 return torch.sigmoid(torch.matmul(x, y)) 244 return torch.sigmoid(torch.matmul(x, y)) 289 return torch.sigmoid(torch.matmul(x, y)) 449 a = torch.sigmoid(torch.matmul(x, y)) 476 a = torch.matmul(x, y) 478 return torch.matmul(a, z) 510 return torch.matmul(x, torch.nn.functional.dropout(y, 0.5)) 562 return torch.sigmoid(torch.matmul(x, x)) 591 freq=3, # 1 matmul recompute and 2 bwd mm ops per fwd matmul, so 1 + 2 * 1 = 3) [all …]
|
/aosp_15_r20/external/swiftshader/third_party/llvm-16.0/llvm/lib/Transforms/Scalar/ |
H A D | LowerMatrixIntrinsics.cpp | 915 // If we have a TT matmul or a TT add, lift the transpose. We may be able in optimizeTransposes() 1406 CallInst *MatMul) { in getNonAliasingPointer() argument 1418 BasicBlock *Check0 = MatMul->getParent(); in getNonAliasingPointer() 1427 SplitBlock(MatMul->getParent(), MatMul, (DomTreeUpdater *)nullptr, LI, in getNonAliasingPointer() 1430 SplitBlock(MatMul->getParent(), MatMul, (DomTreeUpdater *)nullptr, LI, in getNonAliasingPointer() 1433 SplitBlock(MatMul->getParent(), MatMul, (DomTreeUpdater *)nullptr, LI, in getNonAliasingPointer() 1439 IRBuilder<> Builder(MatMul); in getNonAliasingPointer() 1491 bool isFusionProfitable(CallInst *MatMul) { in isFusionProfitable() argument 1495 ShapeInfo LShape(MatMul->getArgOperand(2), MatMul->getArgOperand(3)); in isFusionProfitable() 1496 ShapeInfo RShape(MatMul->getArgOperand(3), MatMul->getArgOperand(4)); in isFusionProfitable() [all …]
|
/aosp_15_r20/external/tensorflow/tensorflow/python/debug/cli/ |
H A D | analyzer_cli_test.py | 47 # MatMul op is supported by MKL for some data types and its name is prefixed 54 return "MatMul" 64 # default dtype of matmul op created is float64 621 w = math_ops.matmul(u, v, name="simple_mul_add/matmul") 681 "simple_mul_add/v/read:0", "simple_mul_add/matmul:0", 699 "simple_mul_add/matmul:0", "simple_mul_add/add:0" 715 "simple_mul_add/matmul:0", "simple_mul_add/add:0" 730 "simple_mul_add/matmul:0", "simple_mul_add/add:0" 752 "simple_mul_add/matmul:0", "simple_mul_add/add:0" 769 "simple_mul_add/matmul:0", "simple_mul_add/add:0" [all …]
|
/aosp_15_r20/external/tensorflow/tensorflow/core/common_runtime/ |
H A D | quantize_training_test.cc | 94 Node* m1 = test::graph::Matmul(g, relu, identity, false, false); in TEST_F() 145 Node* m1 = test::graph::Matmul(g, relu, relu6, false, false); in TEST_F() 179 // Construct a graph with an additional backward Matmul. in TEST_F() 185 // We will use node d as input to the backwards matmul to ensure that it in TEST_F() 194 Node* m1 = test::graph::Matmul(g, relu, identity, false, false); in TEST_F() 195 Node* m2 = test::graph::Matmul(g, identity, c, false, false); in TEST_F() 199 // Add a Matmul node with name starting with "gradients". We will check that in TEST_F() 202 TF_ASSERT_OK(NodeBuilder(g->NewName("gradients/n"), "MatMul") in TEST_F() 215 // Ensure that the backwards matmul input was not quantized. in TEST_F() 233 // Construct a graph with an additional backward Matmul. in TEST_F() [all …]
|
/aosp_15_r20/external/tensorflow/tensorflow/python/kernel_tests/linalg/ |
H A D | linear_operator_identity_test.py | 100 y = operator.matmul(x) 164 operator.matmul(x) 175 self.evaluate(operator.matmul(x)) 185 operator_matmul = operator.matmul(x) 199 operator_matmul = operator.matmul(x) 218 # Expected result of matmul and solve. 221 operator_matmul = operator.matmul(x) 242 # Expected result of matmul and solve. 245 operator_matmul = operator.matmul(x) 405 y = operator.matmul(x) [all …]
|
/aosp_15_r20/external/pytorch/aten/src/ATen/test/ |
H A D | native_test.cpp | 135 // Throw StartsWith("both arguments to matmul need to be at least 1D") in TestMatmul() 137 ASSERT_ANY_THROW(scalar.matmul(d2)); in TestMatmul() 138 // Throw StartsWith("both arguments to matmul need to be at least 1D") in TestMatmul() 140 ASSERT_ANY_THROW(d2.matmul(scalar)); in TestMatmul() 143 ASSERT_ALLCLOSE(d1.matmul(d1), d1.dot(d1)); in TestMatmul() 144 ASSERT_ALLCLOSE(d2.matmul(d1), d2.mv(d1)); in TestMatmul() 146 ASSERT_ALLCLOSE(d1o.matmul(d2), d1o.unsqueeze(0).mm(d2).squeeze(0)); in TestMatmul() 150 ASSERT_ALLCLOSE(d2.matmul(d2o), d2.mm(d2o)); in TestMatmul() 155 d3.matmul(d1), d3.bmm(d1.view({1, 3, 1}).expand({5, 3, 1})).view({5, 2})); in TestMatmul() 156 ASSERT_ALLCLOSE(d1o.matmul(d3), d1o.expand({5, 1, 2}).bmm(d3).view({5, 3})); in TestMatmul() [all …]
|
/aosp_15_r20/external/tensorflow/tensorflow/python/ops/linalg/ |
H A D | linear_operator_block_lower_triangular.py | 97 >>> operator.matmul(x) 104 The above `matmul` is equivalent to: 105 >>> tf.concat([operator_0.matmul(x0), 106 ... operator_1.matmul(x0) + operator_2.matmul(x1)], axis=0) 116 `x` is a batch matrix with compatible shape for `matmul` and `solve` if 165 * `operator.matmul` has complexity equal to the sum of the `matmul` 168 of the operators on the diagonal and the `matmul` complexities of the 399 def matmul(self, x, adjoint=False, adjoint_arg=False, name="matmul"): member in LinearOperatorBlockLowerTriangular 409 Y = operator.matmul(X) 442 return linear_operator_algebra.matmul(left_operator, right_operator) [all …]
|
/aosp_15_r20/external/pytorch/torch/csrc/autograd/ |
H A D | FunctionsManual.cpp | 233 x1 * ratio.sum(-1, true) - ratio.matmul(x2), in _euclidean_dist_backward() 234 x2 * ratio.sum(-2, false).unsqueeze(-1) - ratio.mT().matmul(x1)}; in _euclidean_dist_backward() 401 .matmul(grads[1]); in linear_double_backward() 409 .matmul(grads[0].dim() == 1 ? grads[0].unsqueeze(0) : grads[0]); in linear_double_backward() 422 .matmul(weight.mT()); in linear_double_backward() 426 (self.dim() == 1 ? self.unsqueeze(0) : self).matmul(grads[1].mT()); in linear_double_backward() 875 is_vector_case ? dA.matmul(X.unsqueeze(-1)).squeeze(-1) : dA.matmul(X); in generic_solve_jvp() 1576 To implement the backward algorithm for sparse matrix-matrix matmul (SPMM) we in sparse_sparse_matmul_backward() 1936 dL = L_.matmul(dL); in cholesky_jvp() 1960 auto gA = L_.mH().matmul(gL_).tril(); in cholesky_backward() [all …]
|
/aosp_15_r20/external/tensorflow/tensorflow/core/kernels/ |
H A D | matmul_op_test.cc | 106 ops::MatMul matmul = ops::MatMul( in RunMatMulWithBias() local 107 root.WithOpName("matmul"), in RunMatMulWithBias() 110 ops::MatMul::Attrs().TransposeA(transpose_a).TransposeB(transpose_b)); in RunMatMulWithBias() 113 root.WithOpName("with_bias"), matmul, in RunMatMulWithBias() 125 ops::MatMul matmul = ops::MatMul( in RunMatMulWithBiasAndActivation() local 126 root.WithOpName("matmul"), in RunMatMulWithBiasAndActivation() 129 ops::MatMul::Attrs().TransposeA(transpose_a).TransposeB(transpose_b)); in RunMatMulWithBiasAndActivation() 132 root.WithOpName("with_bias"), matmul, in RunMatMulWithBiasAndActivation() 207 Tensor matmul; in VerifyBiasAddTensorsNear() local 210 run_default(lhs, rhs, bias, &matmul); in VerifyBiasAddTensorsNear() [all …]
|
/aosp_15_r20/external/tensorflow/tensorflow/examples/speech_commands/ |
H A D | models.py | 163 This is a very simple model with just one matmul and bias layer. As you'd 171 [MatMul]<-(weights) 196 logits = tf.matmul(fingerprint_input, weights) + bias 230 [MatMul]<-(weights) 322 final_fc = tf.matmul(flattened_second_conv, final_fc_weights) + final_fc_bias 347 [MatMul]<-(weights) 351 [MatMul]<-(weights) 355 [MatMul]<-(weights) 423 first_fc = tf.matmul(flattened_first_conv, first_fc_weights) + first_fc_bias 437 second_fc = tf.matmul(second_fc_input, second_fc_weights) + second_fc_bias [all …]
|
/aosp_15_r20/external/tensorflow/tensorflow/python/profiler/internal/ |
H A D | run_metadata_test.py | 64 y = math_ops.matmul(x, w) 89 # Grappler might fuse MatMul with BiasAdd in remapper optimizer. 129 self.assertEqual(tfprof_node.children[0].name, 'MatMul') 132 ret = _extract_node(run_meta, 'MatMul') 145 mm = _extract_node(run_meta, 'MatMul')['gpu:0'][0] 160 # random normal must allocated first since matmul depends on it. 162 # deallocates the memory after matmul started. 170 self.assertEqual(tfprof_node.children[0].name, 'MatMul') 173 ret = _extract_node(run_meta, 'MatMul') 176 ret = _extract_node(run_meta, 'MatMul:MatMul') [all …]
|
/aosp_15_r20/external/pytorch/aten/src/ATen/native/mkldnn/xpu/detail/ |
H A D | Matmul.cpp | 14 sycl::event matmul( in matmul() function 25 "oneDNN matmul only works with 2D or 3D, got ", in matmul() 30 TORCH_CHECK(result.defined(), "oneDNN matmul result should be defined"); in matmul() 65 "matmul supports [n] or [1] when bias dim is 1 ..."); in matmul() 79 "matmul supports [m, n] or [1, n] or [m, 1] or [1, 1] when bias dim is 2 ..."); in matmul() 85 "matmul bias must be expandable to:", in matmul() 92 b.numel() == 1, "matmul supports 1 numel when bias dim is [] ..."); in matmul() 99 TORCH_CHECK(0, "unsupported bias dim in matmul ..."); in matmul() 105 // xpu matmul support both ab/ba shape for m2 tensor, we don't check any more in matmul() 167 dnnl::matmul matmul_p; in matmul() [all …]
|