/aosp_15_r20/external/pytorch/test/ |
H A D | test_sparse.py | 121 " Please use torch.sparse_coo_tensor((0,), dtype=)" 122 x_ref = torch.sparse_coo_tensor((0,), dtype=torch.float64) 128 " Please use torch.sparse_coo_tensor(x._indices(), x._values(), x.shape)" 131 y = torch.sparse_coo_tensor(x._indices(), x._values(), x.shape) 137 " Please use torch.sparse_coo_tensor(indices, values, dtype=, device=)" 138 … x_ref = torch.sparse_coo_tensor([[0, 0, 1, 1], [0, 1, 0, 1]], [1, 2, 3, 4], dtype=torch.float64) 145 " Please use torch.sparse_coo_tensor(indices, values, shape, dtype=, device=)" 146 …x_ref = torch.sparse_coo_tensor([[0, 0, 1, 1], [0, 1, 0, 1]], [1, 2, 3, 4], (2, 3), dtype=torch.fl… 153 " Please use torch.sparse_coo_tensor(shape, dtype=, device=)" 154 x_ref = torch.sparse_coo_tensor((2, 3), dtype=torch.float64) [all …]
|
H A D | test_numba_integration.py | 72 sparse_t = torch.sparse_coo_tensor(indices_t, cput) 79 sparse_cuda_t = torch.sparse_coo_tensor(indices_t, cput).cuda() 183 sparset = torch.sparse_coo_tensor(cput[None, :], cput)
|
H A D | test_testing.py | 1026 actual = torch.sparse_coo_tensor(indices, values, size=(2, 2)).coalesce() 1038 actual = torch.sparse_coo_tensor(indices, values, size=(2, 2)) 1059 actual = torch.sparse_coo_tensor(actual_indices, actual_values, size=(2, 2)) 1066 expected = torch.sparse_coo_tensor(expected_indices, expected_values, size=(2, 2)) 1078 actual = torch.sparse_coo_tensor(actual_indices, actual_values, size=(2, 2)) 1085 expected = torch.sparse_coo_tensor(expected_indices, expected_values, size=(2, 2)) 1097 actual = torch.sparse_coo_tensor(actual_indices, actual_values, size=(2, 2)) 1104 expected = torch.sparse_coo_tensor(expected_indices, expected_values, size=(2, 2))
|
H A D | test_masked.py | 403 expected_sparse = torch.sparse_coo_tensor( 407 outmask = torch.sparse_coo_tensor(sparse.indices(),
|
/aosp_15_r20/external/pytorch/test/typing/pass/ |
H A D | creation_ops.py | 23 # torch.sparse_coo_tensor 26 torch.sparse_coo_tensor(i, v, [2, 4]) 27 torch.sparse_coo_tensor(i, v) 28 torch.sparse_coo_tensor( 31 torch.sparse_coo_tensor(torch.empty([1, 0]), [], [1]) 32 torch.sparse_coo_tensor(torch.empty([1, 0]), torch.empty([0, 2]), [1, 2])
|
/aosp_15_r20/external/pytorch/test/typing/reveal/ |
H A D | tensor_constructors.py | 25 # torch.sparse_coo_tensor 28 reveal_type(torch.sparse_coo_tensor(i, v, [2, 4])) # E: {Tensor} 29 reveal_type(torch.sparse_coo_tensor(i, v)) # E: {Tensor} 31 torch.sparse_coo_tensor( 35 reveal_type(torch.sparse_coo_tensor(torch.empty([1, 0]), [], [1])) # E: {Tensor} 37 torch.sparse_coo_tensor(torch.empty([1, 0]), torch.empty([0, 2]), [1, 2])
|
/aosp_15_r20/external/pytorch/torch/csrc/utils/ |
H A D | tensor_new.cpp | 314 // vs sparse_coo_tensor). in internal_new_from_data() 623 " Please use torch.sparse_coo_tensor((0,), dtype=)."); in legacy_sparse_tensor_generic_ctor_new() 632 " Please use torch.sparse_coo_tensor(x._indices(), x._values(), x.shape)."); in legacy_sparse_tensor_generic_ctor_new() 641 " Please use torch.sparse_coo_tensor(indices, values, dtype=, device=)."); in legacy_sparse_tensor_generic_ctor_new() 648 return at::sparse_coo_tensor(r.tensor(0), r.tensor(1)); in legacy_sparse_tensor_generic_ctor_new() 653 " Please use torch.sparse_coo_tensor(indices, values, shape, dtype=, device=)."); in legacy_sparse_tensor_generic_ctor_new() 660 return at::sparse_coo_tensor(r.tensor(0), r.tensor(1), r.intlist(2)); in legacy_sparse_tensor_generic_ctor_new() 671 … "torch.sparse.SparseTensor(sequence) only accepts sizes. Please use torch.sparse_coo_tensor() " in legacy_sparse_tensor_generic_ctor_new() 675 "SparseTensor.new(sequence) only accepts sizes. Please use torch.sparse_coo_tensor() " in legacy_sparse_tensor_generic_ctor_new() 682 " Please use torch.sparse_coo_tensor(shape, dtype=, device=)."); in legacy_sparse_tensor_generic_ctor_new() [all …]
|
/aosp_15_r20/external/pytorch/benchmarks/distributed/rpc/parameter_server/ |
H A D | utils.py | 13 sparse_tensor (torch.Tensor): sparse_coo_tensor represented as a list 21 A helper function creates a sparse_coo_tensor from indices, values, and size. 23 sparse_rpc_format (list): sparse_coo_tensor represented as a list 25 return torch.sparse_coo_tensor(
|
/aosp_15_r20/external/pytorch/docs/source/ |
H A D | sparse.rst | 356 :func:`torch.sparse_coo_tensor`. 366 >>> s = torch.sparse_coo_tensor(i, v, (2, 3)) 382 >>> s = torch.sparse_coo_tensor(list(zip(*i)), v, (2, 3)) 384 >>> s = torch.sparse_coo_tensor(torch.tensor(i).t(), v, (2, 3)) 385 >>> torch.sparse_coo_tensor(i.t(), v, torch.Size([2,3])).to_dense() 392 >>> torch.sparse_coo_tensor(size=(2, 3)) 431 >>> s = torch.sparse_coo_tensor(i, v, (2, 3, 2)) 489 >>> s=torch.sparse_coo_tensor(i, v, (3,)) 522 >>> a = torch.sparse_coo_tensor([[1, 1]], [5, 6], (2,)) 523 >>> b = torch.sparse_coo_tensor([[0, 0]], [7, 8], (2,)) [all …]
|
H A D | jit_unsupported.rst | 75 * :func:`torch.sparse_coo_tensor`
|
/aosp_15_r20/external/pytorch/aten/src/ATen/native/sparse/ |
H A D | SparseTensor.cpp | 34 #include <ATen/ops/sparse_coo_tensor.h> 58 #include <ATen/ops/sparse_coo_tensor.h> 262 Tensor sparse_coo_tensor(IntArrayRef size, in sparse_coo_tensor() function 288 Tensor sparse_coo_tensor(const Tensor& indices, const Tensor& values_, in sparse_coo_tensor() function 453 Tensor sparse_coo_tensor(const Tensor& indices, const Tensor& values, IntArrayRef size, in sparse_coo_tensor() function 489 // NOTE: _sparse_coo_tensor_unsafe() differs from sparse_coo_tensor() 810 auto mask_template = at::sparse_coo_tensor( in sparse_mask()
|
H A D | SparseFactories.cpp | 13 #include <ATen/ops/sparse_coo_tensor.h> 83 auto result_coo = at::sparse_coo_tensor(indices, values, shape); in spdiags()
|
/aosp_15_r20/external/pytorch/torch/csrc/autograd/ |
H A D | python_torch_functions_manual.cpp | 224 …"sparse_coo_tensor(PyObject* indices, PyObject* values, *, ScalarType dtype=None, Device? device=N… in THPVariable_sparse_coo_tensor() 225 …"sparse_coo_tensor(PyObject* indices, PyObject* values, IntArrayRef size, *, ScalarType dtype=None… in THPVariable_sparse_coo_tensor() 226 …"sparse_coo_tensor(IntArrayRef size, *, ScalarType dtype=None, Device? device=None, bool requires_… in THPVariable_sparse_coo_tensor() 235 jit::tracer::warn("torch.sparse_coo_tensor", jit::tracer::WARN_CONSTRUCTOR); in THPVariable_sparse_coo_tensor() 389 {"sparse_coo_tensor",
|
/aosp_15_r20/external/pytorch/test/distributed/fsdp/ |
H A D | test_fsdp_sharded_grad_scaler.py | 105 s = torch.sparse_coo_tensor( 120 s1.grad = torch.sparse_coo_tensor( 131 s1 = torch.sparse_coo_tensor(
|
/aosp_15_r20/external/pytorch/benchmarks/sparse/ |
H A D | utils.py | 48 return torch.sparse_coo_tensor(indices, values, size=shape)
|
/aosp_15_r20/external/pytorch/aten/src/ATen/native/mkl/ |
H A D | SparseBlasImpl.cpp | 24 #include <ATen/ops/sparse_coo_tensor.h> 640 …const auto t_expanded_coo = at::sparse_coo_tensor(expanded_indices, expanded_values, t_coo.sizes()… in triangular_solve_out_sparse_csr()
|
/aosp_15_r20/external/pytorch/torch/sparse/ |
H A D | __init__.py | 231 >>> S = torch.sparse_coo_tensor(I, V, size) 651 a = torch.sparse_coo_tensor(
|
/aosp_15_r20/external/pytorch/torch/utils/ |
H A D | _device.py | 42 torch.sparse_coo_tensor,
|
/aosp_15_r20/external/pytorch/torch/masked/maskedtensor/ |
H A D | unary.py | 132 result_data = torch.sparse_coo_tensor(i, v, size=s)
|
H A D | binary.py | 124 result_data = torch.sparse_coo_tensor(i, v, size)
|
/aosp_15_r20/external/pytorch/torch/utils/benchmark/examples/sparse/ |
H A D | compare.py | 73 return torch.sparse_coo_tensor(indices, values, size, dtype=dtype, device=device)
|
/aosp_15_r20/external/pytorch/torch/utils/benchmark/utils/ |
H A D | sparse_fuzzer.py | 88 x = torch.sparse_coo_tensor(i, v, torch.Size(size))
|
/aosp_15_r20/external/pytorch/functorch/op_analysis/ |
H A D | public_api | 579 sparse_coo_tensor
|
/aosp_15_r20/external/pytorch/torch/csrc/api/src/optim/ |
H A D | adagrad.cpp | 108 return torch::sparse_coo_tensor( in step()
|
/aosp_15_r20/external/pytorch/test/expect/ |
H A D | HasDecompTest.test_has_decomposition.expect | 1181 aten::sparse_coo_tensor.size 1182 aten::sparse_coo_tensor.size_out
|