Home
last modified time | relevance | path

Searched full:shadow (Results 1 – 25 of 858) sorted by relevance

12345678910>>...35

/linux-6.14.4/kernel/livepatch/
Dshadow.c3 * shadow.c - Shadow Variables
11 * DOC: Shadow variable API concurrency notes:
13 * The shadow variable API provides a simple relationship between an
15 * caller to provide any mutual exclusion required of the shadow data.
17 * Once a shadow variable is attached to its parent object via the
19 * call to klp_shadow_get() may then return the shadow variable's data
20 * pointer. Callers of klp_shadow_*alloc() should prepare shadow data
23 * The klp_shadow_*alloc() API calls may allocate memory for new shadow
42 * the shadow variables it references.
47 * struct klp_shadow - shadow variable structure
[all …]
/linux-6.14.4/Documentation/arch/x86/
Dshstk.rst4 Control-flow Enforcement Technology (CET) Shadow Stack
14 CET introduces shadow stack and indirect branch tracking (IBT). A shadow stack
17 return address to both the normal stack and the shadow stack. Upon
18 function return, the processor pops the shadow stack copy and compares it
21 as marked by the compiler with 'ENDBR' opcodes. Not all CPU's have both Shadow
23 shadow stack and kernel IBT are supported.
25 Requirements to use Shadow Stack
28 To use userspace shadow stack you need HW that supports it, a kernel
31 The kernel Kconfig option is X86_USER_SHADOW_STACK. When compiled in, shadow
34 To build a user shadow stack enabled kernel, Binutils v2.29 or LLVM v6 or later
[all …]
/linux-6.14.4/Documentation/livepatch/
Dshadow-vars.rst2 Shadow Variables
5 Shadow variables are a simple way for livepatch modules to associate
6 additional "shadow" data with existing data structures. Shadow data is
8 unmodified. The shadow variable API described in this document is used
9 to allocate/add and remove/free shadow variables to/from their parents.
13 shadow data. The numeric identifier is a simple enumeration that may be
14 used to describe shadow variable version, class or type, etc. More
16 numeric id subsequently filters hashtable queries. Multiple shadow
24 (See the full API usage docbook notes in livepatch/shadow.c.)
26 A hashtable references all shadow variables. These references are
[all …]
/linux-6.14.4/drivers/gpu/drm/
Ddrm_gem_atomic_helper.c22 * for planes with shadow buffers.
41 * A driver using a shadow buffer copies the content of the shadow buffers
43 * a mapping of the shadow buffer into kernel address space. The mappings
47 * The helpers for shadow-buffered planes establish and release mappings,
51 * Shadow-buffered planes can easily be enabled by using the provided macros
54 * shadow-buffer helpers.
70 * In the driver's atomic-update function, shadow-buffer mappings are available
83 * // access shadow buffer via shadow_plane_state->map
92 * callbacks. Access to shadow-buffer mappings is similar to regular
109 * // access shadow buffer via shadow_plane_state->map
[all …]
/linux-6.14.4/drivers/scsi/
Dxen-scsifront.c121 struct vscsifrnt_shadow *shadow[VSCSIIF_MAX_REQS]; member
163 info->shadow[id] = NULL; in _scsifront_put_rqid()
182 struct vscsifrnt_shadow *shadow) in scsifront_do_request() argument
186 struct scsi_cmnd *sc = shadow->sc; in scsifront_do_request()
197 info->shadow[id] = shadow; in scsifront_do_request()
198 shadow->rqid = id; in scsifront_do_request()
204 ring_req->act = shadow->act; in scsifront_do_request()
205 ring_req->ref_rqid = shadow->ref_rqid; in scsifront_do_request()
206 ring_req->nr_segments = shadow->nr_segments; in scsifront_do_request()
220 for (i = 0; i < (shadow->nr_segments & ~VSCSIIF_SG_GRANT); i++) in scsifront_do_request()
[all …]
/linux-6.14.4/mm/kmsan/
Dinit.c70 * Initialize the shadow for existing mappings during kernel initialization.
86 /* Allocate shadow for .data */ in kmsan_init_shadow()
100 struct page *shadow, *origin; member
109 * time with a certain order, it is reserved as a shadow block, for the second
111 * shadow and origin ranges from the previously saved shadow and origin blocks,
119 struct page *shadow, *origin; in kmsan_memblock_free_pages() local
121 if (!held_back[order].shadow) { in kmsan_memblock_free_pages()
122 held_back[order].shadow = page; in kmsan_memblock_free_pages()
129 shadow = held_back[order].shadow; in kmsan_memblock_free_pages()
131 kmsan_setup_meta(page, shadow, origin, order); in kmsan_memblock_free_pages()
[all …]
Dshadow.c3 * KMSAN shadow implementation.
85 void *shadow; in kmsan_get_shadow_origin_ptr() local
97 shadow = kmsan_get_metadata(address, KMSAN_META_SHADOW); in kmsan_get_shadow_origin_ptr()
98 if (!shadow) in kmsan_get_shadow_origin_ptr()
101 ret.shadow = shadow; in kmsan_get_shadow_origin_ptr()
108 ret.shadow = dummy_store_page; in kmsan_get_shadow_origin_ptr()
112 ret.shadow = dummy_load_page; in kmsan_get_shadow_origin_ptr()
119 * Obtain the shadow or origin pointer for the given address, or NULL if there's
173 struct page *shadow, *origin; in kmsan_alloc_page() local
180 shadow = shadow_page_for(page); in kmsan_alloc_page()
[all …]
Dinstrumentation.c49 /* Get shadow and origin pointers for a memory load with non-standard size. */
59 /* Get shadow and origin pointers for a memory store with non-standard size. */
70 * Declare functions that obtain shadow/origin pointers for loads and stores
135 * get_param0_metadata() and set_retval_metadata() to store the shadow/origin
139 static inline void get_param0_metadata(u64 *shadow, in get_param0_metadata() argument
144 *shadow = *(u64 *)(ctx->cstate.param_tls); in get_param0_metadata()
148 static inline void set_retval_metadata(u64 shadow, depot_stack_handle_t origin) in set_retval_metadata() argument
152 *(u64 *)(ctx->cstate.retval_tls) = shadow; in set_retval_metadata()
162 u64 shadow; in __msan_memmove() local
164 get_param0_metadata(&shadow, &origin); in __msan_memmove()
[all …]
/linux-6.14.4/include/drm/
Ddrm_gem_atomic_helper.h21 * Helpers for planes with shadow buffers
25 * DRM_SHADOW_PLANE_MAX_WIDTH - Maximum width of a plane's shadow buffer in pixels
27 * For drivers with shadow planes, the maximum width of the framebuffer is
34 * DRM_SHADOW_PLANE_MAX_HEIGHT - Maximum height of a plane's shadow buffer in scanlines
36 * For drivers with shadow planes, the maximum height of the framebuffer is
43 * struct drm_shadow_plane_state - plane state for planes with shadow buffers
45 * For planes that use a shadow buffer, struct drm_shadow_plane_state
46 * provides the regular plane state plus mappings of the shadow buffer
57 * Flags for copying shadow buffers into backend storage. Also holds
104 * Initializes struct drm_plane_funcs for shadow-buffered planes
[all …]
/linux-6.14.4/Documentation/virt/kvm/x86/
Dmmu.rst4 The x86 kvm shadow mmu
55 spte shadow pte (referring to pfns)
87 direct mode; otherwise it operates in shadow mode (see below).
118 Shadow pages
121 The principal data structure is the shadow page, 'struct kvm_mmu_page'. A
122 shadow page contains 512 sptes, which can be either leaf or nonleaf sptes. A
123 shadow page may contain a mix of leaf and nonleaf sptes.
126 is not related to a translation directly. It points to other shadow pages.
150 Shadow pages contain the following information:
152 The level in the shadow paging hierarchy that this shadow page belongs to.
[all …]
/linux-6.14.4/drivers/gpio/
Dgpio-mm-lantiq.c31 u16 shadow; /* shadow the latches state */ member
35 * ltq_mm_apply() - write the shadow value to the ebu address.
38 * Write the shadow value to the EBU to set the gpios. We need to set the
47 __raw_writew(chip->shadow, chip->mmchip.regs); in ltq_mm_apply()
58 * Set the shadow value and call ltq_mm_apply.
65 chip->shadow |= (1 << offset); in ltq_mm_set()
67 chip->shadow &= ~(1 << offset); in ltq_mm_set()
104 u32 shadow; in ltq_mm_probe() local
117 /* store the shadow value if one was passed by the devicetree */ in ltq_mm_probe()
118 if (!of_property_read_u32(pdev->dev.of_node, "lantiq,shadow", &shadow)) in ltq_mm_probe()
[all …]
Dgpio-janz-ttl.c60 u8 *shadow; in ttl_get_value() local
64 shadow = &mod->porta_shadow; in ttl_get_value()
66 shadow = &mod->portb_shadow; in ttl_get_value()
69 shadow = &mod->portc_shadow; in ttl_get_value()
74 ret = *shadow & BIT(offset); in ttl_get_value()
83 u8 *shadow; in ttl_set_value() local
87 shadow = &mod->porta_shadow; in ttl_set_value()
90 shadow = &mod->portb_shadow; in ttl_set_value()
94 shadow = &mod->portc_shadow; in ttl_set_value()
100 *shadow |= BIT(offset); in ttl_set_value()
[all …]
/linux-6.14.4/arch/arm/include/asm/
Dkasan_def.h19 * space to use as shadow memory for KASan as follows:
31 * | | |-> The shadow area of kernel virtual address.
34 * | |\ shadow address of MODULES_VADDR
47 * This value begins with the MODULE_VADDR's shadow address. It is the
49 * to cover also that area with shadow memory so we can find memory
53 * This value is the 0x100000000's shadow address: the mapping that would
55 * kernel address sanitizer shadow area. It is also the start of the
59 * This value is used to map an address to the corresponding shadow
65 * byte in the shadow memory covers 8 bytes of kernel memory, so one
66 * bit shadow memory per byte of kernel memory is used.
[all …]
/linux-6.14.4/arch/arm/mm/
Dkasan_init.c61 panic("%s failed to allocate shadow page for address 0x%lx\n", in kasan_pte_populate()
70 * The early shadow memory is mapping all KASan in kasan_pte_populate()
74 * proper KASan shadow memory. in kasan_pte_populate()
80 * Early shadow mappings are PMD_SIZE aligned, so if the in kasan_pte_populate()
102 * We attempt to allocate a shadow block for the PMDs in kasan_pmd_populate()
110 panic("%s failed to allocate shadow block for address 0x%lx\n", in kasan_pmd_populate()
135 * Allocate and populate the shadow block of p4d folded into in kasan_pgd_populate()
142 panic("%s failed to allocate shadow block for address 0x%lx\n", in kasan_pgd_populate()
182 * We walk the page table and set all of the shadow memory to point in kasan_early_init()
202 pr_info("Mapping kernel virtual memory block: %px-%px at shadow: %px-%px\n", in create_mapping()
[all …]
/linux-6.14.4/Documentation/dev-tools/
Dkmsan.rst95 incorrect shadow/origin values, likely leading to false positives. Functions
132 KMSAN shadow memory
135 KMSAN associates a metadata byte (also called shadow byte) with every byte of
136 kernel memory. A bit in the shadow byte is set if the corresponding bit of the
138 setting its shadow bytes to ``0xff``) is called poisoning, marking it
139 initialized (setting the shadow bytes to ``0x00``) is called unpoisoning.
146 Compiler instrumentation also tracks the shadow values as they are used along
148 ``mm/kmsan/`` to persist shadow values.
150 The shadow value of a basic or compound type is an array of bytes of the same
152 When a value is read from memory, its shadow memory is also obtained and
[all …]
Dkasan.rst256 granule is encoded in one shadow byte. Those 8 bytes can be accessible,
258 encoding for each shadow byte: 00 means that all 8 bytes of the corresponding
265 In the report above, the arrow points to the shadow byte ``03``, which means
307 Software KASAN modes use shadow memory to record whether each byte of memory is
308 safe to access and use compile-time instrumentation to insert shadow memory
311 Generic KASAN dedicates 1/8th of kernel memory to its shadow memory (16TB
313 translate a memory address to its corresponding shadow address.
315 Here is the function which translates an address to its corresponding shadow
329 memory accesses are valid or not by checking corresponding shadow memory.
332 directly inserts the code to check shadow memory. This option significantly
[all …]
/linux-6.14.4/samples/livepatch/
Dlivepatch-shadow-fix1.c7 * livepatch-shadow-fix1.c - Shadow variables, livepatch demo
12 * Fixes the memory leak introduced in livepatch-shadow-mod through the
13 * use of a shadow variable. This fix demonstrates the "extending" of
22 * section of livepatch-shadow-mod.c.
32 /* Shadow variable enums */
49 * In this example, it would be safe to assign the pointer also to the shadow
78 * Patch: save the extra memory location into a SV_LEAK shadow in livepatch_fix1_dummy_alloc()
89 pr_err("%s: failed to allocate shadow variable for the leaking pointer: dummy @ %p, leak @ %p\n", in livepatch_fix1_dummy_alloc()
121 * Patch: fetch the saved SV_LEAK shadow variable, detach and in livepatch_fix1_dummy_free()
122 * free it. Note: handle cases where this shadow variable does in livepatch_fix1_dummy_free()
[all …]
Dlivepatch-shadow-mod.c7 * livepatch-shadow-mod.c - Shadow variables, buggy module demo
12 * As a demonstration of livepatch shadow variable API, this module
14 * livepatch-shadow-fix1.ko and livepatch-shadow-fix2.ko correct and
17 * WARNING - even though the livepatch-shadow-fix modules patch the
27 * insmod samples/livepatch/livepatch-shadow-mod.ko
36 * insmod samples/livepatch/livepatch-shadow-fix1.ko
45 * insmod samples/livepatch/livepatch-shadow-fix2.ko
47 * This module extends functionality through shadow variables, as a new
59 * rmmod livepatch-shadow-fix2
60 * rmmod livepatch-shadow-fix1
[all …]
Dlivepatch-shadow-fix2.c7 * livepatch-shadow-fix2.c - Shadow variables, livepatch demo
12 * Adds functionality to livepatch-shadow-mod's in-flight data
13 * structures through a shadow variable. The livepatch patches a
22 * section of livepatch-shadow-mod.c.
32 /* Shadow variable enums */
47 * already have a SV_COUNTER shadow variable, then attach a in livepatch_fix2_dummy_check()
82 * Patch: fetch the SV_COUNTER shadow variable and display in livepatch_fix2_dummy_free()
83 * the final count. Detach the shadow variable. in livepatch_fix2_dummy_free()
125 /* Cleanup any existing SV_COUNTER shadow variables */ in livepatch_shadow_fix2_exit()
/linux-6.14.4/arch/powerpc/include/asm/
Dkasan.h37 * The shadow ends before the highest accessible address
38 * because we don't need a shadow for the shadow. Instead:
46 * The shadow ends before the highest accessible address
47 * because we don't need a shadow for the shadow.
48 * But it doesn't hurt to have a shadow for the shadow,
49 * keep shadow end aligned eases things.
/linux-6.14.4/fs/nilfs2/
Dmdt.c482 struct nilfs_shadow_map *shadow = mdi->mi_shadow; in nilfs_mdt_clear() local
487 if (shadow) { in nilfs_mdt_clear()
488 struct inode *s_inode = shadow->inode; in nilfs_mdt_clear()
490 shadow->inode = NULL; in nilfs_mdt_clear()
519 * nilfs_mdt_setup_shadow_map - setup shadow map and bind it to metadata file
521 * @shadow: shadow mapping
526 struct nilfs_shadow_map *shadow) in nilfs_mdt_setup_shadow_map() argument
531 INIT_LIST_HEAD(&shadow->frozen_buffers); in nilfs_mdt_setup_shadow_map()
537 shadow->inode = s_inode; in nilfs_mdt_setup_shadow_map()
538 mi->mi_shadow = shadow; in nilfs_mdt_setup_shadow_map()
[all …]
/linux-6.14.4/mm/
Dworkingset.c177 * slot of the evicted page. This is called a shadow entry.
179 * On cache misses for which there are shadow entries, an eligible
210 static void unpack_shadow(void *shadow, int *memcgidp, pg_data_t **pgdat, in unpack_shadow() argument
213 unsigned long entry = xa_to_value(shadow); in unpack_shadow()
261 * Tests if the shadow entry is for a folio that was recently evicted.
262 * Fills in @lruvec, @token, @workingset with the values unpacked from shadow.
264 static bool lru_gen_test_recent(void *shadow, struct lruvec **lruvec, in lru_gen_test_recent() argument
272 unpack_shadow(shadow, &memcg_id, &pgdat, token, workingset); in lru_gen_test_recent()
283 static void lru_gen_refault(struct folio *folio, void *shadow) in lru_gen_refault() argument
296 recent = lru_gen_test_recent(shadow, &lruvec, &token, &workingset); in lru_gen_refault()
[all …]
/linux-6.14.4/include/linux/
Dscx200_gpio.h13 #define __SCx200_GPIO_SHADOW unsigned long *shadow = scx200_gpio_shadow+bank
16 #define __SCx200_GPIO_OUT __asm__ __volatile__("outsl":"=mS" (shadow):"d" (ioaddr), "0" (shadow))
46 set_bit(index, shadow); /* __set_bit()? */ in scx200_gpio_set_high()
57 clear_bit(index, shadow); /* __clear_bit()? */ in scx200_gpio_set_low()
69 set_bit(index, shadow); in scx200_gpio_set()
71 clear_bit(index, shadow); in scx200_gpio_set()
81 change_bit(index, shadow); in scx200_gpio_change()
/linux-6.14.4/arch/s390/kvm/
Dgmap-vsie.c28 * gmap_find_shadow - find a specific asce in the list of shadow tables
30 * @asce: ASCE for which the shadow table is created
31 * @edat_level: edat level to be used for the shadow translation
33 * Returns the pointer to a gmap if a shadow table with the given asce is
56 * gmap_shadow - create/find a shadow guest address space
58 * @asce: ASCE for which the shadow table is created
59 * @edat_level: edat level to be used for the shadow translation
63 * The shadow table will be removed automatically on any change to the
84 /* Create a new shadow gmap */ in gmap_shadow()
98 /* Recheck if another CPU created the same shadow */ in gmap_shadow()
[all …]
/linux-6.14.4/mm/kasan/
Dshadow.c3 * This file contains KASAN runtime code that manages shadow memory for
132 * Perform shadow offset calculation based on untagged address, as in kasan_poison()
157 u8 *shadow = (u8 *)kasan_mem_to_shadow(addr + size); in kasan_poison_last_granule() local
158 *shadow = size & KASAN_GRANULE_MASK; in kasan_poison_last_granule()
168 * Perform shadow offset calculation based on untagged address, as in kasan_unpoison()
235 * If shadow is mapped already than it must have been mapped in kasan_mem_notifier()
260 * In the latter case we can use vfree() to free shadow. in kasan_mem_notifier()
264 * Currently it's not possible to free shadow mapped in kasan_mem_notifier()
337 * User Mode Linux maps enough shadow memory for all of virtual memory in kasan_populate_vmalloc()
373 * STORE shadow(a), unpoison_val in kasan_populate_vmalloc()
[all …]

12345678910>>...35