/aosp_15_r20/external/pytorch/test/functorch/ |
H A D | test_ops.py | 227 return tree_map(torch.randn_like, output) 270 tree_map(lambda x: torch.randn_like(x, requires_grad=True), result) 292 tangents = _as_tuple(tree_map(lambda x: torch.randn_like(x), primals)) 315 tangents = _as_tuple(tree_map(lambda x: torch.randn_like(x), primals)) 323 tangents = _as_tuple(tree_map(lambda x: torch.randn_like(x), primals)) 693 orig_tangents = tree_map(lambda x: torch.randn_like(x), primals) 808 cotangents = tree_map(lambda x: torch.randn_like(x), result) 903 cotangents = tree_map(lambda x: torch.randn_like(x), result) 1088 cotangents = tree_map(lambda x: torch.randn_like(x), result) 1726 cotangents = tree_map(lambda x: torch.randn_like(x), result) [all …]
|
H A D | discover_coverage.py | 597 "torch.randn_like", # randomness 680 "randn_like", # randomness
|
/aosp_15_r20/external/pytorch/aten/src/ATen/native/vulkan/ops/ |
H A D | Random.cpp | 123 static Tensor randn_like( in randn_like() function 139 m.impl(TORCH_SELECTIVE_NAME("aten::randn_like"), TORCH_FN(randn_like)); in TORCH_LIBRARY_IMPL()
|
/aosp_15_r20/external/pytorch/test/nn/ |
H A D | test_embedding.py | 802 torch.randn_like(idx1, device=device, dtype=w_dtype), 884 per_sample_weights = torch.randn_like(input, dtype=torch.double, device=device) 1012 per_sample_weights = torch.randn_like( 1028 grad = torch.randn_like(expected) 1076 per_sample_weights = torch.randn_like( 1092 grad = torch.randn_like(expected).to(dtype=dtypes[2], device=device) 1152 per_sample_weights = torch.randn_like( 1177 grad = torch.randn_like(expected)
|
H A D | test_pooling.py | 1471 g = torch.randn_like(y, dtype=torch.half) 1667 res.backward(torch.randn_like(res)) 1681 res2.backward(torch.randn_like(res2)) 1798 res.backward(torch.randn_like(res)) 1809 res2.backward(torch.randn_like(res2))
|
/aosp_15_r20/external/pytorch/test/optim/ |
H A D | test_swa_utils.py | 97 p.detach().add_(torch.randn_like(p)) 146 p.detach().add_(torch.randn_like(p)) 201 p.detach().add_(torch.randn_like(p))
|
/aosp_15_r20/external/pytorch/test/typing/reveal/ |
H A D | tensor_sampling.py | 51 # randn_like 53 reveal_type(torch.randn_like(c)) # E: {Tensor}
|
/aosp_15_r20/external/pytorch/torch/distributed/_shard/sharded_tensor/_ops/ |
H A D | init.py | 121 torch.randn_like: sharded_tensor.randn, 151 register_tensor_creation_op(torch.randn_like)
|
/aosp_15_r20/external/pytorch/aten/src/ATen/functorch/ |
H A D | BatchRulesRandomness.cpp | 477 …m.impl("randn_like", tensor_like_random_batch_rule<decltype(&ATEN_FN(randn_like)), &ATEN_FN(randn_… in TORCH_LIBRARY_IMPL()
|
H A D | BatchRulesFactory.cpp | 230 VMAP_SUPPORT(randn_like, BASIC_UNARY_BATCH_RULE(ATEN_FN(randn_like))); in TORCH_LIBRARY_IMPL()
|
/aosp_15_r20/external/pytorch/torch/testing/_internal/opinfo/definitions/ |
H A D | nested.py | 161 njt2 = torch.randn_like(njt1) 248 njt, kwargs={"mask": (torch.randn_like(njt, requires_grad=False) < 0.0)}
|
/aosp_15_r20/external/pytorch/docs/source/ |
H A D | torch.rst | 38 :func:`torch.randn_like` 210 randn_like
|
H A D | jit_unsupported.rst | 63 * :func:`torch.randn_like`
|
/aosp_15_r20/external/pytorch/test/ |
H A D | test_bundled_inputs.py | 376 output[k] = torch.randn_like(v) 391 output.append(torch.randn_like(v))
|
H A D | test_ops.py | 663 grad_for_expected = torch.randn_like(expected) 675 grad_for_expected = [torch.randn_like(t) for t in expected] 1470 grad = torch.randn_like(backward_tensor) 1953 grad = torch.randn_like(expected_forward)
|
/aosp_15_r20/external/pytorch/benchmarks/transformer/ |
H A D | score_mod.py | 206 dOut = torch.randn_like(out_eager) 219 dOut = torch.randn_like(out_compile)
|
H A D | sdpa.py | 111 dOut = torch.randn_like(out_torch)
|
/aosp_15_r20/external/pytorch/benchmarks/fastrnns/ |
H A D | factory.py | 50 grad_output = torch.randn_like(output) 239 grad = torch.randn_like(padded)
|
/aosp_15_r20/external/executorch/docs/source/ |
H A D | extension-tensor.md | 396 | `at::randn_like(tensor)` | `randn_like(tensor)` |
|
/aosp_15_r20/external/pytorch/torch/testing/_internal/ |
H A D | composite_compliance.py | 512 return torch.randn_like(t) 514 return [torch.randn_like(e) if e.requires_grad else None for e in t]
|
/aosp_15_r20/external/pytorch/torch/_inductor/fx_passes/ |
H A D | pad_mm.py | 437 return torch.randn_like(t) 495 input_pad = torch.randn_like(input)
|
/aosp_15_r20/external/pytorch/test/mobile/model_test/ |
H A D | sampling_ops.py | 25 torch.randn_like(a),
|
/aosp_15_r20/external/pytorch/torch/_subclasses/ |
H A D | fake_impls.py | 68 aten.randn_like.default, 69 aten.randn_like.out,
|
/aosp_15_r20/external/pytorch/test/jit/ |
H A D | test_models.py | 563 eps = torch.randn_like(std) 578 # eval() is present because randn_like makes this nondeterministic
|
/aosp_15_r20/external/pytorch/torch/utils/benchmark/utils/ |
H A D | sparse_fuzzer.py | 85 v = torch.cat([v, torch.randn_like(v)], 0)
|