xref: /aosp_15_r20/external/eigen/Eigen/src/LU/arch/InverseSize4.h (revision bf2c37156dfe67e5dfebd6d394bad8b2ab5804d4)
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2001 Intel Corporation
5 // Copyright (C) 2010 Gael Guennebaud <[email protected]>
6 // Copyright (C) 2009 Benoit Jacob <[email protected]>
7 //
8 // This Source Code Form is subject to the terms of the Mozilla
9 // Public License v. 2.0. If a copy of the MPL was not distributed
10 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
11 //
12 // The algorithm below is a reimplementation of former \src\LU\Inverse_SSE.h using PacketMath.
13 // inv(M) = M#/|M|, where inv(M), M# and |M| denote the inverse of M,
14 // adjugate of M and determinant of M respectively. M# is computed block-wise
15 // using specific formulae. For proof, see:
16 // https://lxjk.github.io/2017/09/03/Fast-4x4-Matrix-Inverse-with-SSE-SIMD-Explained.html
17 // Variable names are adopted from \src\LU\Inverse_SSE.h.
18 //
19 // The SSE code for the 4x4 float and double matrix inverse in former (deprecated) \src\LU\Inverse_SSE.h
20 // comes from the following Intel's library:
21 // http://software.intel.com/en-us/articles/optimized-matrix-library-for-use-with-the-intel-pentiumr-4-processors-sse2-instructions/
22 //
23 // Here is the respective copyright and license statement:
24 //
25 //   Copyright (c) 2001 Intel Corporation.
26 //
27 // Permition is granted to use, copy, distribute and prepare derivative works
28 // of this library for any purpose and without fee, provided, that the above
29 // copyright notice and this statement appear in all copies.
30 // Intel makes no representations about the suitability of this software for
31 // any purpose, and specifically disclaims all warranties.
32 // See LEGAL.TXT for all the legal information.
33 //
34 // TODO: Unify implementations of different data types (i.e. float and double).
35 #ifndef EIGEN_INVERSE_SIZE_4_H
36 #define EIGEN_INVERSE_SIZE_4_H
37 
38 namespace Eigen
39 {
40 namespace internal
41 {
42 template <typename MatrixType, typename ResultType>
43 struct compute_inverse_size4<Architecture::Target, float, MatrixType, ResultType>
44 {
45   enum
46   {
47     MatrixAlignment = traits<MatrixType>::Alignment,
48     ResultAlignment = traits<ResultType>::Alignment,
49     StorageOrdersMatch = (MatrixType::Flags & RowMajorBit) == (ResultType::Flags & RowMajorBit)
50   };
51   typedef typename conditional<(MatrixType::Flags & LinearAccessBit), MatrixType const &, typename MatrixType::PlainObject>::type ActualMatrixType;
52 
53   static void run(const MatrixType &mat, ResultType &result)
54   {
55     ActualMatrixType matrix(mat);
56 
57     const float* data = matrix.data();
58     const Index stride = matrix.innerStride();
59     Packet4f _L1 = ploadt<Packet4f,MatrixAlignment>(data);
60     Packet4f _L2 = ploadt<Packet4f,MatrixAlignment>(data + stride*4);
61     Packet4f _L3 = ploadt<Packet4f,MatrixAlignment>(data + stride*8);
62     Packet4f _L4 = ploadt<Packet4f,MatrixAlignment>(data + stride*12);
63 
64     // Four 2x2 sub-matrices of the input matrix
65     // input = [[A, B],
66     //          [C, D]]
67     Packet4f A, B, C, D;
68 
69     if (!StorageOrdersMatch)
70     {
71       A = vec4f_unpacklo(_L1, _L2);
72       B = vec4f_unpacklo(_L3, _L4);
73       C = vec4f_unpackhi(_L1, _L2);
74       D = vec4f_unpackhi(_L3, _L4);
75     }
76     else
77     {
78       A = vec4f_movelh(_L1, _L2);
79       B = vec4f_movehl(_L2, _L1);
80       C = vec4f_movelh(_L3, _L4);
81       D = vec4f_movehl(_L4, _L3);
82     }
83 
84     Packet4f AB, DC;
85 
86     // AB = A# * B, where A# denotes the adjugate of A, and * denotes matrix product.
87     AB = pmul(vec4f_swizzle2(A, A, 3, 3, 0, 0), B);
88     AB = psub(AB, pmul(vec4f_swizzle2(A, A, 1, 1, 2, 2), vec4f_swizzle2(B, B, 2, 3, 0, 1)));
89 
90     // DC = D#*C
91     DC = pmul(vec4f_swizzle2(D, D, 3, 3, 0, 0), C);
92     DC = psub(DC, pmul(vec4f_swizzle2(D, D, 1, 1, 2, 2), vec4f_swizzle2(C, C, 2, 3, 0, 1)));
93 
94     // determinants of the sub-matrices
95     Packet4f dA, dB, dC, dD;
96 
97     dA = pmul(vec4f_swizzle2(A, A, 3, 3, 1, 1), A);
98     dA = psub(dA, vec4f_movehl(dA, dA));
99 
100     dB = pmul(vec4f_swizzle2(B, B, 3, 3, 1, 1), B);
101     dB = psub(dB, vec4f_movehl(dB, dB));
102 
103     dC = pmul(vec4f_swizzle2(C, C, 3, 3, 1, 1), C);
104     dC = psub(dC, vec4f_movehl(dC, dC));
105 
106     dD = pmul(vec4f_swizzle2(D, D, 3, 3, 1, 1), D);
107     dD = psub(dD, vec4f_movehl(dD, dD));
108 
109     Packet4f d, d1, d2;
110 
111     d = pmul(vec4f_swizzle2(DC, DC, 0, 2, 1, 3), AB);
112     d = padd(d, vec4f_movehl(d, d));
113     d = padd(d, vec4f_swizzle2(d, d, 1, 0, 0, 0));
114     d1 = pmul(dA, dD);
115     d2 = pmul(dB, dC);
116 
117     // determinant of the input matrix, det = |A||D| + |B||C| - trace(A#*B*D#*C)
118     Packet4f det = vec4f_duplane(psub(padd(d1, d2), d), 0);
119 
120     // reciprocal of the determinant of the input matrix, rd = 1/det
121     Packet4f rd = pdiv(pset1<Packet4f>(1.0f), det);
122 
123     // Four sub-matrices of the inverse
124     Packet4f iA, iB, iC, iD;
125 
126     // iD = D*|A| - C*A#*B
127     iD = pmul(vec4f_swizzle2(C, C, 0, 0, 2, 2), vec4f_movelh(AB, AB));
128     iD = padd(iD, pmul(vec4f_swizzle2(C, C, 1, 1, 3, 3), vec4f_movehl(AB, AB)));
129     iD = psub(pmul(D, vec4f_duplane(dA, 0)), iD);
130 
131     // iA = A*|D| - B*D#*C
132     iA = pmul(vec4f_swizzle2(B, B, 0, 0, 2, 2), vec4f_movelh(DC, DC));
133     iA = padd(iA, pmul(vec4f_swizzle2(B, B, 1, 1, 3, 3), vec4f_movehl(DC, DC)));
134     iA = psub(pmul(A, vec4f_duplane(dD, 0)), iA);
135 
136     // iB = C*|B| - D * (A#B)# = C*|B| - D*B#*A
137     iB = pmul(D, vec4f_swizzle2(AB, AB, 3, 0, 3, 0));
138     iB = psub(iB, pmul(vec4f_swizzle2(D, D, 1, 0, 3, 2), vec4f_swizzle2(AB, AB, 2, 1, 2, 1)));
139     iB = psub(pmul(C, vec4f_duplane(dB, 0)), iB);
140 
141     // iC = B*|C| - A * (D#C)# = B*|C| - A*C#*D
142     iC = pmul(A, vec4f_swizzle2(DC, DC, 3, 0, 3, 0));
143     iC = psub(iC, pmul(vec4f_swizzle2(A, A, 1, 0, 3, 2), vec4f_swizzle2(DC, DC, 2, 1, 2, 1)));
144     iC = psub(pmul(B, vec4f_duplane(dC, 0)), iC);
145 
146     const float sign_mask[4] = {0.0f, numext::bit_cast<float>(0x80000000u), numext::bit_cast<float>(0x80000000u), 0.0f};
147     const Packet4f p4f_sign_PNNP = ploadu<Packet4f>(sign_mask);
148     rd = pxor(rd, p4f_sign_PNNP);
149     iA = pmul(iA, rd);
150     iB = pmul(iB, rd);
151     iC = pmul(iC, rd);
152     iD = pmul(iD, rd);
153 
154     Index res_stride = result.outerStride();
155     float *res = result.data();
156 
157     pstoret<float, Packet4f, ResultAlignment>(res + 0, vec4f_swizzle2(iA, iB, 3, 1, 3, 1));
158     pstoret<float, Packet4f, ResultAlignment>(res + res_stride, vec4f_swizzle2(iA, iB, 2, 0, 2, 0));
159     pstoret<float, Packet4f, ResultAlignment>(res + 2 * res_stride, vec4f_swizzle2(iC, iD, 3, 1, 3, 1));
160     pstoret<float, Packet4f, ResultAlignment>(res + 3 * res_stride, vec4f_swizzle2(iC, iD, 2, 0, 2, 0));
161   }
162 };
163 
164 #if !(defined EIGEN_VECTORIZE_NEON && !(EIGEN_ARCH_ARM64 && !EIGEN_APPLE_DOUBLE_NEON_BUG))
165 // same algorithm as above, except that each operand is split into
166 // halves for two registers to hold.
167 template <typename MatrixType, typename ResultType>
168 struct compute_inverse_size4<Architecture::Target, double, MatrixType, ResultType>
169 {
170   enum
171   {
172     MatrixAlignment = traits<MatrixType>::Alignment,
173     ResultAlignment = traits<ResultType>::Alignment,
174     StorageOrdersMatch = (MatrixType::Flags & RowMajorBit) == (ResultType::Flags & RowMajorBit)
175   };
176   typedef typename conditional<(MatrixType::Flags & LinearAccessBit),
177                                MatrixType const &,
178                                typename MatrixType::PlainObject>::type
179       ActualMatrixType;
180 
181   static void run(const MatrixType &mat, ResultType &result)
182   {
183     ActualMatrixType matrix(mat);
184 
185     // Four 2x2 sub-matrices of the input matrix, each is further divided into upper and lower
186     // row e.g. A1, upper row of A, A2, lower row of A
187     // input = [[A, B],  =  [[[A1, [B1,
188     //          [C, D]]        A2], B2]],
189     //                       [[C1, [D1,
190     //                         C2], D2]]]
191 
192     Packet2d A1, A2, B1, B2, C1, C2, D1, D2;
193 
194     const double* data = matrix.data();
195     const Index stride = matrix.innerStride();
196     if (StorageOrdersMatch)
197     {
198       A1 = ploadt<Packet2d,MatrixAlignment>(data + stride*0);
199       B1 = ploadt<Packet2d,MatrixAlignment>(data + stride*2);
200       A2 = ploadt<Packet2d,MatrixAlignment>(data + stride*4);
201       B2 = ploadt<Packet2d,MatrixAlignment>(data + stride*6);
202       C1 = ploadt<Packet2d,MatrixAlignment>(data + stride*8);
203       D1 = ploadt<Packet2d,MatrixAlignment>(data + stride*10);
204       C2 = ploadt<Packet2d,MatrixAlignment>(data + stride*12);
205       D2 = ploadt<Packet2d,MatrixAlignment>(data + stride*14);
206     }
207     else
208     {
209       Packet2d temp;
210       A1 = ploadt<Packet2d,MatrixAlignment>(data + stride*0);
211       C1 = ploadt<Packet2d,MatrixAlignment>(data + stride*2);
212       A2 = ploadt<Packet2d,MatrixAlignment>(data + stride*4);
213       C2 = ploadt<Packet2d,MatrixAlignment>(data + stride*6);
214       temp = A1;
215       A1 = vec2d_unpacklo(A1, A2);
216       A2 = vec2d_unpackhi(temp, A2);
217 
218       temp = C1;
219       C1 = vec2d_unpacklo(C1, C2);
220       C2 = vec2d_unpackhi(temp, C2);
221 
222       B1 = ploadt<Packet2d,MatrixAlignment>(data + stride*8);
223       D1 = ploadt<Packet2d,MatrixAlignment>(data + stride*10);
224       B2 = ploadt<Packet2d,MatrixAlignment>(data + stride*12);
225       D2 = ploadt<Packet2d,MatrixAlignment>(data + stride*14);
226 
227       temp = B1;
228       B1 = vec2d_unpacklo(B1, B2);
229       B2 = vec2d_unpackhi(temp, B2);
230 
231       temp = D1;
232       D1 = vec2d_unpacklo(D1, D2);
233       D2 = vec2d_unpackhi(temp, D2);
234     }
235 
236     // determinants of the sub-matrices
237     Packet2d dA, dB, dC, dD;
238 
239     dA = vec2d_swizzle2(A2, A2, 1);
240     dA = pmul(A1, dA);
241     dA = psub(dA, vec2d_duplane(dA, 1));
242 
243     dB = vec2d_swizzle2(B2, B2, 1);
244     dB = pmul(B1, dB);
245     dB = psub(dB, vec2d_duplane(dB, 1));
246 
247     dC = vec2d_swizzle2(C2, C2, 1);
248     dC = pmul(C1, dC);
249     dC = psub(dC, vec2d_duplane(dC, 1));
250 
251     dD = vec2d_swizzle2(D2, D2, 1);
252     dD = pmul(D1, dD);
253     dD = psub(dD, vec2d_duplane(dD, 1));
254 
255     Packet2d DC1, DC2, AB1, AB2;
256 
257     // AB = A# * B, where A# denotes the adjugate of A, and * denotes matrix product.
258     AB1 = pmul(B1, vec2d_duplane(A2, 1));
259     AB2 = pmul(B2, vec2d_duplane(A1, 0));
260     AB1 = psub(AB1, pmul(B2, vec2d_duplane(A1, 1)));
261     AB2 = psub(AB2, pmul(B1, vec2d_duplane(A2, 0)));
262 
263     // DC = D#*C
264     DC1 = pmul(C1, vec2d_duplane(D2, 1));
265     DC2 = pmul(C2, vec2d_duplane(D1, 0));
266     DC1 = psub(DC1, pmul(C2, vec2d_duplane(D1, 1)));
267     DC2 = psub(DC2, pmul(C1, vec2d_duplane(D2, 0)));
268 
269     Packet2d d1, d2;
270 
271     // determinant of the input matrix, det = |A||D| + |B||C| - trace(A#*B*D#*C)
272     Packet2d det;
273 
274     // reciprocal of the determinant of the input matrix, rd = 1/det
275     Packet2d rd;
276 
277     d1 = pmul(AB1, vec2d_swizzle2(DC1, DC2, 0));
278     d2 = pmul(AB2, vec2d_swizzle2(DC1, DC2, 3));
279     rd = padd(d1, d2);
280     rd = padd(rd, vec2d_duplane(rd, 1));
281 
282     d1 = pmul(dA, dD);
283     d2 = pmul(dB, dC);
284 
285     det = padd(d1, d2);
286     det = psub(det, rd);
287     det = vec2d_duplane(det, 0);
288     rd = pdiv(pset1<Packet2d>(1.0), det);
289 
290     // rows of four sub-matrices of the inverse
291     Packet2d iA1, iA2, iB1, iB2, iC1, iC2, iD1, iD2;
292 
293     // iD = D*|A| - C*A#*B
294     iD1 = pmul(AB1, vec2d_duplane(C1, 0));
295     iD2 = pmul(AB1, vec2d_duplane(C2, 0));
296     iD1 = padd(iD1, pmul(AB2, vec2d_duplane(C1, 1)));
297     iD2 = padd(iD2, pmul(AB2, vec2d_duplane(C2, 1)));
298     dA = vec2d_duplane(dA, 0);
299     iD1 = psub(pmul(D1, dA), iD1);
300     iD2 = psub(pmul(D2, dA), iD2);
301 
302     // iA = A*|D| - B*D#*C
303     iA1 = pmul(DC1, vec2d_duplane(B1, 0));
304     iA2 = pmul(DC1, vec2d_duplane(B2, 0));
305     iA1 = padd(iA1, pmul(DC2, vec2d_duplane(B1, 1)));
306     iA2 = padd(iA2, pmul(DC2, vec2d_duplane(B2, 1)));
307     dD = vec2d_duplane(dD, 0);
308     iA1 = psub(pmul(A1, dD), iA1);
309     iA2 = psub(pmul(A2, dD), iA2);
310 
311     // iB = C*|B| - D * (A#B)# = C*|B| - D*B#*A
312     iB1 = pmul(D1, vec2d_swizzle2(AB2, AB1, 1));
313     iB2 = pmul(D2, vec2d_swizzle2(AB2, AB1, 1));
314     iB1 = psub(iB1, pmul(vec2d_swizzle2(D1, D1, 1), vec2d_swizzle2(AB2, AB1, 2)));
315     iB2 = psub(iB2, pmul(vec2d_swizzle2(D2, D2, 1), vec2d_swizzle2(AB2, AB1, 2)));
316     dB = vec2d_duplane(dB, 0);
317     iB1 = psub(pmul(C1, dB), iB1);
318     iB2 = psub(pmul(C2, dB), iB2);
319 
320     // iC = B*|C| - A * (D#C)# = B*|C| - A*C#*D
321     iC1 = pmul(A1, vec2d_swizzle2(DC2, DC1, 1));
322     iC2 = pmul(A2, vec2d_swizzle2(DC2, DC1, 1));
323     iC1 = psub(iC1, pmul(vec2d_swizzle2(A1, A1, 1), vec2d_swizzle2(DC2, DC1, 2)));
324     iC2 = psub(iC2, pmul(vec2d_swizzle2(A2, A2, 1), vec2d_swizzle2(DC2, DC1, 2)));
325     dC = vec2d_duplane(dC, 0);
326     iC1 = psub(pmul(B1, dC), iC1);
327     iC2 = psub(pmul(B2, dC), iC2);
328 
329     const double sign_mask1[2] = {0.0, numext::bit_cast<double>(0x8000000000000000ull)};
330     const double sign_mask2[2] = {numext::bit_cast<double>(0x8000000000000000ull), 0.0};
331     const Packet2d sign_PN = ploadu<Packet2d>(sign_mask1);
332     const Packet2d sign_NP = ploadu<Packet2d>(sign_mask2);
333     d1 = pxor(rd, sign_PN);
334     d2 = pxor(rd, sign_NP);
335 
336     Index res_stride = result.outerStride();
337     double *res = result.data();
338     pstoret<double, Packet2d, ResultAlignment>(res + 0, pmul(vec2d_swizzle2(iA2, iA1, 3), d1));
339     pstoret<double, Packet2d, ResultAlignment>(res + res_stride, pmul(vec2d_swizzle2(iA2, iA1, 0), d2));
340     pstoret<double, Packet2d, ResultAlignment>(res + 2, pmul(vec2d_swizzle2(iB2, iB1, 3), d1));
341     pstoret<double, Packet2d, ResultAlignment>(res + res_stride + 2, pmul(vec2d_swizzle2(iB2, iB1, 0), d2));
342     pstoret<double, Packet2d, ResultAlignment>(res + 2 * res_stride, pmul(vec2d_swizzle2(iC2, iC1, 3), d1));
343     pstoret<double, Packet2d, ResultAlignment>(res + 3 * res_stride, pmul(vec2d_swizzle2(iC2, iC1, 0), d2));
344     pstoret<double, Packet2d, ResultAlignment>(res + 2 * res_stride + 2, pmul(vec2d_swizzle2(iD2, iD1, 3), d1));
345     pstoret<double, Packet2d, ResultAlignment>(res + 3 * res_stride + 2, pmul(vec2d_swizzle2(iD2, iD1, 0), d2));
346   }
347 };
348 #endif
349 } // namespace internal
350 } // namespace Eigen
351 #endif
352