xref: /btstack/port/stm32-l073rz-nucleo-em9304/Drivers/STM32L0xx_HAL_Driver/Src/stm32l0xx_hal_pwr.c (revision e838079242074edcbcbb400962776e15fe6ca6cb)
1 /**
2   ******************************************************************************
3   * @file    stm32l0xx_hal_pwr.c
4   * @author  MCD Application Team
5   * @brief   PWR HAL module driver.
6   *
7   *          This file provides firmware functions to manage the following
8   *          functionalities of the Power Controller (PWR) peripheral:
9   *           + Initialization/de-initialization functions
10   *           + Peripheral Control functions
11   *
12   ******************************************************************************
13   * @attention
14   *
15   * <h2><center>&copy; Copyright(c) 2016 STMicroelectronics.
16   * All rights reserved.</center></h2>
17   *
18   * This software component is licensed by ST under BSD 3-Clause license,
19   * the "License"; You may not use this file except in compliance with the
20   * License. You may obtain a copy of the License at:
21   *                        opensource.org/licenses/BSD-3-Clause
22   *
23   ******************************************************************************
24   */
25 
26 /* Includes ------------------------------------------------------------------*/
27 #include "stm32l0xx_hal.h"
28 
29 #ifdef HAL_PWR_MODULE_ENABLED
30 /** @addtogroup STM32L0xx_HAL_Driver
31   * @{
32   */
33 
34 /** @addtogroup PWR
35   * @{
36   */
37 
38 /** @addtogroup PWR_Private
39   * @{
40   */
41 
42 #if defined(PWR_PVD_SUPPORT)
43 /** @defgroup PWR_PVD_Mode_Mask PWR PVD Mode Mask
44   * @{
45   */
46 #define PVD_MODE_IT               ((uint32_t)0x00010000U)
47 #define PVD_MODE_EVT              ((uint32_t)0x00020000U)
48 #define PVD_RISING_EDGE           ((uint32_t)0x00000001U)
49 #define PVD_FALLING_EDGE          ((uint32_t)0x00000002U)
50 /**
51   * @}
52   */
53 #endif
54 
55 /**
56   * @}
57   */
58 
59 
60 /** @addtogroup PWR_Exported_Functions
61   * @{
62   */
63 
64 /** @addtogroup PWR_Exported_Functions_Group1
65   * @brief      Initialization and de-initialization functions
66   *
67 @verbatim
68  ===============================================================================
69               ##### Initialization and de-initialization functions #####
70  ===============================================================================
71 
72 @endverbatim
73   * @{
74   */
75 
76 /**
77   * @brief Deinitializes the HAL PWR peripheral registers to their default reset values.
78   * @retval None
79   */
HAL_PWR_DeInit(void)80 void HAL_PWR_DeInit(void)
81 {
82   __HAL_RCC_PWR_FORCE_RESET();
83   __HAL_RCC_PWR_RELEASE_RESET();
84 }
85 
86 /**
87   * @}
88   */
89 
90 /** @addtogroup PWR_Exported_Functions_Group2
91   * @brief      Low Power modes configuration functions
92   *
93 @verbatim
94 
95  ===============================================================================
96                  ##### Peripheral Control functions #####
97  ===============================================================================
98 
99     *** Backup domain ***
100     =========================
101     [..]
102       After reset, the backup domain (RTC registers, RTC backup data
103       registers) is protected against possible unwanted
104       write accesses.
105       To enable access to the RTC Domain and RTC registers, proceed as follows:
106         (+) Enable the Power Controller (PWR) APB1 interface clock using the
107             __HAL_RCC_PWR_CLK_ENABLE() macro.
108         (+) Enable access to RTC domain using the HAL_PWR_EnableBkUpAccess() function.
109 
110     *** PVD configuration ***
111     =========================
112     [..]
113       (+) The PVD is used to monitor the VDD power supply by comparing it to a
114           threshold selected by the PVD Level (PLS[2:0] bits in the PWR_CR).
115       (+) The PVD can use an external input analog voltage (PVD_IN) which is compared
116       internally to VREFINT. The PVD_IN (PB7) has to be configured in Analog mode
117       when PWR_PVDLevel_7 is selected (PLS[2:0] = 111).
118 
119       (+) A PVDO flag is available to indicate if VDD/VDDA is higher or lower
120           than the PVD threshold. This event is internally connected to the EXTI
121           line16 and can generate an interrupt if enabled. This is done through
122           __HAL_PWR_PVD_EXTI_ENABLE_IT() macro.
123       (+) The PVD is stopped in Standby mode.
124       (+) The PVD feature is not supported on L0 Value line.
125 
126     *** WakeUp pin configuration ***
127     ================================
128     [..]
129       (+) WakeUp pin is used to wake up the system from Standby mode. This pin is
130           forced in input pull-down configuration and is active on rising edges.
131       (+) There are two WakeUp pins:
132           WakeUp Pin 1 on PA.00.
133           WakeUp Pin 2 on PC.13.
134           WakeUp Pin 3 on PE.06 .
135 
136 
137     [..]
138     *** Main and Backup Regulators configuration ***
139     ================================================
140 
141       (+) The main internal regulator can be configured to have a tradeoff between
142           performance and power consumption when the device does not operate at
143           the maximum frequency. This is done through __HAL_PWR_VOLTAGESCALING_CONFIG()
144           macro which configures the two VOS bits in PWR_CR register:
145         (++) PWR_REGULATOR_VOLTAGE_SCALE1 (VOS bits = 01), the regulator voltage output Scale 1 mode selected and
146              the System frequency can go up to 32 MHz.
147         (++) PWR_REGULATOR_VOLTAGE_SCALE2 (VOS bits = 10), the regulator voltage output Scale 2 mode selected and
148              the System frequency can go up to 16 MHz.
149         (++) PWR_REGULATOR_VOLTAGE_SCALE3 (VOS bits = 11), the regulator voltage output Scale 3 mode selected and
150              the System frequency can go up to 4.2 MHz.
151 
152         Refer to the datasheets for more details.
153 
154     *** Low Power modes configuration ***
155     =====================================
156      [..]
157       The device features 5 low-power modes:
158       (+) Low power run mode: regulator in low power mode, limited clock frequency,
159         limited number of peripherals running.
160       (+) Sleep mode: Cortex-M0+ core stopped, peripherals kept running.
161       (+) Low power sleep mode: Cortex-M0+ core stopped, limited clock frequency,
162          limited number of peripherals running, regulator in low power mode.
163       (+) Stop mode: All clocks are stopped, regulator running, regulator in low power mode.
164       (+) Standby mode: VCORE domain powered off
165 
166    *** Low power run mode ***
167    =========================
168     [..]
169        To further reduce the consumption when the system is in Run mode, the regulator can be
170         configured in low power mode. In this mode, the system frequency should not exceed
171         MSI frequency range1.
172         In Low power run mode, all I/O pins keep the same state as in Run mode.
173 
174       (+) Entry:
175         (++) VCORE in range2
176         (++) Decrease the system frequency not to exceed the frequency of MSI frequency range1.
177         (++) The regulator is forced in low power mode using the HAL_PWREx_EnableLowPowerRunMode()
178              function.
179       (+) Exit:
180         (++) The regulator is forced in Main regulator mode using the HAL_PWREx_DisableLowPowerRunMode()
181               function.
182         (++) Increase the system frequency if needed.
183 
184    *** Sleep mode ***
185    ==================
186     [..]
187       (+) Entry:
188           The Sleep mode is entered by using the HAL_PWR_EnterSLEEPMode(PWR_MAINREGULATOR_ON, PWR_SLEEPENTRY_WFx)
189               functions with
190           (++) PWR_SLEEPENTRY_WFI: enter SLEEP mode with WFI instruction
191           (++) PWR_SLEEPENTRY_WFE: enter SLEEP mode with WFE instruction
192 
193       (+) Exit:
194         (++) Any peripheral interrupt acknowledged by the nested vectored interrupt
195               controller (NVIC) can wake up the device from Sleep mode. If the WFE instruction was used to enter sleep mode,
196               the MCU exits Sleep mode as soon as an event occurs.
197 
198    *** Low power sleep mode ***
199    ============================
200     [..]
201       (+) Entry:
202           The Low power sleep mode is entered by using the HAL_PWR_EnterSLEEPMode(PWR_LOWPOWERREGULATOR_ON, PWR_SLEEPENTRY_WFx)
203               functions with
204           (++) PWR_SLEEPENTRY_WFI: enter SLEEP mode with WFI instruction
205           (++) PWR_SLEEPENTRY_WFE: enter SLEEP mode with WFE instruction
206        (+) The Flash memory can be switched off by using the control bits (SLEEP_PD in the FLASH_ACR register.
207              This reduces power consumption but increases the wake-up time.
208 
209       (+) Exit:
210         (++) If the WFI instruction was used to enter Low power sleep mode, any peripheral interrupt
211               acknowledged by the nested vectored interrupt controller (NVIC) can wake up the device
212               from Low power sleep mode. If the WFE instruction was used to enter Low power sleep mode,
213               the MCU exits Sleep mode as soon as an event occurs.
214 
215    *** Stop mode ***
216    =================
217     [..]
218       The Stop mode is based on the Cortex-M0+ deepsleep mode combined with peripheral
219       clock gating. The voltage regulator can be configured either in normal or low-power mode.
220       In Stop mode, all clocks in the VCORE domain are stopped, the PLL, the MSI, the HSI and
221       the HSE RC oscillators are disabled. Internal SRAM and register contents are preserved.
222       To get the lowest consumption in Stop mode, the internal Flash memory also enters low
223       power mode. When the Flash memory is in power-down mode, an additional startup delay is
224       incurred when waking up from Stop mode.
225       To minimize the consumption In Stop mode, VREFINT, the BOR, PVD, and temperature
226       sensor can be switched off before entering Stop mode. They can be switched on again by
227       software after exiting Stop mode using the ULP bit in the PWR_CR register.
228       In Stop mode, all I/O pins keep the same state as in Run mode.
229 
230       (+) Entry:
231            The Stop mode is entered using the HAL_PWR_EnterSTOPMode
232              function with:
233           (++) Main regulator ON.
234           (++) Low Power regulator ON.
235           (++) PWR_SLEEPENTRY_WFI: enter SLEEP mode with WFI instruction
236           (++) PWR_SLEEPENTRY_WFE: enter SLEEP mode with WFE instruction
237       (+) Exit:
238         (++) By issuing an interrupt or a wakeup event, the MSI or HSI16 RC
239              oscillator is selected as system clock depending the bit STOPWUCK in the RCC_CFGR
240              register
241 
242    *** Standby mode ***
243    ====================
244      [..]
245       The Standby mode allows to achieve the lowest power consumption. It is based on the
246       Cortex-M0+ deepsleep mode, with the voltage regulator disabled. The VCORE domain is
247       consequently powered off. The PLL, the MSI, the HSI oscillator and the HSE oscillator are
248       also switched off. SRAM and register contents are lost except for the RTC registers, RTC
249       backup registers and Standby circuitry.
250 
251       To minimize the consumption In Standby mode, VREFINT, the BOR, PVD, and temperature
252        sensor can be switched off before entering the Standby mode. They can be switched
253        on again by software after exiting the Standby mode.
254        function.
255 
256       (+) Entry:
257         (++) The Standby mode is entered using the HAL_PWR_EnterSTANDBYMode() function.
258       (+) Exit:
259         (++) WKUP pin rising edge, RTC alarm (Alarm A and Alarm B), RTC wakeup,
260              tamper event, time-stamp event, external reset in NRST pin, IWDG reset.
261 
262    *** Auto-wakeup (AWU) from low-power mode ***
263    =============================================
264     [..]
265       The MCU can be woken up from low-power mode by an RTC Alarm event, an RTC
266       Wakeup event, a tamper event, a time-stamp event, or a comparator event,
267       without depending on an external interrupt (Auto-wakeup mode).
268 
269     (+) RTC auto-wakeup (AWU) from the Stop mode
270         (++) To wake up from the Stop mode with an RTC alarm event, it is necessary to:
271              (+++) Configure the EXTI Line 17 to be sensitive to rising edges (Interrupt
272                    or Event modes) using the EXTI_Init() function.
273              (+++) Enable the RTC Alarm Interrupt using the RTC_ITConfig() function
274              (+++) Configure the RTC to generate the RTC alarm using the RTC_SetAlarm()
275                    and RTC_AlarmCmd() functions.
276         (++) To wake up from the Stop mode with an RTC Tamper or time stamp event, it
277              is necessary to:
278              (+++) Configure the EXTI Line 19 to be sensitive to rising edges (Interrupt
279                    or Event modes) using the EXTI_Init() function.
280              (+++) Enable the RTC Tamper or time stamp Interrupt using the RTC_ITConfig()
281                    function.
282              (+++) Configure the RTC to detect the tamper or time stamp event using the
283                    RTC_TimeStampConfig(), RTC_TamperTriggerConfig() and RTC_TamperCmd()
284                    functions.
285         (++) To wake up from the Stop mode with an RTC WakeUp event, it is necessary to:
286              (+++) Configure the EXTI Line 20 to be sensitive to rising edges (Interrupt
287                    or Event modes) using the EXTI_Init() function.
288              (+++) Enable the RTC WakeUp Interrupt using the RTC_ITConfig() function.
289              (+++) Configure the RTC to generate the RTC WakeUp event using the RTC_WakeUpClockConfig(),
290                    RTC_SetWakeUpCounter() and RTC_WakeUpCmd() functions.
291 
292     (+) RTC auto-wakeup (AWU) from the Standby mode
293         (++) To wake up from the Standby mode with an RTC alarm event, it is necessary to:
294              (+++) Enable the RTC Alarm Interrupt using the RTC_ITConfig() function.
295              (+++) Configure the RTC to generate the RTC alarm using the RTC_SetAlarm()
296                    and RTC_AlarmCmd() functions.
297         (++) To wake up from the Standby mode with an RTC Tamper or time stamp event, it
298              is necessary to:
299              (+++) Enable the RTC Tamper or time stamp Interrupt using the RTC_ITConfig()
300                    function.
301              (+++) Configure the RTC to detect the tamper or time stamp event using the
302                    RTC_TimeStampConfig(), RTC_TamperTriggerConfig() and RTC_TamperCmd()
303                    functions.
304         (++) To wake up from the Standby mode with an RTC WakeUp event, it is necessary to:
305              (+++) Enable the RTC WakeUp Interrupt using the RTC_ITConfig() function
306              (+++) Configure the RTC to generate the RTC WakeUp event using the RTC_WakeUpClockConfig(),
307                    RTC_SetWakeUpCounter() and RTC_WakeUpCmd() functions.
308 
309     (+) Comparator auto-wakeup (AWU) from the Stop mode
310         (++) To wake up from the Stop mode with an comparator 1 or comparator 2 wakeup
311              event, it is necessary to:
312              (+++) Configure the EXTI Line 21 for comparator 1 or EXTI Line 22 for comparator 2
313                    to be sensitive to to the selected edges (falling, rising or falling
314                    and rising) (Interrupt or Event modes) using the EXTI_Init() function.
315              (+++) Configure the comparator to generate the event.
316 @endverbatim
317   * @{
318   */
319 
320 /**
321   * @brief Enables access to the backup domain (RTC registers, RTC
322   *         backup data registers ).
323   * @note   If the HSE divided by 2, 4, 8 or 16 is used as the RTC clock, the
324   *         Backup Domain Access should be kept enabled.
325   * @retval None
326   */
HAL_PWR_EnableBkUpAccess(void)327 void HAL_PWR_EnableBkUpAccess(void)
328 {
329   /* Enable access to RTC and backup registers */
330   SET_BIT(PWR->CR, PWR_CR_DBP);
331 }
332 
333 /**
334   * @brief  Disables access to the backup domain
335   * @note   Applies to RTC registers, RTC backup data registers.
336   * @note   If the HSE divided by 2, 4, 8 or 16 is used as the RTC clock, the
337   *         Backup Domain Access should be kept enabled.
338   * @retval None
339   */
HAL_PWR_DisableBkUpAccess(void)340 void HAL_PWR_DisableBkUpAccess(void)
341 {
342   /* Disable access to RTC and backup registers */
343   CLEAR_BIT(PWR->CR, PWR_CR_DBP);
344 }
345 
346 #if defined(PWR_PVD_SUPPORT)
347 /**
348   * @brief  Configures the voltage threshold detected by the Power Voltage Detector(PVD).
349   * @param  sConfigPVD pointer to an PWR_PVDTypeDef structure that contains the configuration
350   *         information for the PVD.
351   * @note   Refer to the electrical characteristics of your device datasheet for
352   *         more details about the voltage threshold corresponding to each
353   *         detection level.
354   * @retval None
355   */
HAL_PWR_ConfigPVD(PWR_PVDTypeDef * sConfigPVD)356 void HAL_PWR_ConfigPVD(PWR_PVDTypeDef *sConfigPVD)
357 {
358   /* Check the parameters */
359   assert_param(IS_PWR_PVD_LEVEL(sConfigPVD->PVDLevel));
360   assert_param(IS_PWR_PVD_MODE(sConfigPVD->Mode));
361 
362   /* Set PLS[7:5] bits according to PVDLevel value */
363   MODIFY_REG(PWR->CR, PWR_CR_PLS, sConfigPVD->PVDLevel);
364 
365   /* Clear any previous config. Keep it clear if no event or IT mode is selected */
366   __HAL_PWR_PVD_EXTI_DISABLE_EVENT();
367   __HAL_PWR_PVD_EXTI_DISABLE_IT();
368   __HAL_PWR_PVD_EXTI_DISABLE_FALLING_EDGE();
369   __HAL_PWR_PVD_EXTI_DISABLE_RISING_EDGE();
370 
371   /* Configure interrupt mode */
372   if((sConfigPVD->Mode & PVD_MODE_IT) == PVD_MODE_IT)
373   {
374     __HAL_PWR_PVD_EXTI_ENABLE_IT();
375   }
376 
377   /* Configure event mode */
378   if((sConfigPVD->Mode & PVD_MODE_EVT) == PVD_MODE_EVT)
379   {
380     __HAL_PWR_PVD_EXTI_ENABLE_EVENT();
381   }
382 
383   /* Configure the edge */
384   if((sConfigPVD->Mode & PVD_RISING_EDGE) == PVD_RISING_EDGE)
385   {
386     __HAL_PWR_PVD_EXTI_ENABLE_RISING_EDGE();
387   }
388 
389   if((sConfigPVD->Mode & PVD_FALLING_EDGE) == PVD_FALLING_EDGE)
390   {
391     __HAL_PWR_PVD_EXTI_ENABLE_FALLING_EDGE();
392   }
393 }
394 
395 /**
396   * @brief Enables the Power Voltage Detector(PVD).
397   * @retval None
398   */
HAL_PWR_EnablePVD(void)399 void HAL_PWR_EnablePVD(void)
400 {
401   /* Enable the power voltage detector */
402   SET_BIT(PWR->CR, PWR_CR_PVDE);
403 }
404 
405 /**
406   * @brief Disables the Power Voltage Detector(PVD).
407   * @retval None
408   */
HAL_PWR_DisablePVD(void)409 void HAL_PWR_DisablePVD(void)
410 {
411   /* Disable the power voltage detector */
412   CLEAR_BIT(PWR->CR, PWR_CR_PVDE);
413 }
414 #endif /* PWR_PVD_SUPPORT */
415 
416 /**
417   * @brief Enables the WakeUp PINx functionality.
418   * @param WakeUpPinx: Specifies the Power Wake-Up pin to enable.
419   *         This parameter can be one of the following values:
420   *           @arg PWR_WAKEUP_PIN1
421   *           @arg PWR_WAKEUP_PIN2
422   *           @arg PWR_WAKEUP_PIN3 for stm32l07xxx and stm32l08xxx devices only.
423   * @retval None
424   */
HAL_PWR_EnableWakeUpPin(uint32_t WakeUpPinx)425 void HAL_PWR_EnableWakeUpPin(uint32_t WakeUpPinx)
426 {
427   /* Check the parameter */
428   assert_param(IS_PWR_WAKEUP_PIN(WakeUpPinx));
429   /* Enable the EWUPx pin */
430   SET_BIT(PWR->CSR, WakeUpPinx);
431 }
432 
433 /**
434   * @brief Disables the WakeUp PINx functionality.
435   * @param WakeUpPinx: Specifies the Power Wake-Up pin to disable.
436   *         This parameter can be one of the following values:
437   *           @arg PWR_WAKEUP_PIN1
438   *           @arg PWR_WAKEUP_PIN2
439   *           @arg PWR_WAKEUP_PIN3  for stm32l07xxx and stm32l08xxx devices only.
440   * @retval None
441   */
HAL_PWR_DisableWakeUpPin(uint32_t WakeUpPinx)442 void HAL_PWR_DisableWakeUpPin(uint32_t WakeUpPinx)
443 {
444   /* Check the parameter */
445   assert_param(IS_PWR_WAKEUP_PIN(WakeUpPinx));
446   /* Disable the EWUPx pin */
447   CLEAR_BIT(PWR->CSR, WakeUpPinx);
448 }
449 
450 /**
451   * @brief Enters Sleep mode.
452   * @note In Sleep mode, all I/O pins keep the same state as in Run mode.
453   * @param Regulator: Specifies the regulator state in SLEEP mode.
454   *          This parameter can be one of the following values:
455   *            @arg PWR_MAINREGULATOR_ON: SLEEP mode with regulator ON
456   *            @arg PWR_LOWPOWERREGULATOR_ON: SLEEP mode with low power regulator ON
457   * @param SLEEPEntry: Specifies if SLEEP mode is entered with WFI or WFE instruction.
458   *           When WFI entry is used, tick interrupt have to be disabled if not desired as
459   *           the interrupt wake up source.
460   *           This parameter can be one of the following values:
461   *            @arg PWR_SLEEPENTRY_WFI: enter SLEEP mode with WFI instruction
462   *            @arg PWR_SLEEPENTRY_WFE: enter SLEEP mode with WFE instruction
463   * @retval None
464   */
HAL_PWR_EnterSLEEPMode(uint32_t Regulator,uint8_t SLEEPEntry)465 void HAL_PWR_EnterSLEEPMode(uint32_t Regulator, uint8_t SLEEPEntry)
466 {
467    uint32_t tmpreg = 0U;
468   /* Check the parameters */
469   assert_param(IS_PWR_REGULATOR(Regulator));
470   assert_param(IS_PWR_SLEEP_ENTRY(SLEEPEntry));
471 
472   /* Select the regulator state in Sleep mode ---------------------------------*/
473   tmpreg = PWR->CR;
474 
475   /* Clear PDDS and LPDS bits */
476   CLEAR_BIT(tmpreg, (PWR_CR_PDDS | PWR_CR_LPSDSR));
477 
478  /* Set LPSDSR bit according to PWR_Regulator value */
479   SET_BIT(tmpreg, Regulator);
480 
481   /* Store the new value */
482   PWR->CR = tmpreg;
483 
484   /* Clear SLEEPDEEP bit of Cortex System Control Register */
485   CLEAR_BIT(SCB->SCR, SCB_SCR_SLEEPDEEP_Msk);
486 
487   /* Select SLEEP mode entry -------------------------------------------------*/
488   if(SLEEPEntry == PWR_SLEEPENTRY_WFI)
489   {
490     /* Request Wait For Interrupt */
491     __WFI();
492   }
493   else
494   {
495     /* Request Wait For Event */
496     __SEV();
497     __WFE();
498     __WFE();
499   }
500 
501   /* Additional NOP to ensure all pending instructions are flushed before entering low power mode */
502   __NOP();
503 
504 }
505 
506 /**
507   * @brief Enters Stop mode.
508   * @note In Stop mode, all I/O pins keep the same state as in Run mode.
509   * @note When exiting Stop mode by issuing an interrupt or a wakeup event,
510   *        MSI or HSI16 RCoscillator is selected as system clock depending
511   *        the bit STOPWUCK in the RCC_CFGR register.
512   * @note When the voltage regulator operates in low power mode, an additional
513   *         startup delay is incurred when waking up from Stop mode.
514   *         By keeping the internal regulator ON during Stop mode, the consumption
515   *         is higher although the startup time is reduced.
516   * @note Before entering in this function, it is important to ensure that the WUF
517   *       wakeup flag is cleared. To perform this action, it is possible to call the
518   *       following macro : __HAL_PWR_CLEAR_FLAG(PWR_FLAG_WU)
519   *
520   * @param Regulator: Specifies the regulator state in Stop mode.
521   *          This parameter can be one of the following values:
522   *            @arg PWR_MAINREGULATOR_ON: Stop mode with regulator ON
523   *            @arg PWR_LOWPOWERREGULATOR_ON: Stop mode with low power regulator ON
524   * @param STOPEntry: Specifies if Stop mode in entered with WFI or WFE instruction.
525   *          This parameter can be one of the following values:
526   *            @arg PWR_STOPENTRY_WFI: Enter Stop mode with WFI instruction
527   *            @arg PWR_STOPENTRY_WFE: Enter Stop mode with WFE instruction
528   * @retval None
529   */
HAL_PWR_EnterSTOPMode(uint32_t Regulator,uint8_t STOPEntry)530 void HAL_PWR_EnterSTOPMode(uint32_t Regulator, uint8_t STOPEntry)
531 {
532   uint32_t tmpreg = 0U;
533 
534   /* Check the parameters */
535   assert_param(IS_PWR_REGULATOR(Regulator));
536   assert_param(IS_PWR_STOP_ENTRY(STOPEntry));
537 
538   /* Select the regulator state in Stop mode ---------------------------------*/
539   tmpreg = PWR->CR;
540 
541   /* Clear PDDS and LPDS bits */
542   CLEAR_BIT(tmpreg, (PWR_CR_PDDS | PWR_CR_LPSDSR));
543 
544  /* Set LPSDSR bit according to PWR_Regulator value */
545   SET_BIT(tmpreg, Regulator);
546 
547   /* Store the new value */
548   PWR->CR = tmpreg;
549 
550   /* Set SLEEPDEEP bit of Cortex System Control Register */
551   SET_BIT(SCB->SCR, SCB_SCR_SLEEPDEEP_Msk);
552 
553   /* Select Stop mode entry --------------------------------------------------*/
554   if(STOPEntry == PWR_STOPENTRY_WFI)
555   {
556     /* Request Wait For Interrupt */
557     __WFI();
558   }
559   else
560   {
561     /* Request Wait For Event */
562     __SEV();
563     __WFE();
564     __WFE();
565   }
566 
567   /* Reset SLEEPDEEP bit of Cortex System Control Register */
568   CLEAR_BIT(SCB->SCR, SCB_SCR_SLEEPDEEP_Msk);
569 
570 }
571 
572 /**
573   * @brief Enters Standby mode.
574   * @note In Standby mode, all I/O pins are high impedance except for:
575   *          - Reset pad (still available)
576   *          - RTC_AF1 pin (PC13) if configured for tamper, time-stamp, RTC
577   *            Alarm out, or RTC clock calibration out.
578   *          - RTC_AF2 pin (PC13) if configured for tamper.
579   *          - WKUP pin 1 (PA00) if enabled.
580   *          - WKUP pin 2 (PC13) if enabled.
581   *          - WKUP pin 3 (PE06) if enabled, for stm32l07xxx and stm32l08xxx devices only.
582   *          - WKUP pin 3 (PA02) if enabled, for stm32l031xx devices only.
583   * @retval None
584   */
HAL_PWR_EnterSTANDBYMode(void)585 void HAL_PWR_EnterSTANDBYMode(void)
586 {
587   /* Select Standby mode */
588   SET_BIT(PWR->CR, PWR_CR_PDDS);
589 
590   /* Set SLEEPDEEP bit of Cortex System Control Register */
591   SET_BIT(SCB->SCR, SCB_SCR_SLEEPDEEP_Msk);
592 
593   /* This option is used to ensure that store operations are completed */
594 #if defined ( __CC_ARM)
595   __force_stores();
596 #endif
597   /* Request Wait For Interrupt */
598   __WFI();
599 }
600 
601 /**
602   * @brief Indicates Sleep-On-Exit when returning from Handler mode to Thread mode.
603   * @note Set SLEEPONEXIT bit of SCR register. When this bit is set, the processor
604   *       re-enters SLEEP mode when an interruption handling is over.
605   *       Setting this bit is useful when the processor is expected to run only on
606   *       interruptions handling.
607   * @retval None
608   */
HAL_PWR_EnableSleepOnExit(void)609 void HAL_PWR_EnableSleepOnExit(void)
610 {
611   /* Set SLEEPONEXIT bit of Cortex System Control Register */
612   SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPONEXIT_Msk));
613 }
614 
615 
616 /**
617   * @brief Disables Sleep-On-Exit feature when returning from Handler mode to Thread mode.
618   * @note Clears SLEEPONEXIT bit of SCR register. When this bit is set, the processor
619   *       re-enters SLEEP mode when an interruption handling is over.
620   * @retval None
621   */
HAL_PWR_DisableSleepOnExit(void)622 void HAL_PWR_DisableSleepOnExit(void)
623 {
624   /* Clear SLEEPONEXIT bit of Cortex System Control Register */
625   CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPONEXIT_Msk));
626 }
627 
628 
629 /**
630   * @brief Enables CORTEX M0+ SEVONPEND bit.
631   * @note Sets SEVONPEND bit of SCR register. When this bit is set, this causes
632   *       WFE to wake up when an interrupt moves from inactive to pended.
633   * @retval None
634   */
HAL_PWR_EnableSEVOnPend(void)635 void HAL_PWR_EnableSEVOnPend(void)
636 {
637   /* Set SEVONPEND bit of Cortex System Control Register */
638   SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SEVONPEND_Msk));
639 }
640 
641 
642 /**
643   * @brief Disables CORTEX M0+ SEVONPEND bit.
644   * @note Clears SEVONPEND bit of SCR register. When this bit is set, this causes
645   *       WFE to wake up when an interrupt moves from inactive to pended.
646   * @retval None
647   */
HAL_PWR_DisableSEVOnPend(void)648 void HAL_PWR_DisableSEVOnPend(void)
649 {
650   /* Clear SEVONPEND bit of Cortex System Control Register */
651   CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SEVONPEND_Msk));
652 }
653 
654 #if defined(PWR_PVD_SUPPORT)
655 /**
656   * @brief This function handles the PWR PVD interrupt request.
657   * @note This API should be called under the PVD_IRQHandler().
658   * @retval None
659   */
HAL_PWR_PVD_IRQHandler(void)660 void HAL_PWR_PVD_IRQHandler(void)
661 {
662   /* Check PWR exti flag */
663   if(__HAL_PWR_PVD_EXTI_GET_FLAG() != RESET)
664   {
665     /* PWR PVD interrupt user callback */
666     HAL_PWR_PVDCallback();
667 
668     /* Clear PWR Exti pending bit */
669     __HAL_PWR_PVD_EXTI_CLEAR_FLAG();
670   }
671 }
672 
673 /**
674   * @brief  PWR PVD interrupt callback
675   * @retval None
676   */
HAL_PWR_PVDCallback(void)677 __weak void HAL_PWR_PVDCallback(void)
678 {
679   /* NOTE : This function Should not be modified, when the callback is needed,
680             the HAL_PWR_PVDCallback could be implemented in the user file
681    */
682 }
683 #endif /* PWR_PVD_SUPPORT */
684 
685 /**
686   * @}
687   */
688 
689 /**
690   * @}
691   */
692 
693 #endif /* HAL_PWR_MODULE_ENABLED */
694 /**
695   * @}
696   */
697 
698 /**
699   * @}
700   */
701 
702 /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
703 
704