1// Copyright 2015 The Go Authors. All rights reserved. 2// Use of this source code is governed by a BSD-style 3// license that can be found in the LICENSE file. 4 5// Simplifications that apply to all backend architectures. As an example, this 6// Go source code 7// 8// y := 0 * x 9// 10// can be translated into y := 0 without losing any information, which saves a 11// pointless multiplication instruction. Other .rules files in this directory 12// (for example AMD64.rules) contain rules specific to the architecture in the 13// filename. The rules here apply to every architecture. 14// 15// The code for parsing this file lives in rulegen.go; this file generates 16// ssa/rewritegeneric.go. 17 18// values are specified using the following format: 19// (op <type> [auxint] {aux} arg0 arg1 ...) 20// the type, aux, and auxint fields are optional 21// on the matching side 22// - the type, aux, and auxint fields must match if they are specified. 23// - the first occurrence of a variable defines that variable. Subsequent 24// uses must match (be == to) the first use. 25// - v is defined to be the value matched. 26// - an additional conditional can be provided after the match pattern with "&&". 27// on the generated side 28// - the type of the top-level expression is the same as the one on the left-hand side. 29// - the type of any subexpressions must be specified explicitly (or 30// be specified in the op's type field). 31// - auxint will be 0 if not specified. 32// - aux will be nil if not specified. 33 34// blocks are specified using the following format: 35// (kind controlvalue succ0 succ1 ...) 36// controlvalue must be "nil" or a value expression 37// succ* fields must be variables 38// For now, the generated successors must be a permutation of the matched successors. 39 40// constant folding 41(Trunc16to8 (Const16 [c])) => (Const8 [int8(c)]) 42(Trunc32to8 (Const32 [c])) => (Const8 [int8(c)]) 43(Trunc32to16 (Const32 [c])) => (Const16 [int16(c)]) 44(Trunc64to8 (Const64 [c])) => (Const8 [int8(c)]) 45(Trunc64to16 (Const64 [c])) => (Const16 [int16(c)]) 46(Trunc64to32 (Const64 [c])) => (Const32 [int32(c)]) 47(Cvt64Fto32F (Const64F [c])) => (Const32F [float32(c)]) 48(Cvt32Fto64F (Const32F [c])) => (Const64F [float64(c)]) 49(Cvt32to32F (Const32 [c])) => (Const32F [float32(c)]) 50(Cvt32to64F (Const32 [c])) => (Const64F [float64(c)]) 51(Cvt64to32F (Const64 [c])) => (Const32F [float32(c)]) 52(Cvt64to64F (Const64 [c])) => (Const64F [float64(c)]) 53(Cvt32Fto32 (Const32F [c])) => (Const32 [int32(c)]) 54(Cvt32Fto64 (Const32F [c])) => (Const64 [int64(c)]) 55(Cvt64Fto32 (Const64F [c])) => (Const32 [int32(c)]) 56(Cvt64Fto64 (Const64F [c])) => (Const64 [int64(c)]) 57(Round32F x:(Const32F)) => x 58(Round64F x:(Const64F)) => x 59(CvtBoolToUint8 (ConstBool [false])) => (Const8 [0]) 60(CvtBoolToUint8 (ConstBool [true])) => (Const8 [1]) 61 62(Trunc16to8 (ZeroExt8to16 x)) => x 63(Trunc32to8 (ZeroExt8to32 x)) => x 64(Trunc32to16 (ZeroExt8to32 x)) => (ZeroExt8to16 x) 65(Trunc32to16 (ZeroExt16to32 x)) => x 66(Trunc64to8 (ZeroExt8to64 x)) => x 67(Trunc64to16 (ZeroExt8to64 x)) => (ZeroExt8to16 x) 68(Trunc64to16 (ZeroExt16to64 x)) => x 69(Trunc64to32 (ZeroExt8to64 x)) => (ZeroExt8to32 x) 70(Trunc64to32 (ZeroExt16to64 x)) => (ZeroExt16to32 x) 71(Trunc64to32 (ZeroExt32to64 x)) => x 72(Trunc16to8 (SignExt8to16 x)) => x 73(Trunc32to8 (SignExt8to32 x)) => x 74(Trunc32to16 (SignExt8to32 x)) => (SignExt8to16 x) 75(Trunc32to16 (SignExt16to32 x)) => x 76(Trunc64to8 (SignExt8to64 x)) => x 77(Trunc64to16 (SignExt8to64 x)) => (SignExt8to16 x) 78(Trunc64to16 (SignExt16to64 x)) => x 79(Trunc64to32 (SignExt8to64 x)) => (SignExt8to32 x) 80(Trunc64to32 (SignExt16to64 x)) => (SignExt16to32 x) 81(Trunc64to32 (SignExt32to64 x)) => x 82 83(ZeroExt8to16 (Const8 [c])) => (Const16 [int16( uint8(c))]) 84(ZeroExt8to32 (Const8 [c])) => (Const32 [int32( uint8(c))]) 85(ZeroExt8to64 (Const8 [c])) => (Const64 [int64( uint8(c))]) 86(ZeroExt16to32 (Const16 [c])) => (Const32 [int32(uint16(c))]) 87(ZeroExt16to64 (Const16 [c])) => (Const64 [int64(uint16(c))]) 88(ZeroExt32to64 (Const32 [c])) => (Const64 [int64(uint32(c))]) 89(SignExt8to16 (Const8 [c])) => (Const16 [int16(c)]) 90(SignExt8to32 (Const8 [c])) => (Const32 [int32(c)]) 91(SignExt8to64 (Const8 [c])) => (Const64 [int64(c)]) 92(SignExt16to32 (Const16 [c])) => (Const32 [int32(c)]) 93(SignExt16to64 (Const16 [c])) => (Const64 [int64(c)]) 94(SignExt32to64 (Const32 [c])) => (Const64 [int64(c)]) 95 96(Neg8 (Const8 [c])) => (Const8 [-c]) 97(Neg16 (Const16 [c])) => (Const16 [-c]) 98(Neg32 (Const32 [c])) => (Const32 [-c]) 99(Neg64 (Const64 [c])) => (Const64 [-c]) 100(Neg32F (Const32F [c])) && c != 0 => (Const32F [-c]) 101(Neg64F (Const64F [c])) && c != 0 => (Const64F [-c]) 102 103(Add8 (Const8 [c]) (Const8 [d])) => (Const8 [c+d]) 104(Add16 (Const16 [c]) (Const16 [d])) => (Const16 [c+d]) 105(Add32 (Const32 [c]) (Const32 [d])) => (Const32 [c+d]) 106(Add64 (Const64 [c]) (Const64 [d])) => (Const64 [c+d]) 107(Add32F (Const32F [c]) (Const32F [d])) && c+d == c+d => (Const32F [c+d]) 108(Add64F (Const64F [c]) (Const64F [d])) && c+d == c+d => (Const64F [c+d]) 109(AddPtr <t> x (Const64 [c])) => (OffPtr <t> x [c]) 110(AddPtr <t> x (Const32 [c])) => (OffPtr <t> x [int64(c)]) 111 112(Sub8 (Const8 [c]) (Const8 [d])) => (Const8 [c-d]) 113(Sub16 (Const16 [c]) (Const16 [d])) => (Const16 [c-d]) 114(Sub32 (Const32 [c]) (Const32 [d])) => (Const32 [c-d]) 115(Sub64 (Const64 [c]) (Const64 [d])) => (Const64 [c-d]) 116(Sub32F (Const32F [c]) (Const32F [d])) && c-d == c-d => (Const32F [c-d]) 117(Sub64F (Const64F [c]) (Const64F [d])) && c-d == c-d => (Const64F [c-d]) 118 119(Mul8 (Const8 [c]) (Const8 [d])) => (Const8 [c*d]) 120(Mul16 (Const16 [c]) (Const16 [d])) => (Const16 [c*d]) 121(Mul32 (Const32 [c]) (Const32 [d])) => (Const32 [c*d]) 122(Mul64 (Const64 [c]) (Const64 [d])) => (Const64 [c*d]) 123(Mul32F (Const32F [c]) (Const32F [d])) && c*d == c*d => (Const32F [c*d]) 124(Mul64F (Const64F [c]) (Const64F [d])) && c*d == c*d => (Const64F [c*d]) 125 126(And8 (Const8 [c]) (Const8 [d])) => (Const8 [c&d]) 127(And16 (Const16 [c]) (Const16 [d])) => (Const16 [c&d]) 128(And32 (Const32 [c]) (Const32 [d])) => (Const32 [c&d]) 129(And64 (Const64 [c]) (Const64 [d])) => (Const64 [c&d]) 130 131(Or8 (Const8 [c]) (Const8 [d])) => (Const8 [c|d]) 132(Or16 (Const16 [c]) (Const16 [d])) => (Const16 [c|d]) 133(Or32 (Const32 [c]) (Const32 [d])) => (Const32 [c|d]) 134(Or64 (Const64 [c]) (Const64 [d])) => (Const64 [c|d]) 135 136(Xor8 (Const8 [c]) (Const8 [d])) => (Const8 [c^d]) 137(Xor16 (Const16 [c]) (Const16 [d])) => (Const16 [c^d]) 138(Xor32 (Const32 [c]) (Const32 [d])) => (Const32 [c^d]) 139(Xor64 (Const64 [c]) (Const64 [d])) => (Const64 [c^d]) 140 141(Ctz64 (Const64 [c])) && config.PtrSize == 4 => (Const32 [int32(ntz64(c))]) 142(Ctz32 (Const32 [c])) && config.PtrSize == 4 => (Const32 [int32(ntz32(c))]) 143(Ctz16 (Const16 [c])) && config.PtrSize == 4 => (Const32 [int32(ntz16(c))]) 144(Ctz8 (Const8 [c])) && config.PtrSize == 4 => (Const32 [int32(ntz8(c))]) 145 146(Ctz64 (Const64 [c])) && config.PtrSize == 8 => (Const64 [int64(ntz64(c))]) 147(Ctz32 (Const32 [c])) && config.PtrSize == 8 => (Const64 [int64(ntz32(c))]) 148(Ctz16 (Const16 [c])) && config.PtrSize == 8 => (Const64 [int64(ntz16(c))]) 149(Ctz8 (Const8 [c])) && config.PtrSize == 8 => (Const64 [int64(ntz8(c))]) 150 151(Div8 (Const8 [c]) (Const8 [d])) && d != 0 => (Const8 [c/d]) 152(Div16 (Const16 [c]) (Const16 [d])) && d != 0 => (Const16 [c/d]) 153(Div32 (Const32 [c]) (Const32 [d])) && d != 0 => (Const32 [c/d]) 154(Div64 (Const64 [c]) (Const64 [d])) && d != 0 => (Const64 [c/d]) 155(Div8u (Const8 [c]) (Const8 [d])) && d != 0 => (Const8 [int8(uint8(c)/uint8(d))]) 156(Div16u (Const16 [c]) (Const16 [d])) && d != 0 => (Const16 [int16(uint16(c)/uint16(d))]) 157(Div32u (Const32 [c]) (Const32 [d])) && d != 0 => (Const32 [int32(uint32(c)/uint32(d))]) 158(Div64u (Const64 [c]) (Const64 [d])) && d != 0 => (Const64 [int64(uint64(c)/uint64(d))]) 159(Div32F (Const32F [c]) (Const32F [d])) && c/d == c/d => (Const32F [c/d]) 160(Div64F (Const64F [c]) (Const64F [d])) && c/d == c/d => (Const64F [c/d]) 161(Select0 (Div128u (Const64 [0]) lo y)) => (Div64u lo y) 162(Select1 (Div128u (Const64 [0]) lo y)) => (Mod64u lo y) 163 164(Not (ConstBool [c])) => (ConstBool [!c]) 165 166(Floor (Const64F [c])) => (Const64F [math.Floor(c)]) 167(Ceil (Const64F [c])) => (Const64F [math.Ceil(c)]) 168(Trunc (Const64F [c])) => (Const64F [math.Trunc(c)]) 169(RoundToEven (Const64F [c])) => (Const64F [math.RoundToEven(c)]) 170 171// Convert x * 1 to x. 172(Mul(8|16|32|64) (Const(8|16|32|64) [1]) x) => x 173(Select0 (Mul(32|64)uover (Const(32|64) [1]) x)) => x 174(Select1 (Mul(32|64)uover (Const(32|64) [1]) x)) => (ConstBool [false]) 175 176// Convert x * -1 to -x. 177(Mul(8|16|32|64) (Const(8|16|32|64) [-1]) x) => (Neg(8|16|32|64) x) 178 179// DeMorgan's Laws 180(And(8|16|32|64) <t> (Com(8|16|32|64) x) (Com(8|16|32|64) y)) => (Com(8|16|32|64) (Or(8|16|32|64) <t> x y)) 181(Or(8|16|32|64) <t> (Com(8|16|32|64) x) (Com(8|16|32|64) y)) => (Com(8|16|32|64) (And(8|16|32|64) <t> x y)) 182 183// Convert multiplication by a power of two to a shift. 184(Mul8 <t> n (Const8 [c])) && isPowerOfTwo8(c) => (Lsh8x64 <t> n (Const64 <typ.UInt64> [log8(c)])) 185(Mul16 <t> n (Const16 [c])) && isPowerOfTwo16(c) => (Lsh16x64 <t> n (Const64 <typ.UInt64> [log16(c)])) 186(Mul32 <t> n (Const32 [c])) && isPowerOfTwo32(c) => (Lsh32x64 <t> n (Const64 <typ.UInt64> [log32(c)])) 187(Mul64 <t> n (Const64 [c])) && isPowerOfTwo64(c) => (Lsh64x64 <t> n (Const64 <typ.UInt64> [log64(c)])) 188(Mul8 <t> n (Const8 [c])) && t.IsSigned() && isPowerOfTwo8(-c) => (Neg8 (Lsh8x64 <t> n (Const64 <typ.UInt64> [log8(-c)]))) 189(Mul16 <t> n (Const16 [c])) && t.IsSigned() && isPowerOfTwo16(-c) => (Neg16 (Lsh16x64 <t> n (Const64 <typ.UInt64> [log16(-c)]))) 190(Mul32 <t> n (Const32 [c])) && t.IsSigned() && isPowerOfTwo32(-c) => (Neg32 (Lsh32x64 <t> n (Const64 <typ.UInt64> [log32(-c)]))) 191(Mul64 <t> n (Const64 [c])) && t.IsSigned() && isPowerOfTwo64(-c) => (Neg64 (Lsh64x64 <t> n (Const64 <typ.UInt64> [log64(-c)]))) 192 193(Mod8 (Const8 [c]) (Const8 [d])) && d != 0 => (Const8 [c % d]) 194(Mod16 (Const16 [c]) (Const16 [d])) && d != 0 => (Const16 [c % d]) 195(Mod32 (Const32 [c]) (Const32 [d])) && d != 0 => (Const32 [c % d]) 196(Mod64 (Const64 [c]) (Const64 [d])) && d != 0 => (Const64 [c % d]) 197 198(Mod8u (Const8 [c]) (Const8 [d])) && d != 0 => (Const8 [int8(uint8(c) % uint8(d))]) 199(Mod16u (Const16 [c]) (Const16 [d])) && d != 0 => (Const16 [int16(uint16(c) % uint16(d))]) 200(Mod32u (Const32 [c]) (Const32 [d])) && d != 0 => (Const32 [int32(uint32(c) % uint32(d))]) 201(Mod64u (Const64 [c]) (Const64 [d])) && d != 0 => (Const64 [int64(uint64(c) % uint64(d))]) 202 203(Lsh64x64 (Const64 [c]) (Const64 [d])) => (Const64 [c << uint64(d)]) 204(Rsh64x64 (Const64 [c]) (Const64 [d])) => (Const64 [c >> uint64(d)]) 205(Rsh64Ux64 (Const64 [c]) (Const64 [d])) => (Const64 [int64(uint64(c) >> uint64(d))]) 206(Lsh32x64 (Const32 [c]) (Const64 [d])) => (Const32 [c << uint64(d)]) 207(Rsh32x64 (Const32 [c]) (Const64 [d])) => (Const32 [c >> uint64(d)]) 208(Rsh32Ux64 (Const32 [c]) (Const64 [d])) => (Const32 [int32(uint32(c) >> uint64(d))]) 209(Lsh16x64 (Const16 [c]) (Const64 [d])) => (Const16 [c << uint64(d)]) 210(Rsh16x64 (Const16 [c]) (Const64 [d])) => (Const16 [c >> uint64(d)]) 211(Rsh16Ux64 (Const16 [c]) (Const64 [d])) => (Const16 [int16(uint16(c) >> uint64(d))]) 212(Lsh8x64 (Const8 [c]) (Const64 [d])) => (Const8 [c << uint64(d)]) 213(Rsh8x64 (Const8 [c]) (Const64 [d])) => (Const8 [c >> uint64(d)]) 214(Rsh8Ux64 (Const8 [c]) (Const64 [d])) => (Const8 [int8(uint8(c) >> uint64(d))]) 215 216// Fold IsInBounds when the range of the index cannot exceed the limit. 217(IsInBounds (ZeroExt8to32 _) (Const32 [c])) && (1 << 8) <= c => (ConstBool [true]) 218(IsInBounds (ZeroExt8to64 _) (Const64 [c])) && (1 << 8) <= c => (ConstBool [true]) 219(IsInBounds (ZeroExt16to32 _) (Const32 [c])) && (1 << 16) <= c => (ConstBool [true]) 220(IsInBounds (ZeroExt16to64 _) (Const64 [c])) && (1 << 16) <= c => (ConstBool [true]) 221(IsInBounds x x) => (ConstBool [false]) 222(IsInBounds (And8 (Const8 [c]) _) (Const8 [d])) && 0 <= c && c < d => (ConstBool [true]) 223(IsInBounds (ZeroExt8to16 (And8 (Const8 [c]) _)) (Const16 [d])) && 0 <= c && int16(c) < d => (ConstBool [true]) 224(IsInBounds (ZeroExt8to32 (And8 (Const8 [c]) _)) (Const32 [d])) && 0 <= c && int32(c) < d => (ConstBool [true]) 225(IsInBounds (ZeroExt8to64 (And8 (Const8 [c]) _)) (Const64 [d])) && 0 <= c && int64(c) < d => (ConstBool [true]) 226(IsInBounds (And16 (Const16 [c]) _) (Const16 [d])) && 0 <= c && c < d => (ConstBool [true]) 227(IsInBounds (ZeroExt16to32 (And16 (Const16 [c]) _)) (Const32 [d])) && 0 <= c && int32(c) < d => (ConstBool [true]) 228(IsInBounds (ZeroExt16to64 (And16 (Const16 [c]) _)) (Const64 [d])) && 0 <= c && int64(c) < d => (ConstBool [true]) 229(IsInBounds (And32 (Const32 [c]) _) (Const32 [d])) && 0 <= c && c < d => (ConstBool [true]) 230(IsInBounds (ZeroExt32to64 (And32 (Const32 [c]) _)) (Const64 [d])) && 0 <= c && int64(c) < d => (ConstBool [true]) 231(IsInBounds (And64 (Const64 [c]) _) (Const64 [d])) && 0 <= c && c < d => (ConstBool [true]) 232(IsInBounds (Const32 [c]) (Const32 [d])) => (ConstBool [0 <= c && c < d]) 233(IsInBounds (Const64 [c]) (Const64 [d])) => (ConstBool [0 <= c && c < d]) 234// (Mod64u x y) is always between 0 (inclusive) and y (exclusive). 235(IsInBounds (Mod32u _ y) y) => (ConstBool [true]) 236(IsInBounds (Mod64u _ y) y) => (ConstBool [true]) 237// Right shifting an unsigned number limits its value. 238(IsInBounds (ZeroExt8to64 (Rsh8Ux64 _ (Const64 [c]))) (Const64 [d])) && 0 < c && c < 8 && 1<<uint( 8-c)-1 < d => (ConstBool [true]) 239(IsInBounds (ZeroExt8to32 (Rsh8Ux64 _ (Const64 [c]))) (Const32 [d])) && 0 < c && c < 8 && 1<<uint( 8-c)-1 < d => (ConstBool [true]) 240(IsInBounds (ZeroExt8to16 (Rsh8Ux64 _ (Const64 [c]))) (Const16 [d])) && 0 < c && c < 8 && 1<<uint( 8-c)-1 < d => (ConstBool [true]) 241(IsInBounds (Rsh8Ux64 _ (Const64 [c])) (Const64 [d])) && 0 < c && c < 8 && 1<<uint( 8-c)-1 < d => (ConstBool [true]) 242(IsInBounds (ZeroExt16to64 (Rsh16Ux64 _ (Const64 [c]))) (Const64 [d])) && 0 < c && c < 16 && 1<<uint(16-c)-1 < d => (ConstBool [true]) 243(IsInBounds (ZeroExt16to32 (Rsh16Ux64 _ (Const64 [c]))) (Const64 [d])) && 0 < c && c < 16 && 1<<uint(16-c)-1 < d => (ConstBool [true]) 244(IsInBounds (Rsh16Ux64 _ (Const64 [c])) (Const64 [d])) && 0 < c && c < 16 && 1<<uint(16-c)-1 < d => (ConstBool [true]) 245(IsInBounds (ZeroExt32to64 (Rsh32Ux64 _ (Const64 [c]))) (Const64 [d])) && 0 < c && c < 32 && 1<<uint(32-c)-1 < d => (ConstBool [true]) 246(IsInBounds (Rsh32Ux64 _ (Const64 [c])) (Const64 [d])) && 0 < c && c < 32 && 1<<uint(32-c)-1 < d => (ConstBool [true]) 247(IsInBounds (Rsh64Ux64 _ (Const64 [c])) (Const64 [d])) && 0 < c && c < 64 && 1<<uint(64-c)-1 < d => (ConstBool [true]) 248 249(IsSliceInBounds x x) => (ConstBool [true]) 250(IsSliceInBounds (And32 (Const32 [c]) _) (Const32 [d])) && 0 <= c && c <= d => (ConstBool [true]) 251(IsSliceInBounds (And64 (Const64 [c]) _) (Const64 [d])) && 0 <= c && c <= d => (ConstBool [true]) 252(IsSliceInBounds (Const32 [0]) _) => (ConstBool [true]) 253(IsSliceInBounds (Const64 [0]) _) => (ConstBool [true]) 254(IsSliceInBounds (Const32 [c]) (Const32 [d])) => (ConstBool [0 <= c && c <= d]) 255(IsSliceInBounds (Const64 [c]) (Const64 [d])) => (ConstBool [0 <= c && c <= d]) 256(IsSliceInBounds (SliceLen x) (SliceCap x)) => (ConstBool [true]) 257 258(Eq(64|32|16|8) x x) => (ConstBool [true]) 259(EqB (ConstBool [c]) (ConstBool [d])) => (ConstBool [c == d]) 260(EqB (ConstBool [false]) x) => (Not x) 261(EqB (ConstBool [true]) x) => x 262 263(Neq(64|32|16|8) x x) => (ConstBool [false]) 264(NeqB (ConstBool [c]) (ConstBool [d])) => (ConstBool [c != d]) 265(NeqB (ConstBool [false]) x) => x 266(NeqB (ConstBool [true]) x) => (Not x) 267(NeqB (Not x) (Not y)) => (NeqB x y) 268 269(Eq64 (Const64 <t> [c]) (Add64 (Const64 <t> [d]) x)) => (Eq64 (Const64 <t> [c-d]) x) 270(Eq32 (Const32 <t> [c]) (Add32 (Const32 <t> [d]) x)) => (Eq32 (Const32 <t> [c-d]) x) 271(Eq16 (Const16 <t> [c]) (Add16 (Const16 <t> [d]) x)) => (Eq16 (Const16 <t> [c-d]) x) 272(Eq8 (Const8 <t> [c]) (Add8 (Const8 <t> [d]) x)) => (Eq8 (Const8 <t> [c-d]) x) 273 274(Neq64 (Const64 <t> [c]) (Add64 (Const64 <t> [d]) x)) => (Neq64 (Const64 <t> [c-d]) x) 275(Neq32 (Const32 <t> [c]) (Add32 (Const32 <t> [d]) x)) => (Neq32 (Const32 <t> [c-d]) x) 276(Neq16 (Const16 <t> [c]) (Add16 (Const16 <t> [d]) x)) => (Neq16 (Const16 <t> [c-d]) x) 277(Neq8 (Const8 <t> [c]) (Add8 (Const8 <t> [d]) x)) => (Neq8 (Const8 <t> [c-d]) x) 278 279// signed integer range: ( c <= x && x (<|<=) d ) -> ( unsigned(x-c) (<|<=) unsigned(d-c) ) 280(AndB (Leq64 (Const64 [c]) x) ((Less|Leq)64 x (Const64 [d]))) && d >= c => ((Less|Leq)64U (Sub64 <x.Type> x (Const64 <x.Type> [c])) (Const64 <x.Type> [d-c])) 281(AndB (Leq32 (Const32 [c]) x) ((Less|Leq)32 x (Const32 [d]))) && d >= c => ((Less|Leq)32U (Sub32 <x.Type> x (Const32 <x.Type> [c])) (Const32 <x.Type> [d-c])) 282(AndB (Leq16 (Const16 [c]) x) ((Less|Leq)16 x (Const16 [d]))) && d >= c => ((Less|Leq)16U (Sub16 <x.Type> x (Const16 <x.Type> [c])) (Const16 <x.Type> [d-c])) 283(AndB (Leq8 (Const8 [c]) x) ((Less|Leq)8 x (Const8 [d]))) && d >= c => ((Less|Leq)8U (Sub8 <x.Type> x (Const8 <x.Type> [c])) (Const8 <x.Type> [d-c])) 284 285// signed integer range: ( c < x && x (<|<=) d ) -> ( unsigned(x-(c+1)) (<|<=) unsigned(d-(c+1)) ) 286(AndB (Less64 (Const64 [c]) x) ((Less|Leq)64 x (Const64 [d]))) && d >= c+1 && c+1 > c => ((Less|Leq)64U (Sub64 <x.Type> x (Const64 <x.Type> [c+1])) (Const64 <x.Type> [d-c-1])) 287(AndB (Less32 (Const32 [c]) x) ((Less|Leq)32 x (Const32 [d]))) && d >= c+1 && c+1 > c => ((Less|Leq)32U (Sub32 <x.Type> x (Const32 <x.Type> [c+1])) (Const32 <x.Type> [d-c-1])) 288(AndB (Less16 (Const16 [c]) x) ((Less|Leq)16 x (Const16 [d]))) && d >= c+1 && c+1 > c => ((Less|Leq)16U (Sub16 <x.Type> x (Const16 <x.Type> [c+1])) (Const16 <x.Type> [d-c-1])) 289(AndB (Less8 (Const8 [c]) x) ((Less|Leq)8 x (Const8 [d]))) && d >= c+1 && c+1 > c => ((Less|Leq)8U (Sub8 <x.Type> x (Const8 <x.Type> [c+1])) (Const8 <x.Type> [d-c-1])) 290 291// unsigned integer range: ( c <= x && x (<|<=) d ) -> ( x-c (<|<=) d-c ) 292(AndB (Leq64U (Const64 [c]) x) ((Less|Leq)64U x (Const64 [d]))) && uint64(d) >= uint64(c) => ((Less|Leq)64U (Sub64 <x.Type> x (Const64 <x.Type> [c])) (Const64 <x.Type> [d-c])) 293(AndB (Leq32U (Const32 [c]) x) ((Less|Leq)32U x (Const32 [d]))) && uint32(d) >= uint32(c) => ((Less|Leq)32U (Sub32 <x.Type> x (Const32 <x.Type> [c])) (Const32 <x.Type> [d-c])) 294(AndB (Leq16U (Const16 [c]) x) ((Less|Leq)16U x (Const16 [d]))) && uint16(d) >= uint16(c) => ((Less|Leq)16U (Sub16 <x.Type> x (Const16 <x.Type> [c])) (Const16 <x.Type> [d-c])) 295(AndB (Leq8U (Const8 [c]) x) ((Less|Leq)8U x (Const8 [d]))) && uint8(d) >= uint8(c) => ((Less|Leq)8U (Sub8 <x.Type> x (Const8 <x.Type> [c])) (Const8 <x.Type> [d-c])) 296 297// unsigned integer range: ( c < x && x (<|<=) d ) -> ( x-(c+1) (<|<=) d-(c+1) ) 298(AndB (Less64U (Const64 [c]) x) ((Less|Leq)64U x (Const64 [d]))) && uint64(d) >= uint64(c+1) && uint64(c+1) > uint64(c) => ((Less|Leq)64U (Sub64 <x.Type> x (Const64 <x.Type> [c+1])) (Const64 <x.Type> [d-c-1])) 299(AndB (Less32U (Const32 [c]) x) ((Less|Leq)32U x (Const32 [d]))) && uint32(d) >= uint32(c+1) && uint32(c+1) > uint32(c) => ((Less|Leq)32U (Sub32 <x.Type> x (Const32 <x.Type> [c+1])) (Const32 <x.Type> [d-c-1])) 300(AndB (Less16U (Const16 [c]) x) ((Less|Leq)16U x (Const16 [d]))) && uint16(d) >= uint16(c+1) && uint16(c+1) > uint16(c) => ((Less|Leq)16U (Sub16 <x.Type> x (Const16 <x.Type> [c+1])) (Const16 <x.Type> [d-c-1])) 301(AndB (Less8U (Const8 [c]) x) ((Less|Leq)8U x (Const8 [d]))) && uint8(d) >= uint8(c+1) && uint8(c+1) > uint8(c) => ((Less|Leq)8U (Sub8 <x.Type> x (Const8 <x.Type> [c+1])) (Const8 <x.Type> [d-c-1])) 302 303// signed integer range: ( c (<|<=) x || x < d ) -> ( unsigned(c-d) (<|<=) unsigned(x-d) ) 304(OrB ((Less|Leq)64 (Const64 [c]) x) (Less64 x (Const64 [d]))) && c >= d => ((Less|Leq)64U (Const64 <x.Type> [c-d]) (Sub64 <x.Type> x (Const64 <x.Type> [d]))) 305(OrB ((Less|Leq)32 (Const32 [c]) x) (Less32 x (Const32 [d]))) && c >= d => ((Less|Leq)32U (Const32 <x.Type> [c-d]) (Sub32 <x.Type> x (Const32 <x.Type> [d]))) 306(OrB ((Less|Leq)16 (Const16 [c]) x) (Less16 x (Const16 [d]))) && c >= d => ((Less|Leq)16U (Const16 <x.Type> [c-d]) (Sub16 <x.Type> x (Const16 <x.Type> [d]))) 307(OrB ((Less|Leq)8 (Const8 [c]) x) (Less8 x (Const8 [d]))) && c >= d => ((Less|Leq)8U (Const8 <x.Type> [c-d]) (Sub8 <x.Type> x (Const8 <x.Type> [d]))) 308 309// signed integer range: ( c (<|<=) x || x <= d ) -> ( unsigned(c-(d+1)) (<|<=) unsigned(x-(d+1)) ) 310(OrB ((Less|Leq)64 (Const64 [c]) x) (Leq64 x (Const64 [d]))) && c >= d+1 && d+1 > d => ((Less|Leq)64U (Const64 <x.Type> [c-d-1]) (Sub64 <x.Type> x (Const64 <x.Type> [d+1]))) 311(OrB ((Less|Leq)32 (Const32 [c]) x) (Leq32 x (Const32 [d]))) && c >= d+1 && d+1 > d => ((Less|Leq)32U (Const32 <x.Type> [c-d-1]) (Sub32 <x.Type> x (Const32 <x.Type> [d+1]))) 312(OrB ((Less|Leq)16 (Const16 [c]) x) (Leq16 x (Const16 [d]))) && c >= d+1 && d+1 > d => ((Less|Leq)16U (Const16 <x.Type> [c-d-1]) (Sub16 <x.Type> x (Const16 <x.Type> [d+1]))) 313(OrB ((Less|Leq)8 (Const8 [c]) x) (Leq8 x (Const8 [d]))) && c >= d+1 && d+1 > d => ((Less|Leq)8U (Const8 <x.Type> [c-d-1]) (Sub8 <x.Type> x (Const8 <x.Type> [d+1]))) 314 315// unsigned integer range: ( c (<|<=) x || x < d ) -> ( c-d (<|<=) x-d ) 316(OrB ((Less|Leq)64U (Const64 [c]) x) (Less64U x (Const64 [d]))) && uint64(c) >= uint64(d) => ((Less|Leq)64U (Const64 <x.Type> [c-d]) (Sub64 <x.Type> x (Const64 <x.Type> [d]))) 317(OrB ((Less|Leq)32U (Const32 [c]) x) (Less32U x (Const32 [d]))) && uint32(c) >= uint32(d) => ((Less|Leq)32U (Const32 <x.Type> [c-d]) (Sub32 <x.Type> x (Const32 <x.Type> [d]))) 318(OrB ((Less|Leq)16U (Const16 [c]) x) (Less16U x (Const16 [d]))) && uint16(c) >= uint16(d) => ((Less|Leq)16U (Const16 <x.Type> [c-d]) (Sub16 <x.Type> x (Const16 <x.Type> [d]))) 319(OrB ((Less|Leq)8U (Const8 [c]) x) (Less8U x (Const8 [d]))) && uint8(c) >= uint8(d) => ((Less|Leq)8U (Const8 <x.Type> [c-d]) (Sub8 <x.Type> x (Const8 <x.Type> [d]))) 320 321// unsigned integer range: ( c (<|<=) x || x <= d ) -> ( c-(d+1) (<|<=) x-(d+1) ) 322(OrB ((Less|Leq)64U (Const64 [c]) x) (Leq64U x (Const64 [d]))) && uint64(c) >= uint64(d+1) && uint64(d+1) > uint64(d) => ((Less|Leq)64U (Const64 <x.Type> [c-d-1]) (Sub64 <x.Type> x (Const64 <x.Type> [d+1]))) 323(OrB ((Less|Leq)32U (Const32 [c]) x) (Leq32U x (Const32 [d]))) && uint32(c) >= uint32(d+1) && uint32(d+1) > uint32(d) => ((Less|Leq)32U (Const32 <x.Type> [c-d-1]) (Sub32 <x.Type> x (Const32 <x.Type> [d+1]))) 324(OrB ((Less|Leq)16U (Const16 [c]) x) (Leq16U x (Const16 [d]))) && uint16(c) >= uint16(d+1) && uint16(d+1) > uint16(d) => ((Less|Leq)16U (Const16 <x.Type> [c-d-1]) (Sub16 <x.Type> x (Const16 <x.Type> [d+1]))) 325(OrB ((Less|Leq)8U (Const8 [c]) x) (Leq8U x (Const8 [d]))) && uint8(c) >= uint8(d+1) && uint8(d+1) > uint8(d) => ((Less|Leq)8U (Const8 <x.Type> [c-d-1]) (Sub8 <x.Type> x (Const8 <x.Type> [d+1]))) 326 327// Canonicalize x-const to x+(-const) 328(Sub64 x (Const64 <t> [c])) && x.Op != OpConst64 => (Add64 (Const64 <t> [-c]) x) 329(Sub32 x (Const32 <t> [c])) && x.Op != OpConst32 => (Add32 (Const32 <t> [-c]) x) 330(Sub16 x (Const16 <t> [c])) && x.Op != OpConst16 => (Add16 (Const16 <t> [-c]) x) 331(Sub8 x (Const8 <t> [c])) && x.Op != OpConst8 => (Add8 (Const8 <t> [-c]) x) 332 333// fold negation into comparison operators 334(Not (Eq(64|32|16|8|B|Ptr|64F|32F) x y)) => (Neq(64|32|16|8|B|Ptr|64F|32F) x y) 335(Not (Neq(64|32|16|8|B|Ptr|64F|32F) x y)) => (Eq(64|32|16|8|B|Ptr|64F|32F) x y) 336 337(Not (Less(64|32|16|8) x y)) => (Leq(64|32|16|8) y x) 338(Not (Less(64|32|16|8)U x y)) => (Leq(64|32|16|8)U y x) 339(Not (Leq(64|32|16|8) x y)) => (Less(64|32|16|8) y x) 340(Not (Leq(64|32|16|8)U x y)) => (Less(64|32|16|8)U y x) 341 342// Distribute multiplication c * (d+x) -> c*d + c*x. Useful for: 343// a[i].b = ...; a[i+1].b = ... 344(Mul64 (Const64 <t> [c]) (Add64 <t> (Const64 <t> [d]) x)) => 345 (Add64 (Const64 <t> [c*d]) (Mul64 <t> (Const64 <t> [c]) x)) 346(Mul32 (Const32 <t> [c]) (Add32 <t> (Const32 <t> [d]) x)) => 347 (Add32 (Const32 <t> [c*d]) (Mul32 <t> (Const32 <t> [c]) x)) 348 349// Rewrite x*y ± x*z to x*(y±z) 350(Add(64|32|16|8) <t> (Mul(64|32|16|8) x y) (Mul(64|32|16|8) x z)) 351 => (Mul(64|32|16|8) x (Add(64|32|16|8) <t> y z)) 352(Sub(64|32|16|8) <t> (Mul(64|32|16|8) x y) (Mul(64|32|16|8) x z)) 353 => (Mul(64|32|16|8) x (Sub(64|32|16|8) <t> y z)) 354 355// rewrite shifts of 8/16/32 bit consts into 64 bit consts to reduce 356// the number of the other rewrite rules for const shifts 357(Lsh64x32 <t> x (Const32 [c])) => (Lsh64x64 x (Const64 <t> [int64(uint32(c))])) 358(Lsh64x16 <t> x (Const16 [c])) => (Lsh64x64 x (Const64 <t> [int64(uint16(c))])) 359(Lsh64x8 <t> x (Const8 [c])) => (Lsh64x64 x (Const64 <t> [int64(uint8(c))])) 360(Rsh64x32 <t> x (Const32 [c])) => (Rsh64x64 x (Const64 <t> [int64(uint32(c))])) 361(Rsh64x16 <t> x (Const16 [c])) => (Rsh64x64 x (Const64 <t> [int64(uint16(c))])) 362(Rsh64x8 <t> x (Const8 [c])) => (Rsh64x64 x (Const64 <t> [int64(uint8(c))])) 363(Rsh64Ux32 <t> x (Const32 [c])) => (Rsh64Ux64 x (Const64 <t> [int64(uint32(c))])) 364(Rsh64Ux16 <t> x (Const16 [c])) => (Rsh64Ux64 x (Const64 <t> [int64(uint16(c))])) 365(Rsh64Ux8 <t> x (Const8 [c])) => (Rsh64Ux64 x (Const64 <t> [int64(uint8(c))])) 366 367(Lsh32x32 <t> x (Const32 [c])) => (Lsh32x64 x (Const64 <t> [int64(uint32(c))])) 368(Lsh32x16 <t> x (Const16 [c])) => (Lsh32x64 x (Const64 <t> [int64(uint16(c))])) 369(Lsh32x8 <t> x (Const8 [c])) => (Lsh32x64 x (Const64 <t> [int64(uint8(c))])) 370(Rsh32x32 <t> x (Const32 [c])) => (Rsh32x64 x (Const64 <t> [int64(uint32(c))])) 371(Rsh32x16 <t> x (Const16 [c])) => (Rsh32x64 x (Const64 <t> [int64(uint16(c))])) 372(Rsh32x8 <t> x (Const8 [c])) => (Rsh32x64 x (Const64 <t> [int64(uint8(c))])) 373(Rsh32Ux32 <t> x (Const32 [c])) => (Rsh32Ux64 x (Const64 <t> [int64(uint32(c))])) 374(Rsh32Ux16 <t> x (Const16 [c])) => (Rsh32Ux64 x (Const64 <t> [int64(uint16(c))])) 375(Rsh32Ux8 <t> x (Const8 [c])) => (Rsh32Ux64 x (Const64 <t> [int64(uint8(c))])) 376 377(Lsh16x32 <t> x (Const32 [c])) => (Lsh16x64 x (Const64 <t> [int64(uint32(c))])) 378(Lsh16x16 <t> x (Const16 [c])) => (Lsh16x64 x (Const64 <t> [int64(uint16(c))])) 379(Lsh16x8 <t> x (Const8 [c])) => (Lsh16x64 x (Const64 <t> [int64(uint8(c))])) 380(Rsh16x32 <t> x (Const32 [c])) => (Rsh16x64 x (Const64 <t> [int64(uint32(c))])) 381(Rsh16x16 <t> x (Const16 [c])) => (Rsh16x64 x (Const64 <t> [int64(uint16(c))])) 382(Rsh16x8 <t> x (Const8 [c])) => (Rsh16x64 x (Const64 <t> [int64(uint8(c))])) 383(Rsh16Ux32 <t> x (Const32 [c])) => (Rsh16Ux64 x (Const64 <t> [int64(uint32(c))])) 384(Rsh16Ux16 <t> x (Const16 [c])) => (Rsh16Ux64 x (Const64 <t> [int64(uint16(c))])) 385(Rsh16Ux8 <t> x (Const8 [c])) => (Rsh16Ux64 x (Const64 <t> [int64(uint8(c))])) 386 387(Lsh8x32 <t> x (Const32 [c])) => (Lsh8x64 x (Const64 <t> [int64(uint32(c))])) 388(Lsh8x16 <t> x (Const16 [c])) => (Lsh8x64 x (Const64 <t> [int64(uint16(c))])) 389(Lsh8x8 <t> x (Const8 [c])) => (Lsh8x64 x (Const64 <t> [int64(uint8(c))])) 390(Rsh8x32 <t> x (Const32 [c])) => (Rsh8x64 x (Const64 <t> [int64(uint32(c))])) 391(Rsh8x16 <t> x (Const16 [c])) => (Rsh8x64 x (Const64 <t> [int64(uint16(c))])) 392(Rsh8x8 <t> x (Const8 [c])) => (Rsh8x64 x (Const64 <t> [int64(uint8(c))])) 393(Rsh8Ux32 <t> x (Const32 [c])) => (Rsh8Ux64 x (Const64 <t> [int64(uint32(c))])) 394(Rsh8Ux16 <t> x (Const16 [c])) => (Rsh8Ux64 x (Const64 <t> [int64(uint16(c))])) 395(Rsh8Ux8 <t> x (Const8 [c])) => (Rsh8Ux64 x (Const64 <t> [int64(uint8(c))])) 396 397// shifts by zero 398(Lsh(64|32|16|8)x64 x (Const64 [0])) => x 399(Rsh(64|32|16|8)x64 x (Const64 [0])) => x 400(Rsh(64|32|16|8)Ux64 x (Const64 [0])) => x 401 402// rotates by multiples of register width 403(RotateLeft64 x (Const64 [c])) && c%64 == 0 => x 404(RotateLeft32 x (Const32 [c])) && c%32 == 0 => x 405(RotateLeft16 x (Const16 [c])) && c%16 == 0 => x 406(RotateLeft8 x (Const8 [c])) && c%8 == 0 => x 407 408// zero shifted 409(Lsh64x(64|32|16|8) (Const64 [0]) _) => (Const64 [0]) 410(Rsh64x(64|32|16|8) (Const64 [0]) _) => (Const64 [0]) 411(Rsh64Ux(64|32|16|8) (Const64 [0]) _) => (Const64 [0]) 412(Lsh32x(64|32|16|8) (Const32 [0]) _) => (Const32 [0]) 413(Rsh32x(64|32|16|8) (Const32 [0]) _) => (Const32 [0]) 414(Rsh32Ux(64|32|16|8) (Const32 [0]) _) => (Const32 [0]) 415(Lsh16x(64|32|16|8) (Const16 [0]) _) => (Const16 [0]) 416(Rsh16x(64|32|16|8) (Const16 [0]) _) => (Const16 [0]) 417(Rsh16Ux(64|32|16|8) (Const16 [0]) _) => (Const16 [0]) 418(Lsh8x(64|32|16|8) (Const8 [0]) _) => (Const8 [0]) 419(Rsh8x(64|32|16|8) (Const8 [0]) _) => (Const8 [0]) 420(Rsh8Ux(64|32|16|8) (Const8 [0]) _) => (Const8 [0]) 421 422// large left shifts of all values, and right shifts of unsigned values 423((Lsh64|Rsh64U)x64 _ (Const64 [c])) && uint64(c) >= 64 => (Const64 [0]) 424((Lsh32|Rsh32U)x64 _ (Const64 [c])) && uint64(c) >= 32 => (Const32 [0]) 425((Lsh16|Rsh16U)x64 _ (Const64 [c])) && uint64(c) >= 16 => (Const16 [0]) 426((Lsh8|Rsh8U)x64 _ (Const64 [c])) && uint64(c) >= 8 => (Const8 [0]) 427 428// combine const shifts 429(Lsh64x64 <t> (Lsh64x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Lsh64x64 x (Const64 <t> [c+d])) 430(Lsh32x64 <t> (Lsh32x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Lsh32x64 x (Const64 <t> [c+d])) 431(Lsh16x64 <t> (Lsh16x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Lsh16x64 x (Const64 <t> [c+d])) 432(Lsh8x64 <t> (Lsh8x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Lsh8x64 x (Const64 <t> [c+d])) 433 434(Rsh64x64 <t> (Rsh64x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh64x64 x (Const64 <t> [c+d])) 435(Rsh32x64 <t> (Rsh32x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh32x64 x (Const64 <t> [c+d])) 436(Rsh16x64 <t> (Rsh16x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh16x64 x (Const64 <t> [c+d])) 437(Rsh8x64 <t> (Rsh8x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh8x64 x (Const64 <t> [c+d])) 438 439(Rsh64Ux64 <t> (Rsh64Ux64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh64Ux64 x (Const64 <t> [c+d])) 440(Rsh32Ux64 <t> (Rsh32Ux64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh32Ux64 x (Const64 <t> [c+d])) 441(Rsh16Ux64 <t> (Rsh16Ux64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh16Ux64 x (Const64 <t> [c+d])) 442(Rsh8Ux64 <t> (Rsh8Ux64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh8Ux64 x (Const64 <t> [c+d])) 443 444// Remove signed right shift before an unsigned right shift that extracts the sign bit. 445(Rsh8Ux64 (Rsh8x64 x _) (Const64 <t> [7] )) => (Rsh8Ux64 x (Const64 <t> [7] )) 446(Rsh16Ux64 (Rsh16x64 x _) (Const64 <t> [15])) => (Rsh16Ux64 x (Const64 <t> [15])) 447(Rsh32Ux64 (Rsh32x64 x _) (Const64 <t> [31])) => (Rsh32Ux64 x (Const64 <t> [31])) 448(Rsh64Ux64 (Rsh64x64 x _) (Const64 <t> [63])) => (Rsh64Ux64 x (Const64 <t> [63])) 449 450// Convert x>>c<<c to x&^(1<<c-1) 451(Lsh64x64 i:(Rsh(64|64U)x64 x (Const64 [c])) (Const64 [c])) && c >= 0 && c < 64 && i.Uses == 1 => (And64 x (Const64 <v.Type> [int64(-1) << c])) 452(Lsh32x64 i:(Rsh(32|32U)x64 x (Const64 [c])) (Const64 [c])) && c >= 0 && c < 32 && i.Uses == 1 => (And32 x (Const32 <v.Type> [int32(-1) << c])) 453(Lsh16x64 i:(Rsh(16|16U)x64 x (Const64 [c])) (Const64 [c])) && c >= 0 && c < 16 && i.Uses == 1 => (And16 x (Const16 <v.Type> [int16(-1) << c])) 454(Lsh8x64 i:(Rsh(8|8U)x64 x (Const64 [c])) (Const64 [c])) && c >= 0 && c < 8 && i.Uses == 1 => (And8 x (Const8 <v.Type> [int8(-1) << c])) 455// similarly for x<<c>>c 456(Rsh64Ux64 i:(Lsh64x64 x (Const64 [c])) (Const64 [c])) && c >= 0 && c < 64 && i.Uses == 1 => (And64 x (Const64 <v.Type> [int64(^uint64(0)>>c)])) 457(Rsh32Ux64 i:(Lsh32x64 x (Const64 [c])) (Const64 [c])) && c >= 0 && c < 32 && i.Uses == 1 => (And32 x (Const32 <v.Type> [int32(^uint32(0)>>c)])) 458(Rsh16Ux64 i:(Lsh16x64 x (Const64 [c])) (Const64 [c])) && c >= 0 && c < 16 && i.Uses == 1 => (And16 x (Const16 <v.Type> [int16(^uint16(0)>>c)])) 459(Rsh8Ux64 i:(Lsh8x64 x (Const64 [c])) (Const64 [c])) && c >= 0 && c < 8 && i.Uses == 1 => (And8 x (Const8 <v.Type> [int8 (^uint8 (0)>>c)])) 460 461// ((x >> c1) << c2) >> c3 462(Rsh(64|32|16|8)Ux64 (Lsh(64|32|16|8)x64 (Rsh(64|32|16|8)Ux64 x (Const64 [c1])) (Const64 [c2])) (Const64 [c3])) 463 && uint64(c1) >= uint64(c2) && uint64(c3) >= uint64(c2) && !uaddOvf(c1-c2, c3) 464 => (Rsh(64|32|16|8)Ux64 x (Const64 <typ.UInt64> [c1-c2+c3])) 465 466// ((x << c1) >> c2) << c3 467(Lsh(64|32|16|8)x64 (Rsh(64|32|16|8)Ux64 (Lsh(64|32|16|8)x64 x (Const64 [c1])) (Const64 [c2])) (Const64 [c3])) 468 && uint64(c1) >= uint64(c2) && uint64(c3) >= uint64(c2) && !uaddOvf(c1-c2, c3) 469 => (Lsh(64|32|16|8)x64 x (Const64 <typ.UInt64> [c1-c2+c3])) 470 471// (x >> c) & uppermask = 0 472(And64 (Const64 [m]) (Rsh64Ux64 _ (Const64 [c]))) && c >= int64(64-ntz64(m)) => (Const64 [0]) 473(And32 (Const32 [m]) (Rsh32Ux64 _ (Const64 [c]))) && c >= int64(32-ntz32(m)) => (Const32 [0]) 474(And16 (Const16 [m]) (Rsh16Ux64 _ (Const64 [c]))) && c >= int64(16-ntz16(m)) => (Const16 [0]) 475(And8 (Const8 [m]) (Rsh8Ux64 _ (Const64 [c]))) && c >= int64(8-ntz8(m)) => (Const8 [0]) 476 477// (x << c) & lowermask = 0 478(And64 (Const64 [m]) (Lsh64x64 _ (Const64 [c]))) && c >= int64(64-nlz64(m)) => (Const64 [0]) 479(And32 (Const32 [m]) (Lsh32x64 _ (Const64 [c]))) && c >= int64(32-nlz32(m)) => (Const32 [0]) 480(And16 (Const16 [m]) (Lsh16x64 _ (Const64 [c]))) && c >= int64(16-nlz16(m)) => (Const16 [0]) 481(And8 (Const8 [m]) (Lsh8x64 _ (Const64 [c]))) && c >= int64(8-nlz8(m)) => (Const8 [0]) 482 483// replace shifts with zero extensions 484(Rsh16Ux64 (Lsh16x64 x (Const64 [8])) (Const64 [8])) => (ZeroExt8to16 (Trunc16to8 <typ.UInt8> x)) 485(Rsh32Ux64 (Lsh32x64 x (Const64 [24])) (Const64 [24])) => (ZeroExt8to32 (Trunc32to8 <typ.UInt8> x)) 486(Rsh64Ux64 (Lsh64x64 x (Const64 [56])) (Const64 [56])) => (ZeroExt8to64 (Trunc64to8 <typ.UInt8> x)) 487(Rsh32Ux64 (Lsh32x64 x (Const64 [16])) (Const64 [16])) => (ZeroExt16to32 (Trunc32to16 <typ.UInt16> x)) 488(Rsh64Ux64 (Lsh64x64 x (Const64 [48])) (Const64 [48])) => (ZeroExt16to64 (Trunc64to16 <typ.UInt16> x)) 489(Rsh64Ux64 (Lsh64x64 x (Const64 [32])) (Const64 [32])) => (ZeroExt32to64 (Trunc64to32 <typ.UInt32> x)) 490 491// replace shifts with sign extensions 492(Rsh16x64 (Lsh16x64 x (Const64 [8])) (Const64 [8])) => (SignExt8to16 (Trunc16to8 <typ.Int8> x)) 493(Rsh32x64 (Lsh32x64 x (Const64 [24])) (Const64 [24])) => (SignExt8to32 (Trunc32to8 <typ.Int8> x)) 494(Rsh64x64 (Lsh64x64 x (Const64 [56])) (Const64 [56])) => (SignExt8to64 (Trunc64to8 <typ.Int8> x)) 495(Rsh32x64 (Lsh32x64 x (Const64 [16])) (Const64 [16])) => (SignExt16to32 (Trunc32to16 <typ.Int16> x)) 496(Rsh64x64 (Lsh64x64 x (Const64 [48])) (Const64 [48])) => (SignExt16to64 (Trunc64to16 <typ.Int16> x)) 497(Rsh64x64 (Lsh64x64 x (Const64 [32])) (Const64 [32])) => (SignExt32to64 (Trunc64to32 <typ.Int32> x)) 498 499// constant comparisons 500(Eq(64|32|16|8) (Const(64|32|16|8) [c]) (Const(64|32|16|8) [d])) => (ConstBool [c == d]) 501(Neq(64|32|16|8) (Const(64|32|16|8) [c]) (Const(64|32|16|8) [d])) => (ConstBool [c != d]) 502(Less(64|32|16|8) (Const(64|32|16|8) [c]) (Const(64|32|16|8) [d])) => (ConstBool [c < d]) 503(Leq(64|32|16|8) (Const(64|32|16|8) [c]) (Const(64|32|16|8) [d])) => (ConstBool [c <= d]) 504 505(Less64U (Const64 [c]) (Const64 [d])) => (ConstBool [uint64(c) < uint64(d)]) 506(Less32U (Const32 [c]) (Const32 [d])) => (ConstBool [uint32(c) < uint32(d)]) 507(Less16U (Const16 [c]) (Const16 [d])) => (ConstBool [uint16(c) < uint16(d)]) 508(Less8U (Const8 [c]) (Const8 [d])) => (ConstBool [ uint8(c) < uint8(d)]) 509 510(Leq64U (Const64 [c]) (Const64 [d])) => (ConstBool [uint64(c) <= uint64(d)]) 511(Leq32U (Const32 [c]) (Const32 [d])) => (ConstBool [uint32(c) <= uint32(d)]) 512(Leq16U (Const16 [c]) (Const16 [d])) => (ConstBool [uint16(c) <= uint16(d)]) 513(Leq8U (Const8 [c]) (Const8 [d])) => (ConstBool [ uint8(c) <= uint8(d)]) 514 515(Leq8 (Const8 [0]) (And8 _ (Const8 [c]))) && c >= 0 => (ConstBool [true]) 516(Leq16 (Const16 [0]) (And16 _ (Const16 [c]))) && c >= 0 => (ConstBool [true]) 517(Leq32 (Const32 [0]) (And32 _ (Const32 [c]))) && c >= 0 => (ConstBool [true]) 518(Leq64 (Const64 [0]) (And64 _ (Const64 [c]))) && c >= 0 => (ConstBool [true]) 519 520(Leq8 (Const8 [0]) (Rsh8Ux64 _ (Const64 [c]))) && c > 0 => (ConstBool [true]) 521(Leq16 (Const16 [0]) (Rsh16Ux64 _ (Const64 [c]))) && c > 0 => (ConstBool [true]) 522(Leq32 (Const32 [0]) (Rsh32Ux64 _ (Const64 [c]))) && c > 0 => (ConstBool [true]) 523(Leq64 (Const64 [0]) (Rsh64Ux64 _ (Const64 [c]))) && c > 0 => (ConstBool [true]) 524 525// prefer equalities with zero 526(Less(64|32|16|8) (Const(64|32|16|8) <t> [0]) x) && isNonNegative(x) => (Neq(64|32|16|8) (Const(64|32|16|8) <t> [0]) x) 527(Less(64|32|16|8) x (Const(64|32|16|8) <t> [1])) && isNonNegative(x) => (Eq(64|32|16|8) (Const(64|32|16|8) <t> [0]) x) 528(Less(64|32|16|8)U x (Const(64|32|16|8) <t> [1])) => (Eq(64|32|16|8) (Const(64|32|16|8) <t> [0]) x) 529(Leq(64|32|16|8)U (Const(64|32|16|8) <t> [1]) x) => (Neq(64|32|16|8) (Const(64|32|16|8) <t> [0]) x) 530 531// prefer comparisons with zero 532(Less(64|32|16|8) x (Const(64|32|16|8) <t> [1])) => (Leq(64|32|16|8) x (Const(64|32|16|8) <t> [0])) 533(Leq(64|32|16|8) x (Const(64|32|16|8) <t> [-1])) => (Less(64|32|16|8) x (Const(64|32|16|8) <t> [0])) 534(Leq(64|32|16|8) (Const(64|32|16|8) <t> [1]) x) => (Less(64|32|16|8) (Const(64|32|16|8) <t> [0]) x) 535(Less(64|32|16|8) (Const(64|32|16|8) <t> [-1]) x) => (Leq(64|32|16|8) (Const(64|32|16|8) <t> [0]) x) 536 537// constant floating point comparisons 538(Eq32F (Const32F [c]) (Const32F [d])) => (ConstBool [c == d]) 539(Eq64F (Const64F [c]) (Const64F [d])) => (ConstBool [c == d]) 540(Neq32F (Const32F [c]) (Const32F [d])) => (ConstBool [c != d]) 541(Neq64F (Const64F [c]) (Const64F [d])) => (ConstBool [c != d]) 542(Less32F (Const32F [c]) (Const32F [d])) => (ConstBool [c < d]) 543(Less64F (Const64F [c]) (Const64F [d])) => (ConstBool [c < d]) 544(Leq32F (Const32F [c]) (Const32F [d])) => (ConstBool [c <= d]) 545(Leq64F (Const64F [c]) (Const64F [d])) => (ConstBool [c <= d]) 546 547// simplifications 548(Or(64|32|16|8) x x) => x 549(Or(64|32|16|8) (Const(64|32|16|8) [0]) x) => x 550(Or(64|32|16|8) (Const(64|32|16|8) [-1]) _) => (Const(64|32|16|8) [-1]) 551(Or(64|32|16|8) (Com(64|32|16|8) x) x) => (Const(64|32|16|8) [-1]) 552 553(And(64|32|16|8) x x) => x 554(And(64|32|16|8) (Const(64|32|16|8) [-1]) x) => x 555(And(64|32|16|8) (Const(64|32|16|8) [0]) _) => (Const(64|32|16|8) [0]) 556(And(64|32|16|8) (Com(64|32|16|8) x) x) => (Const(64|32|16|8) [0]) 557 558(Xor(64|32|16|8) x x) => (Const(64|32|16|8) [0]) 559(Xor(64|32|16|8) (Const(64|32|16|8) [0]) x) => x 560(Xor(64|32|16|8) (Com(64|32|16|8) x) x) => (Const(64|32|16|8) [-1]) 561 562(Add(64|32|16|8) (Const(64|32|16|8) [0]) x) => x 563(Sub(64|32|16|8) x x) => (Const(64|32|16|8) [0]) 564(Mul(64|32|16|8) (Const(64|32|16|8) [0]) _) => (Const(64|32|16|8) [0]) 565(Select0 (Mul(64|32)uover (Const(64|32) [0]) x)) => (Const(64|32) [0]) 566(Select1 (Mul(64|32)uover (Const(64|32) [0]) x)) => (ConstBool [false]) 567 568(Com(64|32|16|8) (Com(64|32|16|8) x)) => x 569(Com(64|32|16|8) (Const(64|32|16|8) [c])) => (Const(64|32|16|8) [^c]) 570 571(Neg(64|32|16|8) (Sub(64|32|16|8) x y)) => (Sub(64|32|16|8) y x) 572(Add(64|32|16|8) x (Neg(64|32|16|8) y)) => (Sub(64|32|16|8) x y) 573 574(Xor(64|32|16|8) (Const(64|32|16|8) [-1]) x) => (Com(64|32|16|8) x) 575 576(Sub(64|32|16|8) (Neg(64|32|16|8) x) (Com(64|32|16|8) x)) => (Const(64|32|16|8) [1]) 577(Sub(64|32|16|8) (Com(64|32|16|8) x) (Neg(64|32|16|8) x)) => (Const(64|32|16|8) [-1]) 578(Add(64|32|16|8) (Com(64|32|16|8) x) x) => (Const(64|32|16|8) [-1]) 579 580// Simplification when involving common integer 581// (t + x) - (t + y) == x - y 582// (t + x) - (y + t) == x - y 583// (x + t) - (y + t) == x - y 584// (x + t) - (t + y) == x - y 585// (x - t) + (t + y) == x + y 586// (x - t) + (y + t) == x + y 587(Sub(64|32|16|8) (Add(64|32|16|8) t x) (Add(64|32|16|8) t y)) => (Sub(64|32|16|8) x y) 588(Add(64|32|16|8) (Sub(64|32|16|8) x t) (Add(64|32|16|8) t y)) => (Add(64|32|16|8) x y) 589 590// ^(x-1) == ^x+1 == -x 591(Add(64|32|16|8) (Const(64|32|16|8) [1]) (Com(64|32|16|8) x)) => (Neg(64|32|16|8) x) 592(Com(64|32|16|8) (Add(64|32|16|8) (Const(64|32|16|8) [-1]) x)) => (Neg(64|32|16|8) x) 593 594// -(-x) == x 595(Neg(64|32|16|8) (Neg(64|32|16|8) x)) => x 596 597// -^x == x+1 598(Neg(64|32|16|8) <t> (Com(64|32|16|8) x)) => (Add(64|32|16|8) (Const(64|32|16|8) <t> [1]) x) 599 600(And(64|32|16|8) x (And(64|32|16|8) x y)) => (And(64|32|16|8) x y) 601(Or(64|32|16|8) x (Or(64|32|16|8) x y)) => (Or(64|32|16|8) x y) 602(Xor(64|32|16|8) x (Xor(64|32|16|8) x y)) => y 603 604// Fold comparisons with numeric bounds 605(Less(64|32|16|8)U _ (Const(64|32|16|8) [0])) => (ConstBool [false]) 606(Leq(64|32|16|8)U (Const(64|32|16|8) [0]) _) => (ConstBool [true]) 607(Less(64|32|16|8)U (Const(64|32|16|8) [-1]) _) => (ConstBool [false]) 608(Leq(64|32|16|8)U _ (Const(64|32|16|8) [-1])) => (ConstBool [true]) 609(Less64 _ (Const64 [math.MinInt64])) => (ConstBool [false]) 610(Less32 _ (Const32 [math.MinInt32])) => (ConstBool [false]) 611(Less16 _ (Const16 [math.MinInt16])) => (ConstBool [false]) 612(Less8 _ (Const8 [math.MinInt8 ])) => (ConstBool [false]) 613(Leq64 (Const64 [math.MinInt64]) _) => (ConstBool [true]) 614(Leq32 (Const32 [math.MinInt32]) _) => (ConstBool [true]) 615(Leq16 (Const16 [math.MinInt16]) _) => (ConstBool [true]) 616(Leq8 (Const8 [math.MinInt8 ]) _) => (ConstBool [true]) 617(Less64 (Const64 [math.MaxInt64]) _) => (ConstBool [false]) 618(Less32 (Const32 [math.MaxInt32]) _) => (ConstBool [false]) 619(Less16 (Const16 [math.MaxInt16]) _) => (ConstBool [false]) 620(Less8 (Const8 [math.MaxInt8 ]) _) => (ConstBool [false]) 621(Leq64 _ (Const64 [math.MaxInt64])) => (ConstBool [true]) 622(Leq32 _ (Const32 [math.MaxInt32])) => (ConstBool [true]) 623(Leq16 _ (Const16 [math.MaxInt16])) => (ConstBool [true]) 624(Leq8 _ (Const8 [math.MaxInt8 ])) => (ConstBool [true]) 625 626// Canonicalize <= on numeric bounds and < near numeric bounds to == 627(Leq(64|32|16|8)U x c:(Const(64|32|16|8) [0])) => (Eq(64|32|16|8) x c) 628(Leq(64|32|16|8)U c:(Const(64|32|16|8) [-1]) x) => (Eq(64|32|16|8) x c) 629(Less(64|32|16|8)U x (Const(64|32|16|8) <t> [1])) => (Eq(64|32|16|8) x (Const(64|32|16|8) <t> [0])) 630(Less(64|32|16|8)U (Const(64|32|16|8) <t> [-2]) x) => (Eq(64|32|16|8) x (Const(64|32|16|8) <t> [-1])) 631(Leq64 x c:(Const64 [math.MinInt64])) => (Eq64 x c) 632(Leq32 x c:(Const32 [math.MinInt32])) => (Eq32 x c) 633(Leq16 x c:(Const16 [math.MinInt16])) => (Eq16 x c) 634(Leq8 x c:(Const8 [math.MinInt8 ])) => (Eq8 x c) 635(Leq64 c:(Const64 [math.MaxInt64]) x) => (Eq64 x c) 636(Leq32 c:(Const32 [math.MaxInt32]) x) => (Eq32 x c) 637(Leq16 c:(Const16 [math.MaxInt16]) x) => (Eq16 x c) 638(Leq8 c:(Const8 [math.MaxInt8 ]) x) => (Eq8 x c) 639(Less64 x (Const64 <t> [math.MinInt64+1])) => (Eq64 x (Const64 <t> [math.MinInt64])) 640(Less32 x (Const32 <t> [math.MinInt32+1])) => (Eq32 x (Const32 <t> [math.MinInt32])) 641(Less16 x (Const16 <t> [math.MinInt16+1])) => (Eq16 x (Const16 <t> [math.MinInt16])) 642(Less8 x (Const8 <t> [math.MinInt8 +1])) => (Eq8 x (Const8 <t> [math.MinInt8 ])) 643(Less64 (Const64 <t> [math.MaxInt64-1]) x) => (Eq64 x (Const64 <t> [math.MaxInt64])) 644(Less32 (Const32 <t> [math.MaxInt32-1]) x) => (Eq32 x (Const32 <t> [math.MaxInt32])) 645(Less16 (Const16 <t> [math.MaxInt16-1]) x) => (Eq16 x (Const16 <t> [math.MaxInt16])) 646(Less8 (Const8 <t> [math.MaxInt8 -1]) x) => (Eq8 x (Const8 <t> [math.MaxInt8 ])) 647 648// Ands clear bits. Ors set bits. 649// If a subsequent Or will set all the bits 650// that an And cleared, we can skip the And. 651// This happens in bitmasking code like: 652// x &^= 3 << shift // clear two old bits 653// x |= v << shift // set two new bits 654// when shift is a small constant and v ends up a constant 3. 655(Or8 (And8 x (Const8 [c2])) (Const8 <t> [c1])) && ^(c1 | c2) == 0 => (Or8 (Const8 <t> [c1]) x) 656(Or16 (And16 x (Const16 [c2])) (Const16 <t> [c1])) && ^(c1 | c2) == 0 => (Or16 (Const16 <t> [c1]) x) 657(Or32 (And32 x (Const32 [c2])) (Const32 <t> [c1])) && ^(c1 | c2) == 0 => (Or32 (Const32 <t> [c1]) x) 658(Or64 (And64 x (Const64 [c2])) (Const64 <t> [c1])) && ^(c1 | c2) == 0 => (Or64 (Const64 <t> [c1]) x) 659 660(Trunc64to8 (And64 (Const64 [y]) x)) && y&0xFF == 0xFF => (Trunc64to8 x) 661(Trunc64to16 (And64 (Const64 [y]) x)) && y&0xFFFF == 0xFFFF => (Trunc64to16 x) 662(Trunc64to32 (And64 (Const64 [y]) x)) && y&0xFFFFFFFF == 0xFFFFFFFF => (Trunc64to32 x) 663(Trunc32to8 (And32 (Const32 [y]) x)) && y&0xFF == 0xFF => (Trunc32to8 x) 664(Trunc32to16 (And32 (Const32 [y]) x)) && y&0xFFFF == 0xFFFF => (Trunc32to16 x) 665(Trunc16to8 (And16 (Const16 [y]) x)) && y&0xFF == 0xFF => (Trunc16to8 x) 666 667(ZeroExt8to64 (Trunc64to8 x:(Rsh64Ux64 _ (Const64 [s])))) && s >= 56 => x 668(ZeroExt16to64 (Trunc64to16 x:(Rsh64Ux64 _ (Const64 [s])))) && s >= 48 => x 669(ZeroExt32to64 (Trunc64to32 x:(Rsh64Ux64 _ (Const64 [s])))) && s >= 32 => x 670(ZeroExt8to32 (Trunc32to8 x:(Rsh32Ux64 _ (Const64 [s])))) && s >= 24 => x 671(ZeroExt16to32 (Trunc32to16 x:(Rsh32Ux64 _ (Const64 [s])))) && s >= 16 => x 672(ZeroExt8to16 (Trunc16to8 x:(Rsh16Ux64 _ (Const64 [s])))) && s >= 8 => x 673 674(SignExt8to64 (Trunc64to8 x:(Rsh64x64 _ (Const64 [s])))) && s >= 56 => x 675(SignExt16to64 (Trunc64to16 x:(Rsh64x64 _ (Const64 [s])))) && s >= 48 => x 676(SignExt32to64 (Trunc64to32 x:(Rsh64x64 _ (Const64 [s])))) && s >= 32 => x 677(SignExt8to32 (Trunc32to8 x:(Rsh32x64 _ (Const64 [s])))) && s >= 24 => x 678(SignExt16to32 (Trunc32to16 x:(Rsh32x64 _ (Const64 [s])))) && s >= 16 => x 679(SignExt8to16 (Trunc16to8 x:(Rsh16x64 _ (Const64 [s])))) && s >= 8 => x 680 681(Slicemask (Const32 [x])) && x > 0 => (Const32 [-1]) 682(Slicemask (Const32 [0])) => (Const32 [0]) 683(Slicemask (Const64 [x])) && x > 0 => (Const64 [-1]) 684(Slicemask (Const64 [0])) => (Const64 [0]) 685 686// simplifications often used for lengths. e.g. len(s[i:i+5])==5 687(Sub(64|32|16|8) (Add(64|32|16|8) x y) x) => y 688(Sub(64|32|16|8) (Add(64|32|16|8) x y) y) => x 689(Sub(64|32|16|8) (Sub(64|32|16|8) x y) x) => (Neg(64|32|16|8) y) 690(Sub(64|32|16|8) x (Add(64|32|16|8) x y)) => (Neg(64|32|16|8) y) 691(Add(64|32|16|8) x (Sub(64|32|16|8) y x)) => y 692(Add(64|32|16|8) x (Add(64|32|16|8) y (Sub(64|32|16|8) z x))) => (Add(64|32|16|8) y z) 693 694// basic phi simplifications 695(Phi (Const8 [c]) (Const8 [c])) => (Const8 [c]) 696(Phi (Const16 [c]) (Const16 [c])) => (Const16 [c]) 697(Phi (Const32 [c]) (Const32 [c])) => (Const32 [c]) 698(Phi (Const64 [c]) (Const64 [c])) => (Const64 [c]) 699 700// slice and interface comparisons 701// The frontend ensures that we can only compare against nil, 702// so we need only compare the first word (interface type or slice ptr). 703(EqInter x y) => (EqPtr (ITab x) (ITab y)) 704(NeqInter x y) => (NeqPtr (ITab x) (ITab y)) 705(EqSlice x y) => (EqPtr (SlicePtr x) (SlicePtr y)) 706(NeqSlice x y) => (NeqPtr (SlicePtr x) (SlicePtr y)) 707 708// Load of store of same address, with compatibly typed value and same size 709(Load <t1> p1 (Store {t2} p2 x _)) 710 && isSamePtr(p1, p2) 711 && t1.Compare(x.Type) == types.CMPeq 712 && t1.Size() == t2.Size() 713 => x 714(Load <t1> p1 (Store {t2} p2 _ (Store {t3} p3 x _))) 715 && isSamePtr(p1, p3) 716 && t1.Compare(x.Type) == types.CMPeq 717 && t1.Size() == t2.Size() 718 && disjoint(p3, t3.Size(), p2, t2.Size()) 719 => x 720(Load <t1> p1 (Store {t2} p2 _ (Store {t3} p3 _ (Store {t4} p4 x _)))) 721 && isSamePtr(p1, p4) 722 && t1.Compare(x.Type) == types.CMPeq 723 && t1.Size() == t2.Size() 724 && disjoint(p4, t4.Size(), p2, t2.Size()) 725 && disjoint(p4, t4.Size(), p3, t3.Size()) 726 => x 727(Load <t1> p1 (Store {t2} p2 _ (Store {t3} p3 _ (Store {t4} p4 _ (Store {t5} p5 x _))))) 728 && isSamePtr(p1, p5) 729 && t1.Compare(x.Type) == types.CMPeq 730 && t1.Size() == t2.Size() 731 && disjoint(p5, t5.Size(), p2, t2.Size()) 732 && disjoint(p5, t5.Size(), p3, t3.Size()) 733 && disjoint(p5, t5.Size(), p4, t4.Size()) 734 => x 735 736// Pass constants through math.Float{32,64}bits and math.Float{32,64}frombits 737(Load <t1> p1 (Store {t2} p2 (Const64 [x]) _)) && isSamePtr(p1,p2) && sizeof(t2) == 8 && is64BitFloat(t1) && !math.IsNaN(math.Float64frombits(uint64(x))) => (Const64F [math.Float64frombits(uint64(x))]) 738(Load <t1> p1 (Store {t2} p2 (Const32 [x]) _)) && isSamePtr(p1,p2) && sizeof(t2) == 4 && is32BitFloat(t1) && !math.IsNaN(float64(math.Float32frombits(uint32(x)))) => (Const32F [math.Float32frombits(uint32(x))]) 739(Load <t1> p1 (Store {t2} p2 (Const64F [x]) _)) && isSamePtr(p1,p2) && sizeof(t2) == 8 && is64BitInt(t1) => (Const64 [int64(math.Float64bits(x))]) 740(Load <t1> p1 (Store {t2} p2 (Const32F [x]) _)) && isSamePtr(p1,p2) && sizeof(t2) == 4 && is32BitInt(t1) => (Const32 [int32(math.Float32bits(x))]) 741 742// Float Loads up to Zeros so they can be constant folded. 743(Load <t1> op:(OffPtr [o1] p1) 744 (Store {t2} p2 _ 745 mem:(Zero [n] p3 _))) 746 && o1 >= 0 && o1+t1.Size() <= n && isSamePtr(p1, p3) 747 && CanSSA(t1) 748 && disjoint(op, t1.Size(), p2, t2.Size()) 749 => @mem.Block (Load <t1> (OffPtr <op.Type> [o1] p3) mem) 750(Load <t1> op:(OffPtr [o1] p1) 751 (Store {t2} p2 _ 752 (Store {t3} p3 _ 753 mem:(Zero [n] p4 _)))) 754 && o1 >= 0 && o1+t1.Size() <= n && isSamePtr(p1, p4) 755 && CanSSA(t1) 756 && disjoint(op, t1.Size(), p2, t2.Size()) 757 && disjoint(op, t1.Size(), p3, t3.Size()) 758 => @mem.Block (Load <t1> (OffPtr <op.Type> [o1] p4) mem) 759(Load <t1> op:(OffPtr [o1] p1) 760 (Store {t2} p2 _ 761 (Store {t3} p3 _ 762 (Store {t4} p4 _ 763 mem:(Zero [n] p5 _))))) 764 && o1 >= 0 && o1+t1.Size() <= n && isSamePtr(p1, p5) 765 && CanSSA(t1) 766 && disjoint(op, t1.Size(), p2, t2.Size()) 767 && disjoint(op, t1.Size(), p3, t3.Size()) 768 && disjoint(op, t1.Size(), p4, t4.Size()) 769 => @mem.Block (Load <t1> (OffPtr <op.Type> [o1] p5) mem) 770(Load <t1> op:(OffPtr [o1] p1) 771 (Store {t2} p2 _ 772 (Store {t3} p3 _ 773 (Store {t4} p4 _ 774 (Store {t5} p5 _ 775 mem:(Zero [n] p6 _)))))) 776 && o1 >= 0 && o1+t1.Size() <= n && isSamePtr(p1, p6) 777 && CanSSA(t1) 778 && disjoint(op, t1.Size(), p2, t2.Size()) 779 && disjoint(op, t1.Size(), p3, t3.Size()) 780 && disjoint(op, t1.Size(), p4, t4.Size()) 781 && disjoint(op, t1.Size(), p5, t5.Size()) 782 => @mem.Block (Load <t1> (OffPtr <op.Type> [o1] p6) mem) 783 784// Zero to Load forwarding. 785(Load <t1> (OffPtr [o] p1) (Zero [n] p2 _)) 786 && t1.IsBoolean() 787 && isSamePtr(p1, p2) 788 && n >= o + 1 789 => (ConstBool [false]) 790(Load <t1> (OffPtr [o] p1) (Zero [n] p2 _)) 791 && is8BitInt(t1) 792 && isSamePtr(p1, p2) 793 && n >= o + 1 794 => (Const8 [0]) 795(Load <t1> (OffPtr [o] p1) (Zero [n] p2 _)) 796 && is16BitInt(t1) 797 && isSamePtr(p1, p2) 798 && n >= o + 2 799 => (Const16 [0]) 800(Load <t1> (OffPtr [o] p1) (Zero [n] p2 _)) 801 && is32BitInt(t1) 802 && isSamePtr(p1, p2) 803 && n >= o + 4 804 => (Const32 [0]) 805(Load <t1> (OffPtr [o] p1) (Zero [n] p2 _)) 806 && is64BitInt(t1) 807 && isSamePtr(p1, p2) 808 && n >= o + 8 809 => (Const64 [0]) 810(Load <t1> (OffPtr [o] p1) (Zero [n] p2 _)) 811 && is32BitFloat(t1) 812 && isSamePtr(p1, p2) 813 && n >= o + 4 814 => (Const32F [0]) 815(Load <t1> (OffPtr [o] p1) (Zero [n] p2 _)) 816 && is64BitFloat(t1) 817 && isSamePtr(p1, p2) 818 && n >= o + 8 819 => (Const64F [0]) 820 821// Eliminate stores of values that have just been loaded from the same location. 822// We also handle the common case where there are some intermediate stores. 823(Store {t1} p1 (Load <t2> p2 mem) mem) 824 && isSamePtr(p1, p2) 825 && t2.Size() == t1.Size() 826 => mem 827(Store {t1} p1 (Load <t2> p2 oldmem) mem:(Store {t3} p3 _ oldmem)) 828 && isSamePtr(p1, p2) 829 && t2.Size() == t1.Size() 830 && disjoint(p1, t1.Size(), p3, t3.Size()) 831 => mem 832(Store {t1} p1 (Load <t2> p2 oldmem) mem:(Store {t3} p3 _ (Store {t4} p4 _ oldmem))) 833 && isSamePtr(p1, p2) 834 && t2.Size() == t1.Size() 835 && disjoint(p1, t1.Size(), p3, t3.Size()) 836 && disjoint(p1, t1.Size(), p4, t4.Size()) 837 => mem 838(Store {t1} p1 (Load <t2> p2 oldmem) mem:(Store {t3} p3 _ (Store {t4} p4 _ (Store {t5} p5 _ oldmem)))) 839 && isSamePtr(p1, p2) 840 && t2.Size() == t1.Size() 841 && disjoint(p1, t1.Size(), p3, t3.Size()) 842 && disjoint(p1, t1.Size(), p4, t4.Size()) 843 && disjoint(p1, t1.Size(), p5, t5.Size()) 844 => mem 845 846// Don't Store zeros to cleared variables. 847(Store {t} (OffPtr [o] p1) x mem:(Zero [n] p2 _)) 848 && isConstZero(x) 849 && o >= 0 && t.Size() + o <= n && isSamePtr(p1, p2) 850 => mem 851(Store {t1} op:(OffPtr [o1] p1) x mem:(Store {t2} p2 _ (Zero [n] p3 _))) 852 && isConstZero(x) 853 && o1 >= 0 && t1.Size() + o1 <= n && isSamePtr(p1, p3) 854 && disjoint(op, t1.Size(), p2, t2.Size()) 855 => mem 856(Store {t1} op:(OffPtr [o1] p1) x mem:(Store {t2} p2 _ (Store {t3} p3 _ (Zero [n] p4 _)))) 857 && isConstZero(x) 858 && o1 >= 0 && t1.Size() + o1 <= n && isSamePtr(p1, p4) 859 && disjoint(op, t1.Size(), p2, t2.Size()) 860 && disjoint(op, t1.Size(), p3, t3.Size()) 861 => mem 862(Store {t1} op:(OffPtr [o1] p1) x mem:(Store {t2} p2 _ (Store {t3} p3 _ (Store {t4} p4 _ (Zero [n] p5 _))))) 863 && isConstZero(x) 864 && o1 >= 0 && t1.Size() + o1 <= n && isSamePtr(p1, p5) 865 && disjoint(op, t1.Size(), p2, t2.Size()) 866 && disjoint(op, t1.Size(), p3, t3.Size()) 867 && disjoint(op, t1.Size(), p4, t4.Size()) 868 => mem 869 870// Collapse OffPtr 871(OffPtr (OffPtr p [y]) [x]) => (OffPtr p [x+y]) 872(OffPtr p [0]) && v.Type.Compare(p.Type) == types.CMPeq => p 873 874// indexing operations 875// Note: bounds check has already been done 876(PtrIndex <t> ptr idx) && config.PtrSize == 4 && is32Bit(t.Elem().Size()) => (AddPtr ptr (Mul32 <typ.Int> idx (Const32 <typ.Int> [int32(t.Elem().Size())]))) 877(PtrIndex <t> ptr idx) && config.PtrSize == 8 => (AddPtr ptr (Mul64 <typ.Int> idx (Const64 <typ.Int> [t.Elem().Size()]))) 878 879// struct operations 880(StructSelect (StructMake1 x)) => x 881(StructSelect [0] (StructMake2 x _)) => x 882(StructSelect [1] (StructMake2 _ x)) => x 883(StructSelect [0] (StructMake3 x _ _)) => x 884(StructSelect [1] (StructMake3 _ x _)) => x 885(StructSelect [2] (StructMake3 _ _ x)) => x 886(StructSelect [0] (StructMake4 x _ _ _)) => x 887(StructSelect [1] (StructMake4 _ x _ _)) => x 888(StructSelect [2] (StructMake4 _ _ x _)) => x 889(StructSelect [3] (StructMake4 _ _ _ x)) => x 890 891(Load <t> _ _) && t.IsStruct() && t.NumFields() == 0 && CanSSA(t) => 892 (StructMake0) 893(Load <t> ptr mem) && t.IsStruct() && t.NumFields() == 1 && CanSSA(t) => 894 (StructMake1 895 (Load <t.FieldType(0)> (OffPtr <t.FieldType(0).PtrTo()> [0] ptr) mem)) 896(Load <t> ptr mem) && t.IsStruct() && t.NumFields() == 2 && CanSSA(t) => 897 (StructMake2 898 (Load <t.FieldType(0)> (OffPtr <t.FieldType(0).PtrTo()> [0] ptr) mem) 899 (Load <t.FieldType(1)> (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] ptr) mem)) 900(Load <t> ptr mem) && t.IsStruct() && t.NumFields() == 3 && CanSSA(t) => 901 (StructMake3 902 (Load <t.FieldType(0)> (OffPtr <t.FieldType(0).PtrTo()> [0] ptr) mem) 903 (Load <t.FieldType(1)> (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] ptr) mem) 904 (Load <t.FieldType(2)> (OffPtr <t.FieldType(2).PtrTo()> [t.FieldOff(2)] ptr) mem)) 905(Load <t> ptr mem) && t.IsStruct() && t.NumFields() == 4 && CanSSA(t) => 906 (StructMake4 907 (Load <t.FieldType(0)> (OffPtr <t.FieldType(0).PtrTo()> [0] ptr) mem) 908 (Load <t.FieldType(1)> (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] ptr) mem) 909 (Load <t.FieldType(2)> (OffPtr <t.FieldType(2).PtrTo()> [t.FieldOff(2)] ptr) mem) 910 (Load <t.FieldType(3)> (OffPtr <t.FieldType(3).PtrTo()> [t.FieldOff(3)] ptr) mem)) 911 912(StructSelect [i] x:(Load <t> ptr mem)) && !CanSSA(t) => 913 @x.Block (Load <v.Type> (OffPtr <v.Type.PtrTo()> [t.FieldOff(int(i))] ptr) mem) 914 915(Store _ (StructMake0) mem) => mem 916(Store dst (StructMake1 <t> f0) mem) => 917 (Store {t.FieldType(0)} (OffPtr <t.FieldType(0).PtrTo()> [0] dst) f0 mem) 918(Store dst (StructMake2 <t> f0 f1) mem) => 919 (Store {t.FieldType(1)} 920 (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] dst) 921 f1 922 (Store {t.FieldType(0)} 923 (OffPtr <t.FieldType(0).PtrTo()> [0] dst) 924 f0 mem)) 925(Store dst (StructMake3 <t> f0 f1 f2) mem) => 926 (Store {t.FieldType(2)} 927 (OffPtr <t.FieldType(2).PtrTo()> [t.FieldOff(2)] dst) 928 f2 929 (Store {t.FieldType(1)} 930 (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] dst) 931 f1 932 (Store {t.FieldType(0)} 933 (OffPtr <t.FieldType(0).PtrTo()> [0] dst) 934 f0 mem))) 935(Store dst (StructMake4 <t> f0 f1 f2 f3) mem) => 936 (Store {t.FieldType(3)} 937 (OffPtr <t.FieldType(3).PtrTo()> [t.FieldOff(3)] dst) 938 f3 939 (Store {t.FieldType(2)} 940 (OffPtr <t.FieldType(2).PtrTo()> [t.FieldOff(2)] dst) 941 f2 942 (Store {t.FieldType(1)} 943 (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] dst) 944 f1 945 (Store {t.FieldType(0)} 946 (OffPtr <t.FieldType(0).PtrTo()> [0] dst) 947 f0 mem)))) 948 949// Putting struct{*byte} and similar into direct interfaces. 950(IMake _typ (StructMake1 val)) => (IMake _typ val) 951(StructSelect [0] (IData x)) => (IData x) 952 953// un-SSAable values use mem->mem copies 954(Store {t} dst (Load src mem) mem) && !CanSSA(t) => 955 (Move {t} [t.Size()] dst src mem) 956(Store {t} dst (Load src mem) (VarDef {x} mem)) && !CanSSA(t) => 957 (Move {t} [t.Size()] dst src (VarDef {x} mem)) 958 959// array ops 960(ArraySelect (ArrayMake1 x)) => x 961 962(Load <t> _ _) && t.IsArray() && t.NumElem() == 0 => 963 (ArrayMake0) 964 965(Load <t> ptr mem) && t.IsArray() && t.NumElem() == 1 && CanSSA(t) => 966 (ArrayMake1 (Load <t.Elem()> ptr mem)) 967 968(Store _ (ArrayMake0) mem) => mem 969(Store dst (ArrayMake1 e) mem) => (Store {e.Type} dst e mem) 970 971// Putting [1]*byte and similar into direct interfaces. 972(IMake _typ (ArrayMake1 val)) => (IMake _typ val) 973(ArraySelect [0] (IData x)) => (IData x) 974 975// string ops 976// Decomposing StringMake and lowering of StringPtr and StringLen 977// happens in a later pass, dec, so that these operations are available 978// to other passes for optimizations. 979(StringPtr (StringMake (Addr <t> {s} base) _)) => (Addr <t> {s} base) 980(StringLen (StringMake _ (Const64 <t> [c]))) => (Const64 <t> [c]) 981(ConstString {str}) && config.PtrSize == 4 && str == "" => 982 (StringMake (ConstNil) (Const32 <typ.Int> [0])) 983(ConstString {str}) && config.PtrSize == 8 && str == "" => 984 (StringMake (ConstNil) (Const64 <typ.Int> [0])) 985(ConstString {str}) && config.PtrSize == 4 && str != "" => 986 (StringMake 987 (Addr <typ.BytePtr> {fe.StringData(str)} 988 (SB)) 989 (Const32 <typ.Int> [int32(len(str))])) 990(ConstString {str}) && config.PtrSize == 8 && str != "" => 991 (StringMake 992 (Addr <typ.BytePtr> {fe.StringData(str)} 993 (SB)) 994 (Const64 <typ.Int> [int64(len(str))])) 995 996// slice ops 997// Only a few slice rules are provided here. See dec.rules for 998// a more comprehensive set. 999(SliceLen (SliceMake _ (Const64 <t> [c]) _)) => (Const64 <t> [c]) 1000(SliceCap (SliceMake _ _ (Const64 <t> [c]))) => (Const64 <t> [c]) 1001(SliceLen (SliceMake _ (Const32 <t> [c]) _)) => (Const32 <t> [c]) 1002(SliceCap (SliceMake _ _ (Const32 <t> [c]))) => (Const32 <t> [c]) 1003(SlicePtr (SliceMake (SlicePtr x) _ _)) => (SlicePtr x) 1004(SliceLen (SliceMake _ (SliceLen x) _)) => (SliceLen x) 1005(SliceCap (SliceMake _ _ (SliceCap x))) => (SliceCap x) 1006(SliceCap (SliceMake _ _ (SliceLen x))) => (SliceLen x) 1007(ConstSlice) && config.PtrSize == 4 => 1008 (SliceMake 1009 (ConstNil <v.Type.Elem().PtrTo()>) 1010 (Const32 <typ.Int> [0]) 1011 (Const32 <typ.Int> [0])) 1012(ConstSlice) && config.PtrSize == 8 => 1013 (SliceMake 1014 (ConstNil <v.Type.Elem().PtrTo()>) 1015 (Const64 <typ.Int> [0]) 1016 (Const64 <typ.Int> [0])) 1017 1018// interface ops 1019(ConstInterface) => 1020 (IMake 1021 (ConstNil <typ.Uintptr>) 1022 (ConstNil <typ.BytePtr>)) 1023 1024(NilCheck ptr:(GetG mem) mem) => ptr 1025 1026(If (Not cond) yes no) => (If cond no yes) 1027(If (ConstBool [c]) yes no) && c => (First yes no) 1028(If (ConstBool [c]) yes no) && !c => (First no yes) 1029 1030(Phi <t> nx:(Not x) ny:(Not y)) && nx.Uses == 1 && ny.Uses == 1 => (Not (Phi <t> x y)) 1031 1032// Get rid of Convert ops for pointer arithmetic on unsafe.Pointer. 1033(Convert (Add(64|32) (Convert ptr mem) off) mem) => (AddPtr ptr off) 1034(Convert (Convert ptr mem) mem) => ptr 1035 1036// strength reduction of divide by a constant. 1037// See ../magic.go for a detailed description of these algorithms. 1038 1039// Unsigned divide by power of 2. Strength reduce to a shift. 1040(Div8u n (Const8 [c])) && isPowerOfTwo8(c) => (Rsh8Ux64 n (Const64 <typ.UInt64> [log8(c)])) 1041(Div16u n (Const16 [c])) && isPowerOfTwo16(c) => (Rsh16Ux64 n (Const64 <typ.UInt64> [log16(c)])) 1042(Div32u n (Const32 [c])) && isPowerOfTwo32(c) => (Rsh32Ux64 n (Const64 <typ.UInt64> [log32(c)])) 1043(Div64u n (Const64 [c])) && isPowerOfTwo64(c) => (Rsh64Ux64 n (Const64 <typ.UInt64> [log64(c)])) 1044(Div64u n (Const64 [-1<<63])) => (Rsh64Ux64 n (Const64 <typ.UInt64> [63])) 1045 1046// Signed non-negative divide by power of 2. 1047(Div8 n (Const8 [c])) && isNonNegative(n) && isPowerOfTwo8(c) => (Rsh8Ux64 n (Const64 <typ.UInt64> [log8(c)])) 1048(Div16 n (Const16 [c])) && isNonNegative(n) && isPowerOfTwo16(c) => (Rsh16Ux64 n (Const64 <typ.UInt64> [log16(c)])) 1049(Div32 n (Const32 [c])) && isNonNegative(n) && isPowerOfTwo32(c) => (Rsh32Ux64 n (Const64 <typ.UInt64> [log32(c)])) 1050(Div64 n (Const64 [c])) && isNonNegative(n) && isPowerOfTwo64(c) => (Rsh64Ux64 n (Const64 <typ.UInt64> [log64(c)])) 1051(Div64 n (Const64 [-1<<63])) && isNonNegative(n) => (Const64 [0]) 1052 1053// Unsigned divide, not a power of 2. Strength reduce to a multiply. 1054// For 8-bit divides, we just do a direct 9-bit by 8-bit multiply. 1055(Div8u x (Const8 [c])) && umagicOK8(c) => 1056 (Trunc32to8 1057 (Rsh32Ux64 <typ.UInt32> 1058 (Mul32 <typ.UInt32> 1059 (Const32 <typ.UInt32> [int32(1<<8+umagic8(c).m)]) 1060 (ZeroExt8to32 x)) 1061 (Const64 <typ.UInt64> [8+umagic8(c).s]))) 1062 1063// For 16-bit divides on 64-bit machines, we do a direct 17-bit by 16-bit multiply. 1064(Div16u x (Const16 [c])) && umagicOK16(c) && config.RegSize == 8 => 1065 (Trunc64to16 1066 (Rsh64Ux64 <typ.UInt64> 1067 (Mul64 <typ.UInt64> 1068 (Const64 <typ.UInt64> [int64(1<<16+umagic16(c).m)]) 1069 (ZeroExt16to64 x)) 1070 (Const64 <typ.UInt64> [16+umagic16(c).s]))) 1071 1072// For 16-bit divides on 32-bit machines 1073(Div16u x (Const16 [c])) && umagicOK16(c) && config.RegSize == 4 && umagic16(c).m&1 == 0 => 1074 (Trunc32to16 1075 (Rsh32Ux64 <typ.UInt32> 1076 (Mul32 <typ.UInt32> 1077 (Const32 <typ.UInt32> [int32(1<<15+umagic16(c).m/2)]) 1078 (ZeroExt16to32 x)) 1079 (Const64 <typ.UInt64> [16+umagic16(c).s-1]))) 1080(Div16u x (Const16 [c])) && umagicOK16(c) && config.RegSize == 4 && c&1 == 0 => 1081 (Trunc32to16 1082 (Rsh32Ux64 <typ.UInt32> 1083 (Mul32 <typ.UInt32> 1084 (Const32 <typ.UInt32> [int32(1<<15+(umagic16(c).m+1)/2)]) 1085 (Rsh32Ux64 <typ.UInt32> (ZeroExt16to32 x) (Const64 <typ.UInt64> [1]))) 1086 (Const64 <typ.UInt64> [16+umagic16(c).s-2]))) 1087(Div16u x (Const16 [c])) && umagicOK16(c) && config.RegSize == 4 && config.useAvg => 1088 (Trunc32to16 1089 (Rsh32Ux64 <typ.UInt32> 1090 (Avg32u 1091 (Lsh32x64 <typ.UInt32> (ZeroExt16to32 x) (Const64 <typ.UInt64> [16])) 1092 (Mul32 <typ.UInt32> 1093 (Const32 <typ.UInt32> [int32(umagic16(c).m)]) 1094 (ZeroExt16to32 x))) 1095 (Const64 <typ.UInt64> [16+umagic16(c).s-1]))) 1096 1097// For 32-bit divides on 32-bit machines 1098(Div32u x (Const32 [c])) && umagicOK32(c) && config.RegSize == 4 && umagic32(c).m&1 == 0 && config.useHmul => 1099 (Rsh32Ux64 <typ.UInt32> 1100 (Hmul32u <typ.UInt32> 1101 (Const32 <typ.UInt32> [int32(1<<31+umagic32(c).m/2)]) 1102 x) 1103 (Const64 <typ.UInt64> [umagic32(c).s-1])) 1104(Div32u x (Const32 [c])) && umagicOK32(c) && config.RegSize == 4 && c&1 == 0 && config.useHmul => 1105 (Rsh32Ux64 <typ.UInt32> 1106 (Hmul32u <typ.UInt32> 1107 (Const32 <typ.UInt32> [int32(1<<31+(umagic32(c).m+1)/2)]) 1108 (Rsh32Ux64 <typ.UInt32> x (Const64 <typ.UInt64> [1]))) 1109 (Const64 <typ.UInt64> [umagic32(c).s-2])) 1110(Div32u x (Const32 [c])) && umagicOK32(c) && config.RegSize == 4 && config.useAvg && config.useHmul => 1111 (Rsh32Ux64 <typ.UInt32> 1112 (Avg32u 1113 x 1114 (Hmul32u <typ.UInt32> 1115 (Const32 <typ.UInt32> [int32(umagic32(c).m)]) 1116 x)) 1117 (Const64 <typ.UInt64> [umagic32(c).s-1])) 1118 1119// For 32-bit divides on 64-bit machines 1120// We'll use a regular (non-hi) multiply for this case. 1121(Div32u x (Const32 [c])) && umagicOK32(c) && config.RegSize == 8 && umagic32(c).m&1 == 0 => 1122 (Trunc64to32 1123 (Rsh64Ux64 <typ.UInt64> 1124 (Mul64 <typ.UInt64> 1125 (Const64 <typ.UInt64> [int64(1<<31+umagic32(c).m/2)]) 1126 (ZeroExt32to64 x)) 1127 (Const64 <typ.UInt64> [32+umagic32(c).s-1]))) 1128(Div32u x (Const32 [c])) && umagicOK32(c) && config.RegSize == 8 && c&1 == 0 => 1129 (Trunc64to32 1130 (Rsh64Ux64 <typ.UInt64> 1131 (Mul64 <typ.UInt64> 1132 (Const64 <typ.UInt64> [int64(1<<31+(umagic32(c).m+1)/2)]) 1133 (Rsh64Ux64 <typ.UInt64> (ZeroExt32to64 x) (Const64 <typ.UInt64> [1]))) 1134 (Const64 <typ.UInt64> [32+umagic32(c).s-2]))) 1135(Div32u x (Const32 [c])) && umagicOK32(c) && config.RegSize == 8 && config.useAvg => 1136 (Trunc64to32 1137 (Rsh64Ux64 <typ.UInt64> 1138 (Avg64u 1139 (Lsh64x64 <typ.UInt64> (ZeroExt32to64 x) (Const64 <typ.UInt64> [32])) 1140 (Mul64 <typ.UInt64> 1141 (Const64 <typ.UInt32> [int64(umagic32(c).m)]) 1142 (ZeroExt32to64 x))) 1143 (Const64 <typ.UInt64> [32+umagic32(c).s-1]))) 1144 1145// For unsigned 64-bit divides on 32-bit machines, 1146// if the constant fits in 16 bits (so that the last term 1147// fits in 32 bits), convert to three 32-bit divides by a constant. 1148// 1149// If 1<<32 = Q * c + R 1150// and x = hi << 32 + lo 1151// 1152// Then x = (hi/c*c + hi%c) << 32 + lo 1153// = hi/c*c<<32 + hi%c<<32 + lo 1154// = hi/c*c<<32 + (hi%c)*(Q*c+R) + lo/c*c + lo%c 1155// = hi/c*c<<32 + (hi%c)*Q*c + lo/c*c + (hi%c*R+lo%c) 1156// and x / c = (hi/c)<<32 + (hi%c)*Q + lo/c + (hi%c*R+lo%c)/c 1157(Div64u x (Const64 [c])) && c > 0 && c <= 0xFFFF && umagicOK32(int32(c)) && config.RegSize == 4 && config.useHmul => 1158 (Add64 1159 (Add64 <typ.UInt64> 1160 (Add64 <typ.UInt64> 1161 (Lsh64x64 <typ.UInt64> 1162 (ZeroExt32to64 1163 (Div32u <typ.UInt32> 1164 (Trunc64to32 <typ.UInt32> (Rsh64Ux64 <typ.UInt64> x (Const64 <typ.UInt64> [32]))) 1165 (Const32 <typ.UInt32> [int32(c)]))) 1166 (Const64 <typ.UInt64> [32])) 1167 (ZeroExt32to64 (Div32u <typ.UInt32> (Trunc64to32 <typ.UInt32> x) (Const32 <typ.UInt32> [int32(c)])))) 1168 (Mul64 <typ.UInt64> 1169 (ZeroExt32to64 <typ.UInt64> 1170 (Mod32u <typ.UInt32> 1171 (Trunc64to32 <typ.UInt32> (Rsh64Ux64 <typ.UInt64> x (Const64 <typ.UInt64> [32]))) 1172 (Const32 <typ.UInt32> [int32(c)]))) 1173 (Const64 <typ.UInt64> [int64((1<<32)/c)]))) 1174 (ZeroExt32to64 1175 (Div32u <typ.UInt32> 1176 (Add32 <typ.UInt32> 1177 (Mod32u <typ.UInt32> (Trunc64to32 <typ.UInt32> x) (Const32 <typ.UInt32> [int32(c)])) 1178 (Mul32 <typ.UInt32> 1179 (Mod32u <typ.UInt32> 1180 (Trunc64to32 <typ.UInt32> (Rsh64Ux64 <typ.UInt64> x (Const64 <typ.UInt64> [32]))) 1181 (Const32 <typ.UInt32> [int32(c)])) 1182 (Const32 <typ.UInt32> [int32((1<<32)%c)]))) 1183 (Const32 <typ.UInt32> [int32(c)])))) 1184 1185// For 64-bit divides on 64-bit machines 1186// (64-bit divides on 32-bit machines are lowered to a runtime call by the walk pass.) 1187(Div64u x (Const64 [c])) && umagicOK64(c) && config.RegSize == 8 && umagic64(c).m&1 == 0 && config.useHmul => 1188 (Rsh64Ux64 <typ.UInt64> 1189 (Hmul64u <typ.UInt64> 1190 (Const64 <typ.UInt64> [int64(1<<63+umagic64(c).m/2)]) 1191 x) 1192 (Const64 <typ.UInt64> [umagic64(c).s-1])) 1193(Div64u x (Const64 [c])) && umagicOK64(c) && config.RegSize == 8 && c&1 == 0 && config.useHmul => 1194 (Rsh64Ux64 <typ.UInt64> 1195 (Hmul64u <typ.UInt64> 1196 (Const64 <typ.UInt64> [int64(1<<63+(umagic64(c).m+1)/2)]) 1197 (Rsh64Ux64 <typ.UInt64> x (Const64 <typ.UInt64> [1]))) 1198 (Const64 <typ.UInt64> [umagic64(c).s-2])) 1199(Div64u x (Const64 [c])) && umagicOK64(c) && config.RegSize == 8 && config.useAvg && config.useHmul => 1200 (Rsh64Ux64 <typ.UInt64> 1201 (Avg64u 1202 x 1203 (Hmul64u <typ.UInt64> 1204 (Const64 <typ.UInt64> [int64(umagic64(c).m)]) 1205 x)) 1206 (Const64 <typ.UInt64> [umagic64(c).s-1])) 1207 1208// Signed divide by a negative constant. Rewrite to divide by a positive constant. 1209(Div8 <t> n (Const8 [c])) && c < 0 && c != -1<<7 => (Neg8 (Div8 <t> n (Const8 <t> [-c]))) 1210(Div16 <t> n (Const16 [c])) && c < 0 && c != -1<<15 => (Neg16 (Div16 <t> n (Const16 <t> [-c]))) 1211(Div32 <t> n (Const32 [c])) && c < 0 && c != -1<<31 => (Neg32 (Div32 <t> n (Const32 <t> [-c]))) 1212(Div64 <t> n (Const64 [c])) && c < 0 && c != -1<<63 => (Neg64 (Div64 <t> n (Const64 <t> [-c]))) 1213 1214// Dividing by the most-negative number. Result is always 0 except 1215// if the input is also the most-negative number. 1216// We can detect that using the sign bit of x & -x. 1217(Div8 <t> x (Const8 [-1<<7 ])) => (Rsh8Ux64 (And8 <t> x (Neg8 <t> x)) (Const64 <typ.UInt64> [7 ])) 1218(Div16 <t> x (Const16 [-1<<15])) => (Rsh16Ux64 (And16 <t> x (Neg16 <t> x)) (Const64 <typ.UInt64> [15])) 1219(Div32 <t> x (Const32 [-1<<31])) => (Rsh32Ux64 (And32 <t> x (Neg32 <t> x)) (Const64 <typ.UInt64> [31])) 1220(Div64 <t> x (Const64 [-1<<63])) => (Rsh64Ux64 (And64 <t> x (Neg64 <t> x)) (Const64 <typ.UInt64> [63])) 1221 1222// Signed divide by power of 2. 1223// n / c = n >> log(c) if n >= 0 1224// = (n+c-1) >> log(c) if n < 0 1225// We conditionally add c-1 by adding n>>63>>(64-log(c)) (first shift signed, second shift unsigned). 1226(Div8 <t> n (Const8 [c])) && isPowerOfTwo8(c) => 1227 (Rsh8x64 1228 (Add8 <t> n (Rsh8Ux64 <t> (Rsh8x64 <t> n (Const64 <typ.UInt64> [ 7])) (Const64 <typ.UInt64> [int64( 8-log8(c))]))) 1229 (Const64 <typ.UInt64> [int64(log8(c))])) 1230(Div16 <t> n (Const16 [c])) && isPowerOfTwo16(c) => 1231 (Rsh16x64 1232 (Add16 <t> n (Rsh16Ux64 <t> (Rsh16x64 <t> n (Const64 <typ.UInt64> [15])) (Const64 <typ.UInt64> [int64(16-log16(c))]))) 1233 (Const64 <typ.UInt64> [int64(log16(c))])) 1234(Div32 <t> n (Const32 [c])) && isPowerOfTwo32(c) => 1235 (Rsh32x64 1236 (Add32 <t> n (Rsh32Ux64 <t> (Rsh32x64 <t> n (Const64 <typ.UInt64> [31])) (Const64 <typ.UInt64> [int64(32-log32(c))]))) 1237 (Const64 <typ.UInt64> [int64(log32(c))])) 1238(Div64 <t> n (Const64 [c])) && isPowerOfTwo64(c) => 1239 (Rsh64x64 1240 (Add64 <t> n (Rsh64Ux64 <t> (Rsh64x64 <t> n (Const64 <typ.UInt64> [63])) (Const64 <typ.UInt64> [int64(64-log64(c))]))) 1241 (Const64 <typ.UInt64> [int64(log64(c))])) 1242 1243// Signed divide, not a power of 2. Strength reduce to a multiply. 1244(Div8 <t> x (Const8 [c])) && smagicOK8(c) => 1245 (Sub8 <t> 1246 (Rsh32x64 <t> 1247 (Mul32 <typ.UInt32> 1248 (Const32 <typ.UInt32> [int32(smagic8(c).m)]) 1249 (SignExt8to32 x)) 1250 (Const64 <typ.UInt64> [8+smagic8(c).s])) 1251 (Rsh32x64 <t> 1252 (SignExt8to32 x) 1253 (Const64 <typ.UInt64> [31]))) 1254(Div16 <t> x (Const16 [c])) && smagicOK16(c) => 1255 (Sub16 <t> 1256 (Rsh32x64 <t> 1257 (Mul32 <typ.UInt32> 1258 (Const32 <typ.UInt32> [int32(smagic16(c).m)]) 1259 (SignExt16to32 x)) 1260 (Const64 <typ.UInt64> [16+smagic16(c).s])) 1261 (Rsh32x64 <t> 1262 (SignExt16to32 x) 1263 (Const64 <typ.UInt64> [31]))) 1264(Div32 <t> x (Const32 [c])) && smagicOK32(c) && config.RegSize == 8 => 1265 (Sub32 <t> 1266 (Rsh64x64 <t> 1267 (Mul64 <typ.UInt64> 1268 (Const64 <typ.UInt64> [int64(smagic32(c).m)]) 1269 (SignExt32to64 x)) 1270 (Const64 <typ.UInt64> [32+smagic32(c).s])) 1271 (Rsh64x64 <t> 1272 (SignExt32to64 x) 1273 (Const64 <typ.UInt64> [63]))) 1274(Div32 <t> x (Const32 [c])) && smagicOK32(c) && config.RegSize == 4 && smagic32(c).m&1 == 0 && config.useHmul => 1275 (Sub32 <t> 1276 (Rsh32x64 <t> 1277 (Hmul32 <t> 1278 (Const32 <typ.UInt32> [int32(smagic32(c).m/2)]) 1279 x) 1280 (Const64 <typ.UInt64> [smagic32(c).s-1])) 1281 (Rsh32x64 <t> 1282 x 1283 (Const64 <typ.UInt64> [31]))) 1284(Div32 <t> x (Const32 [c])) && smagicOK32(c) && config.RegSize == 4 && smagic32(c).m&1 != 0 && config.useHmul => 1285 (Sub32 <t> 1286 (Rsh32x64 <t> 1287 (Add32 <t> 1288 (Hmul32 <t> 1289 (Const32 <typ.UInt32> [int32(smagic32(c).m)]) 1290 x) 1291 x) 1292 (Const64 <typ.UInt64> [smagic32(c).s])) 1293 (Rsh32x64 <t> 1294 x 1295 (Const64 <typ.UInt64> [31]))) 1296(Div64 <t> x (Const64 [c])) && smagicOK64(c) && smagic64(c).m&1 == 0 && config.useHmul => 1297 (Sub64 <t> 1298 (Rsh64x64 <t> 1299 (Hmul64 <t> 1300 (Const64 <typ.UInt64> [int64(smagic64(c).m/2)]) 1301 x) 1302 (Const64 <typ.UInt64> [smagic64(c).s-1])) 1303 (Rsh64x64 <t> 1304 x 1305 (Const64 <typ.UInt64> [63]))) 1306(Div64 <t> x (Const64 [c])) && smagicOK64(c) && smagic64(c).m&1 != 0 && config.useHmul => 1307 (Sub64 <t> 1308 (Rsh64x64 <t> 1309 (Add64 <t> 1310 (Hmul64 <t> 1311 (Const64 <typ.UInt64> [int64(smagic64(c).m)]) 1312 x) 1313 x) 1314 (Const64 <typ.UInt64> [smagic64(c).s])) 1315 (Rsh64x64 <t> 1316 x 1317 (Const64 <typ.UInt64> [63]))) 1318 1319// Unsigned mod by power of 2 constant. 1320(Mod8u <t> n (Const8 [c])) && isPowerOfTwo8(c) => (And8 n (Const8 <t> [c-1])) 1321(Mod16u <t> n (Const16 [c])) && isPowerOfTwo16(c) => (And16 n (Const16 <t> [c-1])) 1322(Mod32u <t> n (Const32 [c])) && isPowerOfTwo32(c) => (And32 n (Const32 <t> [c-1])) 1323(Mod64u <t> n (Const64 [c])) && isPowerOfTwo64(c) => (And64 n (Const64 <t> [c-1])) 1324(Mod64u <t> n (Const64 [-1<<63])) => (And64 n (Const64 <t> [1<<63-1])) 1325 1326// Signed non-negative mod by power of 2 constant. 1327(Mod8 <t> n (Const8 [c])) && isNonNegative(n) && isPowerOfTwo8(c) => (And8 n (Const8 <t> [c-1])) 1328(Mod16 <t> n (Const16 [c])) && isNonNegative(n) && isPowerOfTwo16(c) => (And16 n (Const16 <t> [c-1])) 1329(Mod32 <t> n (Const32 [c])) && isNonNegative(n) && isPowerOfTwo32(c) => (And32 n (Const32 <t> [c-1])) 1330(Mod64 <t> n (Const64 [c])) && isNonNegative(n) && isPowerOfTwo64(c) => (And64 n (Const64 <t> [c-1])) 1331(Mod64 n (Const64 [-1<<63])) && isNonNegative(n) => n 1332 1333// Signed mod by negative constant. 1334(Mod8 <t> n (Const8 [c])) && c < 0 && c != -1<<7 => (Mod8 <t> n (Const8 <t> [-c])) 1335(Mod16 <t> n (Const16 [c])) && c < 0 && c != -1<<15 => (Mod16 <t> n (Const16 <t> [-c])) 1336(Mod32 <t> n (Const32 [c])) && c < 0 && c != -1<<31 => (Mod32 <t> n (Const32 <t> [-c])) 1337(Mod64 <t> n (Const64 [c])) && c < 0 && c != -1<<63 => (Mod64 <t> n (Const64 <t> [-c])) 1338 1339// All other mods by constants, do A%B = A-(A/B*B). 1340// This implements % with two * and a bunch of ancillary ops. 1341// One of the * is free if the user's code also computes A/B. 1342(Mod8 <t> x (Const8 [c])) && x.Op != OpConst8 && (c > 0 || c == -1<<7) 1343 => (Sub8 x (Mul8 <t> (Div8 <t> x (Const8 <t> [c])) (Const8 <t> [c]))) 1344(Mod16 <t> x (Const16 [c])) && x.Op != OpConst16 && (c > 0 || c == -1<<15) 1345 => (Sub16 x (Mul16 <t> (Div16 <t> x (Const16 <t> [c])) (Const16 <t> [c]))) 1346(Mod32 <t> x (Const32 [c])) && x.Op != OpConst32 && (c > 0 || c == -1<<31) 1347 => (Sub32 x (Mul32 <t> (Div32 <t> x (Const32 <t> [c])) (Const32 <t> [c]))) 1348(Mod64 <t> x (Const64 [c])) && x.Op != OpConst64 && (c > 0 || c == -1<<63) 1349 => (Sub64 x (Mul64 <t> (Div64 <t> x (Const64 <t> [c])) (Const64 <t> [c]))) 1350(Mod8u <t> x (Const8 [c])) && x.Op != OpConst8 && c > 0 && umagicOK8( c) 1351 => (Sub8 x (Mul8 <t> (Div8u <t> x (Const8 <t> [c])) (Const8 <t> [c]))) 1352(Mod16u <t> x (Const16 [c])) && x.Op != OpConst16 && c > 0 && umagicOK16(c) 1353 => (Sub16 x (Mul16 <t> (Div16u <t> x (Const16 <t> [c])) (Const16 <t> [c]))) 1354(Mod32u <t> x (Const32 [c])) && x.Op != OpConst32 && c > 0 && umagicOK32(c) 1355 => (Sub32 x (Mul32 <t> (Div32u <t> x (Const32 <t> [c])) (Const32 <t> [c]))) 1356(Mod64u <t> x (Const64 [c])) && x.Op != OpConst64 && c > 0 && umagicOK64(c) 1357 => (Sub64 x (Mul64 <t> (Div64u <t> x (Const64 <t> [c])) (Const64 <t> [c]))) 1358 1359// For architectures without rotates on less than 32-bits, promote these checks to 32-bit. 1360(Eq8 (Mod8u x (Const8 [c])) (Const8 [0])) && x.Op != OpConst8 && udivisibleOK8(c) && !hasSmallRotate(config) => 1361 (Eq32 (Mod32u <typ.UInt32> (ZeroExt8to32 <typ.UInt32> x) (Const32 <typ.UInt32> [int32(uint8(c))])) (Const32 <typ.UInt32> [0])) 1362(Eq16 (Mod16u x (Const16 [c])) (Const16 [0])) && x.Op != OpConst16 && udivisibleOK16(c) && !hasSmallRotate(config) => 1363 (Eq32 (Mod32u <typ.UInt32> (ZeroExt16to32 <typ.UInt32> x) (Const32 <typ.UInt32> [int32(uint16(c))])) (Const32 <typ.UInt32> [0])) 1364(Eq8 (Mod8 x (Const8 [c])) (Const8 [0])) && x.Op != OpConst8 && sdivisibleOK8(c) && !hasSmallRotate(config) => 1365 (Eq32 (Mod32 <typ.Int32> (SignExt8to32 <typ.Int32> x) (Const32 <typ.Int32> [int32(c)])) (Const32 <typ.Int32> [0])) 1366(Eq16 (Mod16 x (Const16 [c])) (Const16 [0])) && x.Op != OpConst16 && sdivisibleOK16(c) && !hasSmallRotate(config) => 1367 (Eq32 (Mod32 <typ.Int32> (SignExt16to32 <typ.Int32> x) (Const32 <typ.Int32> [int32(c)])) (Const32 <typ.Int32> [0])) 1368 1369// Divisibility checks x%c == 0 convert to multiply and rotate. 1370// Note, x%c == 0 is rewritten as x == c*(x/c) during the opt pass 1371// where (x/c) is performed using multiplication with magic constants. 1372// To rewrite x%c == 0 requires pattern matching the rewritten expression 1373// and checking that the division by the same constant wasn't already calculated. 1374// This check is made by counting uses of the magic constant multiplication. 1375// Note that if there were an intermediate opt pass, this rule could be applied 1376// directly on the Div op and magic division rewrites could be delayed to late opt. 1377 1378// Unsigned divisibility checks convert to multiply and rotate. 1379(Eq8 x (Mul8 (Const8 [c]) 1380 (Trunc32to8 1381 (Rsh32Ux64 1382 mul:(Mul32 1383 (Const32 [m]) 1384 (ZeroExt8to32 x)) 1385 (Const64 [s]))) 1386 ) 1387) 1388 && v.Block.Func.pass.name != "opt" && mul.Uses == 1 1389 && m == int32(1<<8+umagic8(c).m) && s == 8+umagic8(c).s 1390 && x.Op != OpConst8 && udivisibleOK8(c) 1391 => (Leq8U 1392 (RotateLeft8 <typ.UInt8> 1393 (Mul8 <typ.UInt8> 1394 (Const8 <typ.UInt8> [int8(udivisible8(c).m)]) 1395 x) 1396 (Const8 <typ.UInt8> [int8(8-udivisible8(c).k)]) 1397 ) 1398 (Const8 <typ.UInt8> [int8(udivisible8(c).max)]) 1399 ) 1400 1401(Eq16 x (Mul16 (Const16 [c]) 1402 (Trunc64to16 1403 (Rsh64Ux64 1404 mul:(Mul64 1405 (Const64 [m]) 1406 (ZeroExt16to64 x)) 1407 (Const64 [s]))) 1408 ) 1409) 1410 && v.Block.Func.pass.name != "opt" && mul.Uses == 1 1411 && m == int64(1<<16+umagic16(c).m) && s == 16+umagic16(c).s 1412 && x.Op != OpConst16 && udivisibleOK16(c) 1413 => (Leq16U 1414 (RotateLeft16 <typ.UInt16> 1415 (Mul16 <typ.UInt16> 1416 (Const16 <typ.UInt16> [int16(udivisible16(c).m)]) 1417 x) 1418 (Const16 <typ.UInt16> [int16(16-udivisible16(c).k)]) 1419 ) 1420 (Const16 <typ.UInt16> [int16(udivisible16(c).max)]) 1421 ) 1422 1423(Eq16 x (Mul16 (Const16 [c]) 1424 (Trunc32to16 1425 (Rsh32Ux64 1426 mul:(Mul32 1427 (Const32 [m]) 1428 (ZeroExt16to32 x)) 1429 (Const64 [s]))) 1430 ) 1431) 1432 && v.Block.Func.pass.name != "opt" && mul.Uses == 1 1433 && m == int32(1<<15+umagic16(c).m/2) && s == 16+umagic16(c).s-1 1434 && x.Op != OpConst16 && udivisibleOK16(c) 1435 => (Leq16U 1436 (RotateLeft16 <typ.UInt16> 1437 (Mul16 <typ.UInt16> 1438 (Const16 <typ.UInt16> [int16(udivisible16(c).m)]) 1439 x) 1440 (Const16 <typ.UInt16> [int16(16-udivisible16(c).k)]) 1441 ) 1442 (Const16 <typ.UInt16> [int16(udivisible16(c).max)]) 1443 ) 1444 1445(Eq16 x (Mul16 (Const16 [c]) 1446 (Trunc32to16 1447 (Rsh32Ux64 1448 mul:(Mul32 1449 (Const32 [m]) 1450 (Rsh32Ux64 (ZeroExt16to32 x) (Const64 [1]))) 1451 (Const64 [s]))) 1452 ) 1453) 1454 && v.Block.Func.pass.name != "opt" && mul.Uses == 1 1455 && m == int32(1<<15+(umagic16(c).m+1)/2) && s == 16+umagic16(c).s-2 1456 && x.Op != OpConst16 && udivisibleOK16(c) 1457 => (Leq16U 1458 (RotateLeft16 <typ.UInt16> 1459 (Mul16 <typ.UInt16> 1460 (Const16 <typ.UInt16> [int16(udivisible16(c).m)]) 1461 x) 1462 (Const16 <typ.UInt16> [int16(16-udivisible16(c).k)]) 1463 ) 1464 (Const16 <typ.UInt16> [int16(udivisible16(c).max)]) 1465 ) 1466 1467(Eq16 x (Mul16 (Const16 [c]) 1468 (Trunc32to16 1469 (Rsh32Ux64 1470 (Avg32u 1471 (Lsh32x64 (ZeroExt16to32 x) (Const64 [16])) 1472 mul:(Mul32 1473 (Const32 [m]) 1474 (ZeroExt16to32 x))) 1475 (Const64 [s]))) 1476 ) 1477) 1478 && v.Block.Func.pass.name != "opt" && mul.Uses == 1 1479 && m == int32(umagic16(c).m) && s == 16+umagic16(c).s-1 1480 && x.Op != OpConst16 && udivisibleOK16(c) 1481 => (Leq16U 1482 (RotateLeft16 <typ.UInt16> 1483 (Mul16 <typ.UInt16> 1484 (Const16 <typ.UInt16> [int16(udivisible16(c).m)]) 1485 x) 1486 (Const16 <typ.UInt16> [int16(16-udivisible16(c).k)]) 1487 ) 1488 (Const16 <typ.UInt16> [int16(udivisible16(c).max)]) 1489 ) 1490 1491(Eq32 x (Mul32 (Const32 [c]) 1492 (Rsh32Ux64 1493 mul:(Hmul32u 1494 (Const32 [m]) 1495 x) 1496 (Const64 [s])) 1497 ) 1498) 1499 && v.Block.Func.pass.name != "opt" && mul.Uses == 1 1500 && m == int32(1<<31+umagic32(c).m/2) && s == umagic32(c).s-1 1501 && x.Op != OpConst32 && udivisibleOK32(c) 1502 => (Leq32U 1503 (RotateLeft32 <typ.UInt32> 1504 (Mul32 <typ.UInt32> 1505 (Const32 <typ.UInt32> [int32(udivisible32(c).m)]) 1506 x) 1507 (Const32 <typ.UInt32> [int32(32-udivisible32(c).k)]) 1508 ) 1509 (Const32 <typ.UInt32> [int32(udivisible32(c).max)]) 1510 ) 1511 1512(Eq32 x (Mul32 (Const32 [c]) 1513 (Rsh32Ux64 1514 mul:(Hmul32u 1515 (Const32 <typ.UInt32> [m]) 1516 (Rsh32Ux64 x (Const64 [1]))) 1517 (Const64 [s])) 1518 ) 1519) 1520 && v.Block.Func.pass.name != "opt" && mul.Uses == 1 1521 && m == int32(1<<31+(umagic32(c).m+1)/2) && s == umagic32(c).s-2 1522 && x.Op != OpConst32 && udivisibleOK32(c) 1523 => (Leq32U 1524 (RotateLeft32 <typ.UInt32> 1525 (Mul32 <typ.UInt32> 1526 (Const32 <typ.UInt32> [int32(udivisible32(c).m)]) 1527 x) 1528 (Const32 <typ.UInt32> [int32(32-udivisible32(c).k)]) 1529 ) 1530 (Const32 <typ.UInt32> [int32(udivisible32(c).max)]) 1531 ) 1532 1533(Eq32 x (Mul32 (Const32 [c]) 1534 (Rsh32Ux64 1535 (Avg32u 1536 x 1537 mul:(Hmul32u 1538 (Const32 [m]) 1539 x)) 1540 (Const64 [s])) 1541 ) 1542) 1543 && v.Block.Func.pass.name != "opt" && mul.Uses == 1 1544 && m == int32(umagic32(c).m) && s == umagic32(c).s-1 1545 && x.Op != OpConst32 && udivisibleOK32(c) 1546 => (Leq32U 1547 (RotateLeft32 <typ.UInt32> 1548 (Mul32 <typ.UInt32> 1549 (Const32 <typ.UInt32> [int32(udivisible32(c).m)]) 1550 x) 1551 (Const32 <typ.UInt32> [int32(32-udivisible32(c).k)]) 1552 ) 1553 (Const32 <typ.UInt32> [int32(udivisible32(c).max)]) 1554 ) 1555 1556(Eq32 x (Mul32 (Const32 [c]) 1557 (Trunc64to32 1558 (Rsh64Ux64 1559 mul:(Mul64 1560 (Const64 [m]) 1561 (ZeroExt32to64 x)) 1562 (Const64 [s]))) 1563 ) 1564) 1565 && v.Block.Func.pass.name != "opt" && mul.Uses == 1 1566 && m == int64(1<<31+umagic32(c).m/2) && s == 32+umagic32(c).s-1 1567 && x.Op != OpConst32 && udivisibleOK32(c) 1568 => (Leq32U 1569 (RotateLeft32 <typ.UInt32> 1570 (Mul32 <typ.UInt32> 1571 (Const32 <typ.UInt32> [int32(udivisible32(c).m)]) 1572 x) 1573 (Const32 <typ.UInt32> [int32(32-udivisible32(c).k)]) 1574 ) 1575 (Const32 <typ.UInt32> [int32(udivisible32(c).max)]) 1576 ) 1577 1578(Eq32 x (Mul32 (Const32 [c]) 1579 (Trunc64to32 1580 (Rsh64Ux64 1581 mul:(Mul64 1582 (Const64 [m]) 1583 (Rsh64Ux64 (ZeroExt32to64 x) (Const64 [1]))) 1584 (Const64 [s]))) 1585 ) 1586) 1587 && v.Block.Func.pass.name != "opt" && mul.Uses == 1 1588 && m == int64(1<<31+(umagic32(c).m+1)/2) && s == 32+umagic32(c).s-2 1589 && x.Op != OpConst32 && udivisibleOK32(c) 1590 => (Leq32U 1591 (RotateLeft32 <typ.UInt32> 1592 (Mul32 <typ.UInt32> 1593 (Const32 <typ.UInt32> [int32(udivisible32(c).m)]) 1594 x) 1595 (Const32 <typ.UInt32> [int32(32-udivisible32(c).k)]) 1596 ) 1597 (Const32 <typ.UInt32> [int32(udivisible32(c).max)]) 1598 ) 1599 1600(Eq32 x (Mul32 (Const32 [c]) 1601 (Trunc64to32 1602 (Rsh64Ux64 1603 (Avg64u 1604 (Lsh64x64 (ZeroExt32to64 x) (Const64 [32])) 1605 mul:(Mul64 1606 (Const64 [m]) 1607 (ZeroExt32to64 x))) 1608 (Const64 [s]))) 1609 ) 1610) 1611 && v.Block.Func.pass.name != "opt" && mul.Uses == 1 1612 && m == int64(umagic32(c).m) && s == 32+umagic32(c).s-1 1613 && x.Op != OpConst32 && udivisibleOK32(c) 1614 => (Leq32U 1615 (RotateLeft32 <typ.UInt32> 1616 (Mul32 <typ.UInt32> 1617 (Const32 <typ.UInt32> [int32(udivisible32(c).m)]) 1618 x) 1619 (Const32 <typ.UInt32> [int32(32-udivisible32(c).k)]) 1620 ) 1621 (Const32 <typ.UInt32> [int32(udivisible32(c).max)]) 1622 ) 1623 1624(Eq64 x (Mul64 (Const64 [c]) 1625 (Rsh64Ux64 1626 mul:(Hmul64u 1627 (Const64 [m]) 1628 x) 1629 (Const64 [s])) 1630 ) 1631) && v.Block.Func.pass.name != "opt" && mul.Uses == 1 1632 && m == int64(1<<63+umagic64(c).m/2) && s == umagic64(c).s-1 1633 && x.Op != OpConst64 && udivisibleOK64(c) 1634 => (Leq64U 1635 (RotateLeft64 <typ.UInt64> 1636 (Mul64 <typ.UInt64> 1637 (Const64 <typ.UInt64> [int64(udivisible64(c).m)]) 1638 x) 1639 (Const64 <typ.UInt64> [64-udivisible64(c).k]) 1640 ) 1641 (Const64 <typ.UInt64> [int64(udivisible64(c).max)]) 1642 ) 1643(Eq64 x (Mul64 (Const64 [c]) 1644 (Rsh64Ux64 1645 mul:(Hmul64u 1646 (Const64 [m]) 1647 (Rsh64Ux64 x (Const64 [1]))) 1648 (Const64 [s])) 1649 ) 1650) && v.Block.Func.pass.name != "opt" && mul.Uses == 1 1651 && m == int64(1<<63+(umagic64(c).m+1)/2) && s == umagic64(c).s-2 1652 && x.Op != OpConst64 && udivisibleOK64(c) 1653 => (Leq64U 1654 (RotateLeft64 <typ.UInt64> 1655 (Mul64 <typ.UInt64> 1656 (Const64 <typ.UInt64> [int64(udivisible64(c).m)]) 1657 x) 1658 (Const64 <typ.UInt64> [64-udivisible64(c).k]) 1659 ) 1660 (Const64 <typ.UInt64> [int64(udivisible64(c).max)]) 1661 ) 1662(Eq64 x (Mul64 (Const64 [c]) 1663 (Rsh64Ux64 1664 (Avg64u 1665 x 1666 mul:(Hmul64u 1667 (Const64 [m]) 1668 x)) 1669 (Const64 [s])) 1670 ) 1671) && v.Block.Func.pass.name != "opt" && mul.Uses == 1 1672 && m == int64(umagic64(c).m) && s == umagic64(c).s-1 1673 && x.Op != OpConst64 && udivisibleOK64(c) 1674 => (Leq64U 1675 (RotateLeft64 <typ.UInt64> 1676 (Mul64 <typ.UInt64> 1677 (Const64 <typ.UInt64> [int64(udivisible64(c).m)]) 1678 x) 1679 (Const64 <typ.UInt64> [64-udivisible64(c).k]) 1680 ) 1681 (Const64 <typ.UInt64> [int64(udivisible64(c).max)]) 1682 ) 1683 1684// Signed divisibility checks convert to multiply, add and rotate. 1685(Eq8 x (Mul8 (Const8 [c]) 1686 (Sub8 1687 (Rsh32x64 1688 mul:(Mul32 1689 (Const32 [m]) 1690 (SignExt8to32 x)) 1691 (Const64 [s])) 1692 (Rsh32x64 1693 (SignExt8to32 x) 1694 (Const64 [31]))) 1695 ) 1696) 1697 && v.Block.Func.pass.name != "opt" && mul.Uses == 1 1698 && m == int32(smagic8(c).m) && s == 8+smagic8(c).s 1699 && x.Op != OpConst8 && sdivisibleOK8(c) 1700 => (Leq8U 1701 (RotateLeft8 <typ.UInt8> 1702 (Add8 <typ.UInt8> 1703 (Mul8 <typ.UInt8> 1704 (Const8 <typ.UInt8> [int8(sdivisible8(c).m)]) 1705 x) 1706 (Const8 <typ.UInt8> [int8(sdivisible8(c).a)]) 1707 ) 1708 (Const8 <typ.UInt8> [int8(8-sdivisible8(c).k)]) 1709 ) 1710 (Const8 <typ.UInt8> [int8(sdivisible8(c).max)]) 1711 ) 1712 1713(Eq16 x (Mul16 (Const16 [c]) 1714 (Sub16 1715 (Rsh32x64 1716 mul:(Mul32 1717 (Const32 [m]) 1718 (SignExt16to32 x)) 1719 (Const64 [s])) 1720 (Rsh32x64 1721 (SignExt16to32 x) 1722 (Const64 [31]))) 1723 ) 1724) 1725 && v.Block.Func.pass.name != "opt" && mul.Uses == 1 1726 && m == int32(smagic16(c).m) && s == 16+smagic16(c).s 1727 && x.Op != OpConst16 && sdivisibleOK16(c) 1728 => (Leq16U 1729 (RotateLeft16 <typ.UInt16> 1730 (Add16 <typ.UInt16> 1731 (Mul16 <typ.UInt16> 1732 (Const16 <typ.UInt16> [int16(sdivisible16(c).m)]) 1733 x) 1734 (Const16 <typ.UInt16> [int16(sdivisible16(c).a)]) 1735 ) 1736 (Const16 <typ.UInt16> [int16(16-sdivisible16(c).k)]) 1737 ) 1738 (Const16 <typ.UInt16> [int16(sdivisible16(c).max)]) 1739 ) 1740 1741(Eq32 x (Mul32 (Const32 [c]) 1742 (Sub32 1743 (Rsh64x64 1744 mul:(Mul64 1745 (Const64 [m]) 1746 (SignExt32to64 x)) 1747 (Const64 [s])) 1748 (Rsh64x64 1749 (SignExt32to64 x) 1750 (Const64 [63]))) 1751 ) 1752) 1753 && v.Block.Func.pass.name != "opt" && mul.Uses == 1 1754 && m == int64(smagic32(c).m) && s == 32+smagic32(c).s 1755 && x.Op != OpConst32 && sdivisibleOK32(c) 1756 => (Leq32U 1757 (RotateLeft32 <typ.UInt32> 1758 (Add32 <typ.UInt32> 1759 (Mul32 <typ.UInt32> 1760 (Const32 <typ.UInt32> [int32(sdivisible32(c).m)]) 1761 x) 1762 (Const32 <typ.UInt32> [int32(sdivisible32(c).a)]) 1763 ) 1764 (Const32 <typ.UInt32> [int32(32-sdivisible32(c).k)]) 1765 ) 1766 (Const32 <typ.UInt32> [int32(sdivisible32(c).max)]) 1767 ) 1768 1769(Eq32 x (Mul32 (Const32 [c]) 1770 (Sub32 1771 (Rsh32x64 1772 mul:(Hmul32 1773 (Const32 [m]) 1774 x) 1775 (Const64 [s])) 1776 (Rsh32x64 1777 x 1778 (Const64 [31]))) 1779 ) 1780) 1781 && v.Block.Func.pass.name != "opt" && mul.Uses == 1 1782 && m == int32(smagic32(c).m/2) && s == smagic32(c).s-1 1783 && x.Op != OpConst32 && sdivisibleOK32(c) 1784 => (Leq32U 1785 (RotateLeft32 <typ.UInt32> 1786 (Add32 <typ.UInt32> 1787 (Mul32 <typ.UInt32> 1788 (Const32 <typ.UInt32> [int32(sdivisible32(c).m)]) 1789 x) 1790 (Const32 <typ.UInt32> [int32(sdivisible32(c).a)]) 1791 ) 1792 (Const32 <typ.UInt32> [int32(32-sdivisible32(c).k)]) 1793 ) 1794 (Const32 <typ.UInt32> [int32(sdivisible32(c).max)]) 1795 ) 1796 1797(Eq32 x (Mul32 (Const32 [c]) 1798 (Sub32 1799 (Rsh32x64 1800 (Add32 1801 mul:(Hmul32 1802 (Const32 [m]) 1803 x) 1804 x) 1805 (Const64 [s])) 1806 (Rsh32x64 1807 x 1808 (Const64 [31]))) 1809 ) 1810) 1811 && v.Block.Func.pass.name != "opt" && mul.Uses == 1 1812 && m == int32(smagic32(c).m) && s == smagic32(c).s 1813 && x.Op != OpConst32 && sdivisibleOK32(c) 1814 => (Leq32U 1815 (RotateLeft32 <typ.UInt32> 1816 (Add32 <typ.UInt32> 1817 (Mul32 <typ.UInt32> 1818 (Const32 <typ.UInt32> [int32(sdivisible32(c).m)]) 1819 x) 1820 (Const32 <typ.UInt32> [int32(sdivisible32(c).a)]) 1821 ) 1822 (Const32 <typ.UInt32> [int32(32-sdivisible32(c).k)]) 1823 ) 1824 (Const32 <typ.UInt32> [int32(sdivisible32(c).max)]) 1825 ) 1826 1827(Eq64 x (Mul64 (Const64 [c]) 1828 (Sub64 1829 (Rsh64x64 1830 mul:(Hmul64 1831 (Const64 [m]) 1832 x) 1833 (Const64 [s])) 1834 (Rsh64x64 1835 x 1836 (Const64 [63]))) 1837 ) 1838) 1839 && v.Block.Func.pass.name != "opt" && mul.Uses == 1 1840 && m == int64(smagic64(c).m/2) && s == smagic64(c).s-1 1841 && x.Op != OpConst64 && sdivisibleOK64(c) 1842 => (Leq64U 1843 (RotateLeft64 <typ.UInt64> 1844 (Add64 <typ.UInt64> 1845 (Mul64 <typ.UInt64> 1846 (Const64 <typ.UInt64> [int64(sdivisible64(c).m)]) 1847 x) 1848 (Const64 <typ.UInt64> [int64(sdivisible64(c).a)]) 1849 ) 1850 (Const64 <typ.UInt64> [64-sdivisible64(c).k]) 1851 ) 1852 (Const64 <typ.UInt64> [int64(sdivisible64(c).max)]) 1853 ) 1854 1855(Eq64 x (Mul64 (Const64 [c]) 1856 (Sub64 1857 (Rsh64x64 1858 (Add64 1859 mul:(Hmul64 1860 (Const64 [m]) 1861 x) 1862 x) 1863 (Const64 [s])) 1864 (Rsh64x64 1865 x 1866 (Const64 [63]))) 1867 ) 1868) 1869 && v.Block.Func.pass.name != "opt" && mul.Uses == 1 1870 && m == int64(smagic64(c).m) && s == smagic64(c).s 1871 && x.Op != OpConst64 && sdivisibleOK64(c) 1872 => (Leq64U 1873 (RotateLeft64 <typ.UInt64> 1874 (Add64 <typ.UInt64> 1875 (Mul64 <typ.UInt64> 1876 (Const64 <typ.UInt64> [int64(sdivisible64(c).m)]) 1877 x) 1878 (Const64 <typ.UInt64> [int64(sdivisible64(c).a)]) 1879 ) 1880 (Const64 <typ.UInt64> [64-sdivisible64(c).k]) 1881 ) 1882 (Const64 <typ.UInt64> [int64(sdivisible64(c).max)]) 1883 ) 1884 1885// Divisibility check for signed integers for power of two constant are simple mask. 1886// However, we must match against the rewritten n%c == 0 -> n - c*(n/c) == 0 -> n == c*(n/c) 1887// where n/c contains fixup code to handle signed n. 1888((Eq8|Neq8) n (Lsh8x64 1889 (Rsh8x64 1890 (Add8 <t> n (Rsh8Ux64 <t> (Rsh8x64 <t> n (Const64 <typ.UInt64> [ 7])) (Const64 <typ.UInt64> [kbar]))) 1891 (Const64 <typ.UInt64> [k])) 1892 (Const64 <typ.UInt64> [k])) 1893) && k > 0 && k < 7 && kbar == 8 - k 1894 => ((Eq8|Neq8) (And8 <t> n (Const8 <t> [1<<uint(k)-1])) (Const8 <t> [0])) 1895 1896((Eq16|Neq16) n (Lsh16x64 1897 (Rsh16x64 1898 (Add16 <t> n (Rsh16Ux64 <t> (Rsh16x64 <t> n (Const64 <typ.UInt64> [15])) (Const64 <typ.UInt64> [kbar]))) 1899 (Const64 <typ.UInt64> [k])) 1900 (Const64 <typ.UInt64> [k])) 1901) && k > 0 && k < 15 && kbar == 16 - k 1902 => ((Eq16|Neq16) (And16 <t> n (Const16 <t> [1<<uint(k)-1])) (Const16 <t> [0])) 1903 1904((Eq32|Neq32) n (Lsh32x64 1905 (Rsh32x64 1906 (Add32 <t> n (Rsh32Ux64 <t> (Rsh32x64 <t> n (Const64 <typ.UInt64> [31])) (Const64 <typ.UInt64> [kbar]))) 1907 (Const64 <typ.UInt64> [k])) 1908 (Const64 <typ.UInt64> [k])) 1909) && k > 0 && k < 31 && kbar == 32 - k 1910 => ((Eq32|Neq32) (And32 <t> n (Const32 <t> [1<<uint(k)-1])) (Const32 <t> [0])) 1911 1912((Eq64|Neq64) n (Lsh64x64 1913 (Rsh64x64 1914 (Add64 <t> n (Rsh64Ux64 <t> (Rsh64x64 <t> n (Const64 <typ.UInt64> [63])) (Const64 <typ.UInt64> [kbar]))) 1915 (Const64 <typ.UInt64> [k])) 1916 (Const64 <typ.UInt64> [k])) 1917) && k > 0 && k < 63 && kbar == 64 - k 1918 => ((Eq64|Neq64) (And64 <t> n (Const64 <t> [1<<uint(k)-1])) (Const64 <t> [0])) 1919 1920(Eq(8|16|32|64) s:(Sub(8|16|32|64) x y) (Const(8|16|32|64) [0])) && s.Uses == 1 => (Eq(8|16|32|64) x y) 1921(Neq(8|16|32|64) s:(Sub(8|16|32|64) x y) (Const(8|16|32|64) [0])) && s.Uses == 1 => (Neq(8|16|32|64) x y) 1922 1923// Optimize bitsets 1924(Eq8 (And8 <t> x (Const8 <t> [y])) (Const8 <t> [y])) && oneBit8(y) 1925 => (Neq8 (And8 <t> x (Const8 <t> [y])) (Const8 <t> [0])) 1926(Eq16 (And16 <t> x (Const16 <t> [y])) (Const16 <t> [y])) && oneBit16(y) 1927 => (Neq16 (And16 <t> x (Const16 <t> [y])) (Const16 <t> [0])) 1928(Eq32 (And32 <t> x (Const32 <t> [y])) (Const32 <t> [y])) && oneBit32(y) 1929 => (Neq32 (And32 <t> x (Const32 <t> [y])) (Const32 <t> [0])) 1930(Eq64 (And64 <t> x (Const64 <t> [y])) (Const64 <t> [y])) && oneBit64(y) 1931 => (Neq64 (And64 <t> x (Const64 <t> [y])) (Const64 <t> [0])) 1932(Neq8 (And8 <t> x (Const8 <t> [y])) (Const8 <t> [y])) && oneBit8(y) 1933 => (Eq8 (And8 <t> x (Const8 <t> [y])) (Const8 <t> [0])) 1934(Neq16 (And16 <t> x (Const16 <t> [y])) (Const16 <t> [y])) && oneBit16(y) 1935 => (Eq16 (And16 <t> x (Const16 <t> [y])) (Const16 <t> [0])) 1936(Neq32 (And32 <t> x (Const32 <t> [y])) (Const32 <t> [y])) && oneBit32(y) 1937 => (Eq32 (And32 <t> x (Const32 <t> [y])) (Const32 <t> [0])) 1938(Neq64 (And64 <t> x (Const64 <t> [y])) (Const64 <t> [y])) && oneBit64(y) 1939 => (Eq64 (And64 <t> x (Const64 <t> [y])) (Const64 <t> [0])) 1940 1941// Reassociate expressions involving 1942// constants such that constants come first, 1943// exposing obvious constant-folding opportunities. 1944// Reassociate (op (op y C) x) to (op C (op x y)) or similar, where C 1945// is constant, which pushes constants to the outside 1946// of the expression. At that point, any constant-folding 1947// opportunities should be obvious. 1948// Note: don't include AddPtr here! In order to maintain the 1949// invariant that pointers must stay within the pointed-to object, 1950// we can't pull part of a pointer computation above the AddPtr. 1951// See issue 37881. 1952// Note: we don't need to handle any (x-C) cases because we already rewrite 1953// (x-C) to (x+(-C)). 1954 1955// x + (C + z) -> C + (x + z) 1956(Add64 (Add64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (Add64 i (Add64 <t> z x)) 1957(Add32 (Add32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (Add32 i (Add32 <t> z x)) 1958(Add16 (Add16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (Add16 i (Add16 <t> z x)) 1959(Add8 (Add8 i:(Const8 <t>) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) => (Add8 i (Add8 <t> z x)) 1960 1961// x + (C - z) -> C + (x - z) 1962(Add64 (Sub64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (Add64 i (Sub64 <t> x z)) 1963(Add32 (Sub32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (Add32 i (Sub32 <t> x z)) 1964(Add16 (Sub16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (Add16 i (Sub16 <t> x z)) 1965(Add8 (Sub8 i:(Const8 <t>) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) => (Add8 i (Sub8 <t> x z)) 1966 1967// x - (C - z) -> x + (z - C) -> (x + z) - C 1968(Sub64 x (Sub64 i:(Const64 <t>) z)) && (z.Op != OpConst64 && x.Op != OpConst64) => (Sub64 (Add64 <t> x z) i) 1969(Sub32 x (Sub32 i:(Const32 <t>) z)) && (z.Op != OpConst32 && x.Op != OpConst32) => (Sub32 (Add32 <t> x z) i) 1970(Sub16 x (Sub16 i:(Const16 <t>) z)) && (z.Op != OpConst16 && x.Op != OpConst16) => (Sub16 (Add16 <t> x z) i) 1971(Sub8 x (Sub8 i:(Const8 <t>) z)) && (z.Op != OpConst8 && x.Op != OpConst8) => (Sub8 (Add8 <t> x z) i) 1972 1973// x - (z + C) -> x + (-z - C) -> (x - z) - C 1974(Sub64 x (Add64 z i:(Const64 <t>))) && (z.Op != OpConst64 && x.Op != OpConst64) => (Sub64 (Sub64 <t> x z) i) 1975(Sub32 x (Add32 z i:(Const32 <t>))) && (z.Op != OpConst32 && x.Op != OpConst32) => (Sub32 (Sub32 <t> x z) i) 1976(Sub16 x (Add16 z i:(Const16 <t>))) && (z.Op != OpConst16 && x.Op != OpConst16) => (Sub16 (Sub16 <t> x z) i) 1977(Sub8 x (Add8 z i:(Const8 <t>))) && (z.Op != OpConst8 && x.Op != OpConst8) => (Sub8 (Sub8 <t> x z) i) 1978 1979// (C - z) - x -> C - (z + x) 1980(Sub64 (Sub64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (Sub64 i (Add64 <t> z x)) 1981(Sub32 (Sub32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (Sub32 i (Add32 <t> z x)) 1982(Sub16 (Sub16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (Sub16 i (Add16 <t> z x)) 1983(Sub8 (Sub8 i:(Const8 <t>) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) => (Sub8 i (Add8 <t> z x)) 1984 1985// (z + C) -x -> C + (z - x) 1986(Sub64 (Add64 z i:(Const64 <t>)) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (Add64 i (Sub64 <t> z x)) 1987(Sub32 (Add32 z i:(Const32 <t>)) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (Add32 i (Sub32 <t> z x)) 1988(Sub16 (Add16 z i:(Const16 <t>)) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (Add16 i (Sub16 <t> z x)) 1989(Sub8 (Add8 z i:(Const8 <t>)) x) && (z.Op != OpConst8 && x.Op != OpConst8) => (Add8 i (Sub8 <t> z x)) 1990 1991// x & (C & z) -> C & (x & z) 1992(And64 (And64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (And64 i (And64 <t> z x)) 1993(And32 (And32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (And32 i (And32 <t> z x)) 1994(And16 (And16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (And16 i (And16 <t> z x)) 1995(And8 (And8 i:(Const8 <t>) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) => (And8 i (And8 <t> z x)) 1996 1997// x | (C | z) -> C | (x | z) 1998(Or64 (Or64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (Or64 i (Or64 <t> z x)) 1999(Or32 (Or32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (Or32 i (Or32 <t> z x)) 2000(Or16 (Or16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (Or16 i (Or16 <t> z x)) 2001(Or8 (Or8 i:(Const8 <t>) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) => (Or8 i (Or8 <t> z x)) 2002 2003// x ^ (C ^ z) -> C ^ (x ^ z) 2004(Xor64 (Xor64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (Xor64 i (Xor64 <t> z x)) 2005(Xor32 (Xor32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (Xor32 i (Xor32 <t> z x)) 2006(Xor16 (Xor16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (Xor16 i (Xor16 <t> z x)) 2007(Xor8 (Xor8 i:(Const8 <t>) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) => (Xor8 i (Xor8 <t> z x)) 2008 2009// x * (D * z) = D * (x * z) 2010(Mul64 (Mul64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (Mul64 i (Mul64 <t> x z)) 2011(Mul32 (Mul32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (Mul32 i (Mul32 <t> x z)) 2012(Mul16 (Mul16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (Mul16 i (Mul16 <t> x z)) 2013(Mul8 (Mul8 i:(Const8 <t>) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) => (Mul8 i (Mul8 <t> x z)) 2014 2015// C + (D + x) -> (C + D) + x 2016(Add64 (Const64 <t> [c]) (Add64 (Const64 <t> [d]) x)) => (Add64 (Const64 <t> [c+d]) x) 2017(Add32 (Const32 <t> [c]) (Add32 (Const32 <t> [d]) x)) => (Add32 (Const32 <t> [c+d]) x) 2018(Add16 (Const16 <t> [c]) (Add16 (Const16 <t> [d]) x)) => (Add16 (Const16 <t> [c+d]) x) 2019(Add8 (Const8 <t> [c]) (Add8 (Const8 <t> [d]) x)) => (Add8 (Const8 <t> [c+d]) x) 2020 2021// C + (D - x) -> (C + D) - x 2022(Add64 (Const64 <t> [c]) (Sub64 (Const64 <t> [d]) x)) => (Sub64 (Const64 <t> [c+d]) x) 2023(Add32 (Const32 <t> [c]) (Sub32 (Const32 <t> [d]) x)) => (Sub32 (Const32 <t> [c+d]) x) 2024(Add16 (Const16 <t> [c]) (Sub16 (Const16 <t> [d]) x)) => (Sub16 (Const16 <t> [c+d]) x) 2025(Add8 (Const8 <t> [c]) (Sub8 (Const8 <t> [d]) x)) => (Sub8 (Const8 <t> [c+d]) x) 2026 2027// C - (D - x) -> (C - D) + x 2028(Sub64 (Const64 <t> [c]) (Sub64 (Const64 <t> [d]) x)) => (Add64 (Const64 <t> [c-d]) x) 2029(Sub32 (Const32 <t> [c]) (Sub32 (Const32 <t> [d]) x)) => (Add32 (Const32 <t> [c-d]) x) 2030(Sub16 (Const16 <t> [c]) (Sub16 (Const16 <t> [d]) x)) => (Add16 (Const16 <t> [c-d]) x) 2031(Sub8 (Const8 <t> [c]) (Sub8 (Const8 <t> [d]) x)) => (Add8 (Const8 <t> [c-d]) x) 2032 2033// C - (D + x) -> (C - D) - x 2034(Sub64 (Const64 <t> [c]) (Add64 (Const64 <t> [d]) x)) => (Sub64 (Const64 <t> [c-d]) x) 2035(Sub32 (Const32 <t> [c]) (Add32 (Const32 <t> [d]) x)) => (Sub32 (Const32 <t> [c-d]) x) 2036(Sub16 (Const16 <t> [c]) (Add16 (Const16 <t> [d]) x)) => (Sub16 (Const16 <t> [c-d]) x) 2037(Sub8 (Const8 <t> [c]) (Add8 (Const8 <t> [d]) x)) => (Sub8 (Const8 <t> [c-d]) x) 2038 2039// C & (D & x) -> (C & D) & x 2040(And64 (Const64 <t> [c]) (And64 (Const64 <t> [d]) x)) => (And64 (Const64 <t> [c&d]) x) 2041(And32 (Const32 <t> [c]) (And32 (Const32 <t> [d]) x)) => (And32 (Const32 <t> [c&d]) x) 2042(And16 (Const16 <t> [c]) (And16 (Const16 <t> [d]) x)) => (And16 (Const16 <t> [c&d]) x) 2043(And8 (Const8 <t> [c]) (And8 (Const8 <t> [d]) x)) => (And8 (Const8 <t> [c&d]) x) 2044 2045// C | (D | x) -> (C | D) | x 2046(Or64 (Const64 <t> [c]) (Or64 (Const64 <t> [d]) x)) => (Or64 (Const64 <t> [c|d]) x) 2047(Or32 (Const32 <t> [c]) (Or32 (Const32 <t> [d]) x)) => (Or32 (Const32 <t> [c|d]) x) 2048(Or16 (Const16 <t> [c]) (Or16 (Const16 <t> [d]) x)) => (Or16 (Const16 <t> [c|d]) x) 2049(Or8 (Const8 <t> [c]) (Or8 (Const8 <t> [d]) x)) => (Or8 (Const8 <t> [c|d]) x) 2050 2051// C ^ (D ^ x) -> (C ^ D) ^ x 2052(Xor64 (Const64 <t> [c]) (Xor64 (Const64 <t> [d]) x)) => (Xor64 (Const64 <t> [c^d]) x) 2053(Xor32 (Const32 <t> [c]) (Xor32 (Const32 <t> [d]) x)) => (Xor32 (Const32 <t> [c^d]) x) 2054(Xor16 (Const16 <t> [c]) (Xor16 (Const16 <t> [d]) x)) => (Xor16 (Const16 <t> [c^d]) x) 2055(Xor8 (Const8 <t> [c]) (Xor8 (Const8 <t> [d]) x)) => (Xor8 (Const8 <t> [c^d]) x) 2056 2057// C * (D * x) = (C * D) * x 2058(Mul64 (Const64 <t> [c]) (Mul64 (Const64 <t> [d]) x)) => (Mul64 (Const64 <t> [c*d]) x) 2059(Mul32 (Const32 <t> [c]) (Mul32 (Const32 <t> [d]) x)) => (Mul32 (Const32 <t> [c*d]) x) 2060(Mul16 (Const16 <t> [c]) (Mul16 (Const16 <t> [d]) x)) => (Mul16 (Const16 <t> [c*d]) x) 2061(Mul8 (Const8 <t> [c]) (Mul8 (Const8 <t> [d]) x)) => (Mul8 (Const8 <t> [c*d]) x) 2062 2063// floating point optimizations 2064(Mul(32|64)F x (Const(32|64)F [1])) => x 2065(Mul32F x (Const32F [-1])) => (Neg32F x) 2066(Mul64F x (Const64F [-1])) => (Neg64F x) 2067(Mul32F x (Const32F [2])) => (Add32F x x) 2068(Mul64F x (Const64F [2])) => (Add64F x x) 2069 2070(Div32F x (Const32F <t> [c])) && reciprocalExact32(c) => (Mul32F x (Const32F <t> [1/c])) 2071(Div64F x (Const64F <t> [c])) && reciprocalExact64(c) => (Mul64F x (Const64F <t> [1/c])) 2072 2073// rewrite single-precision sqrt expression "float32(math.Sqrt(float64(x)))" 2074(Cvt64Fto32F sqrt0:(Sqrt (Cvt32Fto64F x))) && sqrt0.Uses==1 => (Sqrt32 x) 2075 2076(Sqrt (Const64F [c])) && !math.IsNaN(math.Sqrt(c)) => (Const64F [math.Sqrt(c)]) 2077 2078// for rewriting results of some late-expanded rewrites (below) 2079(SelectN [0] (MakeResult x ___)) => x 2080(SelectN [1] (MakeResult x y ___)) => y 2081(SelectN [2] (MakeResult x y z ___)) => z 2082 2083// for late-expanded calls, recognize newobject and remove zeroing and nilchecks 2084(Zero (SelectN [0] call:(StaticLECall _ _)) mem:(SelectN [1] call)) 2085 && isSameCall(call.Aux, "runtime.newobject") 2086 => mem 2087 2088(Store (SelectN [0] call:(StaticLECall _ _)) x mem:(SelectN [1] call)) 2089 && isConstZero(x) 2090 && isSameCall(call.Aux, "runtime.newobject") 2091 => mem 2092 2093(Store (OffPtr (SelectN [0] call:(StaticLECall _ _))) x mem:(SelectN [1] call)) 2094 && isConstZero(x) 2095 && isSameCall(call.Aux, "runtime.newobject") 2096 => mem 2097 2098(NilCheck ptr:(SelectN [0] call:(StaticLECall _ _)) _) 2099 && isSameCall(call.Aux, "runtime.newobject") 2100 && warnRule(fe.Debug_checknil(), v, "removed nil check") 2101 => ptr 2102 2103(NilCheck ptr:(OffPtr (SelectN [0] call:(StaticLECall _ _))) _) 2104 && isSameCall(call.Aux, "runtime.newobject") 2105 && warnRule(fe.Debug_checknil(), v, "removed nil check") 2106 => ptr 2107 2108// Addresses of globals are always non-nil. 2109(NilCheck ptr:(Addr {_} (SB)) _) => ptr 2110(NilCheck ptr:(Convert (Addr {_} (SB)) _) _) => ptr 2111 2112// for late-expanded calls, recognize memequal applied to a single constant byte 2113// Support is limited by 1, 2, 4, 8 byte sizes 2114(StaticLECall {callAux} sptr (Addr {scon} (SB)) (Const64 [1]) mem) 2115 && isSameCall(callAux, "runtime.memequal") 2116 && symIsRO(scon) 2117 => (MakeResult (Eq8 (Load <typ.Int8> sptr mem) (Const8 <typ.Int8> [int8(read8(scon,0))])) mem) 2118 2119(StaticLECall {callAux} (Addr {scon} (SB)) sptr (Const64 [1]) mem) 2120 && isSameCall(callAux, "runtime.memequal") 2121 && symIsRO(scon) 2122 => (MakeResult (Eq8 (Load <typ.Int8> sptr mem) (Const8 <typ.Int8> [int8(read8(scon,0))])) mem) 2123 2124(StaticLECall {callAux} sptr (Addr {scon} (SB)) (Const64 [2]) mem) 2125 && isSameCall(callAux, "runtime.memequal") 2126 && symIsRO(scon) 2127 && canLoadUnaligned(config) 2128 => (MakeResult (Eq16 (Load <typ.Int16> sptr mem) (Const16 <typ.Int16> [int16(read16(scon,0,config.ctxt.Arch.ByteOrder))])) mem) 2129 2130(StaticLECall {callAux} (Addr {scon} (SB)) sptr (Const64 [2]) mem) 2131 && isSameCall(callAux, "runtime.memequal") 2132 && symIsRO(scon) 2133 && canLoadUnaligned(config) 2134 => (MakeResult (Eq16 (Load <typ.Int16> sptr mem) (Const16 <typ.Int16> [int16(read16(scon,0,config.ctxt.Arch.ByteOrder))])) mem) 2135 2136(StaticLECall {callAux} sptr (Addr {scon} (SB)) (Const64 [4]) mem) 2137 && isSameCall(callAux, "runtime.memequal") 2138 && symIsRO(scon) 2139 && canLoadUnaligned(config) 2140 => (MakeResult (Eq32 (Load <typ.Int32> sptr mem) (Const32 <typ.Int32> [int32(read32(scon,0,config.ctxt.Arch.ByteOrder))])) mem) 2141 2142(StaticLECall {callAux} (Addr {scon} (SB)) sptr (Const64 [4]) mem) 2143 && isSameCall(callAux, "runtime.memequal") 2144 && symIsRO(scon) 2145 && canLoadUnaligned(config) 2146 => (MakeResult (Eq32 (Load <typ.Int32> sptr mem) (Const32 <typ.Int32> [int32(read32(scon,0,config.ctxt.Arch.ByteOrder))])) mem) 2147 2148(StaticLECall {callAux} sptr (Addr {scon} (SB)) (Const64 [8]) mem) 2149 && isSameCall(callAux, "runtime.memequal") 2150 && symIsRO(scon) 2151 && canLoadUnaligned(config) && config.PtrSize == 8 2152 => (MakeResult (Eq64 (Load <typ.Int64> sptr mem) (Const64 <typ.Int64> [int64(read64(scon,0,config.ctxt.Arch.ByteOrder))])) mem) 2153 2154(StaticLECall {callAux} (Addr {scon} (SB)) sptr (Const64 [8]) mem) 2155 && isSameCall(callAux, "runtime.memequal") 2156 && symIsRO(scon) 2157 && canLoadUnaligned(config) && config.PtrSize == 8 2158 => (MakeResult (Eq64 (Load <typ.Int64> sptr mem) (Const64 <typ.Int64> [int64(read64(scon,0,config.ctxt.Arch.ByteOrder))])) mem) 2159 2160(StaticLECall {callAux} _ _ (Const64 [0]) mem) 2161 && isSameCall(callAux, "runtime.memequal") 2162 => (MakeResult (ConstBool <typ.Bool> [true]) mem) 2163 2164(Static(Call|LECall) {callAux} p q _ mem) 2165 && isSameCall(callAux, "runtime.memequal") 2166 && isSamePtr(p, q) 2167 => (MakeResult (ConstBool <typ.Bool> [true]) mem) 2168 2169// Turn known-size calls to memclrNoHeapPointers into a Zero. 2170// Note that we are using types.Types[types.TUINT8] instead of sptr.Type.Elem() - see issue 55122 and CL 431496 for more details. 2171(SelectN [0] call:(StaticCall {sym} sptr (Const(64|32) [c]) mem)) 2172 && isInlinableMemclr(config, int64(c)) 2173 && isSameCall(sym, "runtime.memclrNoHeapPointers") 2174 && call.Uses == 1 2175 && clobber(call) 2176 => (Zero {types.Types[types.TUINT8]} [int64(c)] sptr mem) 2177 2178// Recognise make([]T, 0) and replace it with a pointer to the zerobase 2179(StaticLECall {callAux} _ (Const(64|32) [0]) (Const(64|32) [0]) mem) 2180 && isSameCall(callAux, "runtime.makeslice") 2181 => (MakeResult (Addr <v.Type.FieldType(0)> {ir.Syms.Zerobase} (SB)) mem) 2182 2183// Evaluate constant address comparisons. 2184(EqPtr x x) => (ConstBool [true]) 2185(NeqPtr x x) => (ConstBool [false]) 2186(EqPtr (Addr {x} _) (Addr {y} _)) => (ConstBool [x == y]) 2187(EqPtr (Addr {x} _) (OffPtr [o] (Addr {y} _))) => (ConstBool [x == y && o == 0]) 2188(EqPtr (OffPtr [o1] (Addr {x} _)) (OffPtr [o2] (Addr {y} _))) => (ConstBool [x == y && o1 == o2]) 2189(NeqPtr (Addr {x} _) (Addr {y} _)) => (ConstBool [x != y]) 2190(NeqPtr (Addr {x} _) (OffPtr [o] (Addr {y} _))) => (ConstBool [x != y || o != 0]) 2191(NeqPtr (OffPtr [o1] (Addr {x} _)) (OffPtr [o2] (Addr {y} _))) => (ConstBool [x != y || o1 != o2]) 2192(EqPtr (LocalAddr {x} _ _) (LocalAddr {y} _ _)) => (ConstBool [x == y]) 2193(EqPtr (LocalAddr {x} _ _) (OffPtr [o] (LocalAddr {y} _ _))) => (ConstBool [x == y && o == 0]) 2194(EqPtr (OffPtr [o1] (LocalAddr {x} _ _)) (OffPtr [o2] (LocalAddr {y} _ _))) => (ConstBool [x == y && o1 == o2]) 2195(NeqPtr (LocalAddr {x} _ _) (LocalAddr {y} _ _)) => (ConstBool [x != y]) 2196(NeqPtr (LocalAddr {x} _ _) (OffPtr [o] (LocalAddr {y} _ _))) => (ConstBool [x != y || o != 0]) 2197(NeqPtr (OffPtr [o1] (LocalAddr {x} _ _)) (OffPtr [o2] (LocalAddr {y} _ _))) => (ConstBool [x != y || o1 != o2]) 2198(EqPtr (OffPtr [o1] p1) p2) && isSamePtr(p1, p2) => (ConstBool [o1 == 0]) 2199(NeqPtr (OffPtr [o1] p1) p2) && isSamePtr(p1, p2) => (ConstBool [o1 != 0]) 2200(EqPtr (OffPtr [o1] p1) (OffPtr [o2] p2)) && isSamePtr(p1, p2) => (ConstBool [o1 == o2]) 2201(NeqPtr (OffPtr [o1] p1) (OffPtr [o2] p2)) && isSamePtr(p1, p2) => (ConstBool [o1 != o2]) 2202(EqPtr (Const(32|64) [c]) (Const(32|64) [d])) => (ConstBool [c == d]) 2203(NeqPtr (Const(32|64) [c]) (Const(32|64) [d])) => (ConstBool [c != d]) 2204(EqPtr (Convert (Addr {x} _) _) (Addr {y} _)) => (ConstBool [x==y]) 2205(NeqPtr (Convert (Addr {x} _) _) (Addr {y} _)) => (ConstBool [x!=y]) 2206 2207(EqPtr (LocalAddr _ _) (Addr _)) => (ConstBool [false]) 2208(EqPtr (OffPtr (LocalAddr _ _)) (Addr _)) => (ConstBool [false]) 2209(EqPtr (LocalAddr _ _) (OffPtr (Addr _))) => (ConstBool [false]) 2210(EqPtr (OffPtr (LocalAddr _ _)) (OffPtr (Addr _))) => (ConstBool [false]) 2211(NeqPtr (LocalAddr _ _) (Addr _)) => (ConstBool [true]) 2212(NeqPtr (OffPtr (LocalAddr _ _)) (Addr _)) => (ConstBool [true]) 2213(NeqPtr (LocalAddr _ _) (OffPtr (Addr _))) => (ConstBool [true]) 2214(NeqPtr (OffPtr (LocalAddr _ _)) (OffPtr (Addr _))) => (ConstBool [true]) 2215 2216// Simplify address comparisons. 2217(EqPtr (AddPtr p1 o1) p2) && isSamePtr(p1, p2) => (Not (IsNonNil o1)) 2218(NeqPtr (AddPtr p1 o1) p2) && isSamePtr(p1, p2) => (IsNonNil o1) 2219(EqPtr (Const(32|64) [0]) p) => (Not (IsNonNil p)) 2220(NeqPtr (Const(32|64) [0]) p) => (IsNonNil p) 2221(EqPtr (ConstNil) p) => (Not (IsNonNil p)) 2222(NeqPtr (ConstNil) p) => (IsNonNil p) 2223 2224// Evaluate constant user nil checks. 2225(IsNonNil (ConstNil)) => (ConstBool [false]) 2226(IsNonNil (Const(32|64) [c])) => (ConstBool [c != 0]) 2227(IsNonNil (Addr _) ) => (ConstBool [true]) 2228(IsNonNil (Convert (Addr _) _)) => (ConstBool [true]) 2229(IsNonNil (LocalAddr _ _)) => (ConstBool [true]) 2230 2231// Inline small or disjoint runtime.memmove calls with constant length. 2232// See the comment in op Move in genericOps.go for discussion of the type. 2233// 2234// Note that we've lost any knowledge of the type and alignment requirements 2235// of the source and destination. We only know the size, and that the type 2236// contains no pointers. 2237// The type of the move is not necessarily v.Args[0].Type().Elem()! 2238// See issue 55122 for details. 2239// 2240// Because expand calls runs after prove, constants useful to this pattern may not appear. 2241// Both versions need to exist; the memory and register variants. 2242// 2243// Match post-expansion calls, memory version. 2244(SelectN [0] call:(StaticCall {sym} s1:(Store _ (Const(64|32) [sz]) s2:(Store _ src s3:(Store {t} _ dst mem))))) 2245 && sz >= 0 2246 && isSameCall(sym, "runtime.memmove") 2247 && s1.Uses == 1 && s2.Uses == 1 && s3.Uses == 1 2248 && isInlinableMemmove(dst, src, int64(sz), config) 2249 && clobber(s1, s2, s3, call) 2250 => (Move {types.Types[types.TUINT8]} [int64(sz)] dst src mem) 2251 2252// Match post-expansion calls, register version. 2253(SelectN [0] call:(StaticCall {sym} dst src (Const(64|32) [sz]) mem)) 2254 && sz >= 0 2255 && call.Uses == 1 // this will exclude all calls with results 2256 && isSameCall(sym, "runtime.memmove") 2257 && isInlinableMemmove(dst, src, int64(sz), config) 2258 && clobber(call) 2259 => (Move {types.Types[types.TUINT8]} [int64(sz)] dst src mem) 2260 2261// Match pre-expansion calls. 2262(SelectN [0] call:(StaticLECall {sym} dst src (Const(64|32) [sz]) mem)) 2263 && sz >= 0 2264 && call.Uses == 1 // this will exclude all calls with results 2265 && isSameCall(sym, "runtime.memmove") 2266 && isInlinableMemmove(dst, src, int64(sz), config) 2267 && clobber(call) 2268 => (Move {types.Types[types.TUINT8]} [int64(sz)] dst src mem) 2269 2270// De-virtualize late-expanded interface calls into late-expanded static calls. 2271(InterLECall [argsize] {auxCall} (Addr {fn} (SB)) ___) => devirtLECall(v, fn.(*obj.LSym)) 2272 2273// Move and Zero optimizations. 2274// Move source and destination may overlap. 2275 2276// Convert Moves into Zeros when the source is known to be zeros. 2277(Move {t} [n] dst1 src mem:(Zero {t} [n] dst2 _)) && isSamePtr(src, dst2) 2278 => (Zero {t} [n] dst1 mem) 2279(Move {t} [n] dst1 src mem:(VarDef (Zero {t} [n] dst0 _))) && isSamePtr(src, dst0) 2280 => (Zero {t} [n] dst1 mem) 2281(Move {t} [n] dst (Addr {sym} (SB)) mem) && symIsROZero(sym) => (Zero {t} [n] dst mem) 2282 2283// Don't Store to variables that are about to be overwritten by Move/Zero. 2284(Zero {t1} [n] p1 store:(Store {t2} (OffPtr [o2] p2) _ mem)) 2285 && isSamePtr(p1, p2) && store.Uses == 1 2286 && n >= o2 + t2.Size() 2287 && clobber(store) 2288 => (Zero {t1} [n] p1 mem) 2289(Move {t1} [n] dst1 src1 store:(Store {t2} op:(OffPtr [o2] dst2) _ mem)) 2290 && isSamePtr(dst1, dst2) && store.Uses == 1 2291 && n >= o2 + t2.Size() 2292 && disjoint(src1, n, op, t2.Size()) 2293 && clobber(store) 2294 => (Move {t1} [n] dst1 src1 mem) 2295 2296// Don't Move to variables that are immediately completely overwritten. 2297(Zero {t} [n] dst1 move:(Move {t} [n] dst2 _ mem)) 2298 && move.Uses == 1 2299 && isSamePtr(dst1, dst2) 2300 && clobber(move) 2301 => (Zero {t} [n] dst1 mem) 2302(Move {t} [n] dst1 src1 move:(Move {t} [n] dst2 _ mem)) 2303 && move.Uses == 1 2304 && isSamePtr(dst1, dst2) && disjoint(src1, n, dst2, n) 2305 && clobber(move) 2306 => (Move {t} [n] dst1 src1 mem) 2307(Zero {t} [n] dst1 vardef:(VarDef {x} move:(Move {t} [n] dst2 _ mem))) 2308 && move.Uses == 1 && vardef.Uses == 1 2309 && isSamePtr(dst1, dst2) 2310 && clobber(move, vardef) 2311 => (Zero {t} [n] dst1 (VarDef {x} mem)) 2312(Move {t} [n] dst1 src1 vardef:(VarDef {x} move:(Move {t} [n] dst2 _ mem))) 2313 && move.Uses == 1 && vardef.Uses == 1 2314 && isSamePtr(dst1, dst2) && disjoint(src1, n, dst2, n) 2315 && clobber(move, vardef) 2316 => (Move {t} [n] dst1 src1 (VarDef {x} mem)) 2317(Store {t1} op1:(OffPtr [o1] p1) d1 2318 m2:(Store {t2} op2:(OffPtr [0] p2) d2 2319 m3:(Move [n] p3 _ mem))) 2320 && m2.Uses == 1 && m3.Uses == 1 2321 && o1 == t2.Size() 2322 && n == t2.Size() + t1.Size() 2323 && isSamePtr(p1, p2) && isSamePtr(p2, p3) 2324 && clobber(m2, m3) 2325 => (Store {t1} op1 d1 (Store {t2} op2 d2 mem)) 2326(Store {t1} op1:(OffPtr [o1] p1) d1 2327 m2:(Store {t2} op2:(OffPtr [o2] p2) d2 2328 m3:(Store {t3} op3:(OffPtr [0] p3) d3 2329 m4:(Move [n] p4 _ mem)))) 2330 && m2.Uses == 1 && m3.Uses == 1 && m4.Uses == 1 2331 && o2 == t3.Size() 2332 && o1-o2 == t2.Size() 2333 && n == t3.Size() + t2.Size() + t1.Size() 2334 && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) 2335 && clobber(m2, m3, m4) 2336 => (Store {t1} op1 d1 (Store {t2} op2 d2 (Store {t3} op3 d3 mem))) 2337(Store {t1} op1:(OffPtr [o1] p1) d1 2338 m2:(Store {t2} op2:(OffPtr [o2] p2) d2 2339 m3:(Store {t3} op3:(OffPtr [o3] p3) d3 2340 m4:(Store {t4} op4:(OffPtr [0] p4) d4 2341 m5:(Move [n] p5 _ mem))))) 2342 && m2.Uses == 1 && m3.Uses == 1 && m4.Uses == 1 && m5.Uses == 1 2343 && o3 == t4.Size() 2344 && o2-o3 == t3.Size() 2345 && o1-o2 == t2.Size() 2346 && n == t4.Size() + t3.Size() + t2.Size() + t1.Size() 2347 && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5) 2348 && clobber(m2, m3, m4, m5) 2349 => (Store {t1} op1 d1 (Store {t2} op2 d2 (Store {t3} op3 d3 (Store {t4} op4 d4 mem)))) 2350 2351// Don't Zero variables that are immediately completely overwritten 2352// before being accessed. 2353(Move {t} [n] dst1 src1 zero:(Zero {t} [n] dst2 mem)) 2354 && zero.Uses == 1 2355 && isSamePtr(dst1, dst2) && disjoint(src1, n, dst2, n) 2356 && clobber(zero) 2357 => (Move {t} [n] dst1 src1 mem) 2358(Move {t} [n] dst1 src1 vardef:(VarDef {x} zero:(Zero {t} [n] dst2 mem))) 2359 && zero.Uses == 1 && vardef.Uses == 1 2360 && isSamePtr(dst1, dst2) && disjoint(src1, n, dst2, n) 2361 && clobber(zero, vardef) 2362 => (Move {t} [n] dst1 src1 (VarDef {x} mem)) 2363(Store {t1} op1:(OffPtr [o1] p1) d1 2364 m2:(Store {t2} op2:(OffPtr [0] p2) d2 2365 m3:(Zero [n] p3 mem))) 2366 && m2.Uses == 1 && m3.Uses == 1 2367 && o1 == t2.Size() 2368 && n == t2.Size() + t1.Size() 2369 && isSamePtr(p1, p2) && isSamePtr(p2, p3) 2370 && clobber(m2, m3) 2371 => (Store {t1} op1 d1 (Store {t2} op2 d2 mem)) 2372(Store {t1} op1:(OffPtr [o1] p1) d1 2373 m2:(Store {t2} op2:(OffPtr [o2] p2) d2 2374 m3:(Store {t3} op3:(OffPtr [0] p3) d3 2375 m4:(Zero [n] p4 mem)))) 2376 && m2.Uses == 1 && m3.Uses == 1 && m4.Uses == 1 2377 && o2 == t3.Size() 2378 && o1-o2 == t2.Size() 2379 && n == t3.Size() + t2.Size() + t1.Size() 2380 && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) 2381 && clobber(m2, m3, m4) 2382 => (Store {t1} op1 d1 (Store {t2} op2 d2 (Store {t3} op3 d3 mem))) 2383(Store {t1} op1:(OffPtr [o1] p1) d1 2384 m2:(Store {t2} op2:(OffPtr [o2] p2) d2 2385 m3:(Store {t3} op3:(OffPtr [o3] p3) d3 2386 m4:(Store {t4} op4:(OffPtr [0] p4) d4 2387 m5:(Zero [n] p5 mem))))) 2388 && m2.Uses == 1 && m3.Uses == 1 && m4.Uses == 1 && m5.Uses == 1 2389 && o3 == t4.Size() 2390 && o2-o3 == t3.Size() 2391 && o1-o2 == t2.Size() 2392 && n == t4.Size() + t3.Size() + t2.Size() + t1.Size() 2393 && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5) 2394 && clobber(m2, m3, m4, m5) 2395 => (Store {t1} op1 d1 (Store {t2} op2 d2 (Store {t3} op3 d3 (Store {t4} op4 d4 mem)))) 2396 2397// Don't Move from memory if the values are likely to already be 2398// in registers. 2399(Move {t1} [n] dst p1 2400 mem:(Store {t2} op2:(OffPtr <tt2> [o2] p2) d1 2401 (Store {t3} op3:(OffPtr <tt3> [0] p3) d2 _))) 2402 && isSamePtr(p1, p2) && isSamePtr(p2, p3) 2403 && t2.Alignment() <= t1.Alignment() 2404 && t3.Alignment() <= t1.Alignment() 2405 && registerizable(b, t2) 2406 && registerizable(b, t3) 2407 && o2 == t3.Size() 2408 && n == t2.Size() + t3.Size() 2409 => (Store {t2} (OffPtr <tt2> [o2] dst) d1 2410 (Store {t3} (OffPtr <tt3> [0] dst) d2 mem)) 2411(Move {t1} [n] dst p1 2412 mem:(Store {t2} op2:(OffPtr <tt2> [o2] p2) d1 2413 (Store {t3} op3:(OffPtr <tt3> [o3] p3) d2 2414 (Store {t4} op4:(OffPtr <tt4> [0] p4) d3 _)))) 2415 && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) 2416 && t2.Alignment() <= t1.Alignment() 2417 && t3.Alignment() <= t1.Alignment() 2418 && t4.Alignment() <= t1.Alignment() 2419 && registerizable(b, t2) 2420 && registerizable(b, t3) 2421 && registerizable(b, t4) 2422 && o3 == t4.Size() 2423 && o2-o3 == t3.Size() 2424 && n == t2.Size() + t3.Size() + t4.Size() 2425 => (Store {t2} (OffPtr <tt2> [o2] dst) d1 2426 (Store {t3} (OffPtr <tt3> [o3] dst) d2 2427 (Store {t4} (OffPtr <tt4> [0] dst) d3 mem))) 2428(Move {t1} [n] dst p1 2429 mem:(Store {t2} op2:(OffPtr <tt2> [o2] p2) d1 2430 (Store {t3} op3:(OffPtr <tt3> [o3] p3) d2 2431 (Store {t4} op4:(OffPtr <tt4> [o4] p4) d3 2432 (Store {t5} op5:(OffPtr <tt5> [0] p5) d4 _))))) 2433 && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5) 2434 && t2.Alignment() <= t1.Alignment() 2435 && t3.Alignment() <= t1.Alignment() 2436 && t4.Alignment() <= t1.Alignment() 2437 && t5.Alignment() <= t1.Alignment() 2438 && registerizable(b, t2) 2439 && registerizable(b, t3) 2440 && registerizable(b, t4) 2441 && registerizable(b, t5) 2442 && o4 == t5.Size() 2443 && o3-o4 == t4.Size() 2444 && o2-o3 == t3.Size() 2445 && n == t2.Size() + t3.Size() + t4.Size() + t5.Size() 2446 => (Store {t2} (OffPtr <tt2> [o2] dst) d1 2447 (Store {t3} (OffPtr <tt3> [o3] dst) d2 2448 (Store {t4} (OffPtr <tt4> [o4] dst) d3 2449 (Store {t5} (OffPtr <tt5> [0] dst) d4 mem)))) 2450 2451// Same thing but with VarDef in the middle. 2452(Move {t1} [n] dst p1 2453 mem:(VarDef 2454 (Store {t2} op2:(OffPtr <tt2> [o2] p2) d1 2455 (Store {t3} op3:(OffPtr <tt3> [0] p3) d2 _)))) 2456 && isSamePtr(p1, p2) && isSamePtr(p2, p3) 2457 && t2.Alignment() <= t1.Alignment() 2458 && t3.Alignment() <= t1.Alignment() 2459 && registerizable(b, t2) 2460 && registerizable(b, t3) 2461 && o2 == t3.Size() 2462 && n == t2.Size() + t3.Size() 2463 => (Store {t2} (OffPtr <tt2> [o2] dst) d1 2464 (Store {t3} (OffPtr <tt3> [0] dst) d2 mem)) 2465(Move {t1} [n] dst p1 2466 mem:(VarDef 2467 (Store {t2} op2:(OffPtr <tt2> [o2] p2) d1 2468 (Store {t3} op3:(OffPtr <tt3> [o3] p3) d2 2469 (Store {t4} op4:(OffPtr <tt4> [0] p4) d3 _))))) 2470 && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) 2471 && t2.Alignment() <= t1.Alignment() 2472 && t3.Alignment() <= t1.Alignment() 2473 && t4.Alignment() <= t1.Alignment() 2474 && registerizable(b, t2) 2475 && registerizable(b, t3) 2476 && registerizable(b, t4) 2477 && o3 == t4.Size() 2478 && o2-o3 == t3.Size() 2479 && n == t2.Size() + t3.Size() + t4.Size() 2480 => (Store {t2} (OffPtr <tt2> [o2] dst) d1 2481 (Store {t3} (OffPtr <tt3> [o3] dst) d2 2482 (Store {t4} (OffPtr <tt4> [0] dst) d3 mem))) 2483(Move {t1} [n] dst p1 2484 mem:(VarDef 2485 (Store {t2} op2:(OffPtr <tt2> [o2] p2) d1 2486 (Store {t3} op3:(OffPtr <tt3> [o3] p3) d2 2487 (Store {t4} op4:(OffPtr <tt4> [o4] p4) d3 2488 (Store {t5} op5:(OffPtr <tt5> [0] p5) d4 _)))))) 2489 && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5) 2490 && t2.Alignment() <= t1.Alignment() 2491 && t3.Alignment() <= t1.Alignment() 2492 && t4.Alignment() <= t1.Alignment() 2493 && t5.Alignment() <= t1.Alignment() 2494 && registerizable(b, t2) 2495 && registerizable(b, t3) 2496 && registerizable(b, t4) 2497 && registerizable(b, t5) 2498 && o4 == t5.Size() 2499 && o3-o4 == t4.Size() 2500 && o2-o3 == t3.Size() 2501 && n == t2.Size() + t3.Size() + t4.Size() + t5.Size() 2502 => (Store {t2} (OffPtr <tt2> [o2] dst) d1 2503 (Store {t3} (OffPtr <tt3> [o3] dst) d2 2504 (Store {t4} (OffPtr <tt4> [o4] dst) d3 2505 (Store {t5} (OffPtr <tt5> [0] dst) d4 mem)))) 2506 2507// Prefer to Zero and Store than to Move. 2508(Move {t1} [n] dst p1 2509 mem:(Store {t2} op2:(OffPtr <tt2> [o2] p2) d1 2510 (Zero {t3} [n] p3 _))) 2511 && isSamePtr(p1, p2) && isSamePtr(p2, p3) 2512 && t2.Alignment() <= t1.Alignment() 2513 && t3.Alignment() <= t1.Alignment() 2514 && registerizable(b, t2) 2515 && n >= o2 + t2.Size() 2516 => (Store {t2} (OffPtr <tt2> [o2] dst) d1 2517 (Zero {t1} [n] dst mem)) 2518(Move {t1} [n] dst p1 2519 mem:(Store {t2} (OffPtr <tt2> [o2] p2) d1 2520 (Store {t3} (OffPtr <tt3> [o3] p3) d2 2521 (Zero {t4} [n] p4 _)))) 2522 && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) 2523 && t2.Alignment() <= t1.Alignment() 2524 && t3.Alignment() <= t1.Alignment() 2525 && t4.Alignment() <= t1.Alignment() 2526 && registerizable(b, t2) 2527 && registerizable(b, t3) 2528 && n >= o2 + t2.Size() 2529 && n >= o3 + t3.Size() 2530 => (Store {t2} (OffPtr <tt2> [o2] dst) d1 2531 (Store {t3} (OffPtr <tt3> [o3] dst) d2 2532 (Zero {t1} [n] dst mem))) 2533(Move {t1} [n] dst p1 2534 mem:(Store {t2} (OffPtr <tt2> [o2] p2) d1 2535 (Store {t3} (OffPtr <tt3> [o3] p3) d2 2536 (Store {t4} (OffPtr <tt4> [o4] p4) d3 2537 (Zero {t5} [n] p5 _))))) 2538 && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5) 2539 && t2.Alignment() <= t1.Alignment() 2540 && t3.Alignment() <= t1.Alignment() 2541 && t4.Alignment() <= t1.Alignment() 2542 && t5.Alignment() <= t1.Alignment() 2543 && registerizable(b, t2) 2544 && registerizable(b, t3) 2545 && registerizable(b, t4) 2546 && n >= o2 + t2.Size() 2547 && n >= o3 + t3.Size() 2548 && n >= o4 + t4.Size() 2549 => (Store {t2} (OffPtr <tt2> [o2] dst) d1 2550 (Store {t3} (OffPtr <tt3> [o3] dst) d2 2551 (Store {t4} (OffPtr <tt4> [o4] dst) d3 2552 (Zero {t1} [n] dst mem)))) 2553(Move {t1} [n] dst p1 2554 mem:(Store {t2} (OffPtr <tt2> [o2] p2) d1 2555 (Store {t3} (OffPtr <tt3> [o3] p3) d2 2556 (Store {t4} (OffPtr <tt4> [o4] p4) d3 2557 (Store {t5} (OffPtr <tt5> [o5] p5) d4 2558 (Zero {t6} [n] p6 _)))))) 2559 && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5) && isSamePtr(p5, p6) 2560 && t2.Alignment() <= t1.Alignment() 2561 && t3.Alignment() <= t1.Alignment() 2562 && t4.Alignment() <= t1.Alignment() 2563 && t5.Alignment() <= t1.Alignment() 2564 && t6.Alignment() <= t1.Alignment() 2565 && registerizable(b, t2) 2566 && registerizable(b, t3) 2567 && registerizable(b, t4) 2568 && registerizable(b, t5) 2569 && n >= o2 + t2.Size() 2570 && n >= o3 + t3.Size() 2571 && n >= o4 + t4.Size() 2572 && n >= o5 + t5.Size() 2573 => (Store {t2} (OffPtr <tt2> [o2] dst) d1 2574 (Store {t3} (OffPtr <tt3> [o3] dst) d2 2575 (Store {t4} (OffPtr <tt4> [o4] dst) d3 2576 (Store {t5} (OffPtr <tt5> [o5] dst) d4 2577 (Zero {t1} [n] dst mem))))) 2578(Move {t1} [n] dst p1 2579 mem:(VarDef 2580 (Store {t2} op2:(OffPtr <tt2> [o2] p2) d1 2581 (Zero {t3} [n] p3 _)))) 2582 && isSamePtr(p1, p2) && isSamePtr(p2, p3) 2583 && t2.Alignment() <= t1.Alignment() 2584 && t3.Alignment() <= t1.Alignment() 2585 && registerizable(b, t2) 2586 && n >= o2 + t2.Size() 2587 => (Store {t2} (OffPtr <tt2> [o2] dst) d1 2588 (Zero {t1} [n] dst mem)) 2589(Move {t1} [n] dst p1 2590 mem:(VarDef 2591 (Store {t2} (OffPtr <tt2> [o2] p2) d1 2592 (Store {t3} (OffPtr <tt3> [o3] p3) d2 2593 (Zero {t4} [n] p4 _))))) 2594 && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) 2595 && t2.Alignment() <= t1.Alignment() 2596 && t3.Alignment() <= t1.Alignment() 2597 && t4.Alignment() <= t1.Alignment() 2598 && registerizable(b, t2) 2599 && registerizable(b, t3) 2600 && n >= o2 + t2.Size() 2601 && n >= o3 + t3.Size() 2602 => (Store {t2} (OffPtr <tt2> [o2] dst) d1 2603 (Store {t3} (OffPtr <tt3> [o3] dst) d2 2604 (Zero {t1} [n] dst mem))) 2605(Move {t1} [n] dst p1 2606 mem:(VarDef 2607 (Store {t2} (OffPtr <tt2> [o2] p2) d1 2608 (Store {t3} (OffPtr <tt3> [o3] p3) d2 2609 (Store {t4} (OffPtr <tt4> [o4] p4) d3 2610 (Zero {t5} [n] p5 _)))))) 2611 && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5) 2612 && t2.Alignment() <= t1.Alignment() 2613 && t3.Alignment() <= t1.Alignment() 2614 && t4.Alignment() <= t1.Alignment() 2615 && t5.Alignment() <= t1.Alignment() 2616 && registerizable(b, t2) 2617 && registerizable(b, t3) 2618 && registerizable(b, t4) 2619 && n >= o2 + t2.Size() 2620 && n >= o3 + t3.Size() 2621 && n >= o4 + t4.Size() 2622 => (Store {t2} (OffPtr <tt2> [o2] dst) d1 2623 (Store {t3} (OffPtr <tt3> [o3] dst) d2 2624 (Store {t4} (OffPtr <tt4> [o4] dst) d3 2625 (Zero {t1} [n] dst mem)))) 2626(Move {t1} [n] dst p1 2627 mem:(VarDef 2628 (Store {t2} (OffPtr <tt2> [o2] p2) d1 2629 (Store {t3} (OffPtr <tt3> [o3] p3) d2 2630 (Store {t4} (OffPtr <tt4> [o4] p4) d3 2631 (Store {t5} (OffPtr <tt5> [o5] p5) d4 2632 (Zero {t6} [n] p6 _))))))) 2633 && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5) && isSamePtr(p5, p6) 2634 && t2.Alignment() <= t1.Alignment() 2635 && t3.Alignment() <= t1.Alignment() 2636 && t4.Alignment() <= t1.Alignment() 2637 && t5.Alignment() <= t1.Alignment() 2638 && t6.Alignment() <= t1.Alignment() 2639 && registerizable(b, t2) 2640 && registerizable(b, t3) 2641 && registerizable(b, t4) 2642 && registerizable(b, t5) 2643 && n >= o2 + t2.Size() 2644 && n >= o3 + t3.Size() 2645 && n >= o4 + t4.Size() 2646 && n >= o5 + t5.Size() 2647 => (Store {t2} (OffPtr <tt2> [o2] dst) d1 2648 (Store {t3} (OffPtr <tt3> [o3] dst) d2 2649 (Store {t4} (OffPtr <tt4> [o4] dst) d3 2650 (Store {t5} (OffPtr <tt5> [o5] dst) d4 2651 (Zero {t1} [n] dst mem))))) 2652 2653(SelectN [0] call:(StaticLECall {sym} a x)) && needRaceCleanup(sym, call) && clobber(call) => x 2654(SelectN [0] call:(StaticLECall {sym} x)) && needRaceCleanup(sym, call) && clobber(call) => x 2655 2656// When rewriting append to growslice, we use as the new length the result of 2657// growslice so that we don't have to spill/restore the new length around the growslice call. 2658// The exception here is that if the new length is a constant, avoiding spilling it 2659// is pointless and its constantness is sometimes useful for subsequent optimizations. 2660// See issue 56440. 2661// Note there are 2 rules here, one for the pre-decomposed []T result and one for 2662// the post-decomposed (*T,int,int) result. (The latter is generated after call expansion.) 2663(SliceLen (SelectN [0] (StaticLECall {sym} _ newLen:(Const(64|32)) _ _ _ _))) && isSameCall(sym, "runtime.growslice") => newLen 2664(SelectN [1] (StaticCall {sym} _ newLen:(Const(64|32)) _ _ _ _)) && v.Type.IsInteger() && isSameCall(sym, "runtime.growslice") => newLen 2665 2666// Collapse moving A -> B -> C into just A -> C. 2667// Later passes (deadstore, elim unread auto) will remove the A -> B move, if possible. 2668// This happens most commonly when B is an autotmp inserted earlier 2669// during compilation to ensure correctness. 2670// Take care that overlapping moves are preserved. 2671// Restrict this optimization to the stack, to avoid duplicating loads from the heap; 2672// see CL 145208 for discussion. 2673(Move {t1} [s] dst tmp1 midmem:(Move {t2} [s] tmp2 src _)) 2674 && t1.Compare(t2) == types.CMPeq 2675 && isSamePtr(tmp1, tmp2) 2676 && isStackPtr(src) && !isVolatile(src) 2677 && disjoint(src, s, tmp2, s) 2678 && (disjoint(src, s, dst, s) || isInlinableMemmove(dst, src, s, config)) 2679 => (Move {t1} [s] dst src midmem) 2680 2681// Same, but for large types that require VarDefs. 2682(Move {t1} [s] dst tmp1 midmem:(VarDef (Move {t2} [s] tmp2 src _))) 2683 && t1.Compare(t2) == types.CMPeq 2684 && isSamePtr(tmp1, tmp2) 2685 && isStackPtr(src) && !isVolatile(src) 2686 && disjoint(src, s, tmp2, s) 2687 && (disjoint(src, s, dst, s) || isInlinableMemmove(dst, src, s, config)) 2688 => (Move {t1} [s] dst src midmem) 2689 2690// Don't zero the same bits twice. 2691(Zero {t} [s] dst1 zero:(Zero {t} [s] dst2 _)) && isSamePtr(dst1, dst2) => zero 2692(Zero {t} [s] dst1 vardef:(VarDef (Zero {t} [s] dst2 _))) && isSamePtr(dst1, dst2) => vardef 2693 2694// Elide self-moves. This only happens rarely (e.g test/fixedbugs/bug277.go). 2695// However, this rule is needed to prevent the previous rule from looping forever in such cases. 2696(Move dst src mem) && isSamePtr(dst, src) => mem 2697 2698// Constant rotate detection. 2699((Add64|Or64|Xor64) (Lsh64x64 x z:(Const64 <t> [c])) (Rsh64Ux64 x (Const64 [d]))) && c < 64 && d == 64-c && canRotate(config, 64) => (RotateLeft64 x z) 2700((Add32|Or32|Xor32) (Lsh32x64 x z:(Const64 <t> [c])) (Rsh32Ux64 x (Const64 [d]))) && c < 32 && d == 32-c && canRotate(config, 32) => (RotateLeft32 x z) 2701((Add16|Or16|Xor16) (Lsh16x64 x z:(Const64 <t> [c])) (Rsh16Ux64 x (Const64 [d]))) && c < 16 && d == 16-c && canRotate(config, 16) => (RotateLeft16 x z) 2702((Add8|Or8|Xor8) (Lsh8x64 x z:(Const64 <t> [c])) (Rsh8Ux64 x (Const64 [d]))) && c < 8 && d == 8-c && canRotate(config, 8) => (RotateLeft8 x z) 2703 2704// Non-constant rotate detection. 2705// We use shiftIsBounded to make sure that neither of the shifts are >64. 2706// Note: these rules are subtle when the shift amounts are 0/64, as Go shifts 2707// are different from most native shifts. But it works out. 2708((Add64|Or64|Xor64) left:(Lsh64x64 x y) right:(Rsh64Ux64 x (Sub64 (Const64 [64]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 64) => (RotateLeft64 x y) 2709((Add64|Or64|Xor64) left:(Lsh64x32 x y) right:(Rsh64Ux32 x (Sub32 (Const32 [64]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 64) => (RotateLeft64 x y) 2710((Add64|Or64|Xor64) left:(Lsh64x16 x y) right:(Rsh64Ux16 x (Sub16 (Const16 [64]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 64) => (RotateLeft64 x y) 2711((Add64|Or64|Xor64) left:(Lsh64x8 x y) right:(Rsh64Ux8 x (Sub8 (Const8 [64]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 64) => (RotateLeft64 x y) 2712 2713((Add64|Or64|Xor64) right:(Rsh64Ux64 x y) left:(Lsh64x64 x z:(Sub64 (Const64 [64]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 64) => (RotateLeft64 x z) 2714((Add64|Or64|Xor64) right:(Rsh64Ux32 x y) left:(Lsh64x32 x z:(Sub32 (Const32 [64]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 64) => (RotateLeft64 x z) 2715((Add64|Or64|Xor64) right:(Rsh64Ux16 x y) left:(Lsh64x16 x z:(Sub16 (Const16 [64]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 64) => (RotateLeft64 x z) 2716((Add64|Or64|Xor64) right:(Rsh64Ux8 x y) left:(Lsh64x8 x z:(Sub8 (Const8 [64]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 64) => (RotateLeft64 x z) 2717 2718((Add32|Or32|Xor32) left:(Lsh32x64 x y) right:(Rsh32Ux64 x (Sub64 (Const64 [32]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 32) => (RotateLeft32 x y) 2719((Add32|Or32|Xor32) left:(Lsh32x32 x y) right:(Rsh32Ux32 x (Sub32 (Const32 [32]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 32) => (RotateLeft32 x y) 2720((Add32|Or32|Xor32) left:(Lsh32x16 x y) right:(Rsh32Ux16 x (Sub16 (Const16 [32]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 32) => (RotateLeft32 x y) 2721((Add32|Or32|Xor32) left:(Lsh32x8 x y) right:(Rsh32Ux8 x (Sub8 (Const8 [32]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 32) => (RotateLeft32 x y) 2722 2723((Add32|Or32|Xor32) right:(Rsh32Ux64 x y) left:(Lsh32x64 x z:(Sub64 (Const64 [32]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 32) => (RotateLeft32 x z) 2724((Add32|Or32|Xor32) right:(Rsh32Ux32 x y) left:(Lsh32x32 x z:(Sub32 (Const32 [32]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 32) => (RotateLeft32 x z) 2725((Add32|Or32|Xor32) right:(Rsh32Ux16 x y) left:(Lsh32x16 x z:(Sub16 (Const16 [32]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 32) => (RotateLeft32 x z) 2726((Add32|Or32|Xor32) right:(Rsh32Ux8 x y) left:(Lsh32x8 x z:(Sub8 (Const8 [32]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 32) => (RotateLeft32 x z) 2727 2728((Add16|Or16|Xor16) left:(Lsh16x64 x y) right:(Rsh16Ux64 x (Sub64 (Const64 [16]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 16) => (RotateLeft16 x y) 2729((Add16|Or16|Xor16) left:(Lsh16x32 x y) right:(Rsh16Ux32 x (Sub32 (Const32 [16]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 16) => (RotateLeft16 x y) 2730((Add16|Or16|Xor16) left:(Lsh16x16 x y) right:(Rsh16Ux16 x (Sub16 (Const16 [16]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 16) => (RotateLeft16 x y) 2731((Add16|Or16|Xor16) left:(Lsh16x8 x y) right:(Rsh16Ux8 x (Sub8 (Const8 [16]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 16) => (RotateLeft16 x y) 2732 2733((Add16|Or16|Xor16) right:(Rsh16Ux64 x y) left:(Lsh16x64 x z:(Sub64 (Const64 [16]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 16) => (RotateLeft16 x z) 2734((Add16|Or16|Xor16) right:(Rsh16Ux32 x y) left:(Lsh16x32 x z:(Sub32 (Const32 [16]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 16) => (RotateLeft16 x z) 2735((Add16|Or16|Xor16) right:(Rsh16Ux16 x y) left:(Lsh16x16 x z:(Sub16 (Const16 [16]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 16) => (RotateLeft16 x z) 2736((Add16|Or16|Xor16) right:(Rsh16Ux8 x y) left:(Lsh16x8 x z:(Sub8 (Const8 [16]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 16) => (RotateLeft16 x z) 2737 2738((Add8|Or8|Xor8) left:(Lsh8x64 x y) right:(Rsh8Ux64 x (Sub64 (Const64 [8]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 8) => (RotateLeft8 x y) 2739((Add8|Or8|Xor8) left:(Lsh8x32 x y) right:(Rsh8Ux32 x (Sub32 (Const32 [8]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 8) => (RotateLeft8 x y) 2740((Add8|Or8|Xor8) left:(Lsh8x16 x y) right:(Rsh8Ux16 x (Sub16 (Const16 [8]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 8) => (RotateLeft8 x y) 2741((Add8|Or8|Xor8) left:(Lsh8x8 x y) right:(Rsh8Ux8 x (Sub8 (Const8 [8]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 8) => (RotateLeft8 x y) 2742 2743((Add8|Or8|Xor8) right:(Rsh8Ux64 x y) left:(Lsh8x64 x z:(Sub64 (Const64 [8]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 8) => (RotateLeft8 x z) 2744((Add8|Or8|Xor8) right:(Rsh8Ux32 x y) left:(Lsh8x32 x z:(Sub32 (Const32 [8]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 8) => (RotateLeft8 x z) 2745((Add8|Or8|Xor8) right:(Rsh8Ux16 x y) left:(Lsh8x16 x z:(Sub16 (Const16 [8]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 8) => (RotateLeft8 x z) 2746((Add8|Or8|Xor8) right:(Rsh8Ux8 x y) left:(Lsh8x8 x z:(Sub8 (Const8 [8]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 8) => (RotateLeft8 x z) 2747 2748// Rotating by y&c, with c a mask that doesn't change the bottom bits, is the same as rotating by y. 2749(RotateLeft64 x (And(64|32|16|8) y (Const(64|32|16|8) [c]))) && c&63 == 63 => (RotateLeft64 x y) 2750(RotateLeft32 x (And(64|32|16|8) y (Const(64|32|16|8) [c]))) && c&31 == 31 => (RotateLeft32 x y) 2751(RotateLeft16 x (And(64|32|16|8) y (Const(64|32|16|8) [c]))) && c&15 == 15 => (RotateLeft16 x y) 2752(RotateLeft8 x (And(64|32|16|8) y (Const(64|32|16|8) [c]))) && c&7 == 7 => (RotateLeft8 x y) 2753 2754// Rotating by -(y&c), with c a mask that doesn't change the bottom bits, is the same as rotating by -y. 2755(RotateLeft64 x (Neg(64|32|16|8) (And(64|32|16|8) y (Const(64|32|16|8) [c])))) && c&63 == 63 => (RotateLeft64 x (Neg(64|32|16|8) <y.Type> y)) 2756(RotateLeft32 x (Neg(64|32|16|8) (And(64|32|16|8) y (Const(64|32|16|8) [c])))) && c&31 == 31 => (RotateLeft32 x (Neg(64|32|16|8) <y.Type> y)) 2757(RotateLeft16 x (Neg(64|32|16|8) (And(64|32|16|8) y (Const(64|32|16|8) [c])))) && c&15 == 15 => (RotateLeft16 x (Neg(64|32|16|8) <y.Type> y)) 2758(RotateLeft8 x (Neg(64|32|16|8) (And(64|32|16|8) y (Const(64|32|16|8) [c])))) && c&7 == 7 => (RotateLeft8 x (Neg(64|32|16|8) <y.Type> y)) 2759 2760// Rotating by y+c, with c a multiple of the value width, is the same as rotating by y. 2761(RotateLeft64 x (Add(64|32|16|8) y (Const(64|32|16|8) [c]))) && c&63 == 0 => (RotateLeft64 x y) 2762(RotateLeft32 x (Add(64|32|16|8) y (Const(64|32|16|8) [c]))) && c&31 == 0 => (RotateLeft32 x y) 2763(RotateLeft16 x (Add(64|32|16|8) y (Const(64|32|16|8) [c]))) && c&15 == 0 => (RotateLeft16 x y) 2764(RotateLeft8 x (Add(64|32|16|8) y (Const(64|32|16|8) [c]))) && c&7 == 0 => (RotateLeft8 x y) 2765 2766// Rotating by c-y, with c a multiple of the value width, is the same as rotating by -y. 2767(RotateLeft64 x (Sub(64|32|16|8) (Const(64|32|16|8) [c]) y)) && c&63 == 0 => (RotateLeft64 x (Neg(64|32|16|8) <y.Type> y)) 2768(RotateLeft32 x (Sub(64|32|16|8) (Const(64|32|16|8) [c]) y)) && c&31 == 0 => (RotateLeft32 x (Neg(64|32|16|8) <y.Type> y)) 2769(RotateLeft16 x (Sub(64|32|16|8) (Const(64|32|16|8) [c]) y)) && c&15 == 0 => (RotateLeft16 x (Neg(64|32|16|8) <y.Type> y)) 2770(RotateLeft8 x (Sub(64|32|16|8) (Const(64|32|16|8) [c]) y)) && c&7 == 0 => (RotateLeft8 x (Neg(64|32|16|8) <y.Type> y)) 2771 2772// Ensure we don't do Const64 rotates in a 32-bit system. 2773(RotateLeft64 x (Const64 <t> [c])) && config.PtrSize == 4 => (RotateLeft64 x (Const32 <t> [int32(c)])) 2774(RotateLeft32 x (Const64 <t> [c])) && config.PtrSize == 4 => (RotateLeft32 x (Const32 <t> [int32(c)])) 2775(RotateLeft16 x (Const64 <t> [c])) && config.PtrSize == 4 => (RotateLeft16 x (Const32 <t> [int32(c)])) 2776(RotateLeft8 x (Const64 <t> [c])) && config.PtrSize == 4 => (RotateLeft8 x (Const32 <t> [int32(c)])) 2777 2778// Rotating by c, then by d, is the same as rotating by c+d. 2779// We're trading a rotate for an add, which seems generally a good choice. It is especially good when c and d are constants. 2780// This rule is a bit tricky as c and d might be different widths. We handle only cases where they are the same width. 2781(RotateLeft(64|32|16|8) (RotateLeft(64|32|16|8) x c) d) && c.Type.Size() == 8 && d.Type.Size() == 8 => (RotateLeft(64|32|16|8) x (Add64 <c.Type> c d)) 2782(RotateLeft(64|32|16|8) (RotateLeft(64|32|16|8) x c) d) && c.Type.Size() == 4 && d.Type.Size() == 4 => (RotateLeft(64|32|16|8) x (Add32 <c.Type> c d)) 2783(RotateLeft(64|32|16|8) (RotateLeft(64|32|16|8) x c) d) && c.Type.Size() == 2 && d.Type.Size() == 2 => (RotateLeft(64|32|16|8) x (Add16 <c.Type> c d)) 2784(RotateLeft(64|32|16|8) (RotateLeft(64|32|16|8) x c) d) && c.Type.Size() == 1 && d.Type.Size() == 1 => (RotateLeft(64|32|16|8) x (Add8 <c.Type> c d)) 2785 2786// Loading constant values from dictionaries and itabs. 2787(Load <t> (OffPtr [off] (Addr {s} sb) ) _) && t.IsUintptr() && isFixedSym(s, off) => (Addr {fixedSym(b.Func, s, off)} sb) 2788(Load <t> (OffPtr [off] (Convert (Addr {s} sb) _) ) _) && t.IsUintptr() && isFixedSym(s, off) => (Addr {fixedSym(b.Func, s, off)} sb) 2789(Load <t> (OffPtr [off] (ITab (IMake (Addr {s} sb) _))) _) && t.IsUintptr() && isFixedSym(s, off) => (Addr {fixedSym(b.Func, s, off)} sb) 2790(Load <t> (OffPtr [off] (ITab (IMake (Convert (Addr {s} sb) _) _))) _) && t.IsUintptr() && isFixedSym(s, off) => (Addr {fixedSym(b.Func, s, off)} sb) 2791 2792// Loading constant values from runtime._type.hash. 2793(Load <t> (OffPtr [off] (Addr {sym} _) ) _) && t.IsInteger() && t.Size() == 4 && isFixed32(config, sym, off) => (Const32 [fixed32(config, sym, off)]) 2794(Load <t> (OffPtr [off] (Convert (Addr {sym} _) _) ) _) && t.IsInteger() && t.Size() == 4 && isFixed32(config, sym, off) => (Const32 [fixed32(config, sym, off)]) 2795(Load <t> (OffPtr [off] (ITab (IMake (Addr {sym} _) _))) _) && t.IsInteger() && t.Size() == 4 && isFixed32(config, sym, off) => (Const32 [fixed32(config, sym, off)]) 2796(Load <t> (OffPtr [off] (ITab (IMake (Convert (Addr {sym} _) _) _))) _) && t.IsInteger() && t.Size() == 4 && isFixed32(config, sym, off) => (Const32 [fixed32(config, sym, off)]) 2797 2798// Calling cmpstring a second time with the same arguments in the 2799// same memory state can reuse the results of the first call. 2800// See issue 61725. 2801// Note that this could pretty easily generalize to any pure function. 2802(SelectN [0] (StaticLECall {f} x y (SelectN [1] c:(StaticLECall {g} x y mem)))) 2803 && isSameCall(f, "runtime.cmpstring") 2804 && isSameCall(g, "runtime.cmpstring") 2805=> @c.Block (SelectN [0] <typ.Int> c) 2806 2807// If we don't use the result of cmpstring, might as well not call it. 2808// Note that this could pretty easily generalize to any pure function. 2809(SelectN [1] c:(StaticLECall {f} _ _ mem)) && c.Uses == 1 && isSameCall(f, "runtime.cmpstring") && clobber(c) => mem 2810