/aosp_15_r20/external/tensorflow/tensorflow/lite/testing/nnapi_tflite_zip_tests/ |
H A D | not_supported.txt | 157 mean/mean_axis=0,const_axis=True,input_dtype=tf.float32,input_shape=[3,3,2,4],keepdims=True 158 mean/mean_axis=0,const_axis=True,input_dtype=tf.float32,input_shape=[3,3,2,4],keepdims=False 159 mean/mean_axis=0,const_axis=False,input_dtype=tf.float32,input_shape=[3,3,2,4],keepdims=True 160 mean/mean_axis=0,const_axis=False,input_dtype=tf.float32,input_shape=[3,3,2,4],keepdims=False 161 mean/mean_axis=0,const_axis=True,input_dtype=tf.int32,input_shape=[3,3,2,4],keepdims=True 162 mean/mean_axis=0,const_axis=True,input_dtype=tf.int32,input_shape=[3,3,2,4],keepdims=False 163 mean/mean_axis=0,const_axis=False,input_dtype=tf.int32,input_shape=[3,3,2,4],keepdims=True 164 mean/mean_axis=0,const_axis=False,input_dtype=tf.int32,input_shape=[3,3,2,4],keepdims=False 165 mean/mean_axis=0,const_axis=True,input_dtype=tf.int64,input_shape=[3,3,2,4],keepdims=True 166 mean/mean_axis=0,const_axis=True,input_dtype=tf.int64,input_shape=[3,3,2,4],keepdims=False [all …]
|
/aosp_15_r20/external/tensorflow/tensorflow/python/framework/testdata/ |
H A D | metrics_export_meta_graph.pb | 764 name: "mean/total/Initializer/zeros" 770 s: "loc:@mean/total" 802 name: "mean/total" 809 s: "loc:@mean/total" 849 name: "mean/total/Assign" 851 input: "mean/total" 852 input: "mean/total/Initializer/zeros" 864 s: "loc:@mean/total" 891 name: "mean/total/read" 893 input: "mean/total" [all …]
|
/aosp_15_r20/external/guava/android/guava/src/com/google/common/math/ |
H A D | Stats.java | 38 * A bundle of statistical summary values -- sum, count, mean/average, min and max, and several 52 * calculate <i>only</i> the mean. 67 private final double mean; field in Stats 79 * <li>If {@code count} is 0, {@code mean} may have any finite value (its only usage will be to 86 Stats(long count, double mean, double sumOfSquaresOfDeltas, double min, double max) { in Stats() argument 88 this.mean = mean; in Stats() 159 * Returns the <a href="http://en.wikipedia.org/wiki/Arithmetic_mean">arithmetic mean</a> of the 163 * the arithmetic mean of the population. 174 * <p>If you only want to calculate the mean, use {@link #meanOf} instead of creating a {@link 179 public double mean() { in mean() method in Stats [all …]
|
H A D | StatsAccumulator.java | 43 private double mean = 0.0; // any finite value will do, we only use it to multiply by zero for sum field in StatsAccumulator 52 mean = value; in add() 60 if (isFinite(value) && isFinite(mean)) { in add() 62 double delta = value - mean; in add() 63 mean += delta / count; in add() 64 sumOfSquaresOfDeltas += delta * (value - mean); in add() 66 mean = calculateNewMeanNonFinite(mean, value); in add() 140 merge(values.count(), values.mean(), values.sumOfSquaresOfDeltas(), values.min(), values.max()); in addAll() 153 merge(values.count(), values.mean(), values.sumOfSquaresOfDeltas(), values.min(), values.max()); in addAll() 164 mean = otherMean; in merge() [all …]
|
/aosp_15_r20/external/apache-commons-math/src/main/java/org/apache/commons/math/distribution/ |
H A D | ExponentialDistributionImpl.java | 43 /** The mean of this distribution. */ 44 private double mean; field in ExponentialDistributionImpl 50 * Create a exponential distribution with the given mean. 51 * @param mean mean of this distribution. 53 public ExponentialDistributionImpl(double mean) { in ExponentialDistributionImpl() argument 54 this(mean, DEFAULT_INVERSE_ABSOLUTE_ACCURACY); in ExponentialDistributionImpl() 58 * Create a exponential distribution with the given mean. 59 * @param mean mean of this distribution. 64 public ExponentialDistributionImpl(double mean, double inverseCumAccuracy) { in ExponentialDistributionImpl() argument 66 setMeanInternal(mean); in ExponentialDistributionImpl() [all …]
|
H A D | PoissonDistributionImpl.java | 55 * Holds the Poisson mean for the distribution. 57 private double mean; field in PoissonDistributionImpl 73 * Create a new Poisson distribution with the given the mean. The mean value 76 * @param p the Poisson mean 84 * Create a new Poisson distribution with the given mean, convergence criterion 87 * @param p the Poisson mean 99 * Create a new Poisson distribution with the given mean and convergence criterion. 101 * @param p the Poisson mean 111 * Create a new Poisson distribution with the given mean and maximum number of iterations. 113 * @param p the Poisson mean [all …]
|
/aosp_15_r20/external/aws-sdk-java-v2/test/sdk-benchmarks/src/main/resources/software/amazon/awssdk/benchmark/ |
H A D | baseline.json | 13 "mean": 11083.712145086858, number 33 "mean": 3133.078992847664, number 53 "mean": 9400.788325804802, number 73 "mean": 10081.234880927226, number 93 "mean": 2318.064309904416, number 113 "mean": 2668.2980888540214, number 133 "mean": 6452.047990499835, number 153 "mean": 7299.549654768969, number 173 "mean": 2253.2698214846414, number 193 "mean": 2349.62389971199, number [all …]
|
/aosp_15_r20/frameworks/base/core/java/com/android/internal/ml/clustering/ |
H A D | KMeans.java | 63 public List<Mean> predict(final int k, final float[][] inputData) { in predict() 67 final ArrayList<Mean> means = new ArrayList<>(); in predict() 69 Mean m = new Mean(dimension); in predict() 97 public static double score(@NonNull List<Mean> means) { in score() 101 Mean mean = means.get(i); in score() local 103 Mean compareTo = means.get(j); in score() 104 if (mean == compareTo) { in score() 107 double distance = Math.sqrt(sqDistance(mean.mCentroid, compareTo.mCentroid)); in score() 140 private boolean step(final ArrayList<Mean> means, final float[][] inputData) { in step() 143 // which point belongs to each mean again. in step() [all …]
|
/aosp_15_r20/external/tensorflow/tensorflow/lite/delegates/gpu/common/tasks/ |
H A D | mean_stddev_normalization_test_util.cc | 30 // Parameterized test: mean, difference, tolerance. 31 // Input is constructed as [mean-2*diff, mean-diff, mean+diff, mean+2*diff] 32 absl::Status MeanStddevNormSeparateBatchesTest(float mean, float diff, in MeanStddevNormSeparateBatchesTest() argument 37 src_tensor.data = {mean - 2 * diff, mean - diff, mean + diff, in MeanStddevNormSeparateBatchesTest() 38 mean + 2 * diff, mean - 2 * diff, mean - diff, in MeanStddevNormSeparateBatchesTest() 39 mean + diff, mean + 2 * diff}; in MeanStddevNormSeparateBatchesTest() 89 0.0f, 0.0f, 0.0f, 0.0f, // zero mean, zero variance in MeanStddevNormalizationAllBatchesTest() 90 -0.02f, -0.01f, 0.01f, 0.02f, // zero mean, small variance in MeanStddevNormalizationAllBatchesTest() 91 -200.0f, -100.0f, 100.0f, 200.0f, // zero mean, large variance in MeanStddevNormalizationAllBatchesTest() 92 0.01f, 0.01f, 0.01f, 0.01f, // small mean, zero variance in MeanStddevNormalizationAllBatchesTest() [all …]
|
/aosp_15_r20/external/apache-commons-math/src/main/java/org/apache/commons/math3/distribution/ |
H A D | ExponentialDistribution.java | 59 /** The mean of this distribution. */ 60 private final double mean; field in ExponentialDistribution 62 /** The logarithm of the mean, stored to reduce computing time. * */ 92 * Create an exponential distribution with the given mean. 100 * @param mean mean of this distribution. 102 public ExponentialDistribution(double mean) { in ExponentialDistribution() argument 103 this(mean, DEFAULT_INVERSE_ABSOLUTE_ACCURACY); in ExponentialDistribution() 107 * Create an exponential distribution with the given mean. 115 * @param mean Mean of this distribution. 118 * @throws NotStrictlyPositiveException if {@code mean <= 0}. [all …]
|
H A D | NormalDistribution.java | 51 /** Mean of this distribution. */ 52 private final double mean; field in NormalDistribution 64 * Create a normal distribution with mean equal to zero and standard deviation equal to one. 77 * Create a normal distribution using the given mean and standard deviation. 85 * @param mean Mean for this distribution. 89 public NormalDistribution(double mean, double sd) throws NotStrictlyPositiveException { in NormalDistribution() argument 90 this(mean, sd, DEFAULT_INVERSE_ABSOLUTE_ACCURACY); in NormalDistribution() 94 * Create a normal distribution using the given mean, standard deviation and inverse cumulative 103 * @param mean Mean for this distribution. 109 public NormalDistribution(double mean, double sd, double inverseCumAccuracy) in NormalDistribution() argument [all …]
|
/aosp_15_r20/external/guava/guava/src/com/google/common/math/ |
H A D | Stats.java | 42 * A bundle of statistical summary values -- sum, count, mean/average, min and max, and several 56 * calculate <i>only</i> the mean. 71 private final double mean; field in Stats 83 * <li>If {@code count} is 0, {@code mean} may have any finite value (its only usage will be to 90 Stats(long count, double mean, double sumOfSquaresOfDeltas, double min, double max) { in Stats() argument 92 this.mean = mean; in Stats() 235 * Returns the <a href="http://en.wikipedia.org/wiki/Arithmetic_mean">arithmetic mean</a> of the 239 * the arithmetic mean of the population. 250 * <p>If you only want to calculate the mean, use {@link #meanOf} instead of creating a {@link 255 public double mean() { in mean() method [all …]
|
/aosp_15_r20/external/tflite-support/tensorflow_lite_support/java/src/java/org/tensorflow/lite/support/common/ops/ |
H A D | NormalizeOp.java | 26 * Normalizes a {@link TensorBuffer} with given mean and stddev: output = (input - mean) / stddev. 30 // mean.length should always be equal to stddev.length and always >= 1. 31 private final float[] mean; field in NormalizeOp 41 * output = (input - mean) / stddev 44 * <p>In the following two cases, reset {@code mean} to 0 and {@code stddev} to 1 to bypass the 46 * 1. Both {@code mean} and {code stddev} are 0. <br> 47 * 2. {@code mean} is 0 and {stddev} is Infinity. 49 * <p>Note: If {@code mean} is set to 0 and {@code stddev} is set to 1, no computation will 53 * present, except when the input is a {@link DataType#UINT8} tensor, {@code mean} is set to 0 and 56 * @param mean the mean value to be subtracted first. [all …]
|
/aosp_15_r20/external/clang/test/SemaCXX/ |
H A D | typo-correction.cpp | 4 int a(-rsing[2]); // expected-error {{undeclared identifier 'rsing'; did you mean 'using'?}} 46 … 'basetype' does not name a non-static data member or base class; did you mean the base class 'Bas… in Derived() 52 …return st->Base_Type; // expected-error{{no member named 'Base_Type' in 'Derived'; did you mean 'b… in get_type() 58 somename Foo; // expected-error {{unknown type name 'somename'; did you mean 'some_name'?}} 60 using namespace somename; // expected-error {{no namespace named 'somename'; did you mean 'SomeName… 72 …error{{field designator 'fielda' does not refer to any field in type 'st'; did you mean 'FieldA'?}} 81 …ng str; // expected-error{{use of undeclared identifier 'another_std'; did you mean 'AnotherStd'?}} 82 another_str *cstr = new AnotherStr; // expected-error{{unknown type name 'AnotherStr'; did you mean… 88 …cted-error{{'TyreNames' does not refer to the name of a parameter pack; did you mean 'TypeNames'?}} 96 …ted-error{{no type named 'stream_out' in namespace 'unknown_type_test'; did you mean 'StreamOut'?}} [all …]
|
/aosp_15_r20/external/guava/android/guava-tests/benchmark/com/google/common/math/ |
H A D | StatsBenchmark.java | 27 * Benchmarks for various algorithms for computing the mean and/or variance. 36 double mean(double[] values) { in mean() method 46 double mean(double[] values) { in mean() method 60 double mean(double[] values) { in mean() method 61 double mean = values[0]; in mean() local 63 mean = mean + (values[i] - mean) / (i + 1); in mean() 65 return mean; in mean() 69 abstract double mean(double[] values); in mean() method in StatsBenchmark.MeanAlgorithm 73 private final double mean; field in StatsBenchmark.MeanAndVariance 76 MeanAndVariance(double mean, double variance) { in MeanAndVariance() argument [all …]
|
/aosp_15_r20/external/guava/guava-tests/benchmark/com/google/common/math/ |
H A D | StatsBenchmark.java | 27 * Benchmarks for various algorithms for computing the mean and/or variance. 36 double mean(double[] values) { in mean() method 46 double mean(double[] values) { in mean() method 60 double mean(double[] values) { in mean() method 61 double mean = values[0]; in mean() local 63 mean = mean + (values[i] - mean) / (i + 1); in mean() 65 return mean; in mean() 69 abstract double mean(double[] values); in mean() method in StatsBenchmark.MeanAlgorithm 73 private final double mean; field in StatsBenchmark.MeanAndVariance 76 MeanAndVariance(double mean, double variance) { in MeanAndVariance() argument [all …]
|
/aosp_15_r20/external/pytorch/benchmarks/dynamo/microbenchmarks/ |
H A D | matmul_relu.py | 66 torch mm mean: 0.0592 ms 67 torch mm + relu mean: 0.0759 ms 68 inductor mm mean: 0.0653 ms 70 torch mm mean: 0.0231 ms 71 torch mm + relu mean: 0.0316 ms 72 inductor mm mean: 0.0252 ms 74 torch mm mean: 0.0190 ms 75 torch mm + relu mean: 0.0277 ms 76 inductor mm mean: 0.0274 ms 78 torch mm mean: 0.0188 ms [all …]
|
/aosp_15_r20/external/pytorch/torch/nn/modules/ |
H A D | loss.py | 41 def __init__(self, size_average=None, reduce=None, reduction: str = "mean") -> None: 55 reduction: str = "mean", 63 r"""Creates a criterion that measures the mean absolute error (MAE) between each element in 73 (default ``'mean'``), then: 78 \operatorname{mean}(L), & \text{if reduction} = \text{`mean';}\\ 102 ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied, 103 ``'mean'``: the sum of the output will be divided by the number of 106 specifying either of those two args will override :attr:`reduction`. Default: ``'mean'`` 124 def __init__(self, size_average=None, reduce=None, reduction: str = "mean") -> None: 163 (default ``'mean'``), then [all …]
|
/aosp_15_r20/external/apache-commons-math/src/main/java/org/apache/commons/math3/stat/descriptive/moment/ |
H A D | Variance.java | 32 * variance = sum((x_i - mean)^2) / (n - 1) </p> 34 * where mean is the {@link Mean} and <code>n</code> is the number 56 * The "population variance" ( sum((x_i - mean)^2) / n ) can also 266 Mean mean = new Mean(); in evaluate() local 267 double m = mean.evaluate(values, begin, length); in evaluate() 282 * where weightedMean is the weighted mean</p> 326 Mean mean = new Mean(); in evaluate() local 327 double m = mean.evaluate(values, weights, begin, length); in evaluate() 341 * where weightedMean is the weighted mean</p> 379 * the input array, using the precomputed mean value. Returns [all …]
|
/aosp_15_r20/external/apache-commons-math/src/main/java/org/apache/commons/math/stat/descriptive/moment/ |
H A D | Variance.java | 30 * variance = sum((x_i - mean)^2) / (n - 1) </p> 32 * where mean is the {@link Mean} and <code>n</code> is the number 54 * The "population variance" ( sum((x_i - mean)^2) / n ) can also 252 Mean mean = new Mean(); in evaluate() local 253 double m = mean.evaluate(values, begin, length); in evaluate() 268 * where weightedMean is the weighted mean</p> 312 Mean mean = new Mean(); in evaluate() local 313 double m = mean.evaluate(values, weights, begin, length); in evaluate() 327 * where weightedMean is the weighted mean</p> 364 * the input array, using the precomputed mean value. Returns [all …]
|
/aosp_15_r20/external/clang/test/FixIt/ |
H A D | fixit.cpp | 54 …expected-error{{use of undeclared identifier 'getNumComponenets'; did you mean 'getNumComponents'?… in dump() 75 int x1 &= 0; // expected-error {{invalid '&=' at end of declaration; did you mean '='?}} 76 int x2 *= 0; // expected-error {{invalid '*=' at end of declaration; did you mean '='?}} 77 int x3 += 0; // expected-error {{invalid '+=' at end of declaration; did you mean '='?}} 78 int x4 -= 0; // expected-error {{invalid '-=' at end of declaration; did you mean '='?}} 79 int x5 != 0; // expected-error {{invalid '!=' at end of declaration; did you mean '='?}} 80 int x6 /= 0; // expected-error {{invalid '/=' at end of declaration; did you mean '='?}} 81 int x7 %= 0; // expected-error {{invalid '%=' at end of declaration; did you mean '='?}} 82 int x8 <= 0; // expected-error {{invalid '<=' at end of declaration; did you mean '='?}} 83 int x9 <<= 0; // expected-error {{invalid '<<=' at end of declaration; did you mean '='?}} [all …]
|
H A D | typo.cpp | 24 other_std::strng str1; // expected-error{{use of undeclared identifier 'other_std'; did you mean 'o… 25 // expected-error{{no type named 'strng' in namespace 'otherstd'; did you mean 'string'?}} 26 tring str2; // expected-error{{unknown type name 'tring'; did you mean 'string'?}} 28 … // expected-error{{no member named 'other_std' in the global namespace; did you mean 'otherstd'?}} 32 return radious * pi; // expected-error{{did you mean 'radius'?}} in area() 35 using namespace othestd; // expected-error{{no namespace named 'othestd'; did you mean 'otherstd'?}} 37 …rg; // expected-error{{no namespace named 'blarg' in the global namespace; did you mean 'blargh'?}} 39 namespace wibble = blarg; // expected-error{{no namespace named 'blarg'; did you mean 'blargh'?}} 40 …rg; // expected-error{{no namespace named 'blarg' in the global namespace; did you mean 'blargh'?}} 43 …basc_string<char> b1; // expected-error{{no template named 'basc_string'; did you mean 'basic_stri… in test_string() [all …]
|
/aosp_15_r20/external/apache-commons-math/src/main/java/org/apache/commons/math/stat/inference/ |
H A D | TTestImpl.java | 100 * at which one can reject the null hypothesis that the mean of the paired 101 * differences is 0 in favor of the two-sided alternative that the mean paired 137 * mean of the paired differences between <code>sample1</code> and 139 * mean paired difference is not equal to 0, with significance level 177 * This statistic can be used to perform a one sample t-test for the mean. 191 return t(StatUtils.mean(observed), mu, StatUtils.variance(observed), in t() 197 * t statistic </a> to use in comparing the mean of the dataset described by 200 * This statistic can be used to perform a one sample t-test for the mean. 232 * <strong><code> m1</code></strong> is the mean of first sample; 233 * <strong><code> m2</code></strong> is the mean of second sample</li> [all …]
|
/aosp_15_r20/packages/apps/Dialer/java/com/android/dialer/about/res/raw/ |
D | third_party_licenses | 26 "License" shall mean the terms and conditions for use, reproduction, 29 "Licensor" shall mean the copyright owner or entity authorized by 32 "Legal Entity" shall mean the union of the acting entity and all 40 "You" (or "Your") shall mean an individual or Legal Entity 43 "Source" form shall mean the preferred form for making modifications, 47 "Object" form shall mean any form resulting from mechanical 52 "Work" shall mean the work of authorship, whether in Source or 57 "Derivative Works" shall mean any work, whether in Source or Object 65 "Contribution" shall mean any work of authorship, including 79 "Contributor" shall mean Licensor and any individual or Legal Entity [all …]
|
/aosp_15_r20/external/apache-commons-math/src/main/java/org/apache/commons/math3/stat/ |
H A D | StatUtils.java | 29 import org.apache.commons.math3.stat.descriptive.moment.Mean; 65 /** mean */ 66 private static final UnivariateStatistic MEAN = new Mean(); field in StatUtils 74 /** geometric mean */ 213 * Returns the arithmetic mean of the entries in the input array, or <code>Double.NaN</code> if 218 * <p>See {@link org.apache.commons.math3.stat.descriptive.moment.Mean} for details on the 222 * @return the mean of the values or Double.NaN if the array is empty 225 public static double mean(final double[] values) throws MathIllegalArgumentException { in mean() method in StatUtils 226 return MEAN.evaluate(values); in mean() 230 * Returns the arithmetic mean of the entries in the specified portion of the input array, or [all …]
|