xref: /aosp_15_r20/external/angle/src/libANGLE/renderer/vulkan/FramebufferVk.cpp (revision 8975f5c5ed3d1c378011245431ada316dfb6f244)
1 //
2 // Copyright 2016 The ANGLE Project Authors. All rights reserved.
3 // Use of this source code is governed by a BSD-style license that can be
4 // found in the LICENSE file.
5 //
6 // FramebufferVk.cpp:
7 //    Implements the class methods for FramebufferVk.
8 //
9 
10 #include "libANGLE/renderer/vulkan/FramebufferVk.h"
11 
12 #include <array>
13 
14 #include "common/debug.h"
15 #include "common/vulkan/vk_headers.h"
16 #include "libANGLE/Context.h"
17 #include "libANGLE/Display.h"
18 #include "libANGLE/ErrorStrings.h"
19 #include "libANGLE/formatutils.h"
20 #include "libANGLE/renderer/renderer_utils.h"
21 #include "libANGLE/renderer/vulkan/ContextVk.h"
22 #include "libANGLE/renderer/vulkan/DisplayVk.h"
23 #include "libANGLE/renderer/vulkan/RenderTargetVk.h"
24 #include "libANGLE/renderer/vulkan/SurfaceVk.h"
25 #include "libANGLE/renderer/vulkan/vk_format_utils.h"
26 #include "libANGLE/renderer/vulkan/vk_renderer.h"
27 #include "libANGLE/renderer/vulkan/vk_resource.h"
28 
29 namespace rx
30 {
31 
32 namespace
33 {
34 // Clear values are only used when loadOp=Clear is set in clearWithRenderPassOp.  When starting a
35 // new render pass, the clear value is set to an unlikely value (bright pink) to stand out better
36 // in case of a bug.
37 constexpr VkClearValue kUninitializedClearValue = {{{0.95, 0.05, 0.95, 0.95}}};
38 
39 // The value to assign an alpha channel that's emulated.  The type is unsigned int, though it will
40 // automatically convert to the actual data type.
41 constexpr unsigned int kEmulatedAlphaValue = 1;
42 
HasSrcBlitFeature(vk::Renderer * renderer,RenderTargetVk * srcRenderTarget)43 bool HasSrcBlitFeature(vk::Renderer *renderer, RenderTargetVk *srcRenderTarget)
44 {
45     angle::FormatID srcFormatID = srcRenderTarget->getImageActualFormatID();
46     return renderer->hasImageFormatFeatureBits(srcFormatID, VK_FORMAT_FEATURE_BLIT_SRC_BIT);
47 }
48 
HasDstBlitFeature(vk::Renderer * renderer,RenderTargetVk * dstRenderTarget)49 bool HasDstBlitFeature(vk::Renderer *renderer, RenderTargetVk *dstRenderTarget)
50 {
51     angle::FormatID dstFormatID = dstRenderTarget->getImageActualFormatID();
52     return renderer->hasImageFormatFeatureBits(dstFormatID, VK_FORMAT_FEATURE_BLIT_DST_BIT);
53 }
54 
55 // Returns false if destination has any channel the source doesn't.  This means that channel was
56 // emulated and using the Vulkan blit command would overwrite that emulated channel.
AreSrcAndDstColorChannelsBlitCompatible(RenderTargetVk * srcRenderTarget,RenderTargetVk * dstRenderTarget)57 bool AreSrcAndDstColorChannelsBlitCompatible(RenderTargetVk *srcRenderTarget,
58                                              RenderTargetVk *dstRenderTarget)
59 {
60     const angle::Format &srcFormat = srcRenderTarget->getImageIntendedFormat();
61     const angle::Format &dstFormat = dstRenderTarget->getImageIntendedFormat();
62 
63     // Luminance/alpha formats are not renderable, so they can't have ended up in a framebuffer to
64     // participate in a blit.
65     ASSERT(!dstFormat.isLUMA() && !srcFormat.isLUMA());
66 
67     // All color formats have the red channel.
68     ASSERT(dstFormat.redBits > 0 && srcFormat.redBits > 0);
69 
70     return (dstFormat.greenBits > 0 || srcFormat.greenBits == 0) &&
71            (dstFormat.blueBits > 0 || srcFormat.blueBits == 0) &&
72            (dstFormat.alphaBits > 0 || srcFormat.alphaBits == 0);
73 }
74 
75 // Returns false if formats are not identical.  vkCmdResolveImage and resolve attachments both
76 // require identical formats between source and destination.  vkCmdBlitImage additionally requires
77 // the same for depth/stencil formats.
AreSrcAndDstFormatsIdentical(RenderTargetVk * srcRenderTarget,RenderTargetVk * dstRenderTarget)78 bool AreSrcAndDstFormatsIdentical(RenderTargetVk *srcRenderTarget, RenderTargetVk *dstRenderTarget)
79 {
80     angle::FormatID srcFormatID = srcRenderTarget->getImageActualFormatID();
81     angle::FormatID dstFormatID = dstRenderTarget->getImageActualFormatID();
82 
83     return srcFormatID == dstFormatID;
84 }
85 
AreSrcAndDstDepthStencilChannelsBlitCompatible(RenderTargetVk * srcRenderTarget,RenderTargetVk * dstRenderTarget)86 bool AreSrcAndDstDepthStencilChannelsBlitCompatible(RenderTargetVk *srcRenderTarget,
87                                                     RenderTargetVk *dstRenderTarget)
88 {
89     const angle::Format &srcFormat = srcRenderTarget->getImageIntendedFormat();
90     const angle::Format &dstFormat = dstRenderTarget->getImageIntendedFormat();
91 
92     return (dstFormat.depthBits > 0 || srcFormat.depthBits == 0) &&
93            (dstFormat.stencilBits > 0 || srcFormat.stencilBits == 0);
94 }
95 
EarlyAdjustFlipYForPreRotation(SurfaceRotation blitAngleIn,SurfaceRotation * blitAngleOut,bool * blitFlipYOut)96 void EarlyAdjustFlipYForPreRotation(SurfaceRotation blitAngleIn,
97                                     SurfaceRotation *blitAngleOut,
98                                     bool *blitFlipYOut)
99 {
100     switch (blitAngleIn)
101     {
102         case SurfaceRotation::Identity:
103             // No adjustments needed
104             break;
105         case SurfaceRotation::Rotated90Degrees:
106             *blitAngleOut = SurfaceRotation::Rotated90Degrees;
107             *blitFlipYOut = false;
108             break;
109         case SurfaceRotation::Rotated180Degrees:
110             *blitAngleOut = SurfaceRotation::Rotated180Degrees;
111             break;
112         case SurfaceRotation::Rotated270Degrees:
113             *blitAngleOut = SurfaceRotation::Rotated270Degrees;
114             *blitFlipYOut = false;
115             break;
116         default:
117             UNREACHABLE();
118             break;
119     }
120 }
121 
AdjustBlitAreaForPreRotation(SurfaceRotation framebufferAngle,const gl::Rectangle & blitAreaIn,const gl::Rectangle & framebufferDimensions,gl::Rectangle * blitAreaOut)122 void AdjustBlitAreaForPreRotation(SurfaceRotation framebufferAngle,
123                                   const gl::Rectangle &blitAreaIn,
124                                   const gl::Rectangle &framebufferDimensions,
125                                   gl::Rectangle *blitAreaOut)
126 {
127     switch (framebufferAngle)
128     {
129         case SurfaceRotation::Identity:
130             // No adjustments needed
131             break;
132         case SurfaceRotation::Rotated90Degrees:
133             blitAreaOut->x = blitAreaIn.y;
134             blitAreaOut->y = blitAreaIn.x;
135             std::swap(blitAreaOut->width, blitAreaOut->height);
136             break;
137         case SurfaceRotation::Rotated180Degrees:
138             blitAreaOut->x = framebufferDimensions.width - blitAreaIn.x - blitAreaIn.width;
139             blitAreaOut->y = framebufferDimensions.height - blitAreaIn.y - blitAreaIn.height;
140             break;
141         case SurfaceRotation::Rotated270Degrees:
142             blitAreaOut->x = framebufferDimensions.height - blitAreaIn.y - blitAreaIn.height;
143             blitAreaOut->y = framebufferDimensions.width - blitAreaIn.x - blitAreaIn.width;
144             std::swap(blitAreaOut->width, blitAreaOut->height);
145             break;
146         default:
147             UNREACHABLE();
148             break;
149     }
150 }
151 
AdjustDimensionsAndFlipForPreRotation(SurfaceRotation framebufferAngle,gl::Rectangle * framebufferDimensions,bool * flipX,bool * flipY)152 void AdjustDimensionsAndFlipForPreRotation(SurfaceRotation framebufferAngle,
153                                            gl::Rectangle *framebufferDimensions,
154                                            bool *flipX,
155                                            bool *flipY)
156 {
157     switch (framebufferAngle)
158     {
159         case SurfaceRotation::Identity:
160             // No adjustments needed
161             break;
162         case SurfaceRotation::Rotated90Degrees:
163             std::swap(framebufferDimensions->width, framebufferDimensions->height);
164             std::swap(*flipX, *flipY);
165             break;
166         case SurfaceRotation::Rotated180Degrees:
167             break;
168         case SurfaceRotation::Rotated270Degrees:
169             std::swap(framebufferDimensions->width, framebufferDimensions->height);
170             std::swap(*flipX, *flipY);
171             break;
172         default:
173             UNREACHABLE();
174             break;
175     }
176 }
177 
178 // When blitting, the source and destination areas are viewed like UVs.  For example, a 64x64
179 // texture if flipped should have an offset of 64 in either X or Y which corresponds to U or V of 1.
180 // On the other hand, when resolving, the source and destination areas are used as fragment
181 // coordinates to fetch from.  In that case, when flipped, the texture in the above example must
182 // have an offset of 63.
AdjustBlitResolveParametersForResolve(const gl::Rectangle & sourceArea,const gl::Rectangle & destArea,UtilsVk::BlitResolveParameters * params)183 void AdjustBlitResolveParametersForResolve(const gl::Rectangle &sourceArea,
184                                            const gl::Rectangle &destArea,
185                                            UtilsVk::BlitResolveParameters *params)
186 {
187     params->srcOffset[0] = sourceArea.x;
188     params->srcOffset[1] = sourceArea.y;
189     params->dstOffset[0] = destArea.x;
190     params->dstOffset[1] = destArea.y;
191 
192     if (sourceArea.isReversedX())
193     {
194         ASSERT(sourceArea.x > 0);
195         --params->srcOffset[0];
196     }
197     if (sourceArea.isReversedY())
198     {
199         ASSERT(sourceArea.y > 0);
200         --params->srcOffset[1];
201     }
202     if (destArea.isReversedX())
203     {
204         ASSERT(destArea.x > 0);
205         --params->dstOffset[0];
206     }
207     if (destArea.isReversedY())
208     {
209         ASSERT(destArea.y > 0);
210         --params->dstOffset[1];
211     }
212 }
213 
214 // Potentially make adjustments for pre-rotatation.  Depending on the angle some of the params need
215 // to be swapped and/or changes made to which axis are flipped.
AdjustBlitResolveParametersForPreRotation(SurfaceRotation framebufferAngle,SurfaceRotation srcFramebufferAngle,UtilsVk::BlitResolveParameters * params)216 void AdjustBlitResolveParametersForPreRotation(SurfaceRotation framebufferAngle,
217                                                SurfaceRotation srcFramebufferAngle,
218                                                UtilsVk::BlitResolveParameters *params)
219 {
220     switch (framebufferAngle)
221     {
222         case SurfaceRotation::Identity:
223             break;
224         case SurfaceRotation::Rotated90Degrees:
225             std::swap(params->stretch[0], params->stretch[1]);
226             std::swap(params->srcOffset[0], params->srcOffset[1]);
227             std::swap(params->rotatedOffsetFactor[0], params->rotatedOffsetFactor[1]);
228             std::swap(params->flipX, params->flipY);
229             if (srcFramebufferAngle == framebufferAngle)
230             {
231                 std::swap(params->dstOffset[0], params->dstOffset[1]);
232                 std::swap(params->stretch[0], params->stretch[1]);
233             }
234             break;
235         case SurfaceRotation::Rotated180Degrees:
236             // Combine flip info with api flip.
237             params->flipX = !params->flipX;
238             params->flipY = !params->flipY;
239             break;
240         case SurfaceRotation::Rotated270Degrees:
241             std::swap(params->stretch[0], params->stretch[1]);
242             std::swap(params->srcOffset[0], params->srcOffset[1]);
243             std::swap(params->rotatedOffsetFactor[0], params->rotatedOffsetFactor[1]);
244             if (srcFramebufferAngle == framebufferAngle)
245             {
246                 std::swap(params->stretch[0], params->stretch[1]);
247             }
248             // Combine flip info with api flip.
249             params->flipX = !params->flipX;
250             params->flipY = !params->flipY;
251             std::swap(params->flipX, params->flipY);
252 
253             break;
254         default:
255             UNREACHABLE();
256             break;
257     }
258 }
259 
MakeUnresolveAttachmentMask(const vk::RenderPassDesc & desc)260 vk::FramebufferNonResolveAttachmentMask MakeUnresolveAttachmentMask(const vk::RenderPassDesc &desc)
261 {
262     vk::FramebufferNonResolveAttachmentMask unresolveMask(
263         desc.getColorUnresolveAttachmentMask().bits());
264     if (desc.hasDepthUnresolveAttachment() || desc.hasStencilUnresolveAttachment())
265     {
266         // This mask only needs to know if the depth/stencil attachment needs to be unresolved, and
267         // is agnostic of the aspect.
268         unresolveMask.set(vk::kUnpackedDepthIndex);
269     }
270     return unresolveMask;
271 }
272 
IsAnyAttachment3DWithoutAllLayers(const RenderTargetCache<RenderTargetVk> & renderTargetCache,gl::DrawBufferMask colorAttachmentsMask,uint32_t framebufferLayerCount)273 bool IsAnyAttachment3DWithoutAllLayers(const RenderTargetCache<RenderTargetVk> &renderTargetCache,
274                                        gl::DrawBufferMask colorAttachmentsMask,
275                                        uint32_t framebufferLayerCount)
276 {
277     const auto &colorRenderTargets = renderTargetCache.getColors();
278     for (size_t colorIndexGL : colorAttachmentsMask)
279     {
280         RenderTargetVk *colorRenderTarget = colorRenderTargets[colorIndexGL];
281         ASSERT(colorRenderTarget);
282 
283         const vk::ImageHelper &image = colorRenderTarget->getImageForRenderPass();
284 
285         if (image.getType() == VK_IMAGE_TYPE_3D && image.getExtents().depth > framebufferLayerCount)
286         {
287             return true;
288         }
289     }
290 
291     // Depth/stencil attachments cannot be 3D.
292     ASSERT(renderTargetCache.getDepthStencil() == nullptr ||
293            renderTargetCache.getDepthStencil()->getImageForRenderPass().getType() !=
294                VK_IMAGE_TYPE_3D);
295 
296     return false;
297 }
298 
299 // Should be called when the image type is VK_IMAGE_TYPE_3D.  Typically, the subresource, offsets
300 // and extents are filled in as if images are 2D layers (because depth slices of 3D images are also
301 // specified through "layers" everywhere, particularly by gl::ImageIndex).  This function adjusts
302 // the layer base/count and offsets.z/extents.z appropriately after these structs are set up.
AdjustLayersAndDepthFor3DImages(VkImageSubresourceLayers * subresource,VkOffset3D * offsetsStart,VkOffset3D * offsetsEnd)303 void AdjustLayersAndDepthFor3DImages(VkImageSubresourceLayers *subresource,
304                                      VkOffset3D *offsetsStart,
305                                      VkOffset3D *offsetsEnd)
306 {
307     // The struct must be set up as if the image was 2D array.
308     ASSERT(offsetsStart->z == 0);
309     ASSERT(offsetsEnd->z == 1);
310 
311     offsetsStart->z = subresource->baseArrayLayer;
312     offsetsEnd->z   = subresource->baseArrayLayer + subresource->layerCount;
313 
314     subresource->baseArrayLayer = 0;
315     subresource->layerCount     = 1;
316 }
317 
AllowAddingResolveAttachmentsToSubpass(const vk::RenderPassDesc & desc)318 bool AllowAddingResolveAttachmentsToSubpass(const vk::RenderPassDesc &desc)
319 {
320     // When in render-to-texture emulation mode, there are already resolve attachments present, and
321     // render pass compatibility rules would require packing those first before packing resolve
322     // attachments that may be added later (through glBlitFramebuffer).  While supporting that is
323     // not onerous, the code is simplified by not supporting this combination.  In practice no
324     // application should be mixing MSRTT textures and and truly multisampled textures in the same
325     // framebuffer (they could be using MSRTT for both).
326     //
327     // For the same reason, adding resolve attachments after the fact is disabled with YUV resolve.
328     return !desc.isRenderToTexture() && !desc.hasYUVResolveAttachment();
329 }
330 }  // anonymous namespace
331 
FramebufferVk(vk::Renderer * renderer,const gl::FramebufferState & state)332 FramebufferVk::FramebufferVk(vk::Renderer *renderer, const gl::FramebufferState &state)
333     : FramebufferImpl(state), mBackbuffer(nullptr), mActiveColorComponentMasksForClear(0)
334 {
335     if (mState.isDefault())
336     {
337         // These are immutable for system default framebuffer.
338         mCurrentFramebufferDesc.updateLayerCount(1);
339         mCurrentFramebufferDesc.updateIsMultiview(false);
340     }
341 
342     mIsCurrentFramebufferCached = !renderer->getFeatures().supportsImagelessFramebuffer.enabled;
343     mIsYUVResolve               = false;
344 }
345 
346 FramebufferVk::~FramebufferVk() = default;
347 
destroy(const gl::Context * context)348 void FramebufferVk::destroy(const gl::Context *context)
349 {
350     ContextVk *contextVk = vk::GetImpl(context);
351 
352     if (mFragmentShadingRateImage.valid())
353     {
354         vk::Renderer *renderer = contextVk->getRenderer();
355         mFragmentShadingRateImageView.release(renderer, mFragmentShadingRateImage.getResourceUse());
356         mFragmentShadingRateImage.releaseImage(renderer);
357     }
358 
359     releaseCurrentFramebuffer(contextVk);
360 }
361 
insertCache(ContextVk * contextVk,const vk::FramebufferDesc & desc,vk::FramebufferHelper && newFramebuffer)362 void FramebufferVk::insertCache(ContextVk *contextVk,
363                                 const vk::FramebufferDesc &desc,
364                                 vk::FramebufferHelper &&newFramebuffer)
365 {
366     // Add it into per share group cache
367     contextVk->getShareGroup()->getFramebufferCache().insert(contextVk, desc,
368                                                              std::move(newFramebuffer));
369 
370     // Create a refcounted cache key object and have each attachment keep a refcount to it so that
371     // it can be destroyed promptly if those attachments change.
372     const vk::SharedFramebufferCacheKey sharedFramebufferCacheKey =
373         vk::CreateSharedFramebufferCacheKey(desc);
374 
375     // Ask each attachment to hold a reference to the cache so that when any attachment is
376     // released, the cache can be destroyed.
377     const auto &colorRenderTargets = mRenderTargetCache.getColors();
378     for (size_t colorIndexGL : mState.getColorAttachmentsMask())
379     {
380         colorRenderTargets[colorIndexGL]->onNewFramebuffer(sharedFramebufferCacheKey);
381     }
382 
383     if (getDepthStencilRenderTarget())
384     {
385         getDepthStencilRenderTarget()->onNewFramebuffer(sharedFramebufferCacheKey);
386     }
387 }
388 
discard(const gl::Context * context,size_t count,const GLenum * attachments)389 angle::Result FramebufferVk::discard(const gl::Context *context,
390                                      size_t count,
391                                      const GLenum *attachments)
392 {
393     return invalidate(context, count, attachments);
394 }
395 
invalidate(const gl::Context * context,size_t count,const GLenum * attachments)396 angle::Result FramebufferVk::invalidate(const gl::Context *context,
397                                         size_t count,
398                                         const GLenum *attachments)
399 {
400     ContextVk *contextVk = vk::GetImpl(context);
401 
402     ANGLE_TRY(invalidateImpl(contextVk, count, attachments, false,
403                              getRotatedCompleteRenderArea(contextVk)));
404     return angle::Result::Continue;
405 }
406 
invalidateSub(const gl::Context * context,size_t count,const GLenum * attachments,const gl::Rectangle & area)407 angle::Result FramebufferVk::invalidateSub(const gl::Context *context,
408                                            size_t count,
409                                            const GLenum *attachments,
410                                            const gl::Rectangle &area)
411 {
412     ContextVk *contextVk = vk::GetImpl(context);
413 
414     const gl::Rectangle nonRotatedCompleteRenderArea = getNonRotatedCompleteRenderArea();
415     gl::Rectangle rotatedInvalidateArea;
416     RotateRectangle(contextVk->getRotationDrawFramebuffer(),
417                     contextVk->isViewportFlipEnabledForDrawFBO(),
418                     nonRotatedCompleteRenderArea.width, nonRotatedCompleteRenderArea.height, area,
419                     &rotatedInvalidateArea);
420 
421     // If invalidateSub() covers the whole framebuffer area, make it behave as invalidate().
422     // The invalidate area is clipped to the render area for use inside invalidateImpl.
423     const gl::Rectangle completeRenderArea = getRotatedCompleteRenderArea(contextVk);
424     if (ClipRectangle(rotatedInvalidateArea, completeRenderArea, &rotatedInvalidateArea) &&
425         rotatedInvalidateArea == completeRenderArea)
426     {
427         return invalidate(context, count, attachments);
428     }
429 
430     // If there are deferred clears, restage them.  syncState may have accumulated deferred clears,
431     // but if the framebuffer's attachments are used after this call not through the framebuffer,
432     // those clears wouldn't get flushed otherwise (for example as the destination of
433     // glCopyTex[Sub]Image, shader storage image, etc).
434     restageDeferredClears(contextVk);
435 
436     if (contextVk->hasActiveRenderPass() &&
437         rotatedInvalidateArea.encloses(contextVk->getStartedRenderPassCommands().getRenderArea()))
438     {
439         // Because the render pass's render area is within the invalidated area, it is fine for
440         // invalidateImpl() to use a storeOp of DONT_CARE (i.e. fine to not store the contents of
441         // the invalidated area).
442         ANGLE_TRY(invalidateImpl(contextVk, count, attachments, true, rotatedInvalidateArea));
443     }
444     else
445     {
446         ANGLE_VK_PERF_WARNING(
447             contextVk, GL_DEBUG_SEVERITY_LOW,
448             "InvalidateSubFramebuffer ignored due to area not covering the render area");
449     }
450 
451     return angle::Result::Continue;
452 }
453 
clear(const gl::Context * context,GLbitfield mask)454 angle::Result FramebufferVk::clear(const gl::Context *context, GLbitfield mask)
455 {
456     ANGLE_TRACE_EVENT0("gpu.angle", "FramebufferVk::clear");
457     ContextVk *contextVk = vk::GetImpl(context);
458 
459     bool clearColor   = IsMaskFlagSet(mask, static_cast<GLbitfield>(GL_COLOR_BUFFER_BIT));
460     bool clearDepth   = IsMaskFlagSet(mask, static_cast<GLbitfield>(GL_DEPTH_BUFFER_BIT));
461     bool clearStencil = IsMaskFlagSet(mask, static_cast<GLbitfield>(GL_STENCIL_BUFFER_BIT));
462     gl::DrawBufferMask clearColorBuffers;
463     if (clearColor)
464     {
465         clearColorBuffers = mState.getEnabledDrawBuffers();
466     }
467 
468     const VkClearColorValue &clearColorValue = contextVk->getClearColorValue().color;
469     const VkClearDepthStencilValue &clearDepthStencilValue =
470         contextVk->getClearDepthStencilValue().depthStencil;
471 
472     return clearImpl(context, clearColorBuffers, clearDepth, clearStencil, clearColorValue,
473                      clearDepthStencilValue);
474 }
475 
adjustFloatClearColorPrecision(const VkClearColorValue & color,const angle::Format & colorFormat)476 VkClearColorValue adjustFloatClearColorPrecision(const VkClearColorValue &color,
477                                                  const angle::Format &colorFormat)
478 {
479     // Truncate x to b bits: round(x * (2^b-1)) / (2^b-1)
480     // Implemented as floor(x * ((1 << b) - 1) + 0.5) / ((1 << b) - 1)
481 
482     float floatClearColorRed = color.float32[0];
483     GLuint targetRedBits     = colorFormat.redBits;
484     floatClearColorRed       = floor(floatClearColorRed * ((1 << targetRedBits) - 1) + 0.5f);
485     floatClearColorRed       = floatClearColorRed / ((1 << targetRedBits) - 1);
486 
487     float floatClearColorGreen = color.float32[1];
488     GLuint targetGreenBits     = colorFormat.greenBits;
489     floatClearColorGreen       = floor(floatClearColorGreen * ((1 << targetGreenBits) - 1) + 0.5f);
490     floatClearColorGreen       = floatClearColorGreen / ((1 << targetGreenBits) - 1);
491 
492     float floatClearColorBlue = color.float32[2];
493     GLuint targetBlueBits     = colorFormat.blueBits;
494     floatClearColorBlue       = floor(floatClearColorBlue * ((1 << targetBlueBits) - 1) + 0.5f);
495     floatClearColorBlue       = floatClearColorBlue / ((1 << targetBlueBits) - 1);
496 
497     float floatClearColorAlpha = color.float32[3];
498     GLuint targetAlphaBits     = colorFormat.alphaBits;
499     floatClearColorAlpha       = floor(floatClearColorAlpha * ((1 << targetAlphaBits) - 1) + 0.5f);
500     floatClearColorAlpha       = floatClearColorAlpha / ((1 << targetAlphaBits) - 1);
501 
502     VkClearColorValue adjustedClearColor = color;
503     adjustedClearColor.float32[0]        = floatClearColorRed;
504     adjustedClearColor.float32[1]        = floatClearColorGreen;
505     adjustedClearColor.float32[2]        = floatClearColorBlue;
506     adjustedClearColor.float32[3]        = floatClearColorAlpha;
507 
508     return adjustedClearColor;
509 }
510 
clearImpl(const gl::Context * context,gl::DrawBufferMask clearColorBuffers,bool clearDepth,bool clearStencil,const VkClearColorValue & clearColorValue,const VkClearDepthStencilValue & clearDepthStencilValue)511 angle::Result FramebufferVk::clearImpl(const gl::Context *context,
512                                        gl::DrawBufferMask clearColorBuffers,
513                                        bool clearDepth,
514                                        bool clearStencil,
515                                        const VkClearColorValue &clearColorValue,
516                                        const VkClearDepthStencilValue &clearDepthStencilValue)
517 {
518     ContextVk *contextVk = vk::GetImpl(context);
519 
520     const gl::Rectangle scissoredRenderArea = getRotatedScissoredRenderArea(contextVk);
521     if (scissoredRenderArea.width == 0 || scissoredRenderArea.height == 0)
522     {
523         restageDeferredClears(contextVk);
524         return angle::Result::Continue;
525     }
526 
527     // This function assumes that only enabled attachments are asked to be cleared.
528     ASSERT((clearColorBuffers & mState.getEnabledDrawBuffers()) == clearColorBuffers);
529     ASSERT(!clearDepth || mState.getDepthAttachment() != nullptr);
530     ASSERT(!clearStencil || mState.getStencilAttachment() != nullptr);
531 
532     gl::BlendStateExt::ColorMaskStorage::Type colorMasks = contextVk->getClearColorMasks();
533     bool clearColor                                      = clearColorBuffers.any();
534 
535     // When this function is called, there should always be something to clear.
536     ASSERT(clearColor || clearDepth || clearStencil);
537 
538     gl::DrawBuffersArray<VkClearColorValue> adjustedClearColorValues;
539     const gl::DrawBufferMask colorAttachmentMask = mState.getColorAttachmentsMask();
540     const auto &colorRenderTargets               = mRenderTargetCache.getColors();
541     bool anyAttachmentWithColorspaceOverride     = false;
542     for (size_t colorIndexGL = 0; colorIndexGL < colorAttachmentMask.size(); ++colorIndexGL)
543     {
544         if (colorAttachmentMask[colorIndexGL])
545         {
546             adjustedClearColorValues[colorIndexGL] = clearColorValue;
547 
548             RenderTargetVk *colorRenderTarget = colorRenderTargets[colorIndexGL];
549             ASSERT(colorRenderTarget);
550 
551             // If a rendertarget has colorspace overrides, we need to clear with a draw
552             // to make sure the colorspace override is honored.
553             anyAttachmentWithColorspaceOverride =
554                 anyAttachmentWithColorspaceOverride ||
555                 colorRenderTarget->hasColorspaceOverrideForWrite();
556 
557             if (colorRenderTarget->isYuvResolve())
558             {
559                 // OpenGLES spec says "clear color should be defined in yuv color space and so
560                 // floating point r, g, and b value will be mapped to corresponding y, u and v
561                 // value" https://registry.khronos.org/OpenGL/extensions/EXT/EXT_YUV_target.txt.
562                 // But vulkan spec says "Values in the G, B, and R channels of the color
563                 // attachment will be written to the Y, CB, and CR channels of the external
564                 // format image, respectively." So we have to adjust the component mapping from
565                 // GL order to vulkan order.
566                 adjustedClearColorValues[colorIndexGL].float32[0] = clearColorValue.float32[2];
567                 adjustedClearColorValues[colorIndexGL].float32[1] = clearColorValue.float32[0];
568                 adjustedClearColorValues[colorIndexGL].float32[2] = clearColorValue.float32[1];
569             }
570             else if (contextVk->getFeatures().adjustClearColorPrecision.enabled)
571             {
572                 const angle::FormatID colorRenderTargetFormat =
573                     colorRenderTarget->getImageForRenderPass().getActualFormatID();
574                 if (colorRenderTargetFormat == angle::FormatID::R5G5B5A1_UNORM)
575                 {
576                     // Temporary workaround for https://issuetracker.google.com/292282210 to avoid
577                     // dithering being automatically applied
578                     adjustedClearColorValues[colorIndexGL] = adjustFloatClearColorPrecision(
579                         clearColorValue, angle::Format::Get(colorRenderTargetFormat));
580                 }
581             }
582         }
583     }
584 
585     const uint8_t stencilMask =
586         static_cast<uint8_t>(contextVk->getState().getDepthStencilState().stencilWritemask);
587 
588     // The front-end should ensure we don't attempt to clear color if all channels are masked.
589     ASSERT(!clearColor || colorMasks != 0);
590     // The front-end should ensure we don't attempt to clear depth if depth write is disabled.
591     ASSERT(!clearDepth || contextVk->getState().getDepthStencilState().depthMask);
592     // The front-end should ensure we don't attempt to clear stencil if all bits are masked.
593     ASSERT(!clearStencil || stencilMask != 0);
594 
595     // Make sure to close the render pass now if in read-only depth/stencil feedback loop mode and
596     // depth/stencil is being cleared.
597     if (clearDepth || clearStencil)
598     {
599         ANGLE_TRY(contextVk->updateRenderPassDepthFeedbackLoopMode(
600             clearDepth ? UpdateDepthFeedbackLoopReason::Clear : UpdateDepthFeedbackLoopReason::None,
601             clearStencil ? UpdateDepthFeedbackLoopReason::Clear
602                          : UpdateDepthFeedbackLoopReason::None));
603     }
604 
605     const bool scissoredClear = scissoredRenderArea != getRotatedCompleteRenderArea(contextVk);
606 
607     // We use the draw path if scissored clear, or color or stencil are masked.  Note that depth
608     // clearing is already disabled if there's a depth mask.
609     const bool maskedClearColor = clearColor && (mActiveColorComponentMasksForClear & colorMasks) !=
610                                                     mActiveColorComponentMasksForClear;
611     const bool maskedClearStencil = clearStencil && stencilMask != 0xFF;
612 
613     bool clearColorWithDraw =
614         clearColor && (maskedClearColor || scissoredClear || anyAttachmentWithColorspaceOverride);
615     bool clearDepthWithDraw   = clearDepth && scissoredClear;
616     bool clearStencilWithDraw = clearStencil && (maskedClearStencil || scissoredClear);
617 
618     const bool isMidRenderPassClear =
619         contextVk->hasStartedRenderPassWithQueueSerial(mLastRenderPassQueueSerial) &&
620         !contextVk->getStartedRenderPassCommands().getCommandBuffer().empty();
621     if (isMidRenderPassClear)
622     {
623         // Emit debug-util markers for this mid-render-pass clear
624         ANGLE_TRY(
625             contextVk->handleGraphicsEventLog(rx::GraphicsEventCmdBuf::InRenderPassCmdBufQueryCmd));
626     }
627     else
628     {
629         ASSERT(!contextVk->hasActiveRenderPass() ||
630                contextVk->hasStartedRenderPassWithQueueSerial(mLastRenderPassQueueSerial));
631         // Emit debug-util markers for this outside-render-pass clear
632         ANGLE_TRY(
633             contextVk->handleGraphicsEventLog(rx::GraphicsEventCmdBuf::InOutsideCmdBufQueryCmd));
634     }
635 
636     const bool preferDrawOverClearAttachments =
637         contextVk->getFeatures().preferDrawClearOverVkCmdClearAttachments.enabled;
638 
639     // Merge current clears with the deferred clears, then proceed with only processing deferred
640     // clears.  This simplifies the clear paths such that they don't need to consider both the
641     // current and deferred clears.  Additionally, it avoids needing to undo an unresolve
642     // operation; say attachment A is deferred cleared and multisampled-render-to-texture
643     // attachment B is currently cleared.  Assuming a render pass needs to start (because for
644     // example attachment C needs to clear with a draw path), starting one with only deferred
645     // clears and then applying the current clears won't work as attachment B is unresolved, and
646     // there are no facilities to undo that.
647     if (preferDrawOverClearAttachments && isMidRenderPassClear)
648     {
649         // On buggy hardware, prefer to clear with a draw call instead of vkCmdClearAttachments.
650         // Note that it's impossible to have deferred clears in the middle of the render pass.
651         ASSERT(!mDeferredClears.any());
652 
653         clearColorWithDraw   = clearColor;
654         clearDepthWithDraw   = clearDepth;
655         clearStencilWithDraw = clearStencil;
656     }
657     else
658     {
659         gl::DrawBufferMask clearColorDrawBuffersMask;
660         if (clearColor && !clearColorWithDraw)
661         {
662             clearColorDrawBuffersMask = clearColorBuffers;
663         }
664 
665         mergeClearsWithDeferredClears(clearColorDrawBuffersMask, clearDepth && !clearDepthWithDraw,
666                                       clearStencil && !clearStencilWithDraw,
667                                       adjustedClearColorValues, clearDepthStencilValue);
668     }
669 
670     // If any deferred clears, we can further defer them, clear them with vkCmdClearAttachments or
671     // flush them if necessary.
672     if (mDeferredClears.any())
673     {
674         const bool clearAnyWithDraw =
675             clearColorWithDraw || clearDepthWithDraw || clearStencilWithDraw;
676 
677         bool isAnyAttachment3DWithoutAllLayers =
678             IsAnyAttachment3DWithoutAllLayers(mRenderTargetCache, mState.getColorAttachmentsMask(),
679                                               mCurrentFramebufferDesc.getLayerCount());
680 
681         // If we are in an active renderpass that has recorded commands and the framebuffer hasn't
682         // changed, inline the clear.
683         if (isMidRenderPassClear)
684         {
685             ANGLE_VK_PERF_WARNING(
686                 contextVk, GL_DEBUG_SEVERITY_LOW,
687                 "Clear effectively discarding previous draw call results. Suggest earlier Clear "
688                 "followed by masked color or depth/stencil draw calls instead, or "
689                 "glInvalidateFramebuffer to discard data instead");
690 
691             ASSERT(!preferDrawOverClearAttachments);
692 
693             // clearWithCommand will operate on deferred clears.
694             clearWithCommand(contextVk, scissoredRenderArea, ClearWithCommand::OptimizeWithLoadOp,
695                              &mDeferredClears);
696 
697             // clearWithCommand will clear only those attachments that have been used in the render
698             // pass, and removes them from mDeferredClears.  Any deferred clears that are left can
699             // be performed with a renderpass loadOp.
700             if (mDeferredClears.any())
701             {
702                 clearWithLoadOp(contextVk);
703             }
704         }
705         else
706         {
707             if (contextVk->hasActiveRenderPass())
708             {
709                 // Typically, clears are deferred such that it's impossible to have a render pass
710                 // opened without any additional commands recorded on it.  This is not true for some
711                 // corner cases, such as with 3D or external attachments.  In those cases, a clear
712                 // can open a render pass that's otherwise empty, and additional clears can continue
713                 // to be accumulated in the render pass loadOps.
714                 ASSERT(isAnyAttachment3DWithoutAllLayers || hasAnyExternalAttachments());
715                 clearWithLoadOp(contextVk);
716             }
717 
718             // This path will defer the current clears along with deferred clears.  This won't work
719             // if any attachment needs to be subsequently cleared with a draw call.  In that case,
720             // flush deferred clears, which will start a render pass with deferred clear values.
721             // The subsequent draw call will then operate on the cleared attachments.
722             //
723             // Additionally, if the framebuffer is layered, any attachment is 3D and it has a larger
724             // depth than the framebuffer layers, clears cannot be deferred.  This is because the
725             // clear may later need to be flushed with vkCmdClearColorImage, which cannot partially
726             // clear the 3D texture.  In that case, the clears are flushed immediately too.
727             //
728             // For external images such as from AHBs, the clears are not deferred so that they are
729             // definitely applied before the application uses them outside of the control of ANGLE.
730             if (clearAnyWithDraw || isAnyAttachment3DWithoutAllLayers ||
731                 hasAnyExternalAttachments())
732             {
733                 ANGLE_TRY(flushDeferredClears(contextVk));
734             }
735             else
736             {
737                 restageDeferredClears(contextVk);
738             }
739         }
740 
741         // If nothing left to clear, early out.
742         if (!clearAnyWithDraw)
743         {
744             ASSERT(mDeferredClears.empty());
745             return angle::Result::Continue;
746         }
747     }
748 
749     if (!clearColorWithDraw)
750     {
751         clearColorBuffers.reset();
752     }
753 
754     // If we reach here simply because the clear is scissored (as opposed to masked), use
755     // vkCmdClearAttachments to clear the attachments.  The attachments that are masked will
756     // continue to use a draw call.  For depth, vkCmdClearAttachments can always be used, and no
757     // shader/pipeline support would then be required (though this is pending removal of the
758     // preferDrawOverClearAttachments workaround).
759     //
760     // A potential optimization is to use loadOp=Clear for scissored clears, but care needs to be
761     // taken to either break the render pass on growRenderArea(), or to turn the op back to Load and
762     // revert to vkCmdClearAttachments.  This is not currently deemed necessary.
763     if (((clearColorBuffers.any() && !mEmulatedAlphaAttachmentMask.any() && !maskedClearColor) ||
764          clearDepthWithDraw || (clearStencilWithDraw && !maskedClearStencil)) &&
765         !preferDrawOverClearAttachments && !anyAttachmentWithColorspaceOverride)
766     {
767         if (!contextVk->hasActiveRenderPass())
768         {
769             // Start a new render pass if necessary to record the commands.
770             vk::RenderPassCommandBuffer *commandBuffer;
771             gl::Rectangle renderArea = getRenderArea(contextVk);
772             ANGLE_TRY(contextVk->startRenderPass(renderArea, &commandBuffer, nullptr));
773         }
774 
775         // Build clear values
776         vk::ClearValuesArray clears;
777         if (!maskedClearColor && !mEmulatedAlphaAttachmentMask.any())
778         {
779             VkClearValue colorClearValue = {};
780             for (size_t colorIndexGL : clearColorBuffers)
781             {
782                 colorClearValue.color = adjustedClearColorValues[colorIndexGL];
783                 clears.store(static_cast<uint32_t>(colorIndexGL), VK_IMAGE_ASPECT_COLOR_BIT,
784                              colorClearValue);
785             }
786             clearColorBuffers.reset();
787         }
788         VkImageAspectFlags dsAspectFlags = 0;
789         if (clearDepthWithDraw)
790         {
791             dsAspectFlags |= VK_IMAGE_ASPECT_DEPTH_BIT;
792             clearDepthWithDraw = false;
793         }
794         if (clearStencilWithDraw && !maskedClearStencil)
795         {
796             dsAspectFlags |= VK_IMAGE_ASPECT_STENCIL_BIT;
797             clearStencilWithDraw = false;
798         }
799         if (dsAspectFlags != 0)
800         {
801             VkClearValue dsClearValue = {};
802             dsClearValue.depthStencil = clearDepthStencilValue;
803             clears.store(vk::kUnpackedDepthIndex, dsAspectFlags, dsClearValue);
804         }
805 
806         clearWithCommand(contextVk, scissoredRenderArea, ClearWithCommand::Always, &clears);
807 
808         if (!clearColorBuffers.any() && !clearStencilWithDraw)
809         {
810             ASSERT(!clearDepthWithDraw);
811             return angle::Result::Continue;
812         }
813     }
814 
815     // The most costly clear mode is when we need to mask out specific color channels or stencil
816     // bits. This can only be done with a draw call.
817     return clearWithDraw(contextVk, scissoredRenderArea, clearColorBuffers, clearDepthWithDraw,
818                          clearStencilWithDraw, colorMasks, stencilMask, adjustedClearColorValues,
819                          clearDepthStencilValue);
820 }
821 
clearBufferfv(const gl::Context * context,GLenum buffer,GLint drawbuffer,const GLfloat * values)822 angle::Result FramebufferVk::clearBufferfv(const gl::Context *context,
823                                            GLenum buffer,
824                                            GLint drawbuffer,
825                                            const GLfloat *values)
826 {
827     VkClearValue clearValue = {};
828 
829     bool clearDepth = false;
830     gl::DrawBufferMask clearColorBuffers;
831 
832     if (buffer == GL_DEPTH)
833     {
834         clearDepth                    = true;
835         clearValue.depthStencil.depth = values[0];
836     }
837     else
838     {
839         clearColorBuffers.set(drawbuffer);
840         clearValue.color.float32[0] = values[0];
841         clearValue.color.float32[1] = values[1];
842         clearValue.color.float32[2] = values[2];
843         clearValue.color.float32[3] = values[3];
844     }
845 
846     return clearImpl(context, clearColorBuffers, clearDepth, false, clearValue.color,
847                      clearValue.depthStencil);
848 }
849 
clearBufferuiv(const gl::Context * context,GLenum buffer,GLint drawbuffer,const GLuint * values)850 angle::Result FramebufferVk::clearBufferuiv(const gl::Context *context,
851                                             GLenum buffer,
852                                             GLint drawbuffer,
853                                             const GLuint *values)
854 {
855     VkClearValue clearValue = {};
856 
857     gl::DrawBufferMask clearColorBuffers;
858     clearColorBuffers.set(drawbuffer);
859 
860     clearValue.color.uint32[0] = values[0];
861     clearValue.color.uint32[1] = values[1];
862     clearValue.color.uint32[2] = values[2];
863     clearValue.color.uint32[3] = values[3];
864 
865     return clearImpl(context, clearColorBuffers, false, false, clearValue.color,
866                      clearValue.depthStencil);
867 }
868 
clearBufferiv(const gl::Context * context,GLenum buffer,GLint drawbuffer,const GLint * values)869 angle::Result FramebufferVk::clearBufferiv(const gl::Context *context,
870                                            GLenum buffer,
871                                            GLint drawbuffer,
872                                            const GLint *values)
873 {
874     VkClearValue clearValue = {};
875 
876     bool clearStencil = false;
877     gl::DrawBufferMask clearColorBuffers;
878 
879     if (buffer == GL_STENCIL)
880     {
881         clearStencil                    = true;
882         clearValue.depthStencil.stencil = static_cast<uint8_t>(values[0]);
883     }
884     else
885     {
886         clearColorBuffers.set(drawbuffer);
887         clearValue.color.int32[0] = values[0];
888         clearValue.color.int32[1] = values[1];
889         clearValue.color.int32[2] = values[2];
890         clearValue.color.int32[3] = values[3];
891     }
892 
893     return clearImpl(context, clearColorBuffers, false, clearStencil, clearValue.color,
894                      clearValue.depthStencil);
895 }
896 
clearBufferfi(const gl::Context * context,GLenum buffer,GLint drawbuffer,GLfloat depth,GLint stencil)897 angle::Result FramebufferVk::clearBufferfi(const gl::Context *context,
898                                            GLenum buffer,
899                                            GLint drawbuffer,
900                                            GLfloat depth,
901                                            GLint stencil)
902 {
903     VkClearValue clearValue = {};
904 
905     clearValue.depthStencil.depth   = depth;
906     clearValue.depthStencil.stencil = static_cast<uint8_t>(stencil);
907 
908     return clearImpl(context, gl::DrawBufferMask(), true, true, clearValue.color,
909                      clearValue.depthStencil);
910 }
911 
getImplementationColorReadFormat(const gl::Context * context) const912 const gl::InternalFormat &FramebufferVk::getImplementationColorReadFormat(
913     const gl::Context *context) const
914 {
915     ContextVk *contextVk       = vk::GetImpl(context);
916     GLenum sizedFormat         = mState.getReadAttachment()->getFormat().info->sizedInternalFormat;
917     const vk::Format &vkFormat = contextVk->getRenderer()->getFormat(sizedFormat);
918     GLenum implFormat = vkFormat.getActualRenderableImageFormat().fboImplementationInternalFormat;
919     return gl::GetSizedInternalFormatInfo(implFormat);
920 }
921 
readPixels(const gl::Context * context,const gl::Rectangle & area,GLenum format,GLenum type,const gl::PixelPackState & pack,gl::Buffer * packBuffer,void * pixels)922 angle::Result FramebufferVk::readPixels(const gl::Context *context,
923                                         const gl::Rectangle &area,
924                                         GLenum format,
925                                         GLenum type,
926                                         const gl::PixelPackState &pack,
927                                         gl::Buffer *packBuffer,
928                                         void *pixels)
929 {
930     // Clip read area to framebuffer.
931     const gl::Extents &fbSize = getState().getReadPixelsAttachment(format)->getSize();
932     const gl::Rectangle fbRect(0, 0, fbSize.width, fbSize.height);
933     ContextVk *contextVk = vk::GetImpl(context);
934 
935     gl::Rectangle clippedArea;
936     if (!ClipRectangle(area, fbRect, &clippedArea))
937     {
938         // nothing to read
939         return angle::Result::Continue;
940     }
941 
942     // Flush any deferred clears.
943     ANGLE_TRY(flushDeferredClears(contextVk));
944 
945     GLuint outputSkipBytes = 0;
946     PackPixelsParams params;
947     ANGLE_TRY(vk::ImageHelper::GetReadPixelsParams(contextVk, pack, packBuffer, format, type, area,
948                                                    clippedArea, &params, &outputSkipBytes));
949 
950     bool flipY = contextVk->isViewportFlipEnabledForReadFBO();
951     switch (params.rotation = contextVk->getRotationReadFramebuffer())
952     {
953         case SurfaceRotation::Identity:
954             // Do not rotate gl_Position (surface matches the device's orientation):
955             if (flipY)
956             {
957                 params.area.y = fbRect.height - clippedArea.y - clippedArea.height;
958             }
959             break;
960         case SurfaceRotation::Rotated90Degrees:
961             // Rotate gl_Position 90 degrees:
962             params.area.x = clippedArea.y;
963             params.area.y =
964                 flipY ? clippedArea.x : fbRect.width - clippedArea.x - clippedArea.width;
965             std::swap(params.area.width, params.area.height);
966             break;
967         case SurfaceRotation::Rotated180Degrees:
968             // Rotate gl_Position 180 degrees:
969             params.area.x = fbRect.width - clippedArea.x - clippedArea.width;
970             params.area.y =
971                 flipY ? clippedArea.y : fbRect.height - clippedArea.y - clippedArea.height;
972             break;
973         case SurfaceRotation::Rotated270Degrees:
974             // Rotate gl_Position 270 degrees:
975             params.area.x = fbRect.height - clippedArea.y - clippedArea.height;
976             params.area.y =
977                 flipY ? fbRect.width - clippedArea.x - clippedArea.width : clippedArea.x;
978             std::swap(params.area.width, params.area.height);
979             break;
980         default:
981             UNREACHABLE();
982             break;
983     }
984     if (flipY)
985     {
986         params.reverseRowOrder = !params.reverseRowOrder;
987     }
988 
989     ANGLE_TRY(readPixelsImpl(contextVk, params.area, params, getReadPixelsAspectFlags(format),
990                              getReadPixelsRenderTarget(format),
991                              static_cast<uint8_t *>(pixels) + outputSkipBytes));
992     return angle::Result::Continue;
993 }
994 
getDepthStencilRenderTarget() const995 RenderTargetVk *FramebufferVk::getDepthStencilRenderTarget() const
996 {
997     return mRenderTargetCache.getDepthStencil();
998 }
999 
getColorDrawRenderTarget(size_t colorIndexGL) const1000 RenderTargetVk *FramebufferVk::getColorDrawRenderTarget(size_t colorIndexGL) const
1001 {
1002     RenderTargetVk *renderTarget = mRenderTargetCache.getColorDraw(mState, colorIndexGL);
1003     ASSERT(renderTarget && renderTarget->getImageForRenderPass().valid());
1004     return renderTarget;
1005 }
1006 
getColorReadRenderTarget() const1007 RenderTargetVk *FramebufferVk::getColorReadRenderTarget() const
1008 {
1009     RenderTargetVk *renderTarget = mRenderTargetCache.getColorRead(mState);
1010     ASSERT(renderTarget && renderTarget->getImageForRenderPass().valid());
1011     return renderTarget;
1012 }
1013 
getReadPixelsRenderTarget(GLenum format) const1014 RenderTargetVk *FramebufferVk::getReadPixelsRenderTarget(GLenum format) const
1015 {
1016     switch (format)
1017     {
1018         case GL_DEPTH_COMPONENT:
1019         case GL_STENCIL_INDEX_OES:
1020         case GL_DEPTH_STENCIL_OES:
1021             return getDepthStencilRenderTarget();
1022         default:
1023             return getColorReadRenderTarget();
1024     }
1025 }
1026 
getReadPixelsAspectFlags(GLenum format) const1027 VkImageAspectFlagBits FramebufferVk::getReadPixelsAspectFlags(GLenum format) const
1028 {
1029     switch (format)
1030     {
1031         case GL_DEPTH_COMPONENT:
1032             return VK_IMAGE_ASPECT_DEPTH_BIT;
1033         case GL_STENCIL_INDEX_OES:
1034             return VK_IMAGE_ASPECT_STENCIL_BIT;
1035         case GL_DEPTH_STENCIL_OES:
1036             return vk::IMAGE_ASPECT_DEPTH_STENCIL;
1037         default:
1038             return VK_IMAGE_ASPECT_COLOR_BIT;
1039     }
1040 }
1041 
blitWithCommand(ContextVk * contextVk,const gl::Rectangle & sourceArea,const gl::Rectangle & destArea,RenderTargetVk * readRenderTarget,RenderTargetVk * drawRenderTarget,GLenum filter,bool colorBlit,bool depthBlit,bool stencilBlit,bool flipX,bool flipY)1042 angle::Result FramebufferVk::blitWithCommand(ContextVk *contextVk,
1043                                              const gl::Rectangle &sourceArea,
1044                                              const gl::Rectangle &destArea,
1045                                              RenderTargetVk *readRenderTarget,
1046                                              RenderTargetVk *drawRenderTarget,
1047                                              GLenum filter,
1048                                              bool colorBlit,
1049                                              bool depthBlit,
1050                                              bool stencilBlit,
1051                                              bool flipX,
1052                                              bool flipY)
1053 {
1054     // Since blitRenderbufferRect is called for each render buffer that needs to be blitted,
1055     // it should never be the case that both color and depth/stencil need to be blitted at
1056     // at the same time.
1057     ASSERT(colorBlit != (depthBlit || stencilBlit));
1058 
1059     vk::ImageHelper *srcImage = &readRenderTarget->getImageForCopy();
1060     vk::ImageHelper *dstImage = &drawRenderTarget->getImageForWrite();
1061 
1062     VkImageAspectFlags imageAspectMask = srcImage->getAspectFlags();
1063     VkImageAspectFlags blitAspectMask  = imageAspectMask;
1064 
1065     // Remove depth or stencil aspects if they are not requested to be blitted.
1066     if (!depthBlit)
1067     {
1068         blitAspectMask &= ~VK_IMAGE_ASPECT_DEPTH_BIT;
1069     }
1070     if (!stencilBlit)
1071     {
1072         blitAspectMask &= ~VK_IMAGE_ASPECT_STENCIL_BIT;
1073     }
1074 
1075     vk::CommandBufferAccess access;
1076     access.onImageTransferRead(imageAspectMask, srcImage);
1077     access.onImageTransferWrite(drawRenderTarget->getLevelIndex(), 1,
1078                                 drawRenderTarget->getLayerIndex(), 1, imageAspectMask, dstImage);
1079     vk::OutsideRenderPassCommandBuffer *commandBuffer;
1080     ANGLE_TRY(contextVk->getOutsideRenderPassCommandBuffer(access, &commandBuffer));
1081 
1082     VkImageBlit blit               = {};
1083     blit.srcSubresource.aspectMask = blitAspectMask;
1084     blit.srcSubresource.mipLevel   = srcImage->toVkLevel(readRenderTarget->getLevelIndex()).get();
1085     blit.srcSubresource.baseArrayLayer = readRenderTarget->getLayerIndex();
1086     blit.srcSubresource.layerCount     = 1;
1087     blit.srcOffsets[0]                 = {sourceArea.x0(), sourceArea.y0(), 0};
1088     blit.srcOffsets[1]                 = {sourceArea.x1(), sourceArea.y1(), 1};
1089     blit.dstSubresource.aspectMask     = blitAspectMask;
1090     blit.dstSubresource.mipLevel = dstImage->toVkLevel(drawRenderTarget->getLevelIndex()).get();
1091     blit.dstSubresource.baseArrayLayer = drawRenderTarget->getLayerIndex();
1092     blit.dstSubresource.layerCount     = 1;
1093     blit.dstOffsets[0]                 = {destArea.x0(), destArea.y0(), 0};
1094     blit.dstOffsets[1]                 = {destArea.x1(), destArea.y1(), 1};
1095 
1096     // Note: vkCmdBlitImage doesn't actually work between 3D and 2D array images due to Vulkan valid
1097     // usage restrictions (https://gitlab.khronos.org/vulkan/vulkan/-/issues/3490), but drivers seem
1098     // to work as expected anyway.  ANGLE continues to use vkCmdBlitImage in that case.
1099 
1100     const bool isSrc3D = srcImage->getType() == VK_IMAGE_TYPE_3D;
1101     const bool isDst3D = dstImage->getType() == VK_IMAGE_TYPE_3D;
1102     if (isSrc3D)
1103     {
1104         AdjustLayersAndDepthFor3DImages(&blit.srcSubresource, &blit.srcOffsets[0],
1105                                         &blit.srcOffsets[1]);
1106     }
1107     if (isDst3D)
1108     {
1109         AdjustLayersAndDepthFor3DImages(&blit.dstSubresource, &blit.dstOffsets[0],
1110                                         &blit.dstOffsets[1]);
1111     }
1112 
1113     commandBuffer->blitImage(srcImage->getImage(), VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
1114                              dstImage->getImage(), VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &blit,
1115                              gl_vk::GetFilter(filter));
1116 
1117     return angle::Result::Continue;
1118 }
1119 
blit(const gl::Context * context,const gl::Rectangle & sourceAreaIn,const gl::Rectangle & destAreaIn,GLbitfield mask,GLenum filter)1120 angle::Result FramebufferVk::blit(const gl::Context *context,
1121                                   const gl::Rectangle &sourceAreaIn,
1122                                   const gl::Rectangle &destAreaIn,
1123                                   GLbitfield mask,
1124                                   GLenum filter)
1125 {
1126     ContextVk *contextVk   = vk::GetImpl(context);
1127     vk::Renderer *renderer = contextVk->getRenderer();
1128     UtilsVk &utilsVk       = contextVk->getUtils();
1129 
1130     // If any clears were picked up when syncing the read framebuffer (as the blit source), restage
1131     // them.  They correspond to attachments that are not used in the blit.  This will cause the
1132     // read framebuffer to become dirty, so the attachments will be synced again on the next command
1133     // that might be using them.
1134     const gl::State &glState              = contextVk->getState();
1135     const gl::Framebuffer *srcFramebuffer = glState.getReadFramebuffer();
1136     FramebufferVk *srcFramebufferVk       = vk::GetImpl(srcFramebuffer);
1137     if (srcFramebufferVk->mDeferredClears.any())
1138     {
1139         srcFramebufferVk->restageDeferredClearsForReadFramebuffer(contextVk);
1140     }
1141 
1142     // We can sometimes end up in a blit with some clear commands saved. Ensure all clear commands
1143     // are issued before we issue the blit command.
1144     ANGLE_TRY(flushDeferredClears(contextVk));
1145 
1146     const bool blitColorBuffer   = (mask & GL_COLOR_BUFFER_BIT) != 0;
1147     const bool blitDepthBuffer   = (mask & GL_DEPTH_BUFFER_BIT) != 0;
1148     const bool blitStencilBuffer = (mask & GL_STENCIL_BUFFER_BIT) != 0;
1149 
1150     // If a framebuffer contains a mixture of multisampled and multisampled-render-to-texture
1151     // attachments, this function could be simultaneously doing a blit on one attachment and resolve
1152     // on another.  For the most part, this means resolve semantics apply.  However, as the resolve
1153     // path cannot be taken for multisampled-render-to-texture attachments, the distinction of
1154     // whether resolve is done for each attachment or blit is made.
1155     const bool isColorResolve =
1156         blitColorBuffer &&
1157         srcFramebufferVk->getColorReadRenderTarget()->getImageForCopy().getSamples() > 1;
1158     const bool isDepthStencilResolve =
1159         (blitDepthBuffer || blitStencilBuffer) &&
1160         srcFramebufferVk->getDepthStencilRenderTarget()->getImageForCopy().getSamples() > 1;
1161     const bool isResolve = isColorResolve || isDepthStencilResolve;
1162 
1163     bool srcFramebufferFlippedY = contextVk->isViewportFlipEnabledForReadFBO();
1164     bool dstFramebufferFlippedY = contextVk->isViewportFlipEnabledForDrawFBO();
1165 
1166     gl::Rectangle sourceArea = sourceAreaIn;
1167     gl::Rectangle destArea   = destAreaIn;
1168 
1169     // Note: GLES (all 3.x versions) require source and destination area to be identical when
1170     // resolving.
1171     ASSERT(!isResolve ||
1172            (sourceArea.x == destArea.x && sourceArea.y == destArea.y &&
1173             sourceArea.width == destArea.width && sourceArea.height == destArea.height));
1174 
1175     gl::Rectangle srcFramebufferDimensions = srcFramebufferVk->getNonRotatedCompleteRenderArea();
1176     gl::Rectangle dstFramebufferDimensions = getNonRotatedCompleteRenderArea();
1177 
1178     // If the destination is flipped in either direction, we will flip the source instead so that
1179     // the destination area is always unflipped.
1180     sourceArea = sourceArea.flip(destArea.isReversedX(), destArea.isReversedY());
1181     destArea   = destArea.removeReversal();
1182 
1183     // Calculate the stretch factor prior to any clipping, as it needs to remain constant.
1184     const double stretch[2] = {
1185         std::abs(sourceArea.width / static_cast<double>(destArea.width)),
1186         std::abs(sourceArea.height / static_cast<double>(destArea.height)),
1187     };
1188 
1189     // Potentially make adjustments for pre-rotatation.  To handle various cases (e.g. clipping)
1190     // and to not interrupt the normal flow of the code, different adjustments are made in
1191     // different parts of the code.  These first adjustments are for whether or not to flip the
1192     // y-axis, and to note the overall rotation (regardless of whether it is the source or
1193     // destination that is rotated).
1194     SurfaceRotation srcFramebufferRotation = contextVk->getRotationReadFramebuffer();
1195     SurfaceRotation dstFramebufferRotation = contextVk->getRotationDrawFramebuffer();
1196     SurfaceRotation rotation               = SurfaceRotation::Identity;
1197     // Both the source and destination cannot be rotated (which would indicate both are the default
1198     // framebuffer (i.e. swapchain image).
1199     ASSERT((srcFramebufferRotation == SurfaceRotation::Identity) ||
1200            (dstFramebufferRotation == SurfaceRotation::Identity));
1201     EarlyAdjustFlipYForPreRotation(srcFramebufferRotation, &rotation, &srcFramebufferFlippedY);
1202     EarlyAdjustFlipYForPreRotation(dstFramebufferRotation, &rotation, &dstFramebufferFlippedY);
1203 
1204     // First, clip the source area to framebuffer.  That requires transforming the destination area
1205     // to match the clipped source.
1206     gl::Rectangle absSourceArea = sourceArea.removeReversal();
1207     gl::Rectangle clippedSourceArea;
1208     if (!gl::ClipRectangle(srcFramebufferDimensions, absSourceArea, &clippedSourceArea))
1209     {
1210         return angle::Result::Continue;
1211     }
1212 
1213     // Resize the destination area based on the new size of source.  Note again that stretch is
1214     // calculated as SrcDimension/DestDimension.
1215     gl::Rectangle srcClippedDestArea;
1216     if (isResolve)
1217     {
1218         // Source and destination areas are identical in resolve (except rotate it, if appropriate).
1219         srcClippedDestArea = clippedSourceArea;
1220         AdjustBlitAreaForPreRotation(dstFramebufferRotation, clippedSourceArea,
1221                                      dstFramebufferDimensions, &srcClippedDestArea);
1222     }
1223     else if (clippedSourceArea == absSourceArea)
1224     {
1225         // If there was no clipping, keep destination area as is (except rotate it, if appropriate).
1226         srcClippedDestArea = destArea;
1227         AdjustBlitAreaForPreRotation(dstFramebufferRotation, destArea, dstFramebufferDimensions,
1228                                      &srcClippedDestArea);
1229     }
1230     else
1231     {
1232         // Shift destination area's x0,y0,x1,y1 by as much as the source area's got shifted (taking
1233         // stretching into account).  Note that double is used as float doesn't have enough
1234         // precision near the end of int range.
1235         double x0Shift = std::round((clippedSourceArea.x - absSourceArea.x) / stretch[0]);
1236         double y0Shift = std::round((clippedSourceArea.y - absSourceArea.y) / stretch[1]);
1237         double x1Shift = std::round((absSourceArea.x1() - clippedSourceArea.x1()) / stretch[0]);
1238         double y1Shift = std::round((absSourceArea.y1() - clippedSourceArea.y1()) / stretch[1]);
1239 
1240         // If the source area was reversed in any direction, the shift should be applied in the
1241         // opposite direction as well.
1242         if (sourceArea.isReversedX())
1243         {
1244             std::swap(x0Shift, x1Shift);
1245         }
1246 
1247         if (sourceArea.isReversedY())
1248         {
1249             std::swap(y0Shift, y1Shift);
1250         }
1251 
1252         srcClippedDestArea.x = destArea.x0() + static_cast<int>(x0Shift);
1253         srcClippedDestArea.y = destArea.y0() + static_cast<int>(y0Shift);
1254         int x1               = destArea.x1() - static_cast<int>(x1Shift);
1255         int y1               = destArea.y1() - static_cast<int>(y1Shift);
1256 
1257         srcClippedDestArea.width  = x1 - srcClippedDestArea.x;
1258         srcClippedDestArea.height = y1 - srcClippedDestArea.y;
1259 
1260         // Rotate srcClippedDestArea if the destination is rotated
1261         if (dstFramebufferRotation != SurfaceRotation::Identity)
1262         {
1263             gl::Rectangle originalSrcClippedDestArea = srcClippedDestArea;
1264             AdjustBlitAreaForPreRotation(dstFramebufferRotation, originalSrcClippedDestArea,
1265                                          dstFramebufferDimensions, &srcClippedDestArea);
1266         }
1267     }
1268 
1269     // If framebuffers are flipped in Y, flip the source and destination area (which define the
1270     // transformation regardless of clipping), as well as the blit area (which is the clipped
1271     // destination area).
1272     if (srcFramebufferFlippedY)
1273     {
1274         sourceArea.y      = srcFramebufferDimensions.height - sourceArea.y;
1275         sourceArea.height = -sourceArea.height;
1276     }
1277     if (dstFramebufferFlippedY)
1278     {
1279         destArea.y      = dstFramebufferDimensions.height - destArea.y;
1280         destArea.height = -destArea.height;
1281 
1282         srcClippedDestArea.y =
1283             dstFramebufferDimensions.height - srcClippedDestArea.y - srcClippedDestArea.height;
1284     }
1285 
1286     bool flipX = sourceArea.isReversedX() != destArea.isReversedX();
1287     bool flipY = sourceArea.isReversedY() != destArea.isReversedY();
1288 
1289     // GLES doesn't allow flipping the parameters of glBlitFramebuffer if performing a resolve.
1290     ASSERT(!isResolve ||
1291            (flipX == false && flipY == (srcFramebufferFlippedY != dstFramebufferFlippedY)));
1292 
1293     // Again, transfer the destination flip to source, so destination is unflipped.  Note that
1294     // destArea was not reversed until the final possible Y-flip.
1295     ASSERT(!destArea.isReversedX());
1296     sourceArea = sourceArea.flip(false, destArea.isReversedY());
1297     destArea   = destArea.removeReversal();
1298 
1299     // Now that clipping and flipping is done, rotate certain values that will be used for
1300     // UtilsVk::BlitResolveParameters
1301     gl::Rectangle sourceAreaOld = sourceArea;
1302     gl::Rectangle destAreaOld   = destArea;
1303     if (srcFramebufferRotation == rotation)
1304     {
1305         AdjustBlitAreaForPreRotation(srcFramebufferRotation, sourceAreaOld,
1306                                      srcFramebufferDimensions, &sourceArea);
1307         AdjustDimensionsAndFlipForPreRotation(srcFramebufferRotation, &srcFramebufferDimensions,
1308                                               &flipX, &flipY);
1309     }
1310     SurfaceRotation rememberDestFramebufferRotation = dstFramebufferRotation;
1311     if (srcFramebufferRotation == SurfaceRotation::Rotated90Degrees)
1312     {
1313         dstFramebufferRotation = rotation;
1314     }
1315     AdjustBlitAreaForPreRotation(dstFramebufferRotation, destAreaOld, dstFramebufferDimensions,
1316                                  &destArea);
1317     dstFramebufferRotation = rememberDestFramebufferRotation;
1318 
1319     // Clip the destination area to the framebuffer size and scissor.  Note that we don't care
1320     // about the source area anymore.  The offset translation is done based on the original source
1321     // and destination rectangles.  The stretch factor is already calculated as well.
1322     gl::Rectangle blitArea;
1323     if (!gl::ClipRectangle(getRotatedScissoredRenderArea(contextVk), srcClippedDestArea, &blitArea))
1324     {
1325         return angle::Result::Continue;
1326     }
1327 
1328     bool noClip = blitArea == destArea && stretch[0] == 1.0f && stretch[1] == 1.0f;
1329     bool noFlip = !flipX && !flipY;
1330     bool disableFlippingBlitWithCommand =
1331         renderer->getFeatures().disableFlippingBlitWithCommand.enabled;
1332 
1333     UtilsVk::BlitResolveParameters commonParams;
1334     commonParams.srcOffset[0]           = sourceArea.x;
1335     commonParams.srcOffset[1]           = sourceArea.y;
1336     commonParams.dstOffset[0]           = destArea.x;
1337     commonParams.dstOffset[1]           = destArea.y;
1338     commonParams.rotatedOffsetFactor[0] = std::abs(sourceArea.width);
1339     commonParams.rotatedOffsetFactor[1] = std::abs(sourceArea.height);
1340     commonParams.stretch[0]             = static_cast<float>(stretch[0]);
1341     commonParams.stretch[1]             = static_cast<float>(stretch[1]);
1342     commonParams.srcExtents[0]          = srcFramebufferDimensions.width;
1343     commonParams.srcExtents[1]          = srcFramebufferDimensions.height;
1344     commonParams.blitArea               = blitArea;
1345     commonParams.linear                 = filter == GL_LINEAR && !isResolve;
1346     commonParams.flipX                  = flipX;
1347     commonParams.flipY                  = flipY;
1348     commonParams.rotation               = rotation;
1349 
1350     if (blitColorBuffer)
1351     {
1352         RenderTargetVk *readRenderTarget      = srcFramebufferVk->getColorReadRenderTarget();
1353         UtilsVk::BlitResolveParameters params = commonParams;
1354         params.srcLayer                       = readRenderTarget->getLayerIndex();
1355 
1356         // Multisampled images are not allowed to have mips.
1357         ASSERT(!isColorResolve || readRenderTarget->getLevelIndex() == gl::LevelIndex(0));
1358 
1359         // If there was no clipping and the format capabilities allow us, use Vulkan's builtin blit.
1360         // The reason clipping is prohibited in this path is that due to rounding errors, it would
1361         // be hard to guarantee the image stretching remains perfect.  That also allows us not to
1362         // have to transform back the destination clipping to source.
1363         //
1364         // Non-identity pre-rotation cases do not use Vulkan's builtin blit.  Additionally, blits
1365         // between 3D and non-3D-non-layer-0 images are forbidden (possibly due to an oversight:
1366         // https://gitlab.khronos.org/vulkan/vulkan/-/issues/3490)
1367         //
1368         // For simplicity, we either blit all render targets with a Vulkan command, or none.
1369         bool canBlitWithCommand =
1370             !isColorResolve && noClip && (noFlip || !disableFlippingBlitWithCommand) &&
1371             HasSrcBlitFeature(renderer, readRenderTarget) && rotation == SurfaceRotation::Identity;
1372 
1373         // If we need to reinterpret the colorspace of the read RenderTarget then the blit must be
1374         // done through a shader
1375         bool reinterpretsColorspace      = readRenderTarget->hasColorspaceOverrideForRead();
1376         bool areChannelsBlitCompatible   = true;
1377         bool areFormatsIdentical         = true;
1378         bool colorAttachmentAlreadyInUse = false;
1379         for (size_t colorIndexGL : mState.getEnabledDrawBuffers())
1380         {
1381             RenderTargetVk *drawRenderTarget = mRenderTargetCache.getColors()[colorIndexGL];
1382             canBlitWithCommand =
1383                 canBlitWithCommand && HasDstBlitFeature(renderer, drawRenderTarget);
1384             areChannelsBlitCompatible =
1385                 areChannelsBlitCompatible &&
1386                 AreSrcAndDstColorChannelsBlitCompatible(readRenderTarget, drawRenderTarget);
1387             areFormatsIdentical = areFormatsIdentical &&
1388                                   AreSrcAndDstFormatsIdentical(readRenderTarget, drawRenderTarget);
1389 
1390             // If any color attachment of the draw framebuffer was already in use in the currently
1391             // started renderpass, don't reuse the renderpass for blit.
1392             colorAttachmentAlreadyInUse =
1393                 colorAttachmentAlreadyInUse || contextVk->isRenderPassStartedAndUsesImage(
1394                                                    drawRenderTarget->getImageForRenderPass());
1395 
1396             // If we need to reinterpret the colorspace of the draw RenderTarget then the blit must
1397             // be done through a shader
1398             reinterpretsColorspace =
1399                 reinterpretsColorspace || drawRenderTarget->hasColorspaceOverrideForWrite();
1400         }
1401 
1402         // Now that all flipping is done, adjust the offsets for resolve and prerotation
1403         if (isColorResolve)
1404         {
1405             AdjustBlitResolveParametersForResolve(sourceArea, destArea, &params);
1406         }
1407         AdjustBlitResolveParametersForPreRotation(rotation, srcFramebufferRotation, &params);
1408 
1409         if (canBlitWithCommand && areChannelsBlitCompatible && !reinterpretsColorspace)
1410         {
1411             for (size_t colorIndexGL : mState.getEnabledDrawBuffers())
1412             {
1413                 RenderTargetVk *drawRenderTarget = mRenderTargetCache.getColors()[colorIndexGL];
1414                 ANGLE_TRY(blitWithCommand(contextVk, sourceArea, destArea, readRenderTarget,
1415                                           drawRenderTarget, filter, true, false, false, flipX,
1416                                           flipY));
1417             }
1418         }
1419         // If we're not flipping or rotating, use Vulkan's builtin resolve.
1420         else if (isColorResolve && !flipX && !flipY && areChannelsBlitCompatible &&
1421                  areFormatsIdentical && rotation == SurfaceRotation::Identity &&
1422                  !reinterpretsColorspace)
1423         {
1424             // Resolving with a subpass resolve attachment has a few restrictions:
1425             // 1.) glBlitFramebuffer() needs to copy the read color attachment to all enabled
1426             // attachments in the draw framebuffer, but Vulkan requires a 1:1 relationship for
1427             // multisample attachments to resolve attachments in the render pass subpass.
1428             // Due to this, we currently only support using resolve attachments when there is a
1429             // single draw attachment enabled.
1430             // 2.) Using a subpass resolve attachment relies on using the render pass that performs
1431             // the draw to still be open, so it can be updated to use the resolve attachment to draw
1432             // into. If there's no render pass with commands, then the multisampled render pass is
1433             // already done and whose data is already flushed from the tile (in a tile-based
1434             // renderer), so there's no chance for the resolve attachment to take advantage of the
1435             // data already being present in the tile.
1436 
1437             // Additionally, when resolving with a resolve attachment, the src and destination
1438             // offsets must match, the render area must match the resolve area, and there should be
1439             // no flipping or rotation.  Fortunately, in GLES the blit source and destination areas
1440             // are already required to be identical.
1441             ASSERT(params.srcOffset[0] == params.dstOffset[0] &&
1442                    params.srcOffset[1] == params.dstOffset[1]);
1443             bool canResolveWithSubpass = mState.getEnabledDrawBuffers().count() == 1 &&
1444                                          mCurrentFramebufferDesc.getLayerCount() == 1 &&
1445                                          contextVk->hasStartedRenderPassWithQueueSerial(
1446                                              srcFramebufferVk->getLastRenderPassQueueSerial()) &&
1447                                          !colorAttachmentAlreadyInUse;
1448 
1449             if (canResolveWithSubpass)
1450             {
1451                 const vk::RenderPassCommandBufferHelper &renderPassCommands =
1452                     contextVk->getStartedRenderPassCommands();
1453                 const vk::RenderPassDesc &renderPassDesc = renderPassCommands.getRenderPassDesc();
1454 
1455                 // Make sure that:
1456                 // - The blit and render areas are identical
1457                 // - There is no resolve attachment for the corresponding index already
1458                 // Additionally, disable the optimization for a few corner cases that are
1459                 // unrealistic and inconvenient.
1460                 const uint32_t readColorIndexGL = srcFramebuffer->getState().getReadIndex();
1461                 canResolveWithSubpass =
1462                     blitArea == renderPassCommands.getRenderArea() &&
1463                     !renderPassDesc.hasColorResolveAttachment(readColorIndexGL) &&
1464                     AllowAddingResolveAttachmentsToSubpass(renderPassDesc);
1465             }
1466 
1467             if (canResolveWithSubpass)
1468             {
1469                 ANGLE_TRY(resolveColorWithSubpass(contextVk, params));
1470             }
1471             else
1472             {
1473                 ANGLE_TRY(resolveColorWithCommand(contextVk, params,
1474                                                   &readRenderTarget->getImageForCopy()));
1475             }
1476         }
1477         else
1478         {
1479             // Otherwise use a shader to do blit or resolve.
1480 
1481             // Flush the render pass, which may incur a vkQueueSubmit, before taking any views.
1482             // Otherwise the view serials would not reflect the render pass they are really used in.
1483             // http://crbug.com/1272266#c22
1484             ANGLE_TRY(
1485                 contextVk->flushCommandsAndEndRenderPass(RenderPassClosureReason::PrepareForBlit));
1486 
1487             const vk::ImageView *copyImageView = nullptr;
1488             ANGLE_TRY(readRenderTarget->getCopyImageView(contextVk, &copyImageView));
1489             ANGLE_TRY(utilsVk.colorBlitResolve(
1490                 contextVk, this, &readRenderTarget->getImageForCopy(), copyImageView, params));
1491         }
1492     }
1493 
1494     if (blitDepthBuffer || blitStencilBuffer)
1495     {
1496         RenderTargetVk *readRenderTarget      = srcFramebufferVk->getDepthStencilRenderTarget();
1497         RenderTargetVk *drawRenderTarget      = mRenderTargetCache.getDepthStencil();
1498         UtilsVk::BlitResolveParameters params = commonParams;
1499         params.srcLayer                       = readRenderTarget->getLayerIndex();
1500 
1501         // Multisampled images are not allowed to have mips.
1502         ASSERT(!isDepthStencilResolve || readRenderTarget->getLevelIndex() == gl::LevelIndex(0));
1503 
1504         // Similarly, only blit if there's been no clipping or rotating.
1505         bool canBlitWithCommand =
1506             !isDepthStencilResolve && noClip && (noFlip || !disableFlippingBlitWithCommand) &&
1507             HasSrcBlitFeature(renderer, readRenderTarget) &&
1508             HasDstBlitFeature(renderer, drawRenderTarget) && rotation == SurfaceRotation::Identity;
1509         bool areChannelsBlitCompatible =
1510             AreSrcAndDstDepthStencilChannelsBlitCompatible(readRenderTarget, drawRenderTarget);
1511 
1512         // glBlitFramebuffer requires that depth/stencil blits have matching formats.
1513         ASSERT(AreSrcAndDstFormatsIdentical(readRenderTarget, drawRenderTarget));
1514 
1515         if (canBlitWithCommand && areChannelsBlitCompatible)
1516         {
1517             ANGLE_TRY(blitWithCommand(contextVk, sourceArea, destArea, readRenderTarget,
1518                                       drawRenderTarget, filter, false, blitDepthBuffer,
1519                                       blitStencilBuffer, flipX, flipY));
1520         }
1521         else
1522         {
1523             vk::ImageHelper *depthStencilImage = &readRenderTarget->getImageForCopy();
1524 
1525             VkImageAspectFlags resolveAspects = 0;
1526             if (blitDepthBuffer)
1527             {
1528                 resolveAspects |= VK_IMAGE_ASPECT_DEPTH_BIT;
1529             }
1530             if (blitStencilBuffer)
1531             {
1532                 resolveAspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
1533             }
1534 
1535             // See comment on canResolveWithSubpass for the color path.
1536             bool canResolveWithSubpass =
1537                 isDepthStencilResolve &&
1538                 !renderer->getFeatures().disableDepthStencilResolveThroughAttachment.enabled &&
1539                 areChannelsBlitCompatible && mCurrentFramebufferDesc.getLayerCount() == 1 &&
1540                 contextVk->hasStartedRenderPassWithQueueSerial(
1541                     srcFramebufferVk->getLastRenderPassQueueSerial()) &&
1542                 !contextVk->isRenderPassStartedAndUsesImage(
1543                     drawRenderTarget->getImageForRenderPass()) &&
1544                 noFlip && rotation == SurfaceRotation::Identity;
1545 
1546             if (canResolveWithSubpass)
1547             {
1548                 const vk::RenderPassCommandBufferHelper &renderPassCommands =
1549                     contextVk->getStartedRenderPassCommands();
1550                 const vk::RenderPassDesc &renderPassDesc = renderPassCommands.getRenderPassDesc();
1551 
1552                 const VkImageAspectFlags depthStencilImageAspects =
1553                     depthStencilImage->getAspectFlags();
1554                 const bool resolvesAllAspects =
1555                     (resolveAspects & depthStencilImageAspects) == depthStencilImageAspects;
1556 
1557                 // Make sure that:
1558                 // - The blit and render areas are identical
1559                 // - There is no resolve attachment already
1560                 // Additionally, disable the optimization for a few corner cases that are
1561                 // unrealistic and inconvenient.
1562                 //
1563                 // Note: currently, if two separate `glBlitFramebuffer` calls are made for each
1564                 // aspect, only the first one is optimized as a resolve attachment.  Applications
1565                 // should use one `glBlitFramebuffer` call with both aspects if they want to resolve
1566                 // both.
1567                 canResolveWithSubpass =
1568                     blitArea == renderPassCommands.getRenderArea() &&
1569                     (resolvesAllAspects ||
1570                      renderer->getFeatures().supportsDepthStencilIndependentResolveNone.enabled) &&
1571                     !renderPassDesc.hasDepthStencilResolveAttachment() &&
1572                     AllowAddingResolveAttachmentsToSubpass(renderPassDesc);
1573             }
1574 
1575             if (canResolveWithSubpass)
1576             {
1577                 ANGLE_TRY(resolveDepthStencilWithSubpass(contextVk, params, resolveAspects));
1578             }
1579             else
1580             {
1581                 // See comment for the draw-based color blit.  The render pass must be flushed
1582                 // before creating the views.
1583                 ANGLE_TRY(contextVk->flushCommandsAndEndRenderPass(
1584                     RenderPassClosureReason::PrepareForBlit));
1585 
1586                 // Now that all flipping is done, adjust the offsets for resolve and prerotation
1587                 if (isDepthStencilResolve)
1588                 {
1589                     AdjustBlitResolveParametersForResolve(sourceArea, destArea, &params);
1590                 }
1591                 AdjustBlitResolveParametersForPreRotation(rotation, srcFramebufferRotation,
1592                                                           &params);
1593 
1594                 // Get depth- and stencil-only views for reading.
1595                 const vk::ImageView *depthView   = nullptr;
1596                 const vk::ImageView *stencilView = nullptr;
1597 
1598                 if (blitDepthBuffer)
1599                 {
1600                     ANGLE_TRY(readRenderTarget->getDepthOrStencilImageViewForCopy(
1601                         contextVk, VK_IMAGE_ASPECT_DEPTH_BIT, &depthView));
1602                 }
1603 
1604                 if (blitStencilBuffer)
1605                 {
1606                     ANGLE_TRY(readRenderTarget->getDepthOrStencilImageViewForCopy(
1607                         contextVk, VK_IMAGE_ASPECT_STENCIL_BIT, &stencilView));
1608                 }
1609 
1610                 // If shader stencil export is not possible, defer stencil blit/resolve to another
1611                 // pass.
1612                 const bool hasShaderStencilExport =
1613                     renderer->getFeatures().supportsShaderStencilExport.enabled;
1614 
1615                 // Blit depth. If shader stencil export is present, blit stencil as well.
1616                 if (blitDepthBuffer || (blitStencilBuffer && hasShaderStencilExport))
1617                 {
1618                     ANGLE_TRY(utilsVk.depthStencilBlitResolve(
1619                         contextVk, this, depthStencilImage, depthView,
1620                         hasShaderStencilExport ? stencilView : nullptr, params));
1621                 }
1622 
1623                 // If shader stencil export is not present, blit stencil through a different path.
1624                 if (blitStencilBuffer && !hasShaderStencilExport)
1625                 {
1626                     ANGLE_VK_PERF_WARNING(
1627                         contextVk, GL_DEBUG_SEVERITY_LOW,
1628                         "Inefficient BlitFramebuffer operation on the stencil aspect "
1629                         "due to lack of shader stencil export support");
1630                     ANGLE_TRY(utilsVk.stencilBlitResolveNoShaderExport(
1631                         contextVk, this, depthStencilImage, stencilView, params));
1632                 }
1633             }
1634         }
1635     }
1636 
1637     return angle::Result::Continue;
1638 }
1639 
releaseCurrentFramebuffer(ContextVk * contextVk)1640 void FramebufferVk::releaseCurrentFramebuffer(ContextVk *contextVk)
1641 {
1642     if (mIsCurrentFramebufferCached)
1643     {
1644         mCurrentFramebuffer.release();
1645     }
1646     else
1647     {
1648         contextVk->addGarbage(&mCurrentFramebuffer);
1649     }
1650 }
1651 
updateLayerCount()1652 void FramebufferVk::updateLayerCount()
1653 {
1654     uint32_t layerCount = std::numeric_limits<uint32_t>::max();
1655 
1656     // Color attachments.
1657     const auto &colorRenderTargets = mRenderTargetCache.getColors();
1658     for (size_t colorIndexGL : mState.getColorAttachmentsMask())
1659     {
1660         RenderTargetVk *colorRenderTarget = colorRenderTargets[colorIndexGL];
1661         ASSERT(colorRenderTarget);
1662         layerCount = std::min(layerCount, colorRenderTarget->getLayerCount());
1663     }
1664 
1665     // Depth/stencil attachment.
1666     RenderTargetVk *depthStencilRenderTarget = getDepthStencilRenderTarget();
1667     if (depthStencilRenderTarget)
1668     {
1669         layerCount = std::min(layerCount, depthStencilRenderTarget->getLayerCount());
1670     }
1671 
1672     if (layerCount == std::numeric_limits<uint32_t>::max())
1673     {
1674         layerCount = mState.getDefaultLayers();
1675     }
1676 
1677     // While layer count and view count are mutually exclusive, they result in different render
1678     // passes (and thus framebuffers).  For multiview, layer count is set to view count and a flag
1679     // signifies that the framebuffer is multiview (as opposed to layered).
1680     const bool isMultiview = mState.isMultiview();
1681     if (isMultiview)
1682     {
1683         layerCount = mState.getNumViews();
1684     }
1685 
1686     mCurrentFramebufferDesc.updateLayerCount(layerCount);
1687     mCurrentFramebufferDesc.updateIsMultiview(isMultiview);
1688 }
1689 
ensureFragmentShadingRateImageAndViewInitialized(ContextVk * contextVk,const uint32_t fragmentShadingRateAttachmentWidth,const uint32_t fragmentShadingRateAttachmentHeight)1690 angle::Result FramebufferVk::ensureFragmentShadingRateImageAndViewInitialized(
1691     ContextVk *contextVk,
1692     const uint32_t fragmentShadingRateAttachmentWidth,
1693     const uint32_t fragmentShadingRateAttachmentHeight)
1694 {
1695     vk::Renderer *renderer = contextVk->getRenderer();
1696 
1697     // Release current valid image iff attachment extents need to change.
1698     if (mFragmentShadingRateImage.valid() &&
1699         (mFragmentShadingRateImage.getExtents().width != fragmentShadingRateAttachmentWidth ||
1700          mFragmentShadingRateImage.getExtents().height != fragmentShadingRateAttachmentHeight))
1701     {
1702         mFragmentShadingRateImageView.release(renderer, mFragmentShadingRateImage.getResourceUse());
1703         mFragmentShadingRateImage.releaseImage(renderer);
1704     }
1705 
1706     if (!mFragmentShadingRateImage.valid())
1707     {
1708         VkImageUsageFlags imageUsageFlags =
1709             VK_IMAGE_USAGE_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR |
1710             VK_IMAGE_USAGE_TRANSFER_DST_BIT;
1711         // Add storage usage iff we intend to generate data using compute shader
1712         if (!contextVk->getFeatures().generateFragmentShadingRateAttchementWithCpu.enabled)
1713         {
1714             imageUsageFlags |= VK_IMAGE_USAGE_STORAGE_BIT;
1715         }
1716 
1717         ANGLE_TRY(mFragmentShadingRateImage.init(
1718             contextVk, gl::TextureType::_2D,
1719             VkExtent3D{fragmentShadingRateAttachmentWidth, fragmentShadingRateAttachmentHeight, 1},
1720             renderer->getFormat(angle::FormatID::R8_UINT), 1, imageUsageFlags, gl::LevelIndex(0), 1,
1721             1, false, contextVk->getProtectionType() == vk::ProtectionType::Protected));
1722 
1723         ANGLE_TRY(contextVk->initImageAllocation(
1724             &mFragmentShadingRateImage, false, renderer->getMemoryProperties(),
1725             VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, vk::MemoryAllocationType::TextureImage));
1726 
1727         mFragmentShadingRateImageView.init(renderer);
1728         ANGLE_TRY(mFragmentShadingRateImageView.initFragmentShadingRateView(
1729             contextVk, &mFragmentShadingRateImage));
1730     }
1731 
1732     return angle::Result::Continue;
1733 }
1734 
generateFragmentShadingRateWithCPU(ContextVk * contextVk,const uint32_t fragmentShadingRateWidth,const uint32_t fragmentShadingRateHeight,const uint32_t fragmentShadingRateBlockWidth,const uint32_t fragmentShadingRateBlockHeight,const uint32_t foveatedAttachmentWidth,const uint32_t foveatedAttachmentHeight,const std::vector<gl::FocalPoint> & activeFocalPoints)1735 angle::Result FramebufferVk::generateFragmentShadingRateWithCPU(
1736     ContextVk *contextVk,
1737     const uint32_t fragmentShadingRateWidth,
1738     const uint32_t fragmentShadingRateHeight,
1739     const uint32_t fragmentShadingRateBlockWidth,
1740     const uint32_t fragmentShadingRateBlockHeight,
1741     const uint32_t foveatedAttachmentWidth,
1742     const uint32_t foveatedAttachmentHeight,
1743     const std::vector<gl::FocalPoint> &activeFocalPoints)
1744 {
1745     // Fill in image with fragment shading rate data
1746     size_t bufferSize                   = fragmentShadingRateWidth * fragmentShadingRateHeight;
1747     VkBufferCreateInfo bufferCreateInfo = {};
1748     bufferCreateInfo.sType              = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
1749     bufferCreateInfo.size               = bufferSize;
1750     bufferCreateInfo.usage              = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
1751     bufferCreateInfo.sharingMode        = VK_SHARING_MODE_EXCLUSIVE;
1752     vk::RendererScoped<vk::BufferHelper> stagingBuffer(contextVk->getRenderer());
1753     vk::BufferHelper *buffer = &stagingBuffer.get();
1754     ANGLE_TRY(buffer->init(contextVk, bufferCreateInfo, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT));
1755     uint8_t *mappedBuffer;
1756     ANGLE_TRY(buffer->map(contextVk, &mappedBuffer));
1757     uint8_t val = 0;
1758     memset(mappedBuffer, 0, bufferSize);
1759 
1760     // The spec requires min_pixel_density to be computed thusly -
1761     //
1762     // min_pixel_density=0.;
1763     // for(int i=0;i<focalPointsPerLayer;++i)
1764     // {
1765     //     focal_point_density = 1./max((focalX[i]-px)^2*gainX[i]^2+
1766     //                         (focalY[i]-py)^2*gainY[i]^2-foveaArea[i],1.);
1767     //
1768     //     min_pixel_density=max(min_pixel_density,focal_point_density);
1769     // }
1770     float minPixelDensity   = 0.0f;
1771     float focalPointDensity = 0.0f;
1772     for (uint32_t y = 0; y < fragmentShadingRateHeight; y++)
1773     {
1774         for (uint32_t x = 0; x < fragmentShadingRateWidth; x++)
1775         {
1776             minPixelDensity = 0.0f;
1777             float px =
1778                 (static_cast<float>(x) * fragmentShadingRateBlockWidth / foveatedAttachmentWidth -
1779                  0.5f) *
1780                 2.0f;
1781             float py =
1782                 (static_cast<float>(y) * fragmentShadingRateBlockHeight / foveatedAttachmentHeight -
1783                  0.5f) *
1784                 2.0f;
1785             focalPointDensity = 0.0f;
1786             for (const gl::FocalPoint &focalPoint : activeFocalPoints)
1787             {
1788                 float density = 1.0f / std::max(std::pow(focalPoint.focalX - px, 2.0f) *
1789                                                         std::pow(focalPoint.gainX, 2.0f) +
1790                                                     std::pow(focalPoint.focalY - py, 2.0f) *
1791                                                         std::pow(focalPoint.gainY, 2.0f) -
1792                                                     focalPoint.foveaArea,
1793                                                 1.0f);
1794 
1795                 // When focal points are overlapping choose the highest quality of all
1796                 if (density > focalPointDensity)
1797                 {
1798                     focalPointDensity = density;
1799                 }
1800             }
1801             minPixelDensity = std::max(minPixelDensity, focalPointDensity);
1802 
1803             // https://docs.vulkan.org/spec/latest/chapters/primsrast.html#primsrast-fragment-shading-rate-attachment
1804             //
1805             // w = 2^((texel/4) & 3)
1806             // h = 2^(texel & 3)
1807             // `texel` would then be => log2(w) << 2 | log2(h).
1808             //
1809             // 1) The supported shading rates are - 1x1, 1x2, 2x1, 2x2
1810             // 2) log2(1) == 0, log2(2) == 1
1811             if (minPixelDensity > 0.75f)
1812             {
1813                 // Use shading rate 1x1
1814                 val = 0;
1815             }
1816             else if (minPixelDensity > 0.5f)
1817             {
1818                 // Use shading rate 2x1
1819                 val = (1 << 2);
1820             }
1821             else
1822             {
1823                 // Use shading rate 2x2
1824                 val = (1 << 2) | 1;
1825             }
1826             mappedBuffer[y * fragmentShadingRateWidth + x] = val;
1827         }
1828     }
1829 
1830     ANGLE_TRY(buffer->flush(contextVk->getRenderer(), 0, buffer->getSize()));
1831     buffer->unmap(contextVk->getRenderer());
1832     // copy data from staging buffer to image
1833     vk::CommandBufferAccess access;
1834     access.onBufferTransferRead(buffer);
1835     access.onImageTransferWrite(gl::LevelIndex(0), 1, 0, 1, VK_IMAGE_ASPECT_COLOR_BIT,
1836                                 &mFragmentShadingRateImage);
1837     vk::OutsideRenderPassCommandBuffer *dataUpload;
1838     ANGLE_TRY(contextVk->getOutsideRenderPassCommandBuffer(access, &dataUpload));
1839     VkBufferImageCopy copy           = {};
1840     copy.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
1841     copy.imageSubresource.layerCount = 1;
1842     copy.imageExtent.depth           = 1;
1843     copy.imageExtent.width           = fragmentShadingRateWidth;
1844     copy.imageExtent.height          = fragmentShadingRateHeight;
1845     dataUpload->copyBufferToImage(buffer->getBuffer().getHandle(),
1846                                   mFragmentShadingRateImage.getImage(),
1847                                   VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &copy);
1848 
1849     return angle::Result::Continue;
1850 }
1851 
generateFragmentShadingRateWithCompute(ContextVk * contextVk,const uint32_t fragmentShadingRateWidth,const uint32_t fragmentShadingRateHeight,const uint32_t fragmentShadingRateBlockWidth,const uint32_t fragmentShadingRateBlockHeight,const uint32_t foveatedAttachmentWidth,const uint32_t foveatedAttachmentHeight,const std::vector<gl::FocalPoint> & activeFocalPoints)1852 angle::Result FramebufferVk::generateFragmentShadingRateWithCompute(
1853     ContextVk *contextVk,
1854     const uint32_t fragmentShadingRateWidth,
1855     const uint32_t fragmentShadingRateHeight,
1856     const uint32_t fragmentShadingRateBlockWidth,
1857     const uint32_t fragmentShadingRateBlockHeight,
1858     const uint32_t foveatedAttachmentWidth,
1859     const uint32_t foveatedAttachmentHeight,
1860     const std::vector<gl::FocalPoint> &activeFocalPoints)
1861 {
1862     ASSERT(activeFocalPoints.size() < gl::IMPLEMENTATION_MAX_FOCAL_POINTS);
1863 
1864     UtilsVk::GenerateFragmentShadingRateParameters shadingRateParams;
1865     shadingRateParams.textureWidth          = foveatedAttachmentWidth;
1866     shadingRateParams.textureHeight         = foveatedAttachmentHeight;
1867     shadingRateParams.attachmentBlockWidth  = fragmentShadingRateBlockWidth;
1868     shadingRateParams.attachmentBlockHeight = fragmentShadingRateBlockHeight;
1869     shadingRateParams.attachmentWidth       = fragmentShadingRateWidth;
1870     shadingRateParams.attachmentHeight      = fragmentShadingRateHeight;
1871     shadingRateParams.numFocalPoints        = 0;
1872 
1873     for (const gl::FocalPoint &focalPoint : activeFocalPoints)
1874     {
1875         ASSERT(focalPoint.valid());
1876         shadingRateParams.focalPoints[shadingRateParams.numFocalPoints] = focalPoint;
1877         shadingRateParams.numFocalPoints++;
1878     }
1879 
1880     return contextVk->getUtils().generateFragmentShadingRate(
1881         contextVk, &mFragmentShadingRateImage, &mFragmentShadingRateImageView, shadingRateParams);
1882 }
1883 
updateFragmentShadingRateAttachment(ContextVk * contextVk,const gl::FoveationState & foveationState,const gl::Extents & foveatedAttachmentSize)1884 angle::Result FramebufferVk::updateFragmentShadingRateAttachment(
1885     ContextVk *contextVk,
1886     const gl::FoveationState &foveationState,
1887     const gl::Extents &foveatedAttachmentSize)
1888 {
1889     const VkExtent2D fragmentShadingRateExtent =
1890         contextVk->getRenderer()->getMaxFragmentShadingRateAttachmentTexelSize();
1891     const uint32_t fragmentShadingRateBlockWidth  = fragmentShadingRateExtent.width;
1892     const uint32_t fragmentShadingRateBlockHeight = fragmentShadingRateExtent.height;
1893     const uint32_t foveatedAttachmentWidth        = foveatedAttachmentSize.width;
1894     const uint32_t foveatedAttachmentHeight       = foveatedAttachmentSize.height;
1895     const uint32_t fragmentShadingRateWidth =
1896         UnsignedCeilDivide(foveatedAttachmentWidth, fragmentShadingRateBlockWidth);
1897     const uint32_t fragmentShadingRateHeight =
1898         UnsignedCeilDivide(foveatedAttachmentHeight, fragmentShadingRateBlockHeight);
1899 
1900     ANGLE_TRY(ensureFragmentShadingRateImageAndViewInitialized(contextVk, fragmentShadingRateWidth,
1901                                                                fragmentShadingRateHeight));
1902     ASSERT(mFragmentShadingRateImage.valid());
1903 
1904     std::vector<gl::FocalPoint> activeFocalPoints;
1905     for (uint32_t point = 0; point < gl::IMPLEMENTATION_MAX_FOCAL_POINTS; point++)
1906     {
1907         const gl::FocalPoint &focalPoint = foveationState.getFocalPoint(0, point);
1908         if (focalPoint.valid())
1909         {
1910             activeFocalPoints.push_back(focalPoint);
1911         }
1912     }
1913     ASSERT(activeFocalPoints.size() > 0);
1914 
1915     if (contextVk->getFeatures().generateFragmentShadingRateAttchementWithCpu.enabled)
1916     {
1917         ANGLE_TRY(generateFragmentShadingRateWithCPU(
1918             contextVk, fragmentShadingRateWidth, fragmentShadingRateHeight,
1919             fragmentShadingRateBlockWidth, fragmentShadingRateBlockHeight, foveatedAttachmentWidth,
1920             foveatedAttachmentHeight, activeFocalPoints));
1921     }
1922     else
1923     {
1924         ANGLE_TRY(generateFragmentShadingRateWithCompute(
1925             contextVk, fragmentShadingRateWidth, fragmentShadingRateHeight,
1926             fragmentShadingRateBlockWidth, fragmentShadingRateBlockHeight, foveatedAttachmentWidth,
1927             foveatedAttachmentHeight, activeFocalPoints));
1928     }
1929 
1930     return angle::Result::Continue;
1931 }
1932 
updateFoveationState(ContextVk * contextVk,const gl::FoveationState & newFoveationState,const gl::Extents & foveatedAttachmentSize)1933 angle::Result FramebufferVk::updateFoveationState(ContextVk *contextVk,
1934                                                   const gl::FoveationState &newFoveationState,
1935                                                   const gl::Extents &foveatedAttachmentSize)
1936 {
1937     const bool isFoveationEnabled                 = newFoveationState.isFoveated();
1938     vk::ImageOrBufferViewSubresourceSerial serial = vk::kInvalidImageOrBufferViewSubresourceSerial;
1939     if (isFoveationEnabled)
1940     {
1941         ANGLE_TRY(updateFragmentShadingRateAttachment(contextVk, newFoveationState,
1942                                                       foveatedAttachmentSize));
1943         ASSERT(mFragmentShadingRateImage.valid());
1944 
1945         serial = mFragmentShadingRateImageView.getSubresourceSerial(gl::LevelIndex(0), 1, 0,
1946                                                                     vk::LayerMode::All);
1947     }
1948 
1949     // Update state after the possible failure point.
1950     mFoveationState = newFoveationState;
1951     mCurrentFramebufferDesc.updateFragmentShadingRate(serial);
1952     // mRenderPassDesc will be updated later in updateRenderPassDesc() in case if
1953     // mCurrentFramebufferDesc was changed.
1954     return angle::Result::Continue;
1955 }
1956 
resolveColorWithSubpass(ContextVk * contextVk,const UtilsVk::BlitResolveParameters & params)1957 angle::Result FramebufferVk::resolveColorWithSubpass(ContextVk *contextVk,
1958                                                      const UtilsVk::BlitResolveParameters &params)
1959 {
1960     // Vulkan requires a 1:1 relationship for multisample attachments to resolve attachments in the
1961     // render pass subpass. Due to this, we currently only support using resolve attachments when
1962     // there is a single draw attachment enabled.
1963     ASSERT(mState.getEnabledDrawBuffers().count() == 1);
1964     uint32_t drawColorIndexGL = static_cast<uint32_t>(*mState.getEnabledDrawBuffers().begin());
1965     RenderTargetVk *drawRenderTarget      = mRenderTargetCache.getColors()[drawColorIndexGL];
1966     const vk::ImageView *resolveImageView = nullptr;
1967     ANGLE_TRY(drawRenderTarget->getImageView(contextVk, &resolveImageView));
1968 
1969     const gl::Framebuffer *srcFramebuffer = contextVk->getState().getReadFramebuffer();
1970     uint32_t readColorIndexGL             = srcFramebuffer->getState().getReadIndex();
1971 
1972     vk::RenderPassCommandBufferHelper &renderPassCommands =
1973         contextVk->getStartedRenderPassCommands();
1974     ASSERT(!renderPassCommands.getRenderPassDesc().hasColorResolveAttachment(readColorIndexGL));
1975 
1976     drawRenderTarget->onColorResolve(contextVk, mCurrentFramebufferDesc.getLayerCount(),
1977                                      readColorIndexGL, *resolveImageView);
1978 
1979     // The render pass is already closed because of the change in the draw buffer.  Just don't let
1980     // it reactivate now that it has a resolve attachment.
1981     contextVk->disableRenderPassReactivation();
1982 
1983     return angle::Result::Continue;
1984 }
1985 
resolveDepthStencilWithSubpass(ContextVk * contextVk,const UtilsVk::BlitResolveParameters & params,VkImageAspectFlags aspects)1986 angle::Result FramebufferVk::resolveDepthStencilWithSubpass(
1987     ContextVk *contextVk,
1988     const UtilsVk::BlitResolveParameters &params,
1989     VkImageAspectFlags aspects)
1990 {
1991     RenderTargetVk *drawRenderTarget      = mRenderTargetCache.getDepthStencil();
1992     const vk::ImageView *resolveImageView = nullptr;
1993     ANGLE_TRY(drawRenderTarget->getImageView(contextVk, &resolveImageView));
1994 
1995     vk::RenderPassCommandBufferHelper &renderPassCommands =
1996         contextVk->getStartedRenderPassCommands();
1997     ASSERT(!renderPassCommands.getRenderPassDesc().hasDepthStencilResolveAttachment());
1998 
1999     drawRenderTarget->onDepthStencilResolve(contextVk, mCurrentFramebufferDesc.getLayerCount(),
2000                                             aspects, *resolveImageView);
2001 
2002     // The render pass is already closed because of the change in the draw buffer.  Just don't let
2003     // it reactivate now that it has a resolve attachment.
2004     contextVk->disableRenderPassReactivation();
2005 
2006     return angle::Result::Continue;
2007 }
2008 
resolveColorWithCommand(ContextVk * contextVk,const UtilsVk::BlitResolveParameters & params,vk::ImageHelper * srcImage)2009 angle::Result FramebufferVk::resolveColorWithCommand(ContextVk *contextVk,
2010                                                      const UtilsVk::BlitResolveParameters &params,
2011                                                      vk::ImageHelper *srcImage)
2012 {
2013     vk::CommandBufferAccess access;
2014     access.onImageTransferRead(VK_IMAGE_ASPECT_COLOR_BIT, srcImage);
2015 
2016     for (size_t colorIndexGL : mState.getEnabledDrawBuffers())
2017     {
2018         RenderTargetVk *drawRenderTarget = mRenderTargetCache.getColors()[colorIndexGL];
2019         vk::ImageHelper &dstImage        = drawRenderTarget->getImageForWrite();
2020 
2021         access.onImageTransferWrite(drawRenderTarget->getLevelIndex(), 1,
2022                                     drawRenderTarget->getLayerIndex(), 1, VK_IMAGE_ASPECT_COLOR_BIT,
2023                                     &dstImage);
2024     }
2025 
2026     vk::OutsideRenderPassCommandBuffer *commandBuffer;
2027     ANGLE_TRY(contextVk->getOutsideRenderPassCommandBuffer(access, &commandBuffer));
2028 
2029     VkImageResolve resolveRegion                = {};
2030     resolveRegion.srcSubresource.aspectMask     = VK_IMAGE_ASPECT_COLOR_BIT;
2031     resolveRegion.srcSubresource.mipLevel       = 0;
2032     resolveRegion.srcSubresource.baseArrayLayer = params.srcLayer;
2033     resolveRegion.srcSubresource.layerCount     = 1;
2034     resolveRegion.srcOffset.x                   = params.blitArea.x;
2035     resolveRegion.srcOffset.y                   = params.blitArea.y;
2036     resolveRegion.srcOffset.z                   = 0;
2037     resolveRegion.dstSubresource.aspectMask     = VK_IMAGE_ASPECT_COLOR_BIT;
2038     resolveRegion.dstSubresource.layerCount     = 1;
2039     resolveRegion.dstOffset.x                   = params.blitArea.x;
2040     resolveRegion.dstOffset.y                   = params.blitArea.y;
2041     resolveRegion.dstOffset.z                   = 0;
2042     resolveRegion.extent.width                  = params.blitArea.width;
2043     resolveRegion.extent.height                 = params.blitArea.height;
2044     resolveRegion.extent.depth                  = 1;
2045 
2046     angle::VulkanPerfCounters &perfCounters = contextVk->getPerfCounters();
2047     for (size_t colorIndexGL : mState.getEnabledDrawBuffers())
2048     {
2049         RenderTargetVk *drawRenderTarget = mRenderTargetCache.getColors()[colorIndexGL];
2050         vk::ImageHelper &dstImage        = drawRenderTarget->getImageForWrite();
2051 
2052         vk::LevelIndex levelVk = dstImage.toVkLevel(drawRenderTarget->getLevelIndex());
2053         resolveRegion.dstSubresource.mipLevel       = levelVk.get();
2054         resolveRegion.dstSubresource.baseArrayLayer = drawRenderTarget->getLayerIndex();
2055 
2056         srcImage->resolve(&dstImage, resolveRegion, commandBuffer);
2057 
2058         perfCounters.resolveImageCommands++;
2059     }
2060 
2061     return angle::Result::Continue;
2062 }
2063 
checkStatus(const gl::Context * context) const2064 gl::FramebufferStatus FramebufferVk::checkStatus(const gl::Context *context) const
2065 {
2066     // if we have both a depth and stencil buffer, they must refer to the same object
2067     // since we only support packed_depth_stencil and not separate depth and stencil
2068     if (mState.hasSeparateDepthAndStencilAttachments())
2069     {
2070         return gl::FramebufferStatus::Incomplete(
2071             GL_FRAMEBUFFER_UNSUPPORTED,
2072             gl::err::kFramebufferIncompleteUnsupportedSeparateDepthStencilBuffers);
2073     }
2074 
2075     return gl::FramebufferStatus::Complete();
2076 }
2077 
invalidateImpl(ContextVk * contextVk,size_t count,const GLenum * attachments,bool isSubInvalidate,const gl::Rectangle & invalidateArea)2078 angle::Result FramebufferVk::invalidateImpl(ContextVk *contextVk,
2079                                             size_t count,
2080                                             const GLenum *attachments,
2081                                             bool isSubInvalidate,
2082                                             const gl::Rectangle &invalidateArea)
2083 {
2084     gl::DrawBufferMask invalidateColorBuffers;
2085     bool invalidateDepthBuffer   = false;
2086     bool invalidateStencilBuffer = false;
2087 
2088     for (size_t i = 0; i < count; ++i)
2089     {
2090         const GLenum attachment = attachments[i];
2091 
2092         switch (attachment)
2093         {
2094             case GL_DEPTH:
2095             case GL_DEPTH_ATTACHMENT:
2096                 invalidateDepthBuffer = true;
2097                 break;
2098             case GL_STENCIL:
2099             case GL_STENCIL_ATTACHMENT:
2100                 invalidateStencilBuffer = true;
2101                 break;
2102             case GL_DEPTH_STENCIL_ATTACHMENT:
2103                 invalidateDepthBuffer   = true;
2104                 invalidateStencilBuffer = true;
2105                 break;
2106             default:
2107                 ASSERT(
2108                     (attachment >= GL_COLOR_ATTACHMENT0 && attachment <= GL_COLOR_ATTACHMENT15) ||
2109                     (attachment == GL_COLOR));
2110 
2111                 invalidateColorBuffers.set(
2112                     attachment == GL_COLOR ? 0u : (attachment - GL_COLOR_ATTACHMENT0));
2113         }
2114     }
2115 
2116     // Shouldn't try to issue deferred clears if invalidating sub framebuffer.
2117     ASSERT(mDeferredClears.empty() || !isSubInvalidate);
2118 
2119     // Remove deferred clears for the invalidated attachments.
2120     if (invalidateDepthBuffer)
2121     {
2122         mDeferredClears.reset(vk::kUnpackedDepthIndex);
2123     }
2124     if (invalidateStencilBuffer)
2125     {
2126         mDeferredClears.reset(vk::kUnpackedStencilIndex);
2127     }
2128     for (size_t colorIndexGL : mState.getEnabledDrawBuffers())
2129     {
2130         if (invalidateColorBuffers.test(colorIndexGL))
2131         {
2132             mDeferredClears.reset(colorIndexGL);
2133         }
2134     }
2135 
2136     // If there are still deferred clears, restage them. See relevant comment in invalidateSub.
2137     restageDeferredClears(contextVk);
2138 
2139     const auto &colorRenderTargets           = mRenderTargetCache.getColors();
2140     RenderTargetVk *depthStencilRenderTarget = mRenderTargetCache.getDepthStencil();
2141 
2142     // If not a partial invalidate, mark the contents of the invalidated attachments as undefined,
2143     // so their loadOp can be set to DONT_CARE in the following render pass.
2144     if (!isSubInvalidate)
2145     {
2146         for (size_t colorIndexGL : mState.getEnabledDrawBuffers())
2147         {
2148             if (invalidateColorBuffers.test(colorIndexGL))
2149             {
2150                 RenderTargetVk *colorRenderTarget = colorRenderTargets[colorIndexGL];
2151                 ASSERT(colorRenderTarget);
2152 
2153                 bool preferToKeepContentsDefined = false;
2154                 colorRenderTarget->invalidateEntireContent(contextVk, &preferToKeepContentsDefined);
2155                 if (preferToKeepContentsDefined)
2156                 {
2157                     invalidateColorBuffers.reset(colorIndexGL);
2158                 }
2159             }
2160         }
2161 
2162         // If we have a depth / stencil render target, invalidate its aspects.
2163         if (depthStencilRenderTarget)
2164         {
2165             if (invalidateDepthBuffer)
2166             {
2167                 bool preferToKeepContentsDefined = false;
2168                 depthStencilRenderTarget->invalidateEntireContent(contextVk,
2169                                                                   &preferToKeepContentsDefined);
2170                 if (preferToKeepContentsDefined)
2171                 {
2172                     invalidateDepthBuffer = false;
2173                 }
2174             }
2175             if (invalidateStencilBuffer)
2176             {
2177                 bool preferToKeepContentsDefined = false;
2178                 depthStencilRenderTarget->invalidateEntireStencilContent(
2179                     contextVk, &preferToKeepContentsDefined);
2180                 if (preferToKeepContentsDefined)
2181                 {
2182                     invalidateStencilBuffer = false;
2183                 }
2184             }
2185         }
2186     }
2187 
2188     // To ensure we invalidate the right renderpass we require that the current framebuffer be the
2189     // same as the current renderpass' framebuffer. E.g. prevent sequence like:
2190     //- Bind FBO 1, draw
2191     //- Bind FBO 2, draw
2192     //- Bind FBO 1, invalidate D/S
2193     // to invalidate the D/S of FBO 2 since it would be the currently active renderpass.
2194     if (contextVk->hasStartedRenderPassWithQueueSerial(mLastRenderPassQueueSerial))
2195     {
2196         // Mark the invalidated attachments in the render pass for loadOp and storeOp determination
2197         // at its end.
2198         vk::PackedAttachmentIndex colorIndexVk(0);
2199         for (size_t colorIndexGL : mState.getColorAttachmentsMask())
2200         {
2201             if (mState.getEnabledDrawBuffers()[colorIndexGL] &&
2202                 invalidateColorBuffers.test(colorIndexGL))
2203             {
2204                 contextVk->getStartedRenderPassCommands().invalidateRenderPassColorAttachment(
2205                     contextVk->getState(), colorIndexGL, colorIndexVk, invalidateArea);
2206             }
2207             ++colorIndexVk;
2208         }
2209 
2210         if (depthStencilRenderTarget)
2211         {
2212             const gl::DepthStencilState &dsState = contextVk->getState().getDepthStencilState();
2213             if (invalidateDepthBuffer)
2214             {
2215                 contextVk->getStartedRenderPassCommands().invalidateRenderPassDepthAttachment(
2216                     dsState, invalidateArea);
2217             }
2218 
2219             if (invalidateStencilBuffer)
2220             {
2221                 contextVk->getStartedRenderPassCommands().invalidateRenderPassStencilAttachment(
2222                     dsState, mState.getStencilBitCount(), invalidateArea);
2223             }
2224         }
2225     }
2226 
2227     return angle::Result::Continue;
2228 }
2229 
updateColorAttachment(const gl::Context * context,uint32_t colorIndexGL)2230 angle::Result FramebufferVk::updateColorAttachment(const gl::Context *context,
2231                                                    uint32_t colorIndexGL)
2232 {
2233     ANGLE_TRY(mRenderTargetCache.updateColorRenderTarget(context, mState, colorIndexGL));
2234 
2235     // Update cached masks for masked clears.
2236     RenderTargetVk *renderTarget = mRenderTargetCache.getColors()[colorIndexGL];
2237     if (renderTarget)
2238     {
2239         const angle::Format &actualFormat = renderTarget->getImageActualFormat();
2240         updateActiveColorMasks(colorIndexGL, actualFormat.redBits > 0, actualFormat.greenBits > 0,
2241                                actualFormat.blueBits > 0, actualFormat.alphaBits > 0);
2242 
2243         const angle::Format &intendedFormat = renderTarget->getImageIntendedFormat();
2244         mEmulatedAlphaAttachmentMask.set(
2245             colorIndexGL, intendedFormat.alphaBits == 0 && actualFormat.alphaBits > 0);
2246     }
2247     else
2248     {
2249         updateActiveColorMasks(colorIndexGL, false, false, false, false);
2250     }
2251 
2252     const bool enabledColor =
2253         renderTarget && mState.getColorAttachments()[colorIndexGL].isAttached();
2254     const bool enabledResolve = enabledColor && renderTarget->hasResolveAttachment();
2255 
2256     if (enabledColor)
2257     {
2258         mCurrentFramebufferDesc.updateColor(colorIndexGL, renderTarget->getDrawSubresourceSerial());
2259         const bool isExternalImage =
2260             mState.getColorAttachments()[colorIndexGL].isExternalImageWithoutIndividualSync();
2261         mIsExternalColorAttachments.set(colorIndexGL, isExternalImage);
2262         mAttachmentHasFrontBufferUsage.set(
2263             colorIndexGL, mState.getColorAttachments()[colorIndexGL].hasFrontBufferUsage());
2264     }
2265     else
2266     {
2267         mCurrentFramebufferDesc.updateColor(colorIndexGL,
2268                                             vk::kInvalidImageOrBufferViewSubresourceSerial);
2269     }
2270 
2271     if (enabledResolve)
2272     {
2273         mCurrentFramebufferDesc.updateColorResolve(colorIndexGL,
2274                                                    renderTarget->getResolveSubresourceSerial());
2275     }
2276     else
2277     {
2278         mCurrentFramebufferDesc.updateColorResolve(colorIndexGL,
2279                                                    vk::kInvalidImageOrBufferViewSubresourceSerial);
2280     }
2281 
2282     return angle::Result::Continue;
2283 }
2284 
updateColorAttachmentColorspace(gl::SrgbWriteControlMode srgbWriteControlMode)2285 void FramebufferVk::updateColorAttachmentColorspace(gl::SrgbWriteControlMode srgbWriteControlMode)
2286 {
2287     // Update colorspace of color attachments.
2288     const auto &colorRenderTargets               = mRenderTargetCache.getColors();
2289     const gl::DrawBufferMask colorAttachmentMask = mState.getColorAttachmentsMask();
2290     for (size_t colorIndexGL : colorAttachmentMask)
2291     {
2292         RenderTargetVk *colorRenderTarget = colorRenderTargets[colorIndexGL];
2293         ASSERT(colorRenderTarget);
2294         colorRenderTarget->updateWriteColorspace(srgbWriteControlMode);
2295     }
2296 }
2297 
updateDepthStencilAttachment(const gl::Context * context)2298 angle::Result FramebufferVk::updateDepthStencilAttachment(const gl::Context *context)
2299 {
2300     ANGLE_TRY(mRenderTargetCache.updateDepthStencilRenderTarget(context, mState));
2301 
2302     ContextVk *contextVk = vk::GetImpl(context);
2303     updateDepthStencilAttachmentSerial(contextVk);
2304 
2305     return angle::Result::Continue;
2306 }
2307 
updateDepthStencilAttachmentSerial(ContextVk * contextVk)2308 void FramebufferVk::updateDepthStencilAttachmentSerial(ContextVk *contextVk)
2309 {
2310     RenderTargetVk *depthStencilRT = getDepthStencilRenderTarget();
2311 
2312     if (depthStencilRT != nullptr)
2313     {
2314         mCurrentFramebufferDesc.updateDepthStencil(depthStencilRT->getDrawSubresourceSerial());
2315     }
2316     else
2317     {
2318         mCurrentFramebufferDesc.updateDepthStencil(vk::kInvalidImageOrBufferViewSubresourceSerial);
2319     }
2320 
2321     if (depthStencilRT != nullptr && depthStencilRT->hasResolveAttachment())
2322     {
2323         mCurrentFramebufferDesc.updateDepthStencilResolve(
2324             depthStencilRT->getResolveSubresourceSerial());
2325     }
2326     else
2327     {
2328         mCurrentFramebufferDesc.updateDepthStencilResolve(
2329             vk::kInvalidImageOrBufferViewSubresourceSerial);
2330     }
2331 }
2332 
flushColorAttachmentUpdates(const gl::Context * context,bool deferClears,uint32_t colorIndexGL)2333 angle::Result FramebufferVk::flushColorAttachmentUpdates(const gl::Context *context,
2334                                                          bool deferClears,
2335                                                          uint32_t colorIndexGL)
2336 {
2337     ContextVk *contextVk             = vk::GetImpl(context);
2338     RenderTargetVk *readRenderTarget = nullptr;
2339     RenderTargetVk *drawRenderTarget = nullptr;
2340 
2341     // It's possible for the read and draw color attachments to be different if different surfaces
2342     // are bound, so we need to flush any staged updates to both.
2343 
2344     // Draw
2345     drawRenderTarget = mRenderTargetCache.getColorDraw(mState, colorIndexGL);
2346     if (drawRenderTarget)
2347     {
2348         if (deferClears)
2349         {
2350             ANGLE_TRY(
2351                 drawRenderTarget->flushStagedUpdates(contextVk, &mDeferredClears, colorIndexGL,
2352                                                      mCurrentFramebufferDesc.getLayerCount()));
2353         }
2354         else
2355         {
2356             ANGLE_TRY(drawRenderTarget->flushStagedUpdates(
2357                 contextVk, nullptr, 0, mCurrentFramebufferDesc.getLayerCount()));
2358         }
2359     }
2360 
2361     // Read
2362     if (mState.getReadBufferState() != GL_NONE && mState.getReadIndex() == colorIndexGL)
2363     {
2364         // Flush staged updates to the read render target as well, but only if it's not the same as
2365         // the draw render target.  This can happen when the read render target is bound to another
2366         // surface.
2367         readRenderTarget = mRenderTargetCache.getColorRead(mState);
2368         if (readRenderTarget && readRenderTarget != drawRenderTarget)
2369         {
2370             ANGLE_TRY(readRenderTarget->flushStagedUpdates(
2371                 contextVk, nullptr, 0, mCurrentFramebufferDesc.getLayerCount()));
2372         }
2373     }
2374 
2375     return angle::Result::Continue;
2376 }
2377 
flushDepthStencilAttachmentUpdates(const gl::Context * context,bool deferClears)2378 angle::Result FramebufferVk::flushDepthStencilAttachmentUpdates(const gl::Context *context,
2379                                                                 bool deferClears)
2380 {
2381     ContextVk *contextVk = vk::GetImpl(context);
2382 
2383     RenderTargetVk *depthStencilRT = getDepthStencilRenderTarget();
2384     if (depthStencilRT == nullptr)
2385     {
2386         return angle::Result::Continue;
2387     }
2388 
2389     if (deferClears)
2390     {
2391         return depthStencilRT->flushStagedUpdates(contextVk, &mDeferredClears,
2392                                                   vk::kUnpackedDepthIndex,
2393                                                   mCurrentFramebufferDesc.getLayerCount());
2394     }
2395 
2396     return depthStencilRT->flushStagedUpdates(contextVk, nullptr, 0,
2397                                               mCurrentFramebufferDesc.getLayerCount());
2398 }
2399 
syncState(const gl::Context * context,GLenum binding,const gl::Framebuffer::DirtyBits & dirtyBits,gl::Command command)2400 angle::Result FramebufferVk::syncState(const gl::Context *context,
2401                                        GLenum binding,
2402                                        const gl::Framebuffer::DirtyBits &dirtyBits,
2403                                        gl::Command command)
2404 {
2405     ContextVk *contextVk = vk::GetImpl(context);
2406 
2407     vk::FramebufferDesc priorFramebufferDesc = mCurrentFramebufferDesc;
2408 
2409     // Keep track of which attachments have dirty content and need their staged updates flushed.
2410     // The respective functions depend on |mCurrentFramebufferDesc::mLayerCount| which is updated
2411     // after all attachment render targets are updated.
2412     gl::DrawBufferMask dirtyColorAttachments;
2413     bool dirtyDepthStencilAttachment = false;
2414 
2415     bool shouldUpdateColorMaskAndBlend = false;
2416     bool shouldUpdateLayerCount        = false;
2417 
2418     // Cache new foveation state, if any
2419     const gl::FoveationState *newFoveationState = nullptr;
2420     gl::Extents foveatedAttachmentSize;
2421 
2422     // For any updated attachments we'll update their Serials below
2423     ASSERT(dirtyBits.any());
2424     for (size_t dirtyBit : dirtyBits)
2425     {
2426         switch (dirtyBit)
2427         {
2428             case gl::Framebuffer::DIRTY_BIT_DEPTH_ATTACHMENT:
2429             case gl::Framebuffer::DIRTY_BIT_DEPTH_BUFFER_CONTENTS:
2430             case gl::Framebuffer::DIRTY_BIT_STENCIL_ATTACHMENT:
2431             case gl::Framebuffer::DIRTY_BIT_STENCIL_BUFFER_CONTENTS:
2432                 ANGLE_TRY(updateDepthStencilAttachment(context));
2433                 shouldUpdateLayerCount      = true;
2434                 dirtyDepthStencilAttachment = true;
2435                 break;
2436             case gl::Framebuffer::DIRTY_BIT_READ_BUFFER:
2437                 ANGLE_TRY(mRenderTargetCache.update(context, mState, dirtyBits));
2438                 break;
2439             case gl::Framebuffer::DIRTY_BIT_DRAW_BUFFERS:
2440                 shouldUpdateColorMaskAndBlend = true;
2441                 shouldUpdateLayerCount        = true;
2442                 break;
2443             case gl::Framebuffer::DIRTY_BIT_DEFAULT_WIDTH:
2444             case gl::Framebuffer::DIRTY_BIT_DEFAULT_HEIGHT:
2445             case gl::Framebuffer::DIRTY_BIT_DEFAULT_SAMPLES:
2446             case gl::Framebuffer::DIRTY_BIT_DEFAULT_FIXED_SAMPLE_LOCATIONS:
2447                 // Invalidate the cache. If we have performance critical code hitting this path we
2448                 // can add related data (such as width/height) to the cache
2449                 releaseCurrentFramebuffer(contextVk);
2450                 break;
2451             case gl::Framebuffer::DIRTY_BIT_FRAMEBUFFER_SRGB_WRITE_CONTROL_MODE:
2452                 break;
2453             case gl::Framebuffer::DIRTY_BIT_DEFAULT_LAYERS:
2454                 shouldUpdateLayerCount = true;
2455                 break;
2456             case gl::Framebuffer::DIRTY_BIT_FOVEATION:
2457                 // This dirty bit is set iff the framebuffer itself is foveated
2458                 ASSERT(mState.isFoveationEnabled());
2459 
2460                 newFoveationState      = &mState.getFoveationState();
2461                 foveatedAttachmentSize = mState.getExtents();
2462                 break;
2463             default:
2464             {
2465                 static_assert(gl::Framebuffer::DIRTY_BIT_COLOR_ATTACHMENT_0 == 0, "FB dirty bits");
2466                 uint32_t colorIndexGL;
2467                 if (dirtyBit < gl::Framebuffer::DIRTY_BIT_COLOR_ATTACHMENT_MAX)
2468                 {
2469                     colorIndexGL = static_cast<uint32_t>(
2470                         dirtyBit - gl::Framebuffer::DIRTY_BIT_COLOR_ATTACHMENT_0);
2471                 }
2472                 else
2473                 {
2474                     ASSERT(dirtyBit >= gl::Framebuffer::DIRTY_BIT_COLOR_BUFFER_CONTENTS_0 &&
2475                            dirtyBit < gl::Framebuffer::DIRTY_BIT_COLOR_BUFFER_CONTENTS_MAX);
2476                     colorIndexGL = static_cast<uint32_t>(
2477                         dirtyBit - gl::Framebuffer::DIRTY_BIT_COLOR_BUFFER_CONTENTS_0);
2478                 }
2479 
2480                 ANGLE_TRY(updateColorAttachment(context, colorIndexGL));
2481 
2482                 // Check if attachment has foveated rendering, if so grab foveation state
2483                 const gl::FramebufferAttachment *attachment =
2484                     mState.getColorAttachment(colorIndexGL);
2485                 if (attachment && attachment->hasFoveatedRendering())
2486                 {
2487                     // If attachment is foveated the framebuffer must not be.
2488                     ASSERT(!mState.isFoveationEnabled());
2489 
2490                     newFoveationState = attachment->getFoveationState();
2491                     ASSERT(newFoveationState != nullptr);
2492 
2493                     foveatedAttachmentSize = attachment->getSize();
2494                 }
2495 
2496                 // Window system framebuffer only have one color attachment and its property should
2497                 // never change unless via DIRTY_BIT_DRAW_BUFFERS bit.
2498                 if (!mState.isDefault())
2499                 {
2500                     shouldUpdateColorMaskAndBlend = true;
2501                     shouldUpdateLayerCount        = true;
2502                 }
2503                 dirtyColorAttachments.set(colorIndexGL);
2504 
2505                 break;
2506             }
2507         }
2508     }
2509 
2510     // A shared attachment's colospace could have been modified in another context, update
2511     // colorspace of all attachments to reflect current context's colorspace.
2512     gl::SrgbWriteControlMode srgbWriteControlMode = mState.getWriteControlMode();
2513     updateColorAttachmentColorspace(srgbWriteControlMode);
2514     // Update current framebuffer descriptor to reflect the new state.
2515     mCurrentFramebufferDesc.setWriteControlMode(srgbWriteControlMode);
2516 
2517     if (shouldUpdateColorMaskAndBlend)
2518     {
2519         contextVk->updateColorMasks();
2520         contextVk->updateBlendFuncsAndEquations();
2521     }
2522 
2523     if (shouldUpdateLayerCount)
2524     {
2525         updateLayerCount();
2526     }
2527 
2528     if (newFoveationState && mFoveationState != *newFoveationState)
2529     {
2530         ANGLE_TRY(updateFoveationState(contextVk, *newFoveationState, foveatedAttachmentSize));
2531     }
2532 
2533     // Defer clears for draw framebuffer ops.  Note that this will result in a render area that
2534     // completely covers the framebuffer, even if the operation that follows is scissored.
2535     //
2536     // Additionally, defer clears for read framebuffer attachments that are not taking part in a
2537     // blit operation.
2538     const bool isBlitCommand = command >= gl::Command::Blit && command <= gl::Command::BlitAll;
2539 
2540     bool deferColorClears        = binding == GL_DRAW_FRAMEBUFFER;
2541     bool deferDepthStencilClears = binding == GL_DRAW_FRAMEBUFFER;
2542     if (binding == GL_READ_FRAMEBUFFER && isBlitCommand)
2543     {
2544         uint32_t blitMask =
2545             static_cast<uint32_t>(command) - static_cast<uint32_t>(gl::Command::Blit);
2546         if ((blitMask & gl::CommandBlitBufferColor) == 0)
2547         {
2548             deferColorClears = true;
2549         }
2550         if ((blitMask & (gl::CommandBlitBufferDepth | gl::CommandBlitBufferStencil)) == 0)
2551         {
2552             deferDepthStencilClears = true;
2553         }
2554     }
2555 
2556     // If we are notified that any attachment is dirty, but we have deferred clears for them, a
2557     // flushDeferredClears() call is missing somewhere.  ASSERT this to catch these bugs.
2558     vk::ClearValuesArray previousDeferredClears = mDeferredClears;
2559 
2560     for (size_t colorIndexGL : dirtyColorAttachments)
2561     {
2562         ASSERT(!previousDeferredClears.test(colorIndexGL));
2563         ANGLE_TRY(flushColorAttachmentUpdates(context, deferColorClears,
2564                                               static_cast<uint32_t>(colorIndexGL)));
2565     }
2566     if (dirtyDepthStencilAttachment)
2567     {
2568         ASSERT(!previousDeferredClears.testDepth());
2569         ASSERT(!previousDeferredClears.testStencil());
2570         ANGLE_TRY(flushDepthStencilAttachmentUpdates(context, deferDepthStencilClears));
2571     }
2572 
2573     // No-op redundant changes to prevent closing the RenderPass.
2574     if (mCurrentFramebufferDesc == priorFramebufferDesc &&
2575         mCurrentFramebufferDesc.attachmentCount() > 0)
2576     {
2577         return angle::Result::Continue;
2578     }
2579 
2580     // ContextVk::onFramebufferChange will end up calling onRenderPassFinished if necessary,
2581     // which will trigger ending of current render pass.  |mLastRenderPassQueueSerial| is reset
2582     // so that the render pass will not get reactivated, since |mCurrentFramebufferDesc| has
2583     // changed.
2584     mLastRenderPassQueueSerial = QueueSerial();
2585 
2586     updateRenderPassDesc(contextVk);
2587 
2588     // Deactivate Framebuffer
2589     releaseCurrentFramebuffer(contextVk);
2590 
2591     // Notify the ContextVk to update the pipeline desc.
2592     return contextVk->onFramebufferChange(this, command);
2593 }
2594 
updateRenderPassDesc(ContextVk * contextVk)2595 void FramebufferVk::updateRenderPassDesc(ContextVk *contextVk)
2596 {
2597     mRenderPassDesc = {};
2598     mRenderPassDesc.setSamples(getSamples());
2599     mRenderPassDesc.setViewCount(
2600         mState.isMultiview() && mState.getNumViews() > 1 ? mState.getNumViews() : 0);
2601 
2602     // Color attachments.
2603     const auto &colorRenderTargets               = mRenderTargetCache.getColors();
2604     const gl::DrawBufferMask colorAttachmentMask = mState.getColorAttachmentsMask();
2605     for (size_t colorIndexGL = 0; colorIndexGL < colorAttachmentMask.size(); ++colorIndexGL)
2606     {
2607         if (colorAttachmentMask[colorIndexGL])
2608         {
2609             RenderTargetVk *colorRenderTarget = colorRenderTargets[colorIndexGL];
2610             ASSERT(colorRenderTarget);
2611 
2612             if (colorRenderTarget->isYuvResolve())
2613             {
2614                 // If this is YUV resolve target, we use resolveImage's format since image maybe
2615                 // nullptr
2616                 auto const &resolveImage = colorRenderTarget->getResolveImageForRenderPass();
2617                 mRenderPassDesc.packColorAttachment(colorIndexGL, resolveImage.getActualFormatID());
2618                 mRenderPassDesc.packYUVResolveAttachment(colorIndexGL);
2619             }
2620             else
2621             {
2622                 // Account for attachments with colorspace override
2623                 angle::FormatID actualFormat =
2624                     colorRenderTarget->getImageForRenderPass().getActualFormatID();
2625                 if (colorRenderTarget->hasColorspaceOverrideForWrite())
2626                 {
2627                     actualFormat =
2628                         colorRenderTarget->getColorspaceOverrideFormatForWrite(actualFormat);
2629                 }
2630 
2631                 mRenderPassDesc.packColorAttachment(colorIndexGL, actualFormat);
2632                 // Add the resolve attachment, if any.
2633                 if (colorRenderTarget->hasResolveAttachment())
2634                 {
2635                     mRenderPassDesc.packColorResolveAttachment(colorIndexGL);
2636                 }
2637             }
2638         }
2639         else
2640         {
2641             mRenderPassDesc.packColorAttachmentGap(colorIndexGL);
2642         }
2643     }
2644 
2645     // Depth/stencil attachment.
2646     RenderTargetVk *depthStencilRenderTarget = getDepthStencilRenderTarget();
2647     if (depthStencilRenderTarget)
2648     {
2649         mRenderPassDesc.packDepthStencilAttachment(
2650             depthStencilRenderTarget->getImageForRenderPass().getActualFormatID());
2651 
2652         // Add the resolve attachment, if any.
2653         if (depthStencilRenderTarget->hasResolveAttachment())
2654         {
2655             mRenderPassDesc.packDepthResolveAttachment();
2656             mRenderPassDesc.packStencilResolveAttachment();
2657         }
2658     }
2659 
2660     if (!contextVk->getFeatures().preferDynamicRendering.enabled &&
2661         contextVk->isInColorFramebufferFetchMode())
2662     {
2663         mRenderPassDesc.setFramebufferFetchMode(vk::FramebufferFetchMode::Color);
2664     }
2665 
2666     if (contextVk->getFeatures().enableMultisampledRenderToTexture.enabled)
2667     {
2668         // Update descriptions regarding multisampled-render-to-texture use.
2669         bool isRenderToTexture = false;
2670         for (size_t colorIndexGL : mState.getEnabledDrawBuffers())
2671         {
2672             const gl::FramebufferAttachment *color = mState.getColorAttachment(colorIndexGL);
2673             ASSERT(color);
2674 
2675             if (color->isRenderToTexture())
2676             {
2677                 isRenderToTexture = true;
2678                 break;
2679             }
2680         }
2681         const gl::FramebufferAttachment *depthStencil = mState.getDepthStencilAttachment();
2682         if (depthStencil && depthStencil->isRenderToTexture())
2683         {
2684             isRenderToTexture = true;
2685         }
2686 
2687         mCurrentFramebufferDesc.updateRenderToTexture(isRenderToTexture);
2688         mRenderPassDesc.updateRenderToTexture(isRenderToTexture);
2689     }
2690 
2691     mCurrentFramebufferDesc.updateUnresolveMask({});
2692     mRenderPassDesc.setWriteControlMode(mCurrentFramebufferDesc.getWriteControlMode());
2693     mRenderPassDesc.setFragmentShadingAttachment(
2694         mCurrentFramebufferDesc.hasFragmentShadingRateAttachment());
2695 
2696     updateLegacyDither(contextVk);
2697 }
2698 
getAttachmentsAndRenderTargets(vk::Context * context,vk::FramebufferAttachmentsVector<VkImageView> * unpackedAttachments,vk::FramebufferAttachmentsVector<RenderTargetInfo> * packedRenderTargetsInfoOut)2699 angle::Result FramebufferVk::getAttachmentsAndRenderTargets(
2700     vk::Context *context,
2701     vk::FramebufferAttachmentsVector<VkImageView> *unpackedAttachments,
2702     vk::FramebufferAttachmentsVector<RenderTargetInfo> *packedRenderTargetsInfoOut)
2703 {
2704     // Color attachments.
2705     mIsYUVResolve                  = false;
2706     const auto &colorRenderTargets = mRenderTargetCache.getColors();
2707     for (size_t colorIndexGL : mState.getColorAttachmentsMask())
2708     {
2709         RenderTargetVk *colorRenderTarget = colorRenderTargets[colorIndexGL];
2710         ASSERT(colorRenderTarget);
2711 
2712         if (colorRenderTarget->isYuvResolve())
2713         {
2714             mIsYUVResolve = true;
2715             if (context->getRenderer()->nullColorAttachmentWithExternalFormatResolve())
2716             {
2717                 continue;
2718             }
2719         }
2720         const vk::ImageView *imageView = nullptr;
2721         ANGLE_TRY(colorRenderTarget->getImageViewWithColorspace(
2722             context, mCurrentFramebufferDesc.getWriteControlMode(), &imageView));
2723         unpackedAttachments->push_back(imageView->getHandle());
2724 
2725         packedRenderTargetsInfoOut->emplace_back(
2726             RenderTargetInfo(colorRenderTarget, RenderTargetImage::Attachment));
2727     }
2728 
2729     // Depth/stencil attachment.
2730     RenderTargetVk *depthStencilRenderTarget = getDepthStencilRenderTarget();
2731     if (depthStencilRenderTarget)
2732     {
2733         const vk::ImageView *imageView = nullptr;
2734         ANGLE_TRY(depthStencilRenderTarget->getImageView(context, &imageView));
2735 
2736         unpackedAttachments->push_back(imageView->getHandle());
2737         packedRenderTargetsInfoOut->emplace_back(
2738             RenderTargetInfo(depthStencilRenderTarget, RenderTargetImage::Attachment));
2739     }
2740 
2741     // Fragment shading rate attachment.
2742     if (mCurrentFramebufferDesc.hasFragmentShadingRateAttachment())
2743     {
2744         const vk::ImageViewHelper *imageViewHelper = &mFragmentShadingRateImageView;
2745         unpackedAttachments->push_back(
2746             imageViewHelper->getFragmentShadingRateImageView().getHandle());
2747         packedRenderTargetsInfoOut->emplace_back(nullptr, RenderTargetImage::FragmentShadingRate);
2748     }
2749 
2750     // Color resolve attachments.  From here on, the views are placed at sparse indices because of
2751     // |RenderPassFramebuffer|.  That allows more resolve attachments to be added later.
2752     unpackedAttachments->resize(vk::kMaxFramebufferAttachments, VK_NULL_HANDLE);
2753     static_assert(vk::RenderPassFramebuffer::kColorResolveAttachmentBegin <
2754                   vk::kMaxFramebufferAttachments);
2755     static_assert(vk::RenderPassFramebuffer::kDepthStencilResolveAttachment <
2756                   vk::kMaxFramebufferAttachments);
2757 
2758     bool anyResolveAttachments = false;
2759 
2760     for (size_t colorIndexGL : mState.getColorAttachmentsMask())
2761     {
2762         RenderTargetVk *colorRenderTarget = colorRenderTargets[colorIndexGL];
2763         ASSERT(colorRenderTarget);
2764 
2765         if (colorRenderTarget->hasResolveAttachment())
2766         {
2767             const vk::ImageView *resolveImageView = nullptr;
2768             ANGLE_TRY(colorRenderTarget->getResolveImageView(context, &resolveImageView));
2769 
2770             constexpr size_t kBaseIndex = vk::RenderPassFramebuffer::kColorResolveAttachmentBegin;
2771             (*unpackedAttachments)[kBaseIndex + colorIndexGL] = resolveImageView->getHandle();
2772             packedRenderTargetsInfoOut->emplace_back(
2773                 RenderTargetInfo(colorRenderTarget, RenderTargetImage::Resolve));
2774 
2775             anyResolveAttachments = true;
2776         }
2777     }
2778 
2779     // Depth/stencil resolve attachment.
2780     if (depthStencilRenderTarget && depthStencilRenderTarget->hasResolveAttachment())
2781     {
2782         const vk::ImageView *imageView = nullptr;
2783         ANGLE_TRY(depthStencilRenderTarget->getResolveImageView(context, &imageView));
2784 
2785         (*unpackedAttachments)[vk::RenderPassFramebuffer::kDepthStencilResolveAttachment] =
2786             imageView->getHandle();
2787         packedRenderTargetsInfoOut->emplace_back(
2788             RenderTargetInfo(depthStencilRenderTarget, RenderTargetImage::Resolve));
2789 
2790         anyResolveAttachments = true;
2791     }
2792 
2793     // Make sure |AllowAddingResolveAttachmentsToSubpass()| is guarding against all cases where a
2794     // resolve attachment is pre-present in the render pass.
2795     if (anyResolveAttachments)
2796     {
2797         ASSERT(!AllowAddingResolveAttachmentsToSubpass(mRenderPassDesc));
2798     }
2799 
2800     return angle::Result::Continue;
2801 }
2802 
createNewFramebuffer(ContextVk * contextVk,uint32_t framebufferWidth,const uint32_t framebufferHeight,const uint32_t framebufferLayers,const vk::FramebufferAttachmentsVector<VkImageView> & unpackedAttachments,const vk::FramebufferAttachmentsVector<RenderTargetInfo> & renderTargetsInfo)2803 angle::Result FramebufferVk::createNewFramebuffer(
2804     ContextVk *contextVk,
2805     uint32_t framebufferWidth,
2806     const uint32_t framebufferHeight,
2807     const uint32_t framebufferLayers,
2808     const vk::FramebufferAttachmentsVector<VkImageView> &unpackedAttachments,
2809     const vk::FramebufferAttachmentsVector<RenderTargetInfo> &renderTargetsInfo)
2810 {
2811     ASSERT(!contextVk->getFeatures().preferDynamicRendering.enabled);
2812 
2813     // The backbuffer framebuffer is cached in WindowSurfaceVk instead.
2814     ASSERT(mBackbuffer == nullptr);
2815     // Called only when a new framebuffer is needed.
2816     ASSERT(!mCurrentFramebuffer.valid());
2817 
2818     // When using imageless framebuffers, the framebuffer cache is not utilized.
2819     const bool useImagelessFramebuffer =
2820         contextVk->getFeatures().supportsImagelessFramebuffer.enabled;
2821 
2822     // Try to retrieve a framebuffer from the cache.
2823     if (!useImagelessFramebuffer && contextVk->getShareGroup()->getFramebufferCache().get(
2824                                         contextVk, mCurrentFramebufferDesc, mCurrentFramebuffer))
2825     {
2826         ASSERT(mCurrentFramebuffer.valid());
2827         mIsCurrentFramebufferCached = true;
2828         return angle::Result::Continue;
2829     }
2830 
2831     const vk::RenderPass *compatibleRenderPass = nullptr;
2832     ANGLE_TRY(contextVk->getCompatibleRenderPass(mRenderPassDesc, &compatibleRenderPass));
2833 
2834     // Create a new framebuffer.
2835     vk::FramebufferHelper newFramebuffer;
2836 
2837     VkFramebufferCreateInfo framebufferInfo = {};
2838     framebufferInfo.sType                   = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
2839     framebufferInfo.flags                   = 0;
2840     framebufferInfo.renderPass              = compatibleRenderPass->getHandle();
2841     framebufferInfo.attachmentCount         = static_cast<uint32_t>(renderTargetsInfo.size());
2842     framebufferInfo.width                   = framebufferWidth;
2843     framebufferInfo.height                  = framebufferHeight;
2844     framebufferInfo.layers                  = framebufferLayers;
2845 
2846     // Check that our description matches our attachments. Can catch implementation bugs.
2847     ASSERT((mIsYUVResolve &&
2848             contextVk->getRenderer()->nullColorAttachmentWithExternalFormatResolve()) ||
2849            static_cast<uint32_t>(renderTargetsInfo.size()) ==
2850                mCurrentFramebufferDesc.attachmentCount());
2851 
2852     if (!useImagelessFramebuffer)
2853     {
2854         vk::FramebufferAttachmentsVector<VkImageView> packedAttachments = unpackedAttachments;
2855         vk::RenderPassFramebuffer::PackViews(&packedAttachments);
2856 
2857         ASSERT(renderTargetsInfo.size() == packedAttachments.size());
2858         framebufferInfo.pAttachments = packedAttachments.data();
2859 
2860         // The cache key (|FramebufferDesc|) can't distinguish between two framebuffers with 0
2861         // attachments but with different sizes.  For simplicity, 0-attachment framebuffers are not
2862         // cached.
2863         ANGLE_TRY(newFramebuffer.init(contextVk, framebufferInfo));
2864         if (packedAttachments.empty())
2865         {
2866             mCurrentFramebuffer         = std::move(newFramebuffer.getFramebuffer());
2867             mIsCurrentFramebufferCached = false;
2868         }
2869         else
2870         {
2871             insertCache(contextVk, mCurrentFramebufferDesc, std::move(newFramebuffer));
2872 
2873             const bool result = contextVk->getShareGroup()->getFramebufferCache().get(
2874                 contextVk, mCurrentFramebufferDesc, mCurrentFramebuffer);
2875             ASSERT(result);
2876             mIsCurrentFramebufferCached = true;
2877         }
2878 
2879         return angle::Result::Continue;
2880     }
2881 
2882     // For imageless framebuffers, attachment image and create info objects should be defined
2883     // when creating the new framebuffer.
2884     vk::FramebufferAttachmentsVector<VkFramebufferAttachmentImageInfo> attachmentImageInfos(
2885         renderTargetsInfo.size(), {});
2886 
2887     for (size_t index = 0; index < renderTargetsInfo.size(); ++index)
2888     {
2889         const RenderTargetInfo &info                     = renderTargetsInfo[index];
2890         VkFramebufferAttachmentImageInfo &attachmentInfo = attachmentImageInfos[index];
2891 
2892         attachmentInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_ATTACHMENT_IMAGE_INFO;
2893 
2894         // The fragment shading rate attachment does not have a corresponding render target, and is
2895         // handled specially.
2896         if (info.renderTargetImage == RenderTargetImage::FragmentShadingRate)
2897         {
2898             attachmentInfo.width  = mFragmentShadingRateImage.getExtents().width;
2899             attachmentInfo.height = mFragmentShadingRateImage.getExtents().height;
2900 
2901             attachmentInfo.layerCount = 1;
2902             attachmentInfo.flags      = mFragmentShadingRateImage.getCreateFlags();
2903             attachmentInfo.usage      = mFragmentShadingRateImage.getUsage();
2904             attachmentInfo.viewFormatCount =
2905                 static_cast<uint32_t>(mFragmentShadingRateImage.getViewFormats().size());
2906             attachmentInfo.pViewFormats = mFragmentShadingRateImage.getViewFormats().data();
2907             continue;
2908         }
2909 
2910         vk::ImageHelper *image = (info.renderTargetImage == RenderTargetImage::Resolve ||
2911                                   info.renderTarget->isYuvResolve())
2912                                      ? &info.renderTarget->getResolveImageForRenderPass()
2913                                      : &info.renderTarget->getImageForRenderPass();
2914 
2915         const gl::LevelIndex level = info.renderTarget->getLevelIndexForImage(*image);
2916         const uint32_t layerCount  = info.renderTarget->getLayerCount();
2917         const gl::Extents extents  = image->getLevelExtents2D(image->toVkLevel(level));
2918 
2919         attachmentInfo.width           = std::max(extents.width, 1);
2920         attachmentInfo.height          = std::max(extents.height, 1);
2921         attachmentInfo.layerCount      = mCurrentFramebufferDesc.isMultiview()
2922                                              ? std::max<uint32_t>(mRenderPassDesc.viewCount(), 1u)
2923                                              : layerCount;
2924         attachmentInfo.flags           = image->getCreateFlags();
2925         attachmentInfo.usage           = image->getUsage();
2926         attachmentInfo.viewFormatCount = static_cast<uint32_t>(image->getViewFormats().size());
2927         attachmentInfo.pViewFormats    = image->getViewFormats().data();
2928     }
2929 
2930     VkFramebufferAttachmentsCreateInfo attachmentsCreateInfo = {};
2931     attachmentsCreateInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_ATTACHMENTS_CREATE_INFO;
2932     attachmentsCreateInfo.attachmentImageInfoCount =
2933         static_cast<uint32_t>(attachmentImageInfos.size());
2934     attachmentsCreateInfo.pAttachmentImageInfos = attachmentImageInfos.data();
2935 
2936     framebufferInfo.flags |= VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT;
2937     vk::AddToPNextChain(&framebufferInfo, &attachmentsCreateInfo);
2938 
2939     ANGLE_TRY(newFramebuffer.init(contextVk, framebufferInfo));
2940     mCurrentFramebuffer = std::move(newFramebuffer.getFramebuffer());
2941 
2942     return angle::Result::Continue;
2943 }
2944 
getFramebuffer(ContextVk * contextVk,vk::RenderPassFramebuffer * framebufferOut)2945 angle::Result FramebufferVk::getFramebuffer(ContextVk *contextVk,
2946                                             vk::RenderPassFramebuffer *framebufferOut)
2947 {
2948     ASSERT(!mRenderPassDesc.hasDepthStencilFramebufferFetch());
2949     ASSERT(mCurrentFramebufferDesc.hasColorFramebufferFetch() ==
2950            mRenderPassDesc.hasColorFramebufferFetch());
2951 
2952     const gl::Extents attachmentsSize = mState.getExtents();
2953     ASSERT(attachmentsSize.width != 0 && attachmentsSize.height != 0);
2954 
2955     uint32_t framebufferWidth        = static_cast<uint32_t>(attachmentsSize.width);
2956     uint32_t framebufferHeight       = static_cast<uint32_t>(attachmentsSize.height);
2957     const uint32_t framebufferLayers = !mCurrentFramebufferDesc.isMultiview()
2958                                            ? std::max(mCurrentFramebufferDesc.getLayerCount(), 1u)
2959                                            : 1;
2960 
2961     vk::FramebufferAttachmentsVector<VkImageView> unpackedAttachments;
2962     vk::FramebufferAttachmentsVector<RenderTargetInfo> renderTargetsInfo;
2963     ANGLE_TRY(getAttachmentsAndRenderTargets(contextVk, &unpackedAttachments, &renderTargetsInfo));
2964 
2965     vk::Framebuffer framebufferHandle;
2966     if (contextVk->getFeatures().preferDynamicRendering.enabled)
2967     {
2968         // Nothing to do with dynamic rendering.  The image views and other info are still placed in
2969         // |framebufferOut| to be passed to |vkCmdBeginRendering| similarly to how they are used
2970         // with imageless framebuffers with render pass objects.
2971     }
2972     else if (mCurrentFramebuffer.valid())
2973     {
2974         // If a valid framebuffer is already created, use it.  This is not done when the swapchain
2975         // is being resolved, because the appropriate framebuffer needs to be queried from the back
2976         // buffer.
2977         framebufferHandle.setHandle(mCurrentFramebuffer.getHandle());
2978     }
2979     else
2980     {
2981         // For the default framebuffer attached to a window surface, WindowSurfaceVk caches a
2982         // handful of framebuffer objects which are queried here.  For the rest, a framebuffer needs
2983         // to be created based on the current attachments to the FBO.
2984         if (mBackbuffer == nullptr)
2985         {
2986             // Create a new framebuffer
2987             ANGLE_TRY(createNewFramebuffer(contextVk, framebufferWidth, framebufferHeight,
2988                                            framebufferLayers, unpackedAttachments,
2989                                            renderTargetsInfo));
2990             ASSERT(mCurrentFramebuffer.valid());
2991             framebufferHandle.setHandle(mCurrentFramebuffer.getHandle());
2992         }
2993         else
2994         {
2995             const vk::RenderPass *compatibleRenderPass = nullptr;
2996             ANGLE_TRY(contextVk->getCompatibleRenderPass(mRenderPassDesc, &compatibleRenderPass));
2997 
2998             // If there is a backbuffer, query the framebuffer from WindowSurfaceVk instead.
2999             ANGLE_TRY(mBackbuffer->getCurrentFramebuffer(
3000                 contextVk,
3001                 mRenderPassDesc.hasColorFramebufferFetch() ? vk::FramebufferFetchMode::Color
3002                                                            : vk::FramebufferFetchMode::None,
3003                 *compatibleRenderPass, &framebufferHandle));
3004         }
3005     }
3006 
3007     if (mBackbuffer != nullptr)
3008     {
3009         // Account for swapchain pre-rotation
3010         framebufferWidth  = renderTargetsInfo[0].renderTarget->getRotatedExtents().width;
3011         framebufferHeight = renderTargetsInfo[0].renderTarget->getRotatedExtents().height;
3012     }
3013 
3014     const vk::ImagelessFramebuffer imagelessFramebuffer =
3015         contextVk->getFeatures().preferDynamicRendering.enabled ||
3016                 (contextVk->getFeatures().supportsImagelessFramebuffer.enabled &&
3017                  mBackbuffer == nullptr)
3018             ? vk::ImagelessFramebuffer::Yes
3019             : vk::ImagelessFramebuffer::No;
3020     const vk::RenderPassSource source = mBackbuffer == nullptr
3021                                             ? vk::RenderPassSource::FramebufferObject
3022                                             : vk::RenderPassSource::DefaultFramebuffer;
3023 
3024     framebufferOut->setFramebuffer(
3025         contextVk, std::move(framebufferHandle), std::move(unpackedAttachments), framebufferWidth,
3026         framebufferHeight, framebufferLayers, imagelessFramebuffer, source);
3027 
3028     return angle::Result::Continue;
3029 }
3030 
mergeClearsWithDeferredClears(gl::DrawBufferMask clearColorBuffers,bool clearDepth,bool clearStencil,const gl::DrawBuffersArray<VkClearColorValue> & clearColorValues,const VkClearDepthStencilValue & clearDepthStencilValue)3031 void FramebufferVk::mergeClearsWithDeferredClears(
3032     gl::DrawBufferMask clearColorBuffers,
3033     bool clearDepth,
3034     bool clearStencil,
3035     const gl::DrawBuffersArray<VkClearColorValue> &clearColorValues,
3036     const VkClearDepthStencilValue &clearDepthStencilValue)
3037 {
3038     // Apply clears to mDeferredClears.  Note that clears override deferred clears.
3039 
3040     // Color clears.
3041     for (size_t colorIndexGL : clearColorBuffers)
3042     {
3043         ASSERT(mState.getEnabledDrawBuffers().test(colorIndexGL));
3044         VkClearValue clearValue =
3045             getCorrectedColorClearValue(colorIndexGL, clearColorValues[colorIndexGL]);
3046         mDeferredClears.store(static_cast<uint32_t>(colorIndexGL), VK_IMAGE_ASPECT_COLOR_BIT,
3047                               clearValue);
3048     }
3049 
3050     // Depth and stencil clears.
3051     VkImageAspectFlags dsAspectFlags = 0;
3052     VkClearValue dsClearValue        = {};
3053     dsClearValue.depthStencil        = clearDepthStencilValue;
3054     if (clearDepth)
3055     {
3056         dsAspectFlags |= VK_IMAGE_ASPECT_DEPTH_BIT;
3057     }
3058     if (clearStencil)
3059     {
3060         dsAspectFlags |= VK_IMAGE_ASPECT_STENCIL_BIT;
3061     }
3062 
3063     if (dsAspectFlags != 0)
3064     {
3065         mDeferredClears.store(vk::kUnpackedDepthIndex, dsAspectFlags, dsClearValue);
3066     }
3067 }
3068 
clearWithDraw(ContextVk * contextVk,const gl::Rectangle & clearArea,gl::DrawBufferMask clearColorBuffers,bool clearDepth,bool clearStencil,gl::BlendStateExt::ColorMaskStorage::Type colorMasks,uint8_t stencilMask,const gl::DrawBuffersArray<VkClearColorValue> & clearColorValues,const VkClearDepthStencilValue & clearDepthStencilValue)3069 angle::Result FramebufferVk::clearWithDraw(
3070     ContextVk *contextVk,
3071     const gl::Rectangle &clearArea,
3072     gl::DrawBufferMask clearColorBuffers,
3073     bool clearDepth,
3074     bool clearStencil,
3075     gl::BlendStateExt::ColorMaskStorage::Type colorMasks,
3076     uint8_t stencilMask,
3077     const gl::DrawBuffersArray<VkClearColorValue> &clearColorValues,
3078     const VkClearDepthStencilValue &clearDepthStencilValue)
3079 {
3080     // All deferred clears should be handled already.
3081     ASSERT(mDeferredClears.empty());
3082 
3083     UtilsVk::ClearFramebufferParameters params = {};
3084     params.clearArea                           = clearArea;
3085     params.depthStencilClearValue              = clearDepthStencilValue;
3086     params.stencilMask                         = stencilMask;
3087 
3088     params.clearColor   = true;
3089     params.clearDepth   = clearDepth;
3090     params.clearStencil = clearStencil;
3091 
3092     const auto &colorRenderTargets = mRenderTargetCache.getColors();
3093     for (size_t colorIndexGL : clearColorBuffers)
3094     {
3095         const RenderTargetVk *colorRenderTarget = colorRenderTargets[colorIndexGL];
3096         ASSERT(colorRenderTarget);
3097 
3098         params.colorClearValue = clearColorValues[colorIndexGL];
3099         params.colorFormat     = &colorRenderTarget->getImageForRenderPass().getActualFormat();
3100         params.colorAttachmentIndexGL = static_cast<uint32_t>(colorIndexGL);
3101         params.colorMaskFlags =
3102             gl::BlendStateExt::ColorMaskStorage::GetValueIndexed(colorIndexGL, colorMasks);
3103         if (mEmulatedAlphaAttachmentMask[colorIndexGL])
3104         {
3105             params.colorMaskFlags &= ~VK_COLOR_COMPONENT_A_BIT;
3106         }
3107 
3108         // TODO: implement clear of layered framebuffers.  UtilsVk::clearFramebuffer should add a
3109         // geometry shader that is instanced layerCount times (or loops layerCount times), each time
3110         // selecting a different layer.
3111         // http://anglebug.com/42263992
3112         ASSERT(mCurrentFramebufferDesc.isMultiview() || colorRenderTarget->getLayerCount() == 1);
3113 
3114         ANGLE_TRY(contextVk->getUtils().clearFramebuffer(contextVk, this, params));
3115 
3116         // Clear depth/stencil only once!
3117         params.clearDepth   = false;
3118         params.clearStencil = false;
3119     }
3120 
3121     // If there was no color clear, clear depth/stencil alone.
3122     if (params.clearDepth || params.clearStencil)
3123     {
3124         params.clearColor = false;
3125         ANGLE_TRY(contextVk->getUtils().clearFramebuffer(contextVk, this, params));
3126     }
3127 
3128     return angle::Result::Continue;
3129 }
3130 
getCorrectedColorClearValue(size_t colorIndexGL,const VkClearColorValue & clearColor) const3131 VkClearValue FramebufferVk::getCorrectedColorClearValue(size_t colorIndexGL,
3132                                                         const VkClearColorValue &clearColor) const
3133 {
3134     VkClearValue clearValue = {};
3135     clearValue.color        = clearColor;
3136 
3137     if (!mEmulatedAlphaAttachmentMask[colorIndexGL])
3138     {
3139         return clearValue;
3140     }
3141 
3142     // If the render target doesn't have alpha, but its emulated format has it, clear the alpha
3143     // to 1.
3144     RenderTargetVk *renderTarget = getColorDrawRenderTarget(colorIndexGL);
3145     const angle::Format &format  = renderTarget->getImageActualFormat();
3146 
3147     if (format.isUint())
3148     {
3149         clearValue.color.uint32[3] = kEmulatedAlphaValue;
3150     }
3151     else if (format.isSint())
3152     {
3153         clearValue.color.int32[3] = kEmulatedAlphaValue;
3154     }
3155     else
3156     {
3157         clearValue.color.float32[3] = kEmulatedAlphaValue;
3158     }
3159 
3160     return clearValue;
3161 }
3162 
restageDeferredClears(ContextVk * contextVk)3163 void FramebufferVk::restageDeferredClears(ContextVk *contextVk)
3164 {
3165     // Called when restaging clears of the draw framebuffer.  In that case, there can't be any
3166     // render passes open, otherwise the clear would have applied to the render pass.  In the
3167     // exceptional occasion in blit where the read framebuffer accumulates deferred clears, it can
3168     // be deferred while this assumption doesn't hold (and restageDeferredClearsForReadFramebuffer
3169     // should be used instead).
3170     ASSERT(!contextVk->hasActiveRenderPass() || !mDeferredClears.any());
3171     restageDeferredClearsImpl(contextVk);
3172 }
3173 
restageDeferredClearsForReadFramebuffer(ContextVk * contextVk)3174 void FramebufferVk::restageDeferredClearsForReadFramebuffer(ContextVk *contextVk)
3175 {
3176     restageDeferredClearsImpl(contextVk);
3177 }
3178 
restageDeferredClearsImpl(ContextVk * contextVk)3179 void FramebufferVk::restageDeferredClearsImpl(ContextVk *contextVk)
3180 {
3181     // Set the appropriate aspect and clear values for depth and stencil.
3182     VkImageAspectFlags dsAspectFlags  = 0;
3183     VkClearValue dsClearValue         = {};
3184     dsClearValue.depthStencil.depth   = mDeferredClears.getDepthValue();
3185     dsClearValue.depthStencil.stencil = mDeferredClears.getStencilValue();
3186 
3187     if (mDeferredClears.testDepth())
3188     {
3189         dsAspectFlags |= VK_IMAGE_ASPECT_DEPTH_BIT;
3190         mDeferredClears.reset(vk::kUnpackedDepthIndex);
3191     }
3192 
3193     if (mDeferredClears.testStencil())
3194     {
3195         dsAspectFlags |= VK_IMAGE_ASPECT_STENCIL_BIT;
3196         mDeferredClears.reset(vk::kUnpackedStencilIndex);
3197     }
3198 
3199     // Go through deferred clears and stage the clears for future.
3200     for (size_t colorIndexGL : mDeferredClears.getColorMask())
3201     {
3202         RenderTargetVk *renderTarget = getColorDrawRenderTarget(colorIndexGL);
3203         gl::ImageIndex imageIndex =
3204             renderTarget->getImageIndexForClear(mCurrentFramebufferDesc.getLayerCount());
3205         renderTarget->getImageForWrite().stageClear(imageIndex, VK_IMAGE_ASPECT_COLOR_BIT,
3206                                                     mDeferredClears[colorIndexGL]);
3207         mDeferredClears.reset(colorIndexGL);
3208     }
3209 
3210     if (dsAspectFlags)
3211     {
3212         RenderTargetVk *renderTarget = getDepthStencilRenderTarget();
3213         ASSERT(renderTarget);
3214 
3215         gl::ImageIndex imageIndex =
3216             renderTarget->getImageIndexForClear(mCurrentFramebufferDesc.getLayerCount());
3217         renderTarget->getImageForWrite().stageClear(imageIndex, dsAspectFlags, dsClearValue);
3218     }
3219 }
3220 
clearWithCommand(ContextVk * contextVk,const gl::Rectangle & scissoredRenderArea,ClearWithCommand behavior,vk::ClearValuesArray * clears)3221 void FramebufferVk::clearWithCommand(ContextVk *contextVk,
3222                                      const gl::Rectangle &scissoredRenderArea,
3223                                      ClearWithCommand behavior,
3224                                      vk::ClearValuesArray *clears)
3225 {
3226     // Clear is not affected by viewport, so ContextVk::updateScissor may have decided on a smaller
3227     // render area.  Grow the render area to the full framebuffer size as this clear path is taken
3228     // when not scissored.
3229     vk::RenderPassCommandBufferHelper *renderPassCommands =
3230         &contextVk->getStartedRenderPassCommands();
3231     renderPassCommands->growRenderArea(contextVk, scissoredRenderArea);
3232 
3233     gl::AttachmentVector<VkClearAttachment> attachments;
3234 
3235     const bool optimizeWithLoadOp = behavior == ClearWithCommand::OptimizeWithLoadOp;
3236 
3237     // Go through deferred clears and add them to the list of attachments to clear.  If any
3238     // attachment is unused, skip the clear.  clearWithLoadOp will follow and move the remaining
3239     // clears up to loadOp.
3240     vk::PackedAttachmentIndex colorIndexVk(0);
3241     for (size_t colorIndexGL : mState.getColorAttachmentsMask())
3242     {
3243         if (clears->getColorMask().test(colorIndexGL))
3244         {
3245             if (renderPassCommands->hasAnyColorAccess(colorIndexVk) ||
3246                 renderPassCommands->getRenderPassDesc().hasColorUnresolveAttachment(colorIndexGL) ||
3247                 !optimizeWithLoadOp)
3248             {
3249                 // With render pass objects, the clears are indexed by the subpass-mapped locations.
3250                 // With dynamic rendering, they are indexed by the actual attachment index.
3251                 const uint32_t clearAttachmentIndex =
3252                     contextVk->getFeatures().preferDynamicRendering.enabled
3253                         ? colorIndexVk.get()
3254                         : static_cast<uint32_t>(colorIndexGL);
3255 
3256                 attachments.emplace_back(VkClearAttachment{
3257                     VK_IMAGE_ASPECT_COLOR_BIT, clearAttachmentIndex, (*clears)[colorIndexGL]});
3258                 clears->reset(colorIndexGL);
3259                 ++contextVk->getPerfCounters().colorClearAttachments;
3260 
3261                 renderPassCommands->onColorAccess(colorIndexVk, vk::ResourceAccess::ReadWrite);
3262             }
3263             else
3264             {
3265                 // Skip this attachment, so we can use a renderpass loadOp to clear it instead.
3266                 // Note that if loadOp=Clear was already used for this color attachment, it will be
3267                 // overriden by the new clear, which is valid because the attachment wasn't used in
3268                 // between.
3269             }
3270         }
3271         ++colorIndexVk;
3272     }
3273 
3274     // Add depth and stencil to list of attachments as needed.
3275     VkImageAspectFlags dsAspectFlags  = 0;
3276     VkClearValue dsClearValue         = {};
3277     dsClearValue.depthStencil.depth   = clears->getDepthValue();
3278     dsClearValue.depthStencil.stencil = clears->getStencilValue();
3279     if (clears->testDepth() &&
3280         (renderPassCommands->hasAnyDepthAccess() ||
3281          renderPassCommands->getRenderPassDesc().hasDepthUnresolveAttachment() ||
3282          !optimizeWithLoadOp))
3283     {
3284         dsAspectFlags |= VK_IMAGE_ASPECT_DEPTH_BIT;
3285         // Explicitly mark a depth write because we are clearing the depth buffer.
3286         renderPassCommands->onDepthAccess(vk::ResourceAccess::ReadWrite);
3287         clears->reset(vk::kUnpackedDepthIndex);
3288         ++contextVk->getPerfCounters().depthClearAttachments;
3289     }
3290 
3291     if (clears->testStencil() &&
3292         (renderPassCommands->hasAnyStencilAccess() ||
3293          renderPassCommands->getRenderPassDesc().hasStencilUnresolveAttachment() ||
3294          !optimizeWithLoadOp))
3295     {
3296         dsAspectFlags |= VK_IMAGE_ASPECT_STENCIL_BIT;
3297         // Explicitly mark a stencil write because we are clearing the stencil buffer.
3298         renderPassCommands->onStencilAccess(vk::ResourceAccess::ReadWrite);
3299         clears->reset(vk::kUnpackedStencilIndex);
3300         ++contextVk->getPerfCounters().stencilClearAttachments;
3301     }
3302 
3303     if (dsAspectFlags != 0)
3304     {
3305         attachments.emplace_back(VkClearAttachment{dsAspectFlags, 0, dsClearValue});
3306 
3307         // Because we may have changed the depth/stencil access mode, update read only depth/stencil
3308         // mode.
3309         renderPassCommands->updateDepthStencilReadOnlyMode(
3310             contextVk->getDepthStencilAttachmentFlags(), dsAspectFlags);
3311     }
3312 
3313     if (attachments.empty())
3314     {
3315         // If called with the intent to definitely clear something with vkCmdClearAttachments, there
3316         // must have been something to clear!
3317         ASSERT(optimizeWithLoadOp);
3318         return;
3319     }
3320 
3321     const uint32_t layerCount = mState.isMultiview() ? 1 : mCurrentFramebufferDesc.getLayerCount();
3322 
3323     VkClearRect rect                                     = {};
3324     rect.rect.offset.x                                   = scissoredRenderArea.x;
3325     rect.rect.offset.y                                   = scissoredRenderArea.y;
3326     rect.rect.extent.width                               = scissoredRenderArea.width;
3327     rect.rect.extent.height                              = scissoredRenderArea.height;
3328     rect.layerCount                                      = layerCount;
3329     vk::RenderPassCommandBuffer *renderPassCommandBuffer = &renderPassCommands->getCommandBuffer();
3330 
3331     renderPassCommandBuffer->clearAttachments(static_cast<uint32_t>(attachments.size()),
3332                                               attachments.data(), 1, &rect);
3333     return;
3334 }
3335 
clearWithLoadOp(ContextVk * contextVk)3336 void FramebufferVk::clearWithLoadOp(ContextVk *contextVk)
3337 {
3338     vk::RenderPassCommandBufferHelper *renderPassCommands =
3339         &contextVk->getStartedRenderPassCommands();
3340 
3341     // Update the render pass loadOps to clear the attachments.
3342     vk::PackedAttachmentIndex colorIndexVk(0);
3343     for (size_t colorIndexGL : mState.getColorAttachmentsMask())
3344     {
3345         if (!mDeferredClears.test(colorIndexGL))
3346         {
3347             ++colorIndexVk;
3348             continue;
3349         }
3350 
3351         ASSERT(!renderPassCommands->hasAnyColorAccess(colorIndexVk));
3352 
3353         renderPassCommands->updateRenderPassColorClear(colorIndexVk, mDeferredClears[colorIndexGL]);
3354 
3355         mDeferredClears.reset(colorIndexGL);
3356 
3357         ++colorIndexVk;
3358     }
3359 
3360     VkClearValue dsClearValue         = {};
3361     dsClearValue.depthStencil.depth   = mDeferredClears.getDepthValue();
3362     dsClearValue.depthStencil.stencil = mDeferredClears.getStencilValue();
3363     VkImageAspectFlags dsAspects      = 0;
3364 
3365     if (mDeferredClears.testDepth())
3366     {
3367         ASSERT(!renderPassCommands->hasAnyDepthAccess());
3368         dsAspects |= VK_IMAGE_ASPECT_DEPTH_BIT;
3369         mDeferredClears.reset(vk::kUnpackedDepthIndex);
3370     }
3371 
3372     if (mDeferredClears.testStencil())
3373     {
3374         ASSERT(!renderPassCommands->hasAnyStencilAccess());
3375         dsAspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
3376         mDeferredClears.reset(vk::kUnpackedStencilIndex);
3377     }
3378 
3379     if (dsAspects != 0)
3380     {
3381         renderPassCommands->updateRenderPassDepthStencilClear(dsAspects, dsClearValue);
3382 
3383         // The render pass can no longer be in read-only depth/stencil mode.
3384         renderPassCommands->updateDepthStencilReadOnlyMode(
3385             contextVk->getDepthStencilAttachmentFlags(), dsAspects);
3386     }
3387 }
3388 
getSamplePosition(const gl::Context * context,size_t index,GLfloat * xy) const3389 angle::Result FramebufferVk::getSamplePosition(const gl::Context *context,
3390                                                size_t index,
3391                                                GLfloat *xy) const
3392 {
3393     int sampleCount = getSamples();
3394     rx::GetSamplePosition(sampleCount, index, xy);
3395     return angle::Result::Continue;
3396 }
3397 
startNewRenderPass(ContextVk * contextVk,const gl::Rectangle & renderArea,vk::RenderPassCommandBuffer ** commandBufferOut,bool * renderPassDescChangedOut)3398 angle::Result FramebufferVk::startNewRenderPass(ContextVk *contextVk,
3399                                                 const gl::Rectangle &renderArea,
3400                                                 vk::RenderPassCommandBuffer **commandBufferOut,
3401                                                 bool *renderPassDescChangedOut)
3402 {
3403     ANGLE_TRY(contextVk->flushCommandsAndEndRenderPass(RenderPassClosureReason::NewRenderPass));
3404 
3405     // Initialize RenderPass info.
3406     vk::AttachmentOpsArray renderPassAttachmentOps;
3407     vk::PackedClearValuesArray packedClearValues;
3408     gl::DrawBufferMask previousUnresolveColorMask =
3409         mRenderPassDesc.getColorUnresolveAttachmentMask();
3410     const bool hasDeferredClears        = mDeferredClears.any();
3411     const bool previousUnresolveDepth   = mRenderPassDesc.hasDepthUnresolveAttachment();
3412     const bool previousUnresolveStencil = mRenderPassDesc.hasStencilUnresolveAttachment();
3413 
3414     // Make sure render pass and framebuffer are in agreement w.r.t unresolve attachments.
3415     ASSERT(mCurrentFramebufferDesc.getUnresolveAttachmentMask() ==
3416            MakeUnresolveAttachmentMask(mRenderPassDesc));
3417     // ... w.r.t sRGB write control.
3418     ASSERT(mCurrentFramebufferDesc.getWriteControlMode() ==
3419            mRenderPassDesc.getSRGBWriteControlMode());
3420     // ... w.r.t foveation.
3421     ASSERT(mCurrentFramebufferDesc.hasFragmentShadingRateAttachment() ==
3422            mRenderPassDesc.hasFragmentShadingAttachment());
3423 
3424     // Color attachments.
3425     const auto &colorRenderTargets = mRenderTargetCache.getColors();
3426     vk::PackedAttachmentIndex colorIndexVk(0);
3427     for (size_t colorIndexGL : mState.getColorAttachmentsMask())
3428     {
3429         RenderTargetVk *colorRenderTarget = colorRenderTargets[colorIndexGL];
3430         ASSERT(colorRenderTarget);
3431 
3432         // Color render targets are never entirely transient.  Only depth/stencil
3433         // multisampled-render-to-texture textures can be so.
3434         ASSERT(!colorRenderTarget->isEntirelyTransient());
3435         const vk::RenderPassStoreOp storeOp = colorRenderTarget->isImageTransient()
3436                                                   ? vk::RenderPassStoreOp::DontCare
3437                                                   : vk::RenderPassStoreOp::Store;
3438 
3439         if (mDeferredClears.test(colorIndexGL))
3440         {
3441             renderPassAttachmentOps.setOps(colorIndexVk, vk::RenderPassLoadOp::Clear, storeOp);
3442             packedClearValues.storeColor(colorIndexVk, mDeferredClears[colorIndexGL]);
3443             mDeferredClears.reset(colorIndexGL);
3444         }
3445         else
3446         {
3447             const vk::RenderPassLoadOp loadOp = colorRenderTarget->hasDefinedContent()
3448                                                     ? vk::RenderPassLoadOp::Load
3449                                                     : vk::RenderPassLoadOp::DontCare;
3450 
3451             renderPassAttachmentOps.setOps(colorIndexVk, loadOp, storeOp);
3452             packedClearValues.storeColor(colorIndexVk, kUninitializedClearValue);
3453         }
3454         renderPassAttachmentOps.setStencilOps(colorIndexVk, vk::RenderPassLoadOp::DontCare,
3455                                               vk::RenderPassStoreOp::DontCare);
3456 
3457         // If there's a resolve attachment, and loadOp needs to be LOAD, the multisampled attachment
3458         // needs to take its value from the resolve attachment.  In this case, an initial subpass is
3459         // added for this very purpose which uses the resolve attachment as input attachment.  As a
3460         // result, loadOp of the multisampled attachment can remain DONT_CARE.
3461         //
3462         // Note that this only needs to be done if the multisampled image and the resolve attachment
3463         // come from the same source.  isImageTransient() indicates whether this should happen.
3464         if (colorRenderTarget->hasResolveAttachment() && colorRenderTarget->isImageTransient())
3465         {
3466             if (renderPassAttachmentOps[colorIndexVk].loadOp == VK_ATTACHMENT_LOAD_OP_LOAD)
3467             {
3468                 renderPassAttachmentOps[colorIndexVk].loadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
3469 
3470                 // Update the render pass desc to specify that this attachment should be unresolved.
3471                 mRenderPassDesc.packColorUnresolveAttachment(colorIndexGL);
3472             }
3473             else
3474             {
3475                 mRenderPassDesc.removeColorUnresolveAttachment(colorIndexGL);
3476             }
3477         }
3478         else
3479         {
3480             ASSERT(!mRenderPassDesc.getColorUnresolveAttachmentMask().test(colorIndexGL));
3481         }
3482 
3483         ++colorIndexVk;
3484     }
3485 
3486     // Depth/stencil attachment.
3487     vk::PackedAttachmentIndex depthStencilAttachmentIndex = vk::kAttachmentIndexInvalid;
3488     RenderTargetVk *depthStencilRenderTarget              = getDepthStencilRenderTarget();
3489     if (depthStencilRenderTarget)
3490     {
3491         // depth stencil attachment always immediately follows color attachment
3492         depthStencilAttachmentIndex = colorIndexVk;
3493 
3494         vk::RenderPassLoadOp depthLoadOp     = vk::RenderPassLoadOp::Load;
3495         vk::RenderPassLoadOp stencilLoadOp   = vk::RenderPassLoadOp::Load;
3496         vk::RenderPassStoreOp depthStoreOp   = vk::RenderPassStoreOp::Store;
3497         vk::RenderPassStoreOp stencilStoreOp = vk::RenderPassStoreOp::Store;
3498 
3499         // If the image data was previously discarded (with no update in between), don't attempt to
3500         // load the image.  Additionally, if the multisampled image data is transient and there is
3501         // no resolve attachment, there's no data to load.  The latter is the case with
3502         // depth/stencil texture attachments per GL_EXT_multisampled_render_to_texture2.
3503         if (!depthStencilRenderTarget->hasDefinedContent() ||
3504             depthStencilRenderTarget->isEntirelyTransient())
3505         {
3506             depthLoadOp = vk::RenderPassLoadOp::DontCare;
3507         }
3508         if (!depthStencilRenderTarget->hasDefinedStencilContent() ||
3509             depthStencilRenderTarget->isEntirelyTransient())
3510         {
3511             stencilLoadOp = vk::RenderPassLoadOp::DontCare;
3512         }
3513 
3514         // If depth/stencil image is transient, no need to store its data at the end of the render
3515         // pass.
3516         if (depthStencilRenderTarget->isImageTransient())
3517         {
3518             depthStoreOp   = vk::RenderPassStoreOp::DontCare;
3519             stencilStoreOp = vk::RenderPassStoreOp::DontCare;
3520         }
3521 
3522         if (mDeferredClears.testDepth() || mDeferredClears.testStencil())
3523         {
3524             VkClearValue clearValue = {};
3525 
3526             if (mDeferredClears.testDepth())
3527             {
3528                 depthLoadOp                   = vk::RenderPassLoadOp::Clear;
3529                 clearValue.depthStencil.depth = mDeferredClears.getDepthValue();
3530                 mDeferredClears.reset(vk::kUnpackedDepthIndex);
3531             }
3532 
3533             if (mDeferredClears.testStencil())
3534             {
3535                 stencilLoadOp                   = vk::RenderPassLoadOp::Clear;
3536                 clearValue.depthStencil.stencil = mDeferredClears.getStencilValue();
3537                 mDeferredClears.reset(vk::kUnpackedStencilIndex);
3538             }
3539 
3540             packedClearValues.storeDepthStencil(depthStencilAttachmentIndex, clearValue);
3541         }
3542         else
3543         {
3544             packedClearValues.storeDepthStencil(depthStencilAttachmentIndex,
3545                                                 kUninitializedClearValue);
3546         }
3547 
3548         const angle::Format &format = depthStencilRenderTarget->getImageIntendedFormat();
3549         // If the format we picked has stencil but user did not ask for it due to hardware
3550         // limitations, use DONT_CARE for load/store. The same logic for depth follows.
3551         if (format.stencilBits == 0)
3552         {
3553             stencilLoadOp  = vk::RenderPassLoadOp::DontCare;
3554             stencilStoreOp = vk::RenderPassStoreOp::DontCare;
3555         }
3556         if (format.depthBits == 0)
3557         {
3558             depthLoadOp  = vk::RenderPassLoadOp::DontCare;
3559             depthStoreOp = vk::RenderPassStoreOp::DontCare;
3560         }
3561 
3562         // Similar to color attachments, if there's a resolve attachment and the multisampled image
3563         // is transient, depth/stencil data need to be unresolved in an initial subpass.
3564         if (depthStencilRenderTarget->hasResolveAttachment() &&
3565             depthStencilRenderTarget->isImageTransient())
3566         {
3567             const bool unresolveDepth   = depthLoadOp == vk::RenderPassLoadOp::Load;
3568             const bool unresolveStencil = stencilLoadOp == vk::RenderPassLoadOp::Load;
3569 
3570             if (unresolveDepth)
3571             {
3572                 depthLoadOp = vk::RenderPassLoadOp::DontCare;
3573             }
3574 
3575             if (unresolveStencil)
3576             {
3577                 stencilLoadOp = vk::RenderPassLoadOp::DontCare;
3578 
3579                 // If VK_EXT_shader_stencil_export is not supported, stencil unresolve is done
3580                 // through a method that requires stencil to have been cleared.
3581                 if (!contextVk->getFeatures().supportsShaderStencilExport.enabled)
3582                 {
3583                     stencilLoadOp = vk::RenderPassLoadOp::Clear;
3584 
3585                     VkClearValue clearValue = packedClearValues[depthStencilAttachmentIndex];
3586                     clearValue.depthStencil.stencil = 0;
3587                     packedClearValues.storeDepthStencil(depthStencilAttachmentIndex, clearValue);
3588                 }
3589             }
3590 
3591             if (unresolveDepth || unresolveStencil)
3592             {
3593                 if (unresolveDepth)
3594                 {
3595                     mRenderPassDesc.packDepthUnresolveAttachment();
3596                 }
3597                 if (unresolveStencil)
3598                 {
3599                     mRenderPassDesc.packStencilUnresolveAttachment();
3600                 }
3601             }
3602             else
3603             {
3604                 mRenderPassDesc.removeDepthStencilUnresolveAttachment();
3605             }
3606         }
3607 
3608         renderPassAttachmentOps.setOps(depthStencilAttachmentIndex, depthLoadOp, depthStoreOp);
3609         renderPassAttachmentOps.setStencilOps(depthStencilAttachmentIndex, stencilLoadOp,
3610                                               stencilStoreOp);
3611     }
3612 
3613     // If render pass description is changed, the previous render pass desc is no longer compatible.
3614     // Tell the context so that the graphics pipelines can be recreated.
3615     //
3616     // Note that render passes are compatible only if the differences are in loadOp/storeOp values,
3617     // or the existence of resolve attachments in single subpass render passes.  The modification
3618     // here can add/remove a subpass, or modify its input attachments.
3619     gl::DrawBufferMask unresolveColorMask = mRenderPassDesc.getColorUnresolveAttachmentMask();
3620     const bool unresolveDepth             = mRenderPassDesc.hasDepthUnresolveAttachment();
3621     const bool unresolveStencil           = mRenderPassDesc.hasStencilUnresolveAttachment();
3622     const bool unresolveChanged           = previousUnresolveColorMask != unresolveColorMask ||
3623                                   previousUnresolveDepth != unresolveDepth ||
3624                                   previousUnresolveStencil != unresolveStencil;
3625     if (unresolveChanged)
3626     {
3627         // Make sure framebuffer is recreated.
3628         releaseCurrentFramebuffer(contextVk);
3629 
3630         mCurrentFramebufferDesc.updateUnresolveMask(MakeUnresolveAttachmentMask(mRenderPassDesc));
3631     }
3632 
3633     vk::RenderPassFramebuffer framebuffer = {};
3634     ANGLE_TRY(getFramebuffer(contextVk, &framebuffer));
3635 
3636     // If deferred clears were used in the render pass, the render area must cover the whole
3637     // framebuffer.
3638     ASSERT(!hasDeferredClears || renderArea == getRotatedCompleteRenderArea(contextVk));
3639 
3640     ANGLE_TRY(contextVk->beginNewRenderPass(
3641         std::move(framebuffer), renderArea, mRenderPassDesc, renderPassAttachmentOps, colorIndexVk,
3642         depthStencilAttachmentIndex, packedClearValues, commandBufferOut));
3643     mLastRenderPassQueueSerial = contextVk->getStartedRenderPassCommands().getQueueSerial();
3644 
3645     // Add the images to the renderpass tracking list (through onColorDraw).
3646     vk::PackedAttachmentIndex colorAttachmentIndex(0);
3647     for (size_t colorIndexGL : mState.getColorAttachmentsMask())
3648     {
3649         RenderTargetVk *colorRenderTarget = colorRenderTargets[colorIndexGL];
3650         colorRenderTarget->onColorDraw(contextVk, mCurrentFramebufferDesc.getLayerCount(),
3651                                        colorAttachmentIndex);
3652         ++colorAttachmentIndex;
3653     }
3654 
3655     if (depthStencilRenderTarget)
3656     {
3657         // This must be called after hasDefined*Content() since it will set content to valid.  If
3658         // the attachment ends up not used in the render pass, contents will be marked undefined at
3659         // endRenderPass.  The actual layout determination is also deferred until the same time.
3660         depthStencilRenderTarget->onDepthStencilDraw(contextVk,
3661                                                      mCurrentFramebufferDesc.getLayerCount());
3662     }
3663 
3664     const bool anyUnresolve = unresolveColorMask.any() || unresolveDepth || unresolveStencil;
3665     if (anyUnresolve)
3666     {
3667         // Unresolve attachments if any.
3668         UtilsVk::UnresolveParameters params;
3669         params.unresolveColorMask = unresolveColorMask;
3670         params.unresolveDepth     = unresolveDepth;
3671         params.unresolveStencil   = unresolveStencil;
3672 
3673         ANGLE_TRY(contextVk->getUtils().unresolve(contextVk, this, params));
3674 
3675         // The unresolve subpass has only one draw call.
3676         ANGLE_TRY(contextVk->startNextSubpass());
3677     }
3678 
3679     if (unresolveChanged || anyUnresolve)
3680     {
3681         contextVk->onDrawFramebufferRenderPassDescChange(this, renderPassDescChangedOut);
3682     }
3683 
3684     // Add fragment shading rate to the tracking list.
3685     if (mCurrentFramebufferDesc.hasFragmentShadingRateAttachment())
3686     {
3687         contextVk->onFragmentShadingRateRead(&mFragmentShadingRateImage);
3688     }
3689 
3690     return angle::Result::Continue;
3691 }
3692 
getRenderArea(ContextVk * contextVk) const3693 gl::Rectangle FramebufferVk::getRenderArea(ContextVk *contextVk) const
3694 {
3695     if (hasDeferredClears())
3696     {
3697         return getRotatedCompleteRenderArea(contextVk);
3698     }
3699     else
3700     {
3701         return getRotatedScissoredRenderArea(contextVk);
3702     }
3703 }
3704 
updateActiveColorMasks(size_t colorIndexGL,bool r,bool g,bool b,bool a)3705 void FramebufferVk::updateActiveColorMasks(size_t colorIndexGL, bool r, bool g, bool b, bool a)
3706 {
3707     gl::BlendStateExt::ColorMaskStorage::SetValueIndexed(
3708         colorIndexGL, gl::BlendStateExt::PackColorMask(r, g, b, a),
3709         &mActiveColorComponentMasksForClear);
3710 }
3711 
getEmulatedAlphaAttachmentMask() const3712 const gl::DrawBufferMask &FramebufferVk::getEmulatedAlphaAttachmentMask() const
3713 {
3714     return mEmulatedAlphaAttachmentMask;
3715 }
3716 
readPixelsImpl(ContextVk * contextVk,const gl::Rectangle & area,const PackPixelsParams & packPixelsParams,VkImageAspectFlagBits copyAspectFlags,RenderTargetVk * renderTarget,void * pixels)3717 angle::Result FramebufferVk::readPixelsImpl(ContextVk *contextVk,
3718                                             const gl::Rectangle &area,
3719                                             const PackPixelsParams &packPixelsParams,
3720                                             VkImageAspectFlagBits copyAspectFlags,
3721                                             RenderTargetVk *renderTarget,
3722                                             void *pixels)
3723 {
3724     ANGLE_TRACE_EVENT0("gpu.angle", "FramebufferVk::readPixelsImpl");
3725     gl::LevelIndex levelGL = renderTarget->getLevelIndex();
3726     uint32_t layer         = renderTarget->getLayerIndex();
3727     return renderTarget->getImageForCopy().readPixels(contextVk, area, packPixelsParams,
3728                                                       copyAspectFlags, levelGL, layer, pixels);
3729 }
3730 
getReadImageExtents() const3731 gl::Extents FramebufferVk::getReadImageExtents() const
3732 {
3733     RenderTargetVk *readRenderTarget = mRenderTargetCache.getColorRead(mState);
3734     return readRenderTarget->getExtents();
3735 }
3736 
3737 // Return the framebuffer's non-rotated render area.  This is a gl::Rectangle that is based on the
3738 // dimensions of the framebuffer, IS NOT rotated, and IS NOT y-flipped
getNonRotatedCompleteRenderArea() const3739 gl::Rectangle FramebufferVk::getNonRotatedCompleteRenderArea() const
3740 {
3741     const gl::Box &dimensions = mState.getDimensions();
3742     return gl::Rectangle(0, 0, dimensions.width, dimensions.height);
3743 }
3744 
3745 // Return the framebuffer's rotated render area.  This is a gl::Rectangle that is based on the
3746 // dimensions of the framebuffer, IS ROTATED for the draw FBO, and IS NOT y-flipped
3747 //
3748 // Note: Since the rectangle is not scissored (i.e. x and y are guaranteed to be zero), only the
3749 // width and height must be swapped if the rotation is 90 or 270 degrees.
getRotatedCompleteRenderArea(ContextVk * contextVk) const3750 gl::Rectangle FramebufferVk::getRotatedCompleteRenderArea(ContextVk *contextVk) const
3751 {
3752     gl::Rectangle renderArea = getNonRotatedCompleteRenderArea();
3753     if (contextVk->isRotatedAspectRatioForDrawFBO())
3754     {
3755         // The surface is rotated 90/270 degrees.  This changes the aspect ratio of the surface.
3756         std::swap(renderArea.width, renderArea.height);
3757     }
3758     return renderArea;
3759 }
3760 
3761 // Return the framebuffer's scissored and rotated render area.  This is a gl::Rectangle that is
3762 // based on the dimensions of the framebuffer, is clipped to the scissor, IS ROTATED and IS
3763 // Y-FLIPPED for the draw FBO.
3764 //
3765 // Note: Since the rectangle is scissored, it must be fully rotated, and not just have the width
3766 // and height swapped.
getRotatedScissoredRenderArea(ContextVk * contextVk) const3767 gl::Rectangle FramebufferVk::getRotatedScissoredRenderArea(ContextVk *contextVk) const
3768 {
3769     const gl::Rectangle renderArea = getNonRotatedCompleteRenderArea();
3770     bool invertViewport            = contextVk->isViewportFlipEnabledForDrawFBO();
3771     gl::Rectangle scissoredArea    = ClipRectToScissor(contextVk->getState(), renderArea, false);
3772     gl::Rectangle rotatedScissoredArea;
3773     RotateRectangle(contextVk->getRotationDrawFramebuffer(), invertViewport, renderArea.width,
3774                     renderArea.height, scissoredArea, &rotatedScissoredArea);
3775     return rotatedScissoredArea;
3776 }
3777 
getSamples() const3778 GLint FramebufferVk::getSamples() const
3779 {
3780     const gl::FramebufferAttachment *lastAttachment = nullptr;
3781 
3782     for (size_t colorIndexGL : mState.getEnabledDrawBuffers() & mState.getColorAttachmentsMask())
3783     {
3784         const gl::FramebufferAttachment *color = mState.getColorAttachment(colorIndexGL);
3785         ASSERT(color);
3786 
3787         if (color->isRenderToTexture())
3788         {
3789             return color->getSamples();
3790         }
3791 
3792         lastAttachment = color;
3793     }
3794     const gl::FramebufferAttachment *depthStencil = mState.getDepthOrStencilAttachment();
3795     if (depthStencil)
3796     {
3797         if (depthStencil->isRenderToTexture())
3798         {
3799             return depthStencil->getSamples();
3800         }
3801         lastAttachment = depthStencil;
3802     }
3803 
3804     // If none of the attachments are multisampled-render-to-texture, take the sample count from the
3805     // last attachment (any would have worked, as they would all have the same sample count).
3806     return std::max(lastAttachment ? lastAttachment->getSamples() : 1, 1);
3807 }
3808 
flushDepthStencilDeferredClear(ContextVk * contextVk,VkImageAspectFlagBits aspect)3809 angle::Result FramebufferVk::flushDepthStencilDeferredClear(ContextVk *contextVk,
3810                                                             VkImageAspectFlagBits aspect)
3811 {
3812     const bool isDepth = aspect == VK_IMAGE_ASPECT_DEPTH_BIT;
3813 
3814     // Pick out the deferred clear for the given aspect, and issue it ahead of the render pass.
3815     // This is used when switching this aspect to read-only mode, in which case the clear operation
3816     // for the aspect cannot be done as part of the render pass loadOp.
3817     ASSERT(!isDepth || hasDeferredDepthClear());
3818     ASSERT(isDepth || hasDeferredStencilClear());
3819     ASSERT(mState.getDepthOrStencilAttachment() != nullptr);
3820 
3821     RenderTargetVk *renderTarget = getDepthStencilRenderTarget();
3822     vk::ImageHelper &image       = renderTarget->getImageForCopy();
3823 
3824     // Depth/stencil attachments cannot be 3D.
3825     ASSERT(!renderTarget->is3DImage());
3826 
3827     vk::CommandBufferAccess access;
3828     access.onImageTransferWrite(renderTarget->getLevelIndex(), 1, renderTarget->getLayerIndex(), 1,
3829                                 image.getAspectFlags(), &image);
3830     vk::OutsideRenderPassCommandBuffer *commandBuffer;
3831     ANGLE_TRY(contextVk->getOutsideRenderPassCommandBuffer(access, &commandBuffer));
3832 
3833     VkImageSubresourceRange range = {};
3834     range.aspectMask              = aspect;
3835     range.baseMipLevel            = image.toVkLevel(renderTarget->getLevelIndex()).get();
3836     range.levelCount              = 1;
3837     range.baseArrayLayer          = renderTarget->getLayerIndex();
3838     range.layerCount              = 1;
3839 
3840     VkClearDepthStencilValue clearValue = {};
3841 
3842     if (isDepth)
3843     {
3844         clearValue.depth = mDeferredClears.getDepthValue();
3845         mDeferredClears.reset(vk::kUnpackedDepthIndex);
3846     }
3847     else
3848     {
3849         clearValue.stencil = mDeferredClears.getStencilValue();
3850         mDeferredClears.reset(vk::kUnpackedStencilIndex);
3851     }
3852 
3853     commandBuffer->clearDepthStencilImage(
3854         image.getImage(), image.getCurrentLayout(contextVk->getRenderer()), clearValue, 1, &range);
3855     return angle::Result::Continue;
3856 }
3857 
flushDeferredClears(ContextVk * contextVk)3858 angle::Result FramebufferVk::flushDeferredClears(ContextVk *contextVk)
3859 {
3860     if (mDeferredClears.empty())
3861     {
3862         return angle::Result::Continue;
3863     }
3864 
3865     return contextVk->startRenderPass(getRotatedCompleteRenderArea(contextVk), nullptr, nullptr);
3866 }
3867 
switchToColorFramebufferFetchMode(ContextVk * contextVk,bool hasColorFramebufferFetch)3868 void FramebufferVk::switchToColorFramebufferFetchMode(ContextVk *contextVk,
3869                                                       bool hasColorFramebufferFetch)
3870 {
3871     // Framebuffer fetch use by the shader does not affect the framebuffer object in any way with
3872     // dynamic rendering.
3873     ASSERT(!contextVk->getFeatures().preferDynamicRendering.enabled);
3874 
3875     // The switch happens once, and is permanent.
3876     if (mCurrentFramebufferDesc.hasColorFramebufferFetch() == hasColorFramebufferFetch)
3877     {
3878         return;
3879     }
3880 
3881     mCurrentFramebufferDesc.setColorFramebufferFetchMode(hasColorFramebufferFetch);
3882 
3883     mRenderPassDesc.setFramebufferFetchMode(hasColorFramebufferFetch
3884                                                 ? vk::FramebufferFetchMode::Color
3885                                                 : vk::FramebufferFetchMode::None);
3886     contextVk->onDrawFramebufferRenderPassDescChange(this, nullptr);
3887 
3888     // Make sure framebuffer is recreated.
3889     releaseCurrentFramebuffer(contextVk);
3890 
3891     // Clear the framebuffer cache, as none of the old framebuffers are usable.
3892     if (contextVk->getFeatures().permanentlySwitchToFramebufferFetchMode.enabled)
3893     {
3894         ASSERT(hasColorFramebufferFetch);
3895         releaseCurrentFramebuffer(contextVk);
3896     }
3897 }
3898 
updateLegacyDither(ContextVk * contextVk)3899 bool FramebufferVk::updateLegacyDither(ContextVk *contextVk)
3900 {
3901     if (contextVk->getFeatures().supportsLegacyDithering.enabled &&
3902         mRenderPassDesc.isLegacyDitherEnabled() != contextVk->isDitherEnabled())
3903     {
3904         mRenderPassDesc.setLegacyDither(contextVk->isDitherEnabled());
3905         return true;
3906     }
3907 
3908     return false;
3909 }
3910 }  // namespace rx
3911