/aosp_15_r20/external/pytorch/test/ |
H A D | test_xnnpack_integration.py | 51 packed_weight_bias = torch.ops.prepacked.linear_clamp_prepack(weight, bias) 52 output_linearprepacked = torch.ops.prepacked.linear_clamp_run( 72 packed_weight_bias = torch.ops.prepacked.linear_clamp_prepack(weight, bias) 73 output_linearprepacked = torch.ops.prepacked.linear_clamp_run( 139 packed_weight_bias = torch.ops.prepacked.conv2d_clamp_prepack( 142 xnnpack_result = torch.ops.prepacked.conv2d_clamp_run( 221 packed_weight_bias = torch.ops.prepacked.conv2d_transpose_clamp_prepack( 224 xnnpack_result = torch.ops.prepacked.conv2d_transpose_clamp_run( 263 self.packed_weight_bias = torch.ops.prepacked.linear_clamp_prepack( 268 return torch.ops.prepacked.linear_clamp_run(x, self.packed_weight_bias) [all …]
|
H A D | test_mobile_optimizer.py | 113 .check_not("prepacked::conv2d_clamp_prepack") \ 114 .check_count("prepacked::conv2d_clamp_run", 1, exactly=True) \ 115 .check_not("prepacked::linear_clamp_prepack") \ 116 .check_count("prepacked::linear_clamp_run", 1, exactly=True) \ 125 .check_not("prepacked::conv2d_clamp_prepack") \ 126 .check_count("prepacked::conv2d_clamp_run", 1, exactly=True) \ 127 .check_not("prepacked::linear_clamp_prepack") \ 128 .check_count("prepacked::linear_clamp_run", 1, exactly=True) \ 141 .check_not("prepacked::linear_clamp_run") \ 142 .check_not("prepacked::conv2d_clamp_run") \
|
/aosp_15_r20/external/pytorch/torch/csrc/jit/passes/ |
H A D | xnnpack_rewrite.cpp | 101 %packed_weight_bias = prepacked::linear_clamp_prepack( in insertPrePackedLinearOp() 103 %res = prepacked::linear_clamp_run(%input, %packed_weight_bias) in insertPrePackedLinearOp() 129 %packed_weight_bias = prepacked::conv2d_clamp_prepack( in insertPrePackedConv2dOp() 132 %res = prepacked::conv2d_clamp_run(%input, %packed_weight_bias) in insertPrePackedConv2dOp() 154 %packed_weight_bias = prepacked::conv2d_transpose_clamp_prepack( in insertPrePackedConv2dOp() 157 %res = prepacked::conv2d_transpose_clamp_run(%input, %packed_weight_bias) in insertPrePackedConv2dOp() 176 …%packed_weight_bias : __torch__.torch.classes.xnnpack.LinearOpContext = prepacked::linear_clamp_pr… in fuseHardtanhWithPackedOps() 178 %res = prepacked::linear_clamp_run(%input, %packed_weight_bias) in fuseHardtanhWithPackedOps() 184 …%packed_weight_bias : __torch__.torch.classes.xnnpack.Conv2dOpContext = prepacked::conv2d_clamp_pr… in fuseHardtanhWithPackedOps() 187 %res = prepacked::conv2d_clamp_run(%input, %packed_weight_bias) in fuseHardtanhWithPackedOps() [all …]
|
H A D | constant_propagation.h | 11 // and prepacked::conv2d_clamp_prepack)
|
/aosp_15_r20/external/pytorch/aten/src/ATen/native/xnnpack/ |
H A D | RegisterOpContextClass.cpp | 75 TORCH_LIBRARY(prepacked, m) { in TORCH_LIBRARY() argument 76 …m.def(TORCH_SELECTIVE_SCHEMA("prepacked::unpack_prepacked_sizes_conv2d(Any W_prepack) -> (Any)"), … in TORCH_LIBRARY() 77 …m.def(TORCH_SELECTIVE_SCHEMA("prepacked::unpack_prepacked_sizes_linear(Any W_prepack) -> (Any)"), … in TORCH_LIBRARY() 78 …m.def(TORCH_SELECTIVE_SCHEMA("prepacked::linear_clamp_prepack(Tensor W, Tensor? B=None, Scalar? ou… in TORCH_LIBRARY() 79 …m.def(TORCH_SELECTIVE_SCHEMA("prepacked::linear_clamp_run(Tensor X, __torch__.torch.classes.xnnpac… in TORCH_LIBRARY() 80 …m.def(TORCH_SELECTIVE_SCHEMA("prepacked::conv2d_clamp_prepack(Tensor W, Tensor? B, int[2] stride, … in TORCH_LIBRARY() 81 …m.def(TORCH_SELECTIVE_SCHEMA("prepacked::conv2d_transpose_clamp_prepack(Tensor W, Tensor? B, int[2… in TORCH_LIBRARY() 82 …m.def(TORCH_SELECTIVE_SCHEMA("prepacked::conv2d_clamp_run(Tensor X, __torch__.torch.classes.xnnpac… in TORCH_LIBRARY() 83 …m.def(TORCH_SELECTIVE_SCHEMA("prepacked::conv2d_transpose_clamp_run(Tensor X, __torch__.torch.clas… in TORCH_LIBRARY() 86 TORCH_LIBRARY_IMPL(prepacked, CPU, m) { in TORCH_LIBRARY_IMPL() argument [all …]
|
/aosp_15_r20/external/pytorch/test/jit/ |
H A D | test_optimize_for_mobile_preserve_debug_info.py | 133 "prepacked::linear_clamp_prepack": "aten::linear", 134 "prepacked::linear_clamp_run": "aten::linear", 135 "prepacked::conv2d_clamp_prepack": "aten::conv2d", 136 "prepacked::conv2d_clamp_run": "aten::conv2d", 137 "prepacked::conv2d_transpose_clamp_prepack": "aten::conv_transpose2d", 138 "prepacked::conv2d_transpose_clamp_run": "aten::conv_transpose2d", 148 "prepacked::linear_clamp_prepack": "aten::linear", 149 "prepacked::linear_clamp_run": "aten::linear", 225 "prepacked::linear_clamp_prepack": "prepacked::linear_clamp_prepack", 226 "prepacked::linear_clamp_run": linear_activation_kind, [all …]
|
/aosp_15_r20/external/mesa3d/src/broadcom/vulkan/ |
H A D | v3dv_cl.h | 189 * comes from a prepacked buffer. So the use is similar to cl_emit, where you 190 * set individual values, and the rest of values come from prepacked. 193 * coming from the prepacked buffer, as it does an OR operation. That means 194 * that the prepacked buffer is usually reserved for values that we know that 197 #define cl_emit_with_prepacked(cl, packet, prepacked, name) \ argument 208 ((uint8_t *)cl_out)[_i] = packed[_i] | (prepacked)[_i]; \
|
H A D | v3dv_private.h | 791 /* Prepacked TEXTURE_SHADER_STATE. It will be copied to the descriptor info 849 /* Prepacked TEXTURE_SHADER_STATE. */ 2178 /* Prepacked per plane SAMPLER_STATE, that is referenced as part of the tmu 2282 * already prepacked, so here we are only storing those that need recheck 2322 /* Per-RT prepacked blend config packets */ 2337 /* Packets prepacked during pipeline creation
|
/aosp_15_r20/external/pytorch/docs/source/ |
H A D | mobile_optimizer.rst | 16 …prepacked ops** (blocklisting option `mobile_optimizer.MobileOptimizerType.INSERT_FOLD_PREPACK_OPS…
|
/aosp_15_r20/external/ruy/ruy/ |
H A D | prepacked_cache_test.cc | 56 // Allocate the prepacked matrix. in TEST() 82 // Allocate the prepacked matrix. in TEST() 108 // Allocate the prepacked matrix. in TEST() 142 // Allocate the prepacked matrix 1. in TEST() 149 // Allocate the prepacked matrix 2. in TEST() 156 // Allocate the prepacked matrix 3. in TEST() 170 // Allocate the prepacked matrix 4. in TEST()
|
H A D | prepacked_cache.h | 27 // "Low effort" Least Recently Used Cache for Prepacked Matrices 28 // A cache mechanism for prepacked matrices that ejects oldest entries.
|
/aosp_15_r20/external/mesa3d/src/gallium/drivers/v3d/ |
H A D | v3d_cl.h | 233 * comes from a prepacked buffer. So the use is similar to cl_emit, where you 234 * set individual values, and the rest of values come from prepacked. 237 * coming from the prepacked buffer, as it does an OR operation. That means 238 * that the prepacked buffer is usually reserved for values that we know that 241 #define cl_emit_with_prepacked(cl, packet, prepacked, name) \ argument 252 ((uint8_t *)cl_out)[_i] = packed[_i] | (prepacked)[_i]; \
|
/aosp_15_r20/external/pytorch/torch/csrc/jit/tensorexpr/operators/ |
H A D | quantization.cpp | 328 const BufHandle& prepacked = std::get<BufHandle>(inputs[1]); in computeQuantizedConv1d() local 342 {qx, prepacked}, in computeQuantizedConv1d() 358 const BufHandle& prepacked = std::get<BufHandle>(inputs[1]); in computeQuantizedConv2d() local 372 {qx, prepacked}, in computeQuantizedConv2d() 388 const BufHandle& prepacked = std::get<BufHandle>(inputs[1]); in computeQuantizedConv2dRelu() local 402 {qx, prepacked}, in computeQuantizedConv2dRelu() 418 const BufHandle& prepacked = std::get<BufHandle>(inputs[1]); in computeQuantizedLinear() local 432 {qx, prepacked}, in computeQuantizedLinear() 448 const BufHandle& prepacked = std::get<BufHandle>(inputs[1]); in computeQuantizedLinearRelu() local 462 {qx, prepacked}, in computeQuantizedLinearRelu()
|
H A D | conv2d.cpp | 443 const BufHandle& prepacked = std::get<BufHandle>(inputs[1]); in computePrepackedConv2dClampRun() local 445 ResultBuf, "nnc_prepacked_conv2d_clamp_run", {inp, prepacked}, {}); in computePrepackedConv2dClampRun() 462 const BufHandle& prepacked = std::get<BufHandle>(inputs[1]); in computePrepackedLinearClampRun() local 464 ResultBuf, "nnc_prepacked_linear_clamp_run", {inp, prepacked}, {}); in computePrepackedLinearClampRun() 482 const BufHandle& prepacked = std::get<BufHandle>(inputs[1]); in computeMkldnnPrepackedConvRun() local 484 ResultBuf, "nnc_mkldnn_prepacked_conv_run", {inp, prepacked}, {}); in computeMkldnnPrepackedConvRun()
|
/aosp_15_r20/external/pytorch/test/cpp/tensorexpr/ |
H A D | test_external_calls.cpp | 504 // Create prepacked xnnpack context object. in TEST() 507 .findSchemaOrThrow("prepacked::linear_clamp_prepack", "") in TEST() 513 auto prepacked = linear_clamp_prepack_op.call( in TEST() local 536 llvm_codegen.call({input_buf, prepacked.get(), result_buf}); in TEST() 543 ir_eval.call({input_buf, prepacked.get(), result_buf}); in TEST() 578 // Create prepacked xnnpack context object. in TEST() 581 .findSchemaOrThrow("prepacked::conv2d_clamp_prepack", "") in TEST() 591 auto prepacked = conv2d_clamp_prepack_op.call( in TEST() local 621 llvm_codegen.call({input_buf, prepacked.get(), result_buf}); in TEST() 628 ir_eval.call({input_buf, prepacked.get(), result_buf}); in TEST()
|
/aosp_15_r20/external/pytorch/test/mobile/model_test/ |
H A D | model_ops.yaml | 394 prepacked::conv2d_clamp_prepack: 2 395 prepacked::conv2d_clamp_run: 41 396 prepacked::conv2d_transpose_clamp_prepack: 1 397 prepacked::conv2d_transpose_clamp_run: 2 398 prepacked::linear_clamp_run: 36
|
H A D | coverage.yaml | 647 - prepacked::conv2d_clamp_run 648 - prepacked::linear_clamp_run 1016 prepacked::conv2d_clamp_run: 32 1017 prepacked::linear_clamp_run: 26 1076 prepacked::conv2d_clamp_prepack: 2 1077 prepacked::conv2d_transpose_clamp_prepack: 1 1078 prepacked::conv2d_transpose_clamp_run: 1
|
H A D | update_production_ops.py | 35 namespaces = ["aten", "prepacked", "prim", "quantized"]
|
/aosp_15_r20/external/pytorch/torch/_export/passes/ |
H A D | replace_quantized_ops_with_standard_ops_pass.py | 425 Transformation for functions under prepacked namespace, where they share 445 func_args += torch.ops.prepacked.unpack_prepacked_sizes_conv2d(so)[2:] 557 …For prepacked::conv2d_clamp_run and prepacked::linear_clamp_run, we directly convert them to aten.… 582 elif namespace == "prepacked":
|
/aosp_15_r20/external/pytorch/torch/csrc/jit/runtime/ |
H A D | symbolic_shape_registry.cpp | 26 ops.prepacked.unpack_prepacked_sizes_conv2d(conv2dOpContext), 34 ops.prepacked.unpack_prepacked_sizes_linear(linearOpContext), 63 …{"prepacked::conv2d_clamp_run(Tensor X, __torch__.torch.classes.xnnpack.Conv2dOpContext W_prepack)… in conditionally_defined_ops() 64 …{"prepacked::linear_clamp_run(Tensor X, __torch__.torch.classes.xnnpack.LinearOpContext W_prepack)… in conditionally_defined_ops()
|
/aosp_15_r20/external/pytorch/aten/src/ATen/native/quantized/cpu/qnnpack/src/qnnpack/ |
H A D | pack.h | 101 // Weights need to be prepacked with the zero points, in their tail space in pytorch_pack_q8gemm_wrq() 224 // Weights need to be prepacked with the zero points, in their tail space in pytorch_pack_q8conv_wrq() 346 // Weights need to be prepacked with the zero points, in their tail space in pytorch_pack_q8deconv_wrq()
|
/aosp_15_r20/external/pytorch/test/forward_backward_compatibility/ |
H A D | check_forward_backward_compatibility.py | 87 ("prepacked::unpack_prepacked_sizes_conv2d", datetime.date(9999, 1, 1)), 88 ("prepacked::unpack_prepacked_sizes_linear", datetime.date(9999, 1, 1)),
|
/aosp_15_r20/external/pytorch/torch/_inductor/ |
H A D | mkldnn_ir.py | 73 # The size of prepacked_weight is the prepacked weight size of deconv: 116 # When transposed, the size of the prepacked oneDNN weight is different 153 …# In static shape cases, since weight is prepacked, we'll always force output to be channels last …
|
/aosp_15_r20/external/pytorch/aten/src/ATen/native/quantized/cpu/qnnpack/src/ |
H A D | fc-unpack.cc | 27 // Convert prepacked weight to original weight / bias. in unpackWeights()
|
/aosp_15_r20/external/tensorflow/tensorflow/lite/kernels/ |
H A D | cpu_backend_context.h | 112 // sometimes provide speedups by caching the "prepacked" data, for some
|