1 /*
2 * Copyright 2022 Google LLC
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "src/gpu/graphite/dawn/DawnCaps.h"
9
10 #include <algorithm>
11 #include <string>
12
13 #include "include/core/SkTextureCompressionType.h"
14 #include "include/gpu/graphite/ContextOptions.h"
15 #include "include/gpu/graphite/TextureInfo.h"
16 #include "include/gpu/graphite/dawn/DawnBackendContext.h"
17 #include "src/gpu/SwizzlePriv.h"
18 #include "src/gpu/graphite/ComputePipelineDesc.h"
19 #include "src/gpu/graphite/GraphicsPipelineDesc.h"
20 #include "src/gpu/graphite/GraphiteResourceKey.h"
21 #include "src/gpu/graphite/RenderPassDesc.h"
22 #include "src/gpu/graphite/RendererProvider.h"
23 #include "src/gpu/graphite/ResourceTypes.h"
24 #include "src/gpu/graphite/UniformManager.h"
25 #include "src/gpu/graphite/dawn/DawnGraphicsPipeline.h"
26 #include "src/gpu/graphite/dawn/DawnGraphiteTypesPriv.h"
27 #include "src/gpu/graphite/dawn/DawnGraphiteUtilsPriv.h"
28 #include "src/gpu/graphite/dawn/DawnUtilsPriv.h"
29 #include "src/sksl/SkSLUtil.h"
30
31 #if defined(__EMSCRIPTEN__)
32 #include <emscripten/version.h>
33 #endif
34
35 namespace {
36
get_pipeline_domain()37 skgpu::UniqueKey::Domain get_pipeline_domain() {
38 static const skgpu::UniqueKey::Domain kDawnGraphicsPipelineDomain =
39 skgpu::UniqueKey::GenerateDomain();
40
41 return kDawnGraphicsPipelineDomain;
42 }
43
44 // These are all the valid wgpu::TextureFormat that we currently support in Skia.
45 // They are roughly ordered from most frequently used to least to improve lookup times in arrays.
46 static constexpr wgpu::TextureFormat kFormats[] = {
47 wgpu::TextureFormat::RGBA8Unorm,
48 wgpu::TextureFormat::R8Unorm,
49 #if !defined(__EMSCRIPTEN__)
50 wgpu::TextureFormat::R16Unorm,
51 #endif
52 wgpu::TextureFormat::BGRA8Unorm,
53 wgpu::TextureFormat::RGBA16Float,
54 wgpu::TextureFormat::R16Float,
55 wgpu::TextureFormat::RG8Unorm,
56 #if !defined(__EMSCRIPTEN__)
57 wgpu::TextureFormat::RG16Unorm,
58 #endif
59 wgpu::TextureFormat::RGB10A2Unorm,
60 wgpu::TextureFormat::RG16Float,
61
62 wgpu::TextureFormat::Stencil8,
63 wgpu::TextureFormat::Depth16Unorm,
64 wgpu::TextureFormat::Depth32Float,
65 wgpu::TextureFormat::Depth24PlusStencil8,
66
67 wgpu::TextureFormat::BC1RGBAUnorm,
68 wgpu::TextureFormat::ETC2RGB8Unorm,
69
70 #if !defined(__EMSCRIPTEN__)
71 wgpu::TextureFormat::External,
72 #endif
73 };
74
75 #if !defined(__EMSCRIPTEN__)
IsMultiplanarFormat(wgpu::TextureFormat format)76 bool IsMultiplanarFormat(wgpu::TextureFormat format) {
77 switch (format) {
78 case wgpu::TextureFormat::R8BG8Biplanar420Unorm:
79 case wgpu::TextureFormat::R10X6BG10X6Biplanar420Unorm:
80 case wgpu::TextureFormat::R8BG8A8Triplanar420Unorm:
81 return true;
82 default:
83 return false;
84 }
85 }
86 #endif
87 } // anonymous namespace
88
89 namespace skgpu::graphite {
90
DawnCaps(const DawnBackendContext & backendContext,const ContextOptions & options)91 DawnCaps::DawnCaps(const DawnBackendContext& backendContext, const ContextOptions& options)
92 : Caps() {
93 this->initCaps(backendContext, options);
94 this->initShaderCaps(backendContext.fDevice);
95 this->initFormatTable(backendContext.fDevice);
96 this->finishInitialization(options);
97 }
98
99 DawnCaps::~DawnCaps() = default;
100
channelMask(const TextureInfo & info) const101 uint32_t DawnCaps::channelMask(const TextureInfo& info) const {
102 return DawnFormatChannels(TextureInfos::GetDawnTextureSpec(info).getViewFormat());
103 }
104
onIsTexturable(const TextureInfo & info) const105 bool DawnCaps::onIsTexturable(const TextureInfo& info) const {
106 if (!info.isValid()) {
107 return false;
108 }
109
110 const DawnTextureSpec spec = TextureInfos::GetDawnTextureSpec(info);
111
112 if (!(spec.fUsage & wgpu::TextureUsage::TextureBinding)) {
113 return false;
114 }
115
116 #if !defined(__EMSCRIPTEN__)
117 switch (spec.fFormat) {
118 case wgpu::TextureFormat::R8BG8Biplanar420Unorm: {
119 if (spec.fAspect == wgpu::TextureAspect::Plane0Only &&
120 spec.getViewFormat() != wgpu::TextureFormat::R8Unorm) {
121 return false;
122 }
123 if (spec.fAspect == wgpu::TextureAspect::Plane1Only &&
124 spec.getViewFormat() != wgpu::TextureFormat::RG8Unorm) {
125 return false;
126 }
127 break;
128 }
129 case wgpu::TextureFormat::R10X6BG10X6Biplanar420Unorm: {
130 if (spec.fAspect == wgpu::TextureAspect::Plane0Only &&
131 spec.getViewFormat() != wgpu::TextureFormat::R16Unorm) {
132 return false;
133 }
134 if (spec.fAspect == wgpu::TextureAspect::Plane1Only &&
135 spec.getViewFormat() != wgpu::TextureFormat::RG16Unorm) {
136 return false;
137 }
138 break;
139 }
140 case wgpu::TextureFormat::R8BG8A8Triplanar420Unorm: {
141 if (spec.fAspect == wgpu::TextureAspect::Plane0Only &&
142 spec.getViewFormat() != wgpu::TextureFormat::R8Unorm) {
143 return false;
144 }
145 if (spec.fAspect == wgpu::TextureAspect::Plane1Only &&
146 spec.getViewFormat() != wgpu::TextureFormat::RG8Unorm) {
147 return false;
148 }
149 if (spec.fAspect == wgpu::TextureAspect::Plane2Only &&
150 spec.getViewFormat() != wgpu::TextureFormat::R8Unorm) {
151 return false;
152 }
153 break;
154 }
155 default:
156 break;
157 }
158 #endif
159
160 return this->isTexturable(spec.getViewFormat());
161 }
162
isTexturable(wgpu::TextureFormat format) const163 bool DawnCaps::isTexturable(wgpu::TextureFormat format) const {
164 const FormatInfo& formatInfo = this->getFormatInfo(format);
165 return SkToBool(FormatInfo::kTexturable_Flag & formatInfo.fFlags);
166 }
167
isRenderable(const TextureInfo & info) const168 bool DawnCaps::isRenderable(const TextureInfo& info) const {
169 const DawnTextureSpec spec = TextureInfos::GetDawnTextureSpec(info);
170
171 return info.isValid() && (spec.fUsage & wgpu::TextureUsage::RenderAttachment) &&
172 this->isRenderable(spec.getViewFormat(), info.numSamples());
173 }
174
isStorage(const TextureInfo & info) const175 bool DawnCaps::isStorage(const TextureInfo& info) const {
176 if (!info.isValid()) {
177 return false;
178 }
179 const DawnTextureSpec spec = TextureInfos::GetDawnTextureSpec(info);
180 if (!(spec.fUsage & wgpu::TextureUsage::StorageBinding)) {
181 return false;
182 }
183 const FormatInfo& formatInfo = this->getFormatInfo(spec.getViewFormat());
184 return info.numSamples() == 1 && SkToBool(FormatInfo::kStorage_Flag & formatInfo.fFlags);
185 }
186
maxRenderTargetSampleCount(wgpu::TextureFormat format) const187 uint32_t DawnCaps::maxRenderTargetSampleCount(wgpu::TextureFormat format) const {
188 const FormatInfo& formatInfo = this->getFormatInfo(format);
189 if (!SkToBool(formatInfo.fFlags & FormatInfo::kRenderable_Flag)) {
190 return 0;
191 }
192 if (SkToBool(formatInfo.fFlags & FormatInfo::kMSAA_Flag)) {
193 return 8;
194 } else {
195 return 1;
196 }
197 }
198
isRenderable(wgpu::TextureFormat format,uint32_t sampleCount) const199 bool DawnCaps::isRenderable(wgpu::TextureFormat format, uint32_t sampleCount) const {
200 return sampleCount <= this->maxRenderTargetSampleCount(format);
201 }
202
getDefaultSampledTextureInfo(SkColorType colorType,Mipmapped mipmapped,Protected,Renderable renderable) const203 TextureInfo DawnCaps::getDefaultSampledTextureInfo(SkColorType colorType,
204 Mipmapped mipmapped,
205 Protected,
206 Renderable renderable) const {
207 wgpu::TextureUsage usage = wgpu::TextureUsage::TextureBinding |
208 wgpu::TextureUsage::CopyDst |
209 wgpu::TextureUsage::CopySrc;
210 if (renderable == Renderable::kYes) {
211 usage |= wgpu::TextureUsage::RenderAttachment;
212 }
213
214 wgpu::TextureFormat format = this->getFormatFromColorType(colorType);
215 if (format == wgpu::TextureFormat::Undefined) {
216 return {};
217 }
218
219 DawnTextureInfo info;
220 info.fSampleCount = 1;
221 info.fMipmapped = mipmapped;
222 info.fFormat = format;
223 info.fViewFormat = format;
224 info.fUsage = usage;
225
226 return TextureInfos::MakeDawn(info);
227 }
228
getTextureInfoForSampledCopy(const TextureInfo & textureInfo,Mipmapped mipmapped) const229 TextureInfo DawnCaps::getTextureInfoForSampledCopy(const TextureInfo& textureInfo,
230 Mipmapped mipmapped) const {
231 DawnTextureInfo info;
232 if (!TextureInfos::GetDawnTextureInfo(textureInfo, &info)) {
233 return {};
234 }
235
236 info.fSampleCount = 1;
237 info.fMipmapped = mipmapped;
238 info.fUsage = wgpu::TextureUsage::TextureBinding | wgpu::TextureUsage::CopyDst |
239 wgpu::TextureUsage::CopySrc;
240
241 return TextureInfos::MakeDawn(info);
242 }
243
244 namespace {
format_from_compression(SkTextureCompressionType compression)245 wgpu::TextureFormat format_from_compression(SkTextureCompressionType compression) {
246 switch (compression) {
247 case SkTextureCompressionType::kETC2_RGB8_UNORM:
248 return wgpu::TextureFormat::ETC2RGB8Unorm;
249 case SkTextureCompressionType::kBC1_RGBA8_UNORM:
250 return wgpu::TextureFormat::BC1RGBAUnorm;
251 default:
252 return wgpu::TextureFormat::Undefined;
253 }
254 }
255 }
256
getDefaultCompressedTextureInfo(SkTextureCompressionType compression,Mipmapped mipmapped,Protected) const257 TextureInfo DawnCaps::getDefaultCompressedTextureInfo(SkTextureCompressionType compression,
258 Mipmapped mipmapped,
259 Protected) const {
260 wgpu::TextureUsage usage = wgpu::TextureUsage::TextureBinding |
261 wgpu::TextureUsage::CopyDst |
262 wgpu::TextureUsage::CopySrc;
263
264 wgpu::TextureFormat format = format_from_compression(compression);
265 if (format == wgpu::TextureFormat::Undefined) {
266 return {};
267 }
268
269 DawnTextureInfo info;
270 info.fSampleCount = 1;
271 info.fMipmapped = mipmapped;
272 info.fFormat = format;
273 info.fViewFormat = format;
274 info.fUsage = usage;
275
276 return TextureInfos::MakeDawn(info);
277 }
278
getDefaultMSAATextureInfo(const TextureInfo & singleSampledInfo,Discardable discardable) const279 TextureInfo DawnCaps::getDefaultMSAATextureInfo(const TextureInfo& singleSampledInfo,
280 Discardable discardable) const {
281 if (fDefaultMSAASamples <= 1) {
282 return {};
283 }
284 const DawnTextureSpec singleSpec = TextureInfos::GetDawnTextureSpec(singleSampledInfo);
285
286 DawnTextureInfo info;
287 info.fSampleCount = fDefaultMSAASamples;
288 info.fMipmapped = Mipmapped::kNo;
289 info.fFormat = singleSpec.fFormat;
290 info.fViewFormat = singleSpec.fFormat;
291 info.fUsage = wgpu::TextureUsage::RenderAttachment;
292
293 if (fSupportedTransientAttachmentUsage != wgpu::TextureUsage::None &&
294 discardable == Discardable::kYes) {
295 info.fUsage |= fSupportedTransientAttachmentUsage;
296 }
297
298 return TextureInfos::MakeDawn(info);
299 }
300
getDefaultDepthStencilTextureInfo(SkEnumBitMask<DepthStencilFlags> depthStencilType,uint32_t sampleCount,Protected) const301 TextureInfo DawnCaps::getDefaultDepthStencilTextureInfo(
302 SkEnumBitMask<DepthStencilFlags> depthStencilType,
303 uint32_t sampleCount,
304 Protected) const {
305 DawnTextureInfo info;
306 info.fSampleCount = sampleCount;
307 info.fMipmapped = Mipmapped::kNo;
308 info.fFormat = DawnDepthStencilFlagsToFormat(depthStencilType);
309 info.fViewFormat = info.fFormat;
310 info.fUsage = wgpu::TextureUsage::RenderAttachment;
311
312 if (fSupportedTransientAttachmentUsage != wgpu::TextureUsage::None) {
313 info.fUsage |= fSupportedTransientAttachmentUsage;
314 }
315
316 return TextureInfos::MakeDawn(info);
317 }
318
getDefaultStorageTextureInfo(SkColorType colorType) const319 TextureInfo DawnCaps::getDefaultStorageTextureInfo(SkColorType colorType) const {
320 wgpu::TextureFormat format = this->getFormatFromColorType(colorType);
321 if (format == wgpu::TextureFormat::Undefined) {
322 SkDebugf("colorType=%d is not supported\n", static_cast<int>(colorType));
323 return {};
324 }
325
326 const FormatInfo& formatInfo = this->getFormatInfo(format);
327 if (!SkToBool(FormatInfo::kStorage_Flag & formatInfo.fFlags)) {
328 return {};
329 }
330
331 wgpu::TextureUsage usage = wgpu::TextureUsage::StorageBinding |
332 wgpu::TextureUsage::TextureBinding |
333 wgpu::TextureUsage::CopySrc;
334 DawnTextureInfo info;
335 info.fSampleCount = 1;
336 info.fMipmapped = Mipmapped::kNo;
337 info.fFormat = format;
338 info.fViewFormat = format;
339 info.fUsage = usage;
340
341 return TextureInfos::MakeDawn(info);
342 }
343
getDepthAttachmentDimensions(const TextureInfo & textureInfo,const SkISize colorAttachmentDimensions) const344 SkISize DawnCaps::getDepthAttachmentDimensions(const TextureInfo& textureInfo,
345 const SkISize colorAttachmentDimensions) const {
346 #if !defined(__EMSCRIPTEN__)
347 // For multiplanar textures, texture->textureInfo() uses the format of planes instead of
348 // textures (R8, R8G8, vs R8BG8Biplanar420Unorm), so we have to query texture format from
349 // wgpu::Texture object, and then use it reconstruct the full dimensions.
350 const auto dawnTextureSpec = TextureInfos::GetDawnTextureSpec(textureInfo);
351 wgpu::TextureFormat format = dawnTextureSpec.fFormat;
352 if (IsMultiplanarFormat(format) && dawnTextureSpec.fAspect == wgpu::TextureAspect::Plane1Only) {
353 // Dawn requires depth attachment to match the size of Y plane (texture size).
354 return SkISize::Make(colorAttachmentDimensions.width() * 2,
355 colorAttachmentDimensions.height() * 2);
356 }
357 #endif
358
359 return colorAttachmentDimensions;
360 }
361
getColorTypeInfo(SkColorType colorType,const TextureInfo & textureInfo) const362 const Caps::ColorTypeInfo* DawnCaps::getColorTypeInfo(SkColorType colorType,
363 const TextureInfo& textureInfo) const {
364 auto dawnFormat = TextureInfos::GetDawnTextureSpec(textureInfo).getViewFormat();
365 if (dawnFormat == wgpu::TextureFormat::Undefined) {
366 SkASSERT(false);
367 return nullptr;
368 }
369
370 const FormatInfo& info = this->getFormatInfo(dawnFormat);
371 for (int i = 0; i < info.fColorTypeInfoCount; ++i) {
372 const ColorTypeInfo& ctInfo = info.fColorTypeInfos[i];
373 if (ctInfo.fColorType == colorType) {
374 return &ctInfo;
375 }
376 }
377
378 return nullptr;
379 }
380
supportsWritePixels(const TextureInfo & textureInfo) const381 bool DawnCaps::supportsWritePixels(const TextureInfo& textureInfo) const {
382 const auto spec = TextureInfos::GetDawnTextureSpec(textureInfo);
383 return spec.fUsage & wgpu::TextureUsage::CopyDst;
384 }
385
supportsReadPixels(const TextureInfo & textureInfo) const386 bool DawnCaps::supportsReadPixels(const TextureInfo& textureInfo) const {
387 const auto spec = TextureInfos::GetDawnTextureSpec(textureInfo);
388 return spec.fUsage & wgpu::TextureUsage::CopySrc;
389 }
390
supportedWritePixelsColorType(SkColorType dstColorType,const TextureInfo & dstTextureInfo,SkColorType srcColorType) const391 std::pair<SkColorType, bool /*isRGBFormat*/> DawnCaps::supportedWritePixelsColorType(
392 SkColorType dstColorType,
393 const TextureInfo& dstTextureInfo,
394 SkColorType srcColorType) const {
395 return {dstColorType, false};
396 }
397
supportedReadPixelsColorType(SkColorType srcColorType,const TextureInfo & srcTextureInfo,SkColorType dstColorType) const398 std::pair<SkColorType, bool /*isRGBFormat*/> DawnCaps::supportedReadPixelsColorType(
399 SkColorType srcColorType,
400 const TextureInfo& srcTextureInfo,
401 SkColorType dstColorType) const {
402 auto dawnFormat = getFormatFromColorType(srcColorType);
403 const FormatInfo& info = this->getFormatInfo(dawnFormat);
404 for (int i = 0; i < info.fColorTypeInfoCount; ++i) {
405 const auto& ctInfo = info.fColorTypeInfos[i];
406 if (ctInfo.fColorType == srcColorType) {
407 return {srcColorType, false};
408 }
409 }
410 return {kUnknown_SkColorType, false};
411 }
412
initCaps(const DawnBackendContext & backendContext,const ContextOptions & options)413 void DawnCaps::initCaps(const DawnBackendContext& backendContext, const ContextOptions& options) {
414 // GetAdapter() is not available in WASM and there's no way to get AdapterInfo off of
415 // the WGPUDevice directly.
416 #if !defined(__EMSCRIPTEN__)
417 wgpu::AdapterInfo info;
418 backendContext.fDevice.GetAdapter().GetInfo(&info);
419
420 #if defined(GPU_TEST_UTILS)
421 this->setDeviceName(std::string(info.device));
422 #endif
423 #endif // defined(__EMSCRIPTEN__)
424
425 wgpu::SupportedLimits limits;
426 #if defined(__EMSCRIPTEN__)
427 // TODO(crbug.com/42241199): Update Emscripten path with when webgpu.h in Emscripten is updated.
428 [[maybe_unused]] bool limitsSucceeded = backendContext.fDevice.GetLimits(&limits);
429 #if (__EMSCRIPTEN_major__ > 3 || (__EMSCRIPTEN_major__ == 3 && __EMSCRIPTEN_minor__ > 1) || \
430 (__EMSCRIPTEN_major__ == 3 && __EMSCRIPTEN_minor__ == 1 && __EMSCRIPTEN_tiny__ > 50))
431 // In Emscripten this always "fails" until
432 // https://github.com/emscripten-core/emscripten/pull/20808, which was first included in 3.1.51.
433 SkASSERT(limitsSucceeded);
434 #endif
435 #else
436 wgpu::DawnTexelCopyBufferRowAlignmentLimits alignmentLimits{};
437 if (backendContext.fDevice.HasFeature(wgpu::FeatureName::DawnTexelCopyBufferRowAlignment)) {
438 limits.nextInChain = &alignmentLimits;
439 }
440 [[maybe_unused]] wgpu::Status status = backendContext.fDevice.GetLimits(&limits);
441 SkASSERT(status == wgpu::Status::Success);
442 #endif
443
444 fMaxTextureSize = limits.limits.maxTextureDimension2D;
445
446 fRequiredTransferBufferAlignment = 4;
447 fRequiredUniformBufferAlignment = limits.limits.minUniformBufferOffsetAlignment;
448 fRequiredStorageBufferAlignment = limits.limits.minStorageBufferOffsetAlignment;
449
450 // Dawn requires 256 bytes per row alignment for buffer texture copies.
451 fTextureDataRowBytesAlignment = 256;
452 #if !defined(__EMSCRIPTEN__)
453 // If the device supports the DawnTexelCopyBufferRowAlignment feature, the alignment can be
454 // queried from its limits.
455 if (backendContext.fDevice.HasFeature(wgpu::FeatureName::DawnTexelCopyBufferRowAlignment)) {
456 fTextureDataRowBytesAlignment = alignmentLimits.minTexelCopyBufferRowAlignment;
457 }
458 #endif
459
460 fResourceBindingReqs.fUniformBufferLayout = Layout::kStd140;
461 // The WGSL generator assumes tightly packed std430 layout for SSBOs which is also the default
462 // for all types outside the uniform address space in WGSL.
463 fResourceBindingReqs.fStorageBufferLayout = Layout::kStd430;
464 fResourceBindingReqs.fSeparateTextureAndSamplerBinding = true;
465
466 fResourceBindingReqs.fIntrinsicBufferBinding =
467 DawnGraphicsPipeline::kIntrinsicUniformBufferIndex;
468 fResourceBindingReqs.fRenderStepBufferBinding =
469 DawnGraphicsPipeline::kRenderStepUniformBufferIndex;
470 fResourceBindingReqs.fPaintParamsBufferBinding = DawnGraphicsPipeline::kPaintUniformBufferIndex;
471 fResourceBindingReqs.fGradientBufferBinding = DawnGraphicsPipeline::kGradientBufferIndex;
472
473 #if !defined(__EMSCRIPTEN__)
474 // TODO(b/344963958): SSBOs contribute to OOB shader memory access and dawn device loss on
475 // Android. Once the problem is fixed SSBOs can be enabled again.
476 fStorageBufferSupport = info.backendType != wgpu::BackendType::OpenGL &&
477 info.backendType != wgpu::BackendType::OpenGLES &&
478 info.backendType != wgpu::BackendType::Vulkan;
479 #else
480 // WASM doesn't provide a way to query the backend, so can't tell if we are on a backend that
481 // needs to have SSBOs disabled. Pessimistically assume we could be. Once the above conditions
482 // go away in Dawn-native, then we can assume SSBOs are always supported in pure WebGPU too.
483 fStorageBufferSupport = false;
484 #endif
485
486 fDrawBufferCanBeMapped = false;
487
488 fComputeSupport = true;
489
490 // TODO: support clamp to border.
491 fClampToBorderSupport = false;
492
493 #if defined(GPU_TEST_UTILS)
494 fDrawBufferCanBeMappedForReadback = false;
495 #endif
496
497 #if defined(__EMSCRIPTEN__)
498 // For wasm, we use async map.
499 fBufferMapsAreAsync = true;
500 #else
501 // For Dawn native, we use direct mapping.
502 fBufferMapsAreAsync = false;
503 fDrawBufferCanBeMapped =
504 backendContext.fDevice.HasFeature(wgpu::FeatureName::BufferMapExtendedUsages);
505
506 fMSAARenderToSingleSampledSupport =
507 backendContext.fDevice.HasFeature(wgpu::FeatureName::MSAARenderToSingleSampled);
508
509 if (backendContext.fDevice.HasFeature(wgpu::FeatureName::TransientAttachments)) {
510 fSupportedTransientAttachmentUsage = wgpu::TextureUsage::TransientAttachment;
511 }
512 if (backendContext.fDevice.HasFeature(wgpu::FeatureName::DawnLoadResolveTexture)) {
513 fSupportedResolveTextureLoadOp = wgpu::LoadOp::ExpandResolveTexture;
514 }
515 fSupportsPartialLoadResolve =
516 backendContext.fDevice.HasFeature(wgpu::FeatureName::DawnPartialLoadResolveTexture);
517 #endif
518
519 if (backendContext.fDevice.HasFeature(wgpu::FeatureName::TimestampQuery)) {
520 // Native Dawn has an API for writing timestamps on command buffers. WebGPU only supports
521 // begin and end timestamps on render and compute passes.
522 #if !defined(__EMSCRIPTEN__)
523 fSupportsCommandBufferTimestamps = true;
524 #endif
525
526 // The emscripten C/C++ interface before 3.1.48 for timestamp query writes on render and
527 // compute passes is different than on current emsdk. The older API isn't correctly
528 // translated to the current JS WebGPU API in emsdk. So we require 3.1.48+.
529 #if !defined(__EMSCRIPTEN__) \
530 || (__EMSCRIPTEN_major__ > 3) \
531 || (__EMSCRIPTEN_major__ == 3 && __EMSCRIPTEN_minor__ > 1) \
532 || (__EMSCRIPTEN_major__ == 3 && __EMSCRIPTEN_minor__ == 1 && __EMSCRIPTEN_tiny__ >= 48)
533 fSupportedGpuStats |= GpuStatsFlags::kElapsedTime;
534 #endif
535 }
536
537 if (!backendContext.fTick) {
538 fAllowCpuSync = false;
539 // This seems paradoxical. However, if we use the async pipeline creation methods (e.g
540 // Device::CreateRenderPipelineAsync) then we may have to synchronize before a submit that
541 // uses the pipeline. If we use the methods that look synchronous (e.g.
542 // Device::CreateRenderPipeline) they actually operate asynchronously on WebGPU but the
543 // browser becomes responsible for synchronizing when we call submit.
544 fUseAsyncPipelineCreation = false;
545
546 // The implementation busy waits after popping.
547 fAllowScopedErrorChecks = false;
548 }
549
550 fFullCompressedUploadSizeMustAlignToBlockDims = true;
551 }
552
initShaderCaps(const wgpu::Device & device)553 void DawnCaps::initShaderCaps(const wgpu::Device& device) {
554 SkSL::ShaderCaps* shaderCaps = fShaderCaps.get();
555
556 // WGSL does not support infinities regardless of hardware support. There are discussions around
557 // enabling it using an extension in the future.
558 shaderCaps->fInfinitySupport = false;
559
560 // WGSL supports shader derivatives in the fragment shader
561 shaderCaps->fShaderDerivativeSupport = true;
562
563 #if !defined(__EMSCRIPTEN__)
564 if (device.HasFeature(wgpu::FeatureName::DualSourceBlending)) {
565 shaderCaps->fDualSourceBlendingSupport = true;
566 }
567 if (device.HasFeature(wgpu::FeatureName::FramebufferFetch)) {
568 shaderCaps->fFBFetchSupport = true;
569 }
570 #endif
571 }
572
initFormatTable(const wgpu::Device & device)573 void DawnCaps::initFormatTable(const wgpu::Device& device) {
574 FormatInfo* info;
575 // Format: RGBA8Unorm
576 {
577 info = &fFormatTable[GetFormatIndex(wgpu::TextureFormat::RGBA8Unorm)];
578 info->fFlags = FormatInfo::kAllFlags;
579 info->fColorTypeInfoCount = 2;
580 info->fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info->fColorTypeInfoCount);
581 int ctIdx = 0;
582 // Format: RGBA8Unorm, Surface: kRGBA_8888
583 {
584 auto& ctInfo = info->fColorTypeInfos[ctIdx++];
585 ctInfo.fColorType = kRGBA_8888_SkColorType;
586 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
587 }
588 // Format: RGBA8Unorm, Surface: kRGB_888x
589 {
590 auto& ctInfo = info->fColorTypeInfos[ctIdx++];
591 ctInfo.fColorType = kRGB_888x_SkColorType;
592 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag;
593 ctInfo.fReadSwizzle = skgpu::Swizzle::RGB1();
594 }
595 }
596
597 // Format: R8Unorm
598 {
599 info = &fFormatTable[GetFormatIndex(wgpu::TextureFormat::R8Unorm)];
600 #if !defined(__EMSCRIPTEN__)
601 info->fFlags = FormatInfo::kAllFlags;
602 if (!device.HasFeature(wgpu::FeatureName::R8UnormStorage)) {
603 info->fFlags &= ~FormatInfo::kStorage_Flag;
604 }
605 #else
606 info->fFlags = FormatInfo::kAllFlags & ~FormatInfo::kStorage_Flag;
607 #endif
608 info->fColorTypeInfoCount = 3;
609 info->fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info->fColorTypeInfoCount);
610 int ctIdx = 0;
611 // Format: R8Unorm, Surface: kR8_unorm
612 {
613 auto& ctInfo = info->fColorTypeInfos[ctIdx++];
614 ctInfo.fColorType = kR8_unorm_SkColorType;
615 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
616 }
617 // Format: R8Unorm, Surface: kAlpha_8
618 {
619 auto& ctInfo = info->fColorTypeInfos[ctIdx++];
620 ctInfo.fColorType = kAlpha_8_SkColorType;
621 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
622 ctInfo.fReadSwizzle = skgpu::Swizzle("000r");
623 ctInfo.fWriteSwizzle = skgpu::Swizzle("a000");
624 }
625 // Format: R8Unorm, Surface: kGray_8
626 {
627 auto& ctInfo = info->fColorTypeInfos[ctIdx++];
628 ctInfo.fColorType = kGray_8_SkColorType;
629 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag;
630 ctInfo.fReadSwizzle = skgpu::Swizzle("rrr1");
631 }
632 }
633
634 #if !defined(__EMSCRIPTEN__)
635 const bool supportUnorm16 = device.HasFeature(wgpu::FeatureName::Unorm16TextureFormats);
636 // TODO(crbug.com/dawn/1856): Support storage binding for compute shader in Dawn.
637 // Format: R16Unorm
638 {
639 info = &fFormatTable[GetFormatIndex(wgpu::TextureFormat::R16Unorm)];
640 if (supportUnorm16) {
641 info->fFlags = FormatInfo::kAllFlags & ~FormatInfo::kStorage_Flag;
642 info->fColorTypeInfoCount = 1;
643 info->fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info->fColorTypeInfoCount);
644 int ctIdx = 0;
645 // Format: R16Unorm, Surface: kA16_unorm
646 {
647 auto& ctInfo = info->fColorTypeInfos[ctIdx++];
648 ctInfo.fColorType = kA16_unorm_SkColorType;
649 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
650 ctInfo.fReadSwizzle = skgpu::Swizzle("000r");
651 ctInfo.fWriteSwizzle = skgpu::Swizzle("a000");
652 }
653 }
654 }
655 #endif
656
657 // Format: BGRA8Unorm
658 {
659 info = &fFormatTable[GetFormatIndex(wgpu::TextureFormat::BGRA8Unorm)];
660 info->fFlags = FormatInfo::kAllFlags;
661 info->fColorTypeInfoCount = 2;
662 info->fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info->fColorTypeInfoCount);
663 int ctIdx = 0;
664 // Format: BGRA8Unorm, Surface: kBGRA_8888
665 {
666 auto& ctInfo = info->fColorTypeInfos[ctIdx++];
667 ctInfo.fColorType = kBGRA_8888_SkColorType;
668 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
669 }
670 // Format: BGRA8Unorm, Surface: kRGB_888x
671 {
672 auto& ctInfo = info->fColorTypeInfos[ctIdx++];
673 ctInfo.fColorType = kRGB_888x_SkColorType;
674 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag;
675 }
676 }
677
678 // Format: RGBA16Float
679 {
680 info = &fFormatTable[GetFormatIndex(wgpu::TextureFormat::RGBA16Float)];
681 info->fFlags = FormatInfo::kAllFlags;
682 info->fColorTypeInfoCount = 2;
683 info->fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info->fColorTypeInfoCount);
684 int ctIdx = 0;
685 // Format: RGBA16Float, Surface: RGBA_F16
686 {
687 auto& ctInfo = info->fColorTypeInfos[ctIdx++];
688 ctInfo.fColorType = kRGBA_F16_SkColorType;
689 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
690 }
691 // Format: RGBA16Float, Surface: RGB_F16F16F16x
692 {
693 auto& ctInfo = info->fColorTypeInfos[ctIdx++];
694 ctInfo.fColorType = kRGBA_F16_SkColorType;
695 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag;
696 ctInfo.fReadSwizzle = skgpu::Swizzle::RGB1();
697 }
698 }
699
700 // Format: R16Float
701 {
702 info = &fFormatTable[GetFormatIndex(wgpu::TextureFormat::R16Float)];
703 info->fFlags = FormatInfo::kAllFlags;
704 info->fColorTypeInfoCount = 1;
705 info->fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info->fColorTypeInfoCount);
706 int ctIdx = 0;
707 // Format: R16Float, Surface: kA16_float
708 {
709 auto& ctInfo = info->fColorTypeInfos[ctIdx++];
710 ctInfo.fColorType = kA16_float_SkColorType;
711 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
712 ctInfo.fReadSwizzle = skgpu::Swizzle("000r");
713 ctInfo.fWriteSwizzle = skgpu::Swizzle("a000");
714 }
715 }
716
717 // TODO(crbug.com/dawn/1856): Support storage binding for compute shader in Dawn.
718 // Format: RG8Unorm
719 {
720 info = &fFormatTable[GetFormatIndex(wgpu::TextureFormat::RG8Unorm)];
721 info->fFlags = FormatInfo::kAllFlags;
722 info->fColorTypeInfoCount = 1;
723 info->fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info->fColorTypeInfoCount);
724 int ctIdx = 0;
725 // Format: RG8Unorm, Surface: kR8G8_unorm
726 {
727 auto& ctInfo = info->fColorTypeInfos[ctIdx++];
728 ctInfo.fColorType = kR8G8_unorm_SkColorType;
729 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
730 }
731 }
732
733 #if !defined(__EMSCRIPTEN__)
734 // TODO(crbug.com/dawn/1856): Support storage binding for compute shader in Dawn.
735 // Format: RG16Unorm
736 {
737 info = &fFormatTable[GetFormatIndex(wgpu::TextureFormat::RG16Unorm)];
738 if (supportUnorm16) {
739 info->fFlags = FormatInfo::kAllFlags;
740 info->fColorTypeInfoCount = 1;
741 info->fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info->fColorTypeInfoCount);
742 int ctIdx = 0;
743 // Format: RG16Unorm, Surface: kR16G16_unorm
744 {
745 auto& ctInfo = info->fColorTypeInfos[ctIdx++];
746 ctInfo.fColorType = kR16G16_unorm_SkColorType;
747 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
748 }
749 }
750 }
751 #endif
752
753 // Format: RGB10A2Unorm
754 {
755 info = &fFormatTable[GetFormatIndex(wgpu::TextureFormat::RGB10A2Unorm)];
756 info->fFlags = FormatInfo::kAllFlags;
757 info->fColorTypeInfoCount = 2;
758 info->fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info->fColorTypeInfoCount);
759 int ctIdx = 0;
760 // Format: RGB10A2Unorm, Surface: kRGBA_1010102
761 {
762 auto& ctInfo = info->fColorTypeInfos[ctIdx++];
763 ctInfo.fColorType = kRGBA_1010102_SkColorType;
764 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
765 }
766 // Format: RGB10A2Unorm, Surface: kRGB_101010x
767 {
768 auto& ctInfo = info->fColorTypeInfos[ctIdx++];
769 ctInfo.fColorType = kRGB_101010x_SkColorType;
770 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag;
771 ctInfo.fReadSwizzle = skgpu::Swizzle::RGB1();
772 }
773 }
774
775 // Format: RG16Float
776 {
777 info = &fFormatTable[GetFormatIndex(wgpu::TextureFormat::RG16Float)];
778 info->fFlags = FormatInfo::kAllFlags;
779 info->fColorTypeInfoCount = 1;
780 info->fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info->fColorTypeInfoCount);
781 int ctIdx = 0;
782 // Format: RG16Float, Surface: kR16G16_float
783 {
784 auto& ctInfo = info->fColorTypeInfos[ctIdx++];
785 ctInfo.fColorType = kR16G16_float_SkColorType;
786 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
787 }
788 }
789
790 // Format: ETC2RGB8Unorm
791 {
792 if (device.HasFeature(wgpu::FeatureName::TextureCompressionETC2)) {
793 info = &fFormatTable[GetFormatIndex(wgpu::TextureFormat::ETC2RGB8Unorm)];
794 info->fFlags = FormatInfo::kTexturable_Flag;
795 info->fColorTypeInfoCount = 1;
796 info->fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info->fColorTypeInfoCount);
797 int ctIdx = 0;
798 // Format: ETC2RGB8Unorm, Surface: kRGB_888x
799 {
800 auto& ctInfo = info->fColorTypeInfos[ctIdx++];
801 ctInfo.fColorType = kRGB_888x_SkColorType;
802 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag;
803 }
804 }
805 }
806
807 // Format: BC1RGBAUnorm
808 {
809 if (device.HasFeature(wgpu::FeatureName::TextureCompressionBC)) {
810 info = &fFormatTable[GetFormatIndex(wgpu::TextureFormat::BC1RGBAUnorm)];
811 info->fFlags = FormatInfo::kTexturable_Flag;
812 info->fColorTypeInfoCount = 1;
813 info->fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info->fColorTypeInfoCount);
814 int ctIdx = 0;
815 // Format: BC1RGBAUnorm, Surface: kRGBA_8888
816 {
817 auto& ctInfo = info->fColorTypeInfos[ctIdx++];
818 ctInfo.fColorType = kRGBA_8888_SkColorType;
819 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag;
820 }
821 }
822 }
823
824 /*
825 * Non-color formats
826 */
827
828 // Format: Stencil8
829 {
830 info = &fFormatTable[GetFormatIndex(wgpu::TextureFormat::Stencil8)];
831 info->fFlags = FormatInfo::kMSAA_Flag;
832 info->fColorTypeInfoCount = 0;
833 }
834
835 // Format: Depth16UNorm
836 {
837 info = &fFormatTable[GetFormatIndex(wgpu::TextureFormat::Depth16Unorm)];
838 info->fFlags = FormatInfo::kMSAA_Flag;
839 info->fColorTypeInfoCount = 0;
840 }
841
842 // Format: Depth32Float
843 {
844 info = &fFormatTable[GetFormatIndex(wgpu::TextureFormat::Depth32Float)];
845 info->fFlags = FormatInfo::kMSAA_Flag;
846 info->fColorTypeInfoCount = 0;
847 }
848
849 // Format: Depth24PlusStencil8
850 {
851 info = &fFormatTable[GetFormatIndex(wgpu::TextureFormat::Depth24PlusStencil8)];
852 info->fFlags = FormatInfo::kMSAA_Flag;
853 info->fColorTypeInfoCount = 0;
854 }
855
856 #if !defined(__EMSCRIPTEN__)
857 // Format: External
858 {
859 info = &fFormatTable[GetFormatIndex(wgpu::TextureFormat::External)];
860 info->fFlags = FormatInfo::kTexturable_Flag;
861 info->fColorTypeInfoCount = 1;
862 info->fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info->fColorTypeInfoCount);
863 int ctIdx = 0;
864 // Format: External, Surface: kRGBA_8888
865 {
866 auto& ctInfo = info->fColorTypeInfos[ctIdx++];
867 ctInfo.fColorType = kRGBA_8888_SkColorType;
868 }
869 }
870 #endif
871
872 ////////////////////////////////////////////////////////////////////////////
873 // Map SkColorTypes (used for creating SkSurfaces) to wgpu::TextureFormat.
874 // The order in which the formats are passed into the setColorType function
875 // indicates the priority in selecting which format we use for a given
876 // SkColorType.
877
878 std::fill_n(fColorTypeToFormatTable, kSkColorTypeCnt, wgpu::TextureFormat::Undefined);
879
880 this->setColorType(kAlpha_8_SkColorType, { wgpu::TextureFormat::R8Unorm });
881 this->setColorType(kRGBA_8888_SkColorType, { wgpu::TextureFormat::RGBA8Unorm });
882 this->setColorType(kRGB_888x_SkColorType,
883 {wgpu::TextureFormat::RGBA8Unorm, wgpu::TextureFormat::BGRA8Unorm});
884 this->setColorType(kBGRA_8888_SkColorType, { wgpu::TextureFormat::BGRA8Unorm });
885 this->setColorType(kGray_8_SkColorType, { wgpu::TextureFormat::R8Unorm });
886 this->setColorType(kR8_unorm_SkColorType, { wgpu::TextureFormat::R8Unorm });
887 this->setColorType(kRGBA_F16_SkColorType, { wgpu::TextureFormat::RGBA16Float });
888 this->setColorType(kRGB_F16F16F16x_SkColorType, { wgpu::TextureFormat::RGBA16Float });
889 this->setColorType(kA16_float_SkColorType, { wgpu::TextureFormat::R16Float });
890 this->setColorType(kR8G8_unorm_SkColorType, { wgpu::TextureFormat::RG8Unorm });
891 this->setColorType(kRGBA_1010102_SkColorType, { wgpu::TextureFormat::RGB10A2Unorm });
892 this->setColorType(kRGB_101010x_SkColorType, { wgpu::TextureFormat::RGB10A2Unorm });
893 this->setColorType(kR16G16_float_SkColorType, { wgpu::TextureFormat::RG16Float });
894
895 #if !defined(__EMSCRIPTEN__)
896 this->setColorType(kA16_unorm_SkColorType, { wgpu::TextureFormat::R16Unorm });
897 this->setColorType(kR16G16_unorm_SkColorType, { wgpu::TextureFormat::RG16Unorm });
898 #endif
899 }
900
901 // static
GetFormatIndex(wgpu::TextureFormat format)902 size_t DawnCaps::GetFormatIndex(wgpu::TextureFormat format) {
903 for (size_t i = 0; i < std::size(kFormats); ++i) {
904 if (format == kFormats[i]) {
905 return i;
906 }
907 }
908 SkDEBUGFAILF("Unsupported wgpu::TextureFormat: 0x%08X\n", static_cast<uint32_t>(format));
909 return 0;
910 }
911
setColorType(SkColorType colorType,std::initializer_list<wgpu::TextureFormat> formats)912 void DawnCaps::setColorType(SkColorType colorType,
913 std::initializer_list<wgpu::TextureFormat> formats) {
914 static_assert(std::size(kFormats) <= kFormatCount,
915 "Size is not compatible for DawnCaps::fFormatTable and kFormats");
916 int idx = static_cast<int>(colorType);
917 for (auto it = formats.begin(); it != formats.end(); ++it) {
918 const auto& info = this->getFormatInfo(*it);
919 for (int i = 0; i < info.fColorTypeInfoCount; ++i) {
920 if (info.fColorTypeInfos[i].fColorType == colorType) {
921 fColorTypeToFormatTable[idx] = *it;
922 return;
923 }
924 }
925 }
926 }
927
928 // Make sure the format table indices will fit into the packed bits, with room to spare for
929 // representing an unused attachment.
930 static constexpr int kFormatBits = 11; // x2 attachments (color & depthStencil formats)
931 static constexpr int kSampleBits = 4; // x2 attachments (color & depthStencil numSamples)
932 static constexpr int kResolveBits = 1;
933 static constexpr int kUnusedAttachmentIndex = (1 << kFormatBits) - 1;
934 static_assert(2*(kFormatBits + kSampleBits) + kResolveBits <= 32);
935 static_assert(std::size(kFormats) <= kUnusedAttachmentIndex);
936
937 static constexpr int kDepthStencilNumSamplesOffset = kResolveBits;
938 static constexpr int kDepthStencilFormatOffset = kDepthStencilNumSamplesOffset + kSampleBits;
939 static constexpr int kColorNumSamplesOffset = kDepthStencilFormatOffset + kFormatBits;
940 static constexpr int kColorFormatOffset = kColorNumSamplesOffset + kSampleBits;
941
942 static constexpr uint32_t kFormatMask = (1 << kFormatBits) - 1;
943 static constexpr uint32_t kNumSamplesMask = (1 << kSampleBits) - 1;
944 static constexpr uint32_t kResolveMask = (1 << kResolveBits) - 1;
945
getRenderPassDescKeyForPipeline(const RenderPassDesc & renderPassDesc) const946 uint32_t DawnCaps::getRenderPassDescKeyForPipeline(const RenderPassDesc& renderPassDesc) const {
947 const TextureInfo& colorInfo = renderPassDesc.fColorAttachment.fTextureInfo;
948 const TextureInfo& depthStencilInfo = renderPassDesc.fDepthStencilAttachment.fTextureInfo;
949 // The color attachment should be valid; the depth-stencil attachment may not be if it's not
950 // being used.
951 SkASSERT(colorInfo.isValid());
952
953 // Use format indices instead of WGPUTextureFormat values since they can be larger than 16 bits.
954 uint32_t colorFormatIndex =
955 GetFormatIndex(TextureInfos::GetDawnTextureSpec(colorInfo).getViewFormat());
956 uint32_t depthStencilFormatIndex =
957 depthStencilInfo.isValid()
958 ? GetFormatIndex(
959 TextureInfos::GetDawnTextureSpec(depthStencilInfo).getViewFormat())
960 : kUnusedAttachmentIndex;
961
962 // Note: if Dawn supports ExpandResolveTexture load op and the render pass uses it to load
963 // the resolve texture, a render pipeline will need to be created with
964 // wgpu::ColorTargetStateExpandResolveTextureDawn chained struct in order to be compatible.
965 // Hence a render pipeline created for a render pass using ExpandResolveTexture load op will
966 // be different from the one created for a render pass not using that load op.
967 // So we need to include a bit flag to differentiate the two kinds of pipelines.
968 // Also avoid returning a cached pipeline that is not compatible with the render pass using
969 // ExpandResolveTexture load op and vice versa.
970 const bool shouldIncludeLoadResolveAttachmentBit = this->resolveTextureLoadOp().has_value();
971 uint32_t loadResolveAttachmentKey = 0;
972 if (shouldIncludeLoadResolveAttachmentBit &&
973 renderPassDesc.fColorResolveAttachment.fTextureInfo.isValid() &&
974 renderPassDesc.fColorResolveAttachment.fLoadOp == LoadOp::kLoad) {
975 loadResolveAttachmentKey = 1;
976 }
977
978 SkASSERT(colorFormatIndex < (1 << kFormatBits));
979 SkASSERT(colorInfo.numSamples() < (1 << kSampleBits));
980 SkASSERT(depthStencilFormatIndex < (1 << kFormatBits));
981 SkASSERT(depthStencilInfo.numSamples() < (1 << kSampleBits));
982 SkASSERT(loadResolveAttachmentKey < (1 << kResolveBits));
983
984 return (colorFormatIndex << kColorFormatOffset) |
985 (colorInfo.numSamples() << kColorNumSamplesOffset) |
986 (depthStencilFormatIndex << kDepthStencilFormatOffset) |
987 (depthStencilInfo.numSamples() << kDepthStencilNumSamplesOffset) |
988 loadResolveAttachmentKey;
989 }
990
991 static constexpr int kDawnGraphicsPipelineKeyData32Count = 4;
992
makeGraphicsPipelineKey(const GraphicsPipelineDesc & pipelineDesc,const RenderPassDesc & renderPassDesc) const993 UniqueKey DawnCaps::makeGraphicsPipelineKey(const GraphicsPipelineDesc& pipelineDesc,
994 const RenderPassDesc& renderPassDesc) const {
995 UniqueKey pipelineKey;
996 {
997 // 4 uint32_t's (render step id, paint id, uint32 RenderPassDesc, uint16 write swizzle key)
998 UniqueKey::Builder builder(&pipelineKey, get_pipeline_domain(),
999 kDawnGraphicsPipelineKeyData32Count, "DawnGraphicsPipeline");
1000 // Add GraphicsPipelineDesc key.
1001 builder[0] = pipelineDesc.renderStepID();
1002 builder[1] = pipelineDesc.paintParamsID().asUInt();
1003
1004 // Add RenderPassDesc key and write swizzle (which is separate from the RenderPassDescKey
1005 // because it is applied in the program writing to the target, and is not actually part of
1006 // the underlying GPU render pass config).
1007 builder[2] = this->getRenderPassDescKeyForPipeline(renderPassDesc);
1008 builder[3] = renderPassDesc.fWriteSwizzle.asKey();
1009 builder.finish();
1010 }
1011
1012 return pipelineKey;
1013 }
1014
extractGraphicsDescs(const UniqueKey & key,GraphicsPipelineDesc * pipelineDesc,RenderPassDesc * renderPassDesc,const RendererProvider * rendererProvider) const1015 bool DawnCaps::extractGraphicsDescs(const UniqueKey& key,
1016 GraphicsPipelineDesc* pipelineDesc,
1017 RenderPassDesc* renderPassDesc,
1018 const RendererProvider* rendererProvider) const {
1019 SkASSERT(key.domain() == get_pipeline_domain());
1020 SkASSERT(key.dataSize() == 4 * kDawnGraphicsPipelineKeyData32Count);
1021
1022 const uint32_t* rawKeyData = key.data();
1023
1024 const RenderStep* renderStep = rendererProvider->lookup(rawKeyData[0]);
1025 *pipelineDesc = GraphicsPipelineDesc(renderStep, UniquePaintParamsID(rawKeyData[1]));
1026 SkASSERT(renderStep->performsShading() == pipelineDesc->paintParamsID().isValid());
1027
1028 uint32_t renderpassDescBits = rawKeyData[2];
1029 uint32_t colorFormatIndex = (renderpassDescBits >> kColorFormatOffset) & kFormatMask;
1030 SkASSERT(colorFormatIndex < std::size(kFormats));
1031
1032 DawnTextureInfo dawnInfo;
1033 dawnInfo.fFormat = dawnInfo.fViewFormat = kFormats[colorFormatIndex];
1034 dawnInfo.fSampleCount = 1;
1035 dawnInfo.fMipmapped = skgpu::Mipmapped::kNo;
1036 dawnInfo.fUsage = wgpu::TextureUsage::TextureBinding | wgpu::TextureUsage::RenderAttachment;
1037
1038 uint32_t colorSampleCount = (renderpassDescBits >> kColorNumSamplesOffset) & kNumSamplesMask;
1039 bool requiresMSAA = colorSampleCount > 1;
1040
1041 SkEnumBitMask<DepthStencilFlags> dsFlags = DepthStencilFlags::kNone;
1042
1043 uint32_t depthStencilFormatIndex =
1044 (renderpassDescBits >> kDepthStencilFormatOffset) & kFormatMask;
1045 if (depthStencilFormatIndex != kUnusedAttachmentIndex) {
1046 SkASSERT(depthStencilFormatIndex < std::size(kFormats));
1047 wgpu::TextureFormat dsFormat = kFormats[depthStencilFormatIndex];
1048 if (DawnFormatIsDepth(dsFormat)) {
1049 dsFlags |= DepthStencilFlags::kDepth;
1050 }
1051 if (DawnFormatIsStencil(dsFormat)) {
1052 dsFlags |= DepthStencilFlags::kStencil;
1053 }
1054 }
1055 SkDEBUGCODE(uint32_t dsSampleCount =
1056 (renderpassDescBits >> kDepthStencilNumSamplesOffset) & kNumSamplesMask;)
1057 SkASSERT(colorSampleCount == dsSampleCount);
1058
1059 LoadOp loadOp = LoadOp::kClear;
1060 if (renderpassDescBits & kResolveMask) {
1061 // This bit should only be set if Dawn supports ExpandResolveTexture load op
1062 SkASSERT(this->resolveTextureLoadOp().has_value());
1063 loadOp = LoadOp::kLoad;
1064 }
1065
1066 Swizzle writeSwizzle = SwizzleCtorAccessor::Make(rawKeyData[3]);
1067
1068 *renderPassDesc = RenderPassDesc::Make(this,
1069 TextureInfos::MakeDawn(dawnInfo),
1070 loadOp,
1071 StoreOp::kStore,
1072 dsFlags,
1073 /* clearColor= */ { .0f, .0f, .0f, .0f },
1074 requiresMSAA,
1075 writeSwizzle);
1076
1077 return true;
1078 }
1079
makeComputePipelineKey(const ComputePipelineDesc & pipelineDesc) const1080 UniqueKey DawnCaps::makeComputePipelineKey(const ComputePipelineDesc& pipelineDesc) const {
1081 UniqueKey pipelineKey;
1082 {
1083 static const skgpu::UniqueKey::Domain kComputePipelineDomain = UniqueKey::GenerateDomain();
1084 // The key is made up of a single uint32_t corresponding to the compute step ID.
1085 UniqueKey::Builder builder(&pipelineKey, kComputePipelineDomain, 1, "ComputePipeline");
1086 builder[0] = pipelineDesc.computeStep()->uniqueID();
1087
1088 // TODO(b/240615224): The local work group size should factor into the key here since it is
1089 // specified in the shader text on Dawn/SPIR-V. This is not a problem right now since
1090 // ComputeSteps don't vary their workgroup size dynamically.
1091
1092 builder.finish();
1093 }
1094 return pipelineKey;
1095 }
1096
1097 #if !defined(__EMSCRIPTEN__)
1098 namespace {
1099 using namespace ycbcrUtils;
1100
non_format_info_as_uint32(const wgpu::YCbCrVkDescriptor & desc)1101 uint32_t non_format_info_as_uint32(const wgpu::YCbCrVkDescriptor& desc) {
1102 static_assert(kComponentAShift + kComponentBits <= 32);
1103 SkASSERT(desc.vkYCbCrModel < (1u << kYcbcrModelBits ));
1104 SkASSERT(desc.vkYCbCrRange < (1u << kYcbcrRangeBits ));
1105 SkASSERT(desc.vkXChromaOffset < (1u << kXChromaOffsetBits ));
1106 SkASSERT(desc.vkYChromaOffset < (1u << kYChromaOffsetBits ));
1107 SkASSERT(static_cast<uint32_t>(desc.vkChromaFilter) < (1u << kChromaFilterBits ));
1108 SkASSERT(desc.vkComponentSwizzleRed < (1u << kComponentBits ));
1109 SkASSERT(desc.vkComponentSwizzleGreen < (1u << kComponentBits ));
1110 SkASSERT(desc.vkComponentSwizzleBlue < (1u << kComponentBits ));
1111 SkASSERT(desc.vkComponentSwizzleAlpha < (1u << kComponentBits ));
1112 SkASSERT(static_cast<uint32_t>(desc.forceExplicitReconstruction)
1113 < (1u << kForceExplicitReconBits));
1114
1115 return (((uint32_t)(DawnDescriptorUsesExternalFormat(desc)) << kUsesExternalFormatShift) |
1116 ((uint32_t)(desc.vkYCbCrModel ) << kYcbcrModelShift ) |
1117 ((uint32_t)(desc.vkYCbCrRange ) << kYcbcrRangeShift ) |
1118 ((uint32_t)(desc.vkXChromaOffset ) << kXChromaOffsetShift ) |
1119 ((uint32_t)(desc.vkYChromaOffset ) << kYChromaOffsetShift ) |
1120 ((uint32_t)(desc.vkChromaFilter ) << kChromaFilterShift ) |
1121 ((uint32_t)(desc.forceExplicitReconstruction ) << kForceExplicitReconShift) |
1122 ((uint32_t)(desc.vkComponentSwizzleRed ) << kComponentRShift ) |
1123 ((uint32_t)(desc.vkComponentSwizzleGreen ) << kComponentGShift ) |
1124 ((uint32_t)(desc.vkComponentSwizzleBlue ) << kComponentBShift ) |
1125 ((uint32_t)(desc.vkComponentSwizzleAlpha ) << kComponentAShift ));
1126 }
1127 } // anonymous
1128 #endif
1129
getImmutableSamplerInfo(const TextureProxy * proxy) const1130 ImmutableSamplerInfo DawnCaps::getImmutableSamplerInfo(const TextureProxy* proxy) const {
1131 #if !defined(__EMSCRIPTEN__)
1132 if (proxy) {
1133 const wgpu::YCbCrVkDescriptor& ycbcrConversionInfo =
1134 TextureInfos::GetDawnTextureSpec(proxy->textureInfo()).fYcbcrVkDescriptor;
1135
1136 if (ycbcrUtils::DawnDescriptorIsValid(ycbcrConversionInfo)) {
1137 ImmutableSamplerInfo immutableSamplerInfo;
1138 // A vkFormat of 0 indicates we are using an external format rather than a known one.
1139 immutableSamplerInfo.fFormat = (ycbcrConversionInfo.vkFormat == 0)
1140 ? ycbcrConversionInfo.externalFormat
1141 : ycbcrConversionInfo.vkFormat;
1142 immutableSamplerInfo.fNonFormatYcbcrConversionInfo =
1143 non_format_info_as_uint32(ycbcrConversionInfo);
1144 return immutableSamplerInfo;
1145 }
1146 }
1147 #endif
1148
1149 // If the proxy is null or the YCbCr conversion for that proxy is invalid, then return a
1150 // default ImmutableSamplerInfo struct.
1151 return {};
1152 }
1153
buildKeyForTexture(SkISize dimensions,const TextureInfo & info,ResourceType type,Shareable shareable,GraphiteResourceKey * key) const1154 void DawnCaps::buildKeyForTexture(SkISize dimensions,
1155 const TextureInfo& info,
1156 ResourceType type,
1157 Shareable shareable,
1158 GraphiteResourceKey* key) const {
1159 const DawnTextureSpec dawnSpec = TextureInfos::GetDawnTextureSpec(info);
1160
1161 SkASSERT(!dimensions.isEmpty());
1162
1163 SkASSERT(dawnSpec.getViewFormat() != wgpu::TextureFormat::Undefined);
1164 uint32_t formatKey = static_cast<uint32_t>(dawnSpec.getViewFormat());
1165
1166 uint32_t samplesKey = SamplesToKey(info.numSamples());
1167 // We don't have to key the number of mip levels because it is inherit in the combination of
1168 // isMipped and dimensions.
1169 bool isMipped = info.mipmapped() == Mipmapped::kYes;
1170
1171 // Confirm all the below parts of the key can fit in a single uint32_t. The sum of the shift
1172 // amounts in the asserts must be less than or equal to 32.
1173 SkASSERT(samplesKey < (1u << 3)); // sample key is first 3 bits
1174 SkASSERT(static_cast<uint32_t>(isMipped) < (1u << 1)); // isMapped is 4th bit
1175 SkASSERT(static_cast<uint32_t>(dawnSpec.fUsage) < (1u << 28)); // usage is remaining 28 bits
1176
1177 // We need two uint32_ts for dimensions, 1 for format, and 1 for the rest of the key;
1178 int num32DataCnt = 2 + 1 + 1;
1179 bool hasYcbcrInfo = false;
1180 #if !defined(__EMSCRIPTEN__)
1181 // If we are using ycbcr texture/sampling, more key information is needed.
1182 if ((hasYcbcrInfo = ycbcrUtils::DawnDescriptorIsValid(dawnSpec.fYcbcrVkDescriptor))) {
1183 num32DataCnt += ycbcrUtils::DawnDescriptorUsesExternalFormat(dawnSpec.fYcbcrVkDescriptor)
1184 ? SamplerDesc::kInt32sNeededExternalFormat
1185 : SamplerDesc::kInt32sNeededKnownFormat;
1186 }
1187 #endif
1188 GraphiteResourceKey::Builder builder(key, type, num32DataCnt, shareable);
1189
1190 builder[0] = dimensions.width();
1191 builder[1] = dimensions.height();
1192 builder[2] = formatKey;
1193 builder[3] = (samplesKey << 0) |
1194 (static_cast<uint32_t>(isMipped) << 3) |
1195 (static_cast<uint32_t>(dawnSpec.fUsage) << 4);
1196
1197 #if !defined(__EMSCRIPTEN__)
1198 if (hasYcbcrInfo) {
1199 builder[4] = non_format_info_as_uint32(dawnSpec.fYcbcrVkDescriptor);
1200 // Even though we already have formatKey appended to the texture key, we still need to add
1201 // fYcbcrVkDescriptor's vkFormat or externalFormat. The latter two are distinct from
1202 // dawnSpec's wgpu::TextureFormat.
1203 if (!ycbcrUtils::DawnDescriptorUsesExternalFormat(dawnSpec.fYcbcrVkDescriptor)) {
1204 builder[5] = dawnSpec.fYcbcrVkDescriptor.vkFormat;
1205 } else {
1206 builder[5] = (uint32_t)(dawnSpec.fYcbcrVkDescriptor.externalFormat >> 32);
1207 builder[6] = (uint32_t)dawnSpec.fYcbcrVkDescriptor.externalFormat;
1208 }
1209 }
1210 #endif
1211 }
1212
makeSamplerKey(const SamplerDesc & samplerDesc) const1213 GraphiteResourceKey DawnCaps::makeSamplerKey(const SamplerDesc& samplerDesc) const {
1214 GraphiteResourceKey samplerKey;
1215 const SkSpan<const uint32_t>& samplerData = samplerDesc.asSpan();
1216 static const ResourceType kSamplerType = GraphiteResourceKey::GenerateResourceType();
1217 // Non-format ycbcr and sampler information are guaranteed to fit within one uint32, so the size
1218 // of the returned span accurately captures the quantity of uint32s needed whether the sampler
1219 // is immutable or not.
1220 GraphiteResourceKey::Builder builder(&samplerKey, kSamplerType, samplerData.size(),
1221 Shareable::kYes);
1222
1223 for (size_t i = 0; i < samplerData.size(); i++) {
1224 builder[i] = samplerData[i];
1225 }
1226 builder.finish();
1227 return samplerKey;
1228 }
1229
1230 } // namespace skgpu::graphite
1231