/aosp_15_r20/external/executorch/kernels/test/ |
H A D | op_split_copy_test.cpp | 72 TensorList out = tlf.zeros_like(expected_out); in test_dtype() 159 TensorList out = tlf.zeros_like(expected_out); in TEST_F() 166 TensorList out2 = tlf.zeros_like(expected_out); in TEST_F() 209 TensorList out = tlf.zeros_like(expected_out); in TEST_F() 216 TensorList out2 = tlf.zeros_like(expected_out); in TEST_F() 268 TensorList out = tlf.zeros_like(expected_out); in TEST_F() 275 TensorList out2 = tlf.zeros_like(expected_out); in TEST_F() 292 TensorList out = tlf.zeros_like({input}); in TEST_F() 318 TensorList out = tlf.zeros_like({input}); in TEST_F() 331 TensorList out = tlf.zeros_like({input}); in TEST_F() [all …]
|
H A D | op_unbind_copy_test.cpp | 66 TensorList out = tlf.zeros_like(expected_out); in test_unbind_dim0() 73 TensorList out2 = tlf.zeros_like(expected_out); in test_unbind_dim0() 103 TensorList out = tlf.zeros_like(expected_out); in test_unbind_dim1() 110 TensorList out2 = tlf.zeros_like(expected_out); in test_unbind_dim1() 152 TensorList out = tlf.zeros_like(expected_out); in test_unbind_dim2() 159 TensorList out2 = tlf.zeros_like(expected_out); in test_unbind_dim2() 233 TensorList out = tlf.zeros_like({input}); in TEST_F() 249 TensorList out = tlf.zeros_like(expected_out); in TEST_F() 257 out = tlf.zeros_like(expected_out); in TEST_F() 265 out = tlf.zeros_like(expected_out); in TEST_F() [all …]
|
/aosp_15_r20/external/pytorch/test/inductor/ |
H A D | test_triton_kernels.py | 79 output = torch.zeros_like(t1) 97 self.assertNotEqual(output, torch.zeros_like(t1)) 100 output = torch.zeros_like(t1) 114 self.assertEqual(output, torch.zeros_like(t1)) 242 output = torch.zeros_like(x) 249 output = torch.zeros_like(x) 327 output = torch.zeros_like(x) 356 output = torch.zeros_like(x) 388 o1 = torch.zeros_like(t1, requires_grad=grad) 392 o2 = torch.zeros_like(t1, requires_grad=grad) [all …]
|
/aosp_15_r20/external/pytorch/tools/autograd/ |
H A D | derivatives.yaml | 161 # (implemented using zeros_like). These gradients are (hopefully) not 365 self: zeros_like(grad) 369 self: zeros_like(grad) 370 p: zeros_like(p) 374 self: zeros_like(grad) 390 self: zeros_like(grad) 394 self: zeros_like(grad) 486 other: zeros_like(other) 619 self: zeros_like(self) 623 self: zeros_like(self) [all …]
|
/aosp_15_r20/external/pytorch/test/ |
H A D | test_native_mha.py | 124 q_i[-1] = torch.zeros_like(q[0][-1], device=device, dtype=torch.float32) 129 q[0][-1] = torch.zeros_like(q[0][-1], device=device, dtype=torch.float32) 227 ynpt_final = torch.zeros_like(ypt) 234 t_i[-1] = torch.zeros_like(t_i[-1], device=device, dtype=dtype) 239 ypt[0][-1] = torch.zeros_like(ypt[0][-1], device=device, dtype=dtype) 240 ynpt[0][-1] = torch.zeros_like(ynpt[0][-1], device=device, dtype=dtype) 246 … weight_pt[0][-1] = torch.zeros_like(weight_pt[0][-1], device=device, dtype=dtype) 247 … weight_npt[0][-1] = torch.zeros_like(weight_npt[0][-1], device=device, dtype=dtype) 252 … weight_pt[0][nh][-1] = torch.zeros_like(weight_pt[0][nh][-1], device=device, dtype=dtype) 253 … weight_npt[0][nh][-1] = torch.zeros_like(weight_npt[0][nh][-1], device=device, dtype=dtype)
|
/aosp_15_r20/external/tensorflow/tensorflow/lite/testing/op_tests/ |
H A D | zeros_like.py | 15 """Test configs for zeros_like.""" 24 """Make a set of tests to do zeros_like.""" 32 """Build the zeros_like op testing graph.""" 37 zeros = tf.zeros_like(input_tensor) 39 # constants-propagation through the above zeros_like, which it can't do if 40 # the output of the zeros_like as an output of the whole graphs (graph 43 # zeros_like as a Fill op, which is unsupported by TFLite, even as a custom
|
/aosp_15_r20/external/tensorflow/tensorflow/python/ops/ |
H A D | nn_grad.py | 254 return (array_ops.zeros_like(op.inputs[0]), 255 array_ops.zeros_like(op.inputs[1]), 268 return (array_ops.zeros_like(op.inputs[0]), 269 array_ops.zeros_like(op.inputs[1]), 421 elu_x < 0, grad * op.inputs[0], array_ops.zeros_like(elu_x))) 429 selu_x < 0., grad * op.inputs[0], array_ops.zeros_like(selu_x))) 440 return (gen_nn_ops.relu6_grad(grad, x), array_ops.zeros_like(x)) 455 alpha=alpha), array_ops.zeros_like(x)) 494 return (gen_nn_ops.relu_grad(grad, x), array_ops.zeros_like(x)) 718 return (array_ops.zeros_like(op.inputs[0]), [all …]
|
H A D | control_flow_state.py | 589 """Create zeros_like gradient for a loop exit. 640 result = array_ops.zeros_like(val, optimize=False) 644 """Create zeros_like for the specified output of an op. 660 return array_ops.zeros_like(op.outputs[index]) 803 return array_ops.zeros_like(val, optimize=False) 827 return array_ops.zeros_like(val, optimize=False) 831 """Create zeros_like for the specified output of an op."""
|
H A D | math_grad.py | 393 zeros = array_ops.zeros_like(op.inputs[0], dtype=op.inputs[0].dtype) 443 math_ops.greater(num_zeros, 1), array_ops.zeros_like(grad), grad) 471 zero_clipped_indices = math_ops.maximum(ids, array_ops.zeros_like(ids)) 488 zero_slice = array_ops.zeros_like(gathered) 507 zeros = array_ops.zeros_like(gathered_grads) 554 math_ops.greater(num_zeros, 1), array_ops.zeros_like(grad), grad) 562 array_ops.zeros_like(op.inputs[1])) 1182 return array_ops.zeros_like(x) 1532 log_x = array_ops.where(mask, math_ops.log(safe_x), array_ops.zeros_like(x)) 1545 zeros = array_ops.zeros_like(grad) [all …]
|
/aosp_15_r20/external/pytorch/torch/distributed/optim/ |
H A D | functional_adamw.py | 84 state["exp_avg"] = torch.zeros_like( 88 state["exp_avg_sq"] = torch.zeros_like( 93 state["max_exp_avg_sq"] = torch.zeros_like( 156 state["exp_avg"] = torch.zeros_like( 160 state["exp_avg_sq"] = torch.zeros_like( 165 state["max_exp_avg_sq"] = torch.zeros_like(
|
H A D | functional_adam.py | 86 state["exp_avg"] = torch.zeros_like( 89 state["exp_avg_sq"] = torch.zeros_like( 93 state["max_exp_avg_sq"] = torch.zeros_like( 155 state["exp_avg"] = torch.zeros_like( 159 state["exp_avg_sq"] = torch.zeros_like( 164 state["max_exp_avg_sq"] = torch.zeros_like(
|
/aosp_15_r20/external/pytorch/test/ao/sparsity/ |
H A D | test_parametrization.py | 27 self.linear.weight = nn.Parameter(torch.zeros_like(self.linear.weight) + 1.0) 28 self.seq[0].weight = nn.Parameter(torch.zeros_like(self.seq[0].weight) + 2.0) 29 self.seq[1].weight = nn.Parameter(torch.zeros_like(self.seq[1].weight) + 3.0) 31 self.linear = nn.Parameter(torch.zeros_like(self.linear.bias) + 10.0) 32 self.seq[0] = nn.Parameter(torch.zeros_like(self.seq[0].bias) + 20.0) 33 self.seq[0] = nn.Parameter(torch.zeros_like(self.seq[0].bias) + 30.0)
|
/aosp_15_r20/external/pytorch/test/jit/fixtures_srcs/ |
H A D | fixtures_src.py | 55 out = torch.zeros_like(x) 61 out = torch.zeros_like(x) 67 out = torch.zeros_like(x) 73 x = torch.zeros_like(x) 74 out = torch.zeros_like(x)
|
/aosp_15_r20/external/pytorch/test/jit/ |
H A D | test_builtins.py | 192 a = torch.zeros_like(x, dtype=torch.uint8) 197 a = torch.zeros_like(x, dtype=torch.uint8) 202 a = torch.zeros_like(x, dtype=torch.uint8) 207 a = torch.zeros_like(x, dtype=torch.uint8) 212 a = torch.zeros_like(x, dtype=torch.float32) 222 a = torch.zeros_like(x, dtype=torch.float32, device="cuda")
|
/aosp_15_r20/external/executorch/backends/vulkan/test/op_tests/ |
H A D | sdpa_test.cpp | 229 at::Tensor v_cache = at::zeros_like(k_cache); in test_reference_sdpa() 231 at::Tensor k_cache_ref = at::zeros_like(k_cache); in test_reference_sdpa() 232 at::Tensor v_cache_ref = at::zeros_like(v_cache); in test_reference_sdpa() 301 at::Tensor v_cache = at::zeros_like(k_cache); in test_vulkan_sdpa() 324 at::Tensor k_cache_data = at::zeros_like(k_cache); in test_vulkan_sdpa() 325 at::Tensor v_cache_data = at::zeros_like(v_cache); in test_vulkan_sdpa() 381 at::Tensor vk_##x = at::zeros_like(x).contiguous(); \ in test_vulkan_sdpa()
|
/aosp_15_r20/external/tensorflow/tensorflow/core/ir/importexport/tests/roundtrip/ |
H A D | test23.pbtxt | 27 name: "zeros_like" 41 input: "zeros_like" 43 input: "zeros_like" 69 s: "Variant storing an int, input and output of zeros_like:"
|
/aosp_15_r20/external/executorch/runtime/core/exec_aten/testing_util/test/ |
H A D | tensor_factory_test.cpp | 783 Tensor actual = tf.zeros_like(input); in run_zeros_like_test() 908 TensorList actual = tlf.zeros_like(templates); in TEST() 938 TensorList actual = tlf.zeros_like(templates); in TEST() 957 TensorList actual = tlf.zeros_like(templates); in TEST() 986 tf.zeros_like(zeros, TensorShapeDynamism::STATIC)); in TEST_F() 988 tf.zeros_like(zeros, TensorShapeDynamism::DYNAMIC_BOUND)); in TEST_F() 990 tf.zeros_like(zeros, TensorShapeDynamism::DYNAMIC_UNBOUND)); in TEST_F() 994 tf.zeros_like(zeros, TensorShapeDynamism::STATIC), in TEST_F() 995 tf.zeros_like(zeros, TensorShapeDynamism::DYNAMIC_BOUND)); in TEST_F() 997 tf.zeros_like(zeros, TensorShapeDynamism::STATIC), in TEST_F() [all …]
|
/aosp_15_r20/external/tensorflow/tensorflow/lite/kernels/ |
H A D | zeros_like.cc | 27 namespace zeros_like { namespace 73 } // namespace zeros_like 77 zeros_like::Prepare, zeros_like::Eval}; in Register_ZEROS_LIKE()
|
/aosp_15_r20/external/pytorch/torch/_decomp/ |
H A D | decompositions_for_jvp.py | 181 d_input = torch.zeros_like(input) # should be None but doesn't work with vjp 191 d_weight = torch.zeros_like(weight) # should be None but doesn't work with vjp 201 d_bias = torch.zeros_like(bias) # should be None but doesn't work with vjp 281 grad_weight = torch.zeros_like( 290 grad_bias = torch.zeros_like(
|
/aosp_15_r20/external/tensorflow/tensorflow/python/ops/structured/ |
H A D | structured_array_ops.py | 231 @dispatch.dispatch_for_types(array_ops.zeros_like, StructuredTensor) 232 def zeros_like(tensor, dtype=None, name=None, optimize=True): function 233 """Implementation of zeros_like for StructuredTensor for TF v1.""" 245 >>> tf.zeros_like(st) 248 >>> tf.zeros_like(st, dtype=tf.int32) 260 with ops.name_scope(name, 'zeros_like', [input]) as name: 278 """Implementation of zeros_like for StructuredTensor for TF v1."""
|
/aosp_15_r20/external/pytorch/aten/src/ATen/native/ |
H A D | ConvolutionTBC.cpp | 13 #include <ATen/ops/zeros_like.h> 84 Tensor dInput = at::zeros_like(input, LEGACY_CONTIGUOUS_MEMORY_FORMAT); in conv_tbc_backward() 98 Tensor dWeight = at::zeros_like(weight, LEGACY_CONTIGUOUS_MEMORY_FORMAT); in conv_tbc_backward() 113 Tensor dBias = at::zeros_like(bias, LEGACY_CONTIGUOUS_MEMORY_FORMAT); in conv_tbc_backward()
|
H A D | Loss.cpp | 58 #include <ATen/ops/zeros_like.h> 173 auto zeros = at::zeros_like(cos, LEGACY_CONTIGUOUS_MEMORY_FORMAT); in cosine_embedding_loss() 183 auto zeros = at::zeros_like(self, LEGACY_CONTIGUOUS_MEMORY_FORMAT); in hinge_embedding_loss() 457 auto grad_input = at::zeros_like(input, LEGACY_CONTIGUOUS_MEMORY_FORMAT); in smooth_l1_loss_backward() 482 auto grad_input = at::zeros_like(input, MemoryFormat::Contiguous); in huber_loss_backward() 499 Tensor grad_input = at::zeros_like(input, LEGACY_CONTIGUOUS_MEMORY_FORMAT); in mse_loss_backward()
|
/aosp_15_r20/external/pytorch/torch/distributed/algorithms/ddp_comm_hooks/ |
H A D | quantization_hooks.py | 28 x = torch.zeros_like(y, device=y.device) 36 torch.zeros_like( 106 aggregated_dequantized_tensor = torch.zeros_like( 201 aggregated_dequantized_tensor = torch.zeros_like(
|
/aosp_15_r20/external/tensorflow/tensorflow/python/kernel_tests/array_ops/ |
H A D | constant_op_test.py | 506 z_var = array_ops.zeros_like(d) 545 z = array_ops.zeros_like(d) 550 # Make sure zeros_like works even for dtypes that cannot be cast between 557 y = array_ops.zeros_like(x, dtype=out_type).eval() 579 zeros_like = array_ops.zeros_like(const_variant) 581 zeros_like, [const_variant, zeros_like], 582 message="Variant storing an int, input and output of zeros_like:").op
|
/aosp_15_r20/external/pytorch/torch/distributed/tensor/ |
H A D | _tp_conv.py | 44 recv_from_right = torch.zeros_like(send_to_left) 45 recv_from_left = torch.zeros_like(send_to_right) 72 recv_from_right = torch.zeros_like(send_to_left) 73 recv_from_left = torch.zeros_like(send_to_right)
|