/aosp_15_r20/external/executorch/backends/vulkan/runtime/graph/ops/impl/ |
H A D | BatchNorm.cpp | 29 "native_batch_norm requires ", in check_and_prepack_arg() 101 void native_batch_norm(ComputeGraph& graph, const std::vector<ValueRef>& args) { in native_batch_norm() function 109 aten._native_batch_norm_legit_no_training.default, native_batch_norm);
|
/aosp_15_r20/external/executorch/backends/transforms/ |
H A D | fuse_batch_norm_with_conv.py | 47 bn.target != exir_ops.edge.aten.native_batch_norm.default 66 bn.target == exir_ops.edge.aten.native_batch_norm.default 82 # args[7] for native_batch_norm, but args[6] for
|
/aosp_15_r20/external/executorch/backends/xnnpack/_passes/ |
H A D | fuse_batch_norm_with_conv.py | 45 bn.target != exir_ops.edge.aten.native_batch_norm.default 64 bn.target == exir_ops.edge.aten.native_batch_norm.default 80 # args[7] for native_batch_norm, but args[6] for
|
/aosp_15_r20/external/pytorch/test/lazy/ |
H A D | test_reuse_ir.py | 116 # so we call `torch.ops.aten.native_batch_norm` to bypass the checks. 117 z, _, _ = torch.ops.aten.native_batch_norm( 129 z_lazy, _, _ = torch.ops.aten.native_batch_norm(
|
/aosp_15_r20/external/pytorch/aten/src/ATen/functorch/ |
H A D | BatchRulesNorm.cpp | 848 …OT good. In the ideal world, we do NOT want to convert the new legit op back into native_batch_norm 849 // as native_batch_norm has a problematic schema--it promises it is functional when it is not. Howe… 851 // make native_batch_norm composite implicit within a few weeks and we can fix this before vmap wor… 855 …return at::native_batch_norm(self, weight_opt, bias_opt, running_mean, running_var, train, momentu… in _native_batch_norm_legit_batch() 861 …return at::native_batch_norm(self, weight_opt, bias_opt, Tensor(), Tensor(), train, momentum, eps); in _native_batch_norm_legit_no_stats_batch() 865 VMAP_SUPPORT(native_batch_norm, NATIVE_BATCH_NORM_BATCH_RULE(native_batch_norm)); in TORCH_LIBRARY_IMPL()
|
/aosp_15_r20/external/executorch/exir/tests/ |
H A D | dynamic_shape_models.py | 14 batch_norm_op = torch.ops.aten.native_batch_norm.default 40 if nd.target == torch.ops.aten.native_batch_norm.out
|
/aosp_15_r20/external/pytorch/torch/jit/ |
H A D | _shape_functions.py | 1135 def native_batch_norm( function 1435 …"aten::native_batch_norm(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor?… 1436 native_batch_norm, 1440 native_batch_norm, 1444 native_batch_norm,
|
/aosp_15_r20/external/pytorch/test/ |
H A D | test_decomp.py | 194 (torch.bfloat16, torch.ops.aten.native_batch_norm.default): 1e-5, 195 (torch.float16, torch.ops.aten.native_batch_norm.default): 1e-5, 411 # native_batch_norm is only implicit when python dispatcher is on (and noncomposite otherwise) 412 (None, None, "native_batch_norm"), 716 res = torch._decomp.decompositions.native_batch_norm(
|
H A D | test_meta.py | 738 torch.native_batch_norm: {bf16, f16}, 755 torch.native_batch_norm: {f32, f64}, 881 aten.native_batch_norm.default: {bf16, f16}, 908 aten.native_batch_norm.default: {f32, f64}, 916 aten.native_batch_norm.out: {bf16, f16, f32, f64}
|
/aosp_15_r20/external/pytorch/aten/src/ATen/native/ |
H A D | group_norm.cpp | 15 #include <ATen/ops/native_batch_norm.h> 230 auto outputs = at::native_batch_norm( in math_group_norm()
|
H A D | layer_norm.cpp | 18 #include <ATen/ops/native_batch_norm.h> 240 auto outputs = at::native_batch_norm( in math_native_layer_norm()
|
H A D | ts_native_functions.yaml | 87 - native_batch_norm
|
/aosp_15_r20/external/pytorch/test/functorch/ |
H A D | test_ops.py | 563 "native_batch_norm" 1037 xfail("native_batch_norm"), 1152 skip("native_batch_norm"), 1314 xfail("native_batch_norm"), 1561 xfail("native_batch_norm"), 1676 xfail("native_batch_norm"), 2060 xfail("native_batch_norm"),
|
/aosp_15_r20/external/pytorch/torchgen/ |
H A D | model.py | 2503 # (native_batch_norm is a good example, although this isn't the case today). 2510 # native_batch_norm (mutable variant) 2511 # native_batch_norm.functional (functional variant) 2516 # native_batch_norm.mutable (mutable variant) 2517 # native_batch_norm (functional variant) 2558 # for now on ops that have a functional + mutable variant (like native_batch_norm).
|
/aosp_15_r20/external/pytorch/test/quantization/eager/ |
H A D | test_fuse_eager.py | 92 …with self.assertRaisesRegex(RuntimeError, "Could not run 'aten::native_batch_norm' with arguments … 101 …with self.assertRaisesRegex(RuntimeError, "Could not run 'aten::native_batch_norm' with arguments …
|
/aosp_15_r20/external/pytorch/torch/csrc/utils/ |
H A D | schema_info.cpp | 286 …{"aten::native_batch_norm(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor… in getTrainingOps() 288 …{"aten::native_batch_norm.out(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Te… in getTrainingOps()
|
/aosp_15_r20/external/pytorch/torch/_decomp/ |
H A D | decompositions.py | 1874 @register_decomposition(aten.native_batch_norm) 1876 def native_batch_norm( function 1892 # TODO: this decomposition is NOT here to stay. We would much prefer replacing native_batch_norm 1900 …In two weeks or so, we should remove this decomposition and phase out the current native_batch_norm 1902 @aten.native_batch_norm.default.py_impl(DispatchKey.Autograd) 1903 @aten.native_batch_norm.default.py_impl(DispatchKey.CompositeImplicitAutograd) 2201 # native_batch_norm needs to decompose into other ops before autograd. 2215 a, b, c = aten.native_batch_norm(
|
/aosp_15_r20/external/pytorch/functorch/op_analysis/ |
H A D | public_api | 437 native_batch_norm
|
/aosp_15_r20/external/executorch/kernels/aten/ |
H A D | functions.yaml | 274 - op: native_batch_norm.out
|
/aosp_15_r20/external/pytorch/torch/_inductor/ |
H A D | decomposition.py | 74 aten.native_batch_norm, 763 a, b, c = aten.native_batch_norm(
|
/aosp_15_r20/external/pytorch/benchmarks/dynamo/microbenchmarks/operator_inp_logs/timm_train/ |
H A D | convmixer_768_32_training.txt | 32 Operator: aten.native_batch_norm.default
|
/aosp_15_r20/external/pytorch/test/edge/ |
H A D | selected_operators.yaml | 266 aten::native_batch_norm.out:
|
/aosp_15_r20/external/pytorch/benchmarks/dynamo/microbenchmarks/operator_inp_logs/torchbench_train/ |
H A D | dcgan_training.txt | 29 Operator: aten.native_batch_norm.default
|
/aosp_15_r20/external/pytorch/torch/csrc/jit/runtime/ |
H A D | serialized_shape_function_registry.cpp | 3001 def native_batch_norm(input: List[int], 3324 …native_batch_norm(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor? runnin… in GetShapeFunctionMappings() 3325 …_var, bool training, float momentum, float eps) -> (Tensor, Tensor, Tensor)", "native_batch_norm"}, in GetShapeFunctionMappings() 3326 …_var, bool training, float momentum, float eps) -> (Tensor, Tensor, Tensor)", "native_batch_norm"}, in GetShapeFunctionMappings()
|
H A D | autodiff.cpp | 44 …"aten::native_batch_norm(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor?… in isDifferentiable() 256 …"aten::native_batch_norm(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor?… in buildSymbolicGradient()
|