xref: /aosp_15_r20/external/mesa3d/src/amd/compiler/aco_live_var_analysis.cpp (revision 6104692788411f58d303aa86923a9ff6ecaded22)
1 /*
2  * Copyright © 2018 Valve Corporation
3  * Copyright © 2018 Google
4  *
5  * SPDX-License-Identifier: MIT
6  */
7 
8 #include "aco_ir.h"
9 
10 namespace aco {
11 
12 RegisterDemand
get_live_changes(Instruction * instr)13 get_live_changes(Instruction* instr)
14 {
15    RegisterDemand changes;
16    for (const Definition& def : instr->definitions) {
17       if (!def.isTemp() || def.isKill())
18          continue;
19       changes += def.getTemp();
20    }
21 
22    for (const Operand& op : instr->operands) {
23       if (!op.isTemp() || !op.isFirstKill())
24          continue;
25       changes -= op.getTemp();
26    }
27 
28    return changes;
29 }
30 
31 RegisterDemand
get_temp_registers(Instruction * instr)32 get_temp_registers(Instruction* instr)
33 {
34    RegisterDemand demand_before;
35    RegisterDemand demand_after;
36 
37    for (Definition def : instr->definitions) {
38       if (def.isKill())
39          demand_after += def.getTemp();
40       else if (def.isTemp())
41          demand_before -= def.getTemp();
42    }
43 
44    for (Operand op : instr->operands) {
45       if (op.isFirstKill() || op.isCopyKill()) {
46          demand_before += op.getTemp();
47          if (op.isLateKill())
48             demand_after += op.getTemp();
49       } else if (op.isClobbered() && !op.isKill()) {
50          demand_before += op.getTemp();
51       }
52    }
53 
54    demand_after.update(demand_before);
55    return demand_after;
56 }
57 
58 namespace {
59 
60 struct live_ctx {
61    monotonic_buffer_resource m;
62    Program* program;
63    int32_t worklist;
64    uint32_t handled_once;
65 };
66 
67 bool
instr_needs_vcc(Instruction * instr)68 instr_needs_vcc(Instruction* instr)
69 {
70    if (instr->isVOPC())
71       return true;
72    if (instr->isVOP2() && !instr->isVOP3()) {
73       if (instr->operands.size() == 3 && instr->operands[2].isTemp() &&
74           instr->operands[2].regClass().type() == RegType::sgpr)
75          return true;
76       if (instr->definitions.size() == 2)
77          return true;
78    }
79    return false;
80 }
81 
82 IDSet
compute_live_out(live_ctx & ctx,Block * block)83 compute_live_out(live_ctx& ctx, Block* block)
84 {
85    IDSet live(ctx.m);
86 
87    if (block->logical_succs.empty()) {
88       /* Linear blocks:
89        * Directly insert the successor if it is a linear block as well.
90        */
91       for (unsigned succ : block->linear_succs) {
92          if (ctx.program->blocks[succ].logical_preds.empty()) {
93             live.insert(ctx.program->live.live_in[succ]);
94          } else {
95             for (unsigned t : ctx.program->live.live_in[succ]) {
96                if (ctx.program->temp_rc[t].is_linear())
97                   live.insert(t);
98             }
99          }
100       }
101    } else {
102       /* Logical blocks:
103        * Linear successors are either linear blocks or logical targets.
104        */
105       live = IDSet(ctx.program->live.live_in[block->linear_succs[0]], ctx.m);
106       if (block->linear_succs.size() == 2)
107          live.insert(ctx.program->live.live_in[block->linear_succs[1]]);
108 
109       /* At most one logical target needs a separate insertion. */
110       if (block->logical_succs.back() != block->linear_succs.back()) {
111          for (unsigned t : ctx.program->live.live_in[block->logical_succs.back()]) {
112             if (!ctx.program->temp_rc[t].is_linear())
113                live.insert(t);
114          }
115       } else {
116          assert(block->logical_succs[0] == block->linear_succs[0]);
117       }
118    }
119 
120    /* Handle phi operands */
121    if (block->linear_succs.size() == 1 && block->linear_succs[0] >= ctx.handled_once) {
122       Block& succ = ctx.program->blocks[block->linear_succs[0]];
123       auto it = std::find(succ.linear_preds.begin(), succ.linear_preds.end(), block->index);
124       unsigned op_idx = std::distance(succ.linear_preds.begin(), it);
125       for (aco_ptr<Instruction>& phi : succ.instructions) {
126          if (!is_phi(phi))
127             break;
128          if (phi->opcode == aco_opcode::p_phi || phi->definitions[0].isKill())
129             continue;
130          if (phi->operands[op_idx].isTemp())
131             live.insert(phi->operands[op_idx].tempId());
132       }
133    }
134    if (block->logical_succs.size() == 1 && block->logical_succs[0] >= ctx.handled_once) {
135       Block& succ = ctx.program->blocks[block->logical_succs[0]];
136       auto it = std::find(succ.logical_preds.begin(), succ.logical_preds.end(), block->index);
137       unsigned op_idx = std::distance(succ.logical_preds.begin(), it);
138       for (aco_ptr<Instruction>& phi : succ.instructions) {
139          if (!is_phi(phi))
140             break;
141          if (phi->opcode == aco_opcode::p_linear_phi || phi->definitions[0].isKill())
142             continue;
143          if (phi->operands[op_idx].isTemp())
144             live.insert(phi->operands[op_idx].tempId());
145       }
146    }
147 
148    return live;
149 }
150 
151 void
process_live_temps_per_block(live_ctx & ctx,Block * block)152 process_live_temps_per_block(live_ctx& ctx, Block* block)
153 {
154    RegisterDemand new_demand;
155    block->register_demand = RegisterDemand();
156    IDSet live = compute_live_out(ctx, block);
157 
158    /* initialize register demand */
159    for (unsigned t : live)
160       new_demand += Temp(t, ctx.program->temp_rc[t]);
161 
162    /* traverse the instructions backwards */
163    int idx;
164    for (idx = block->instructions.size() - 1; idx >= 0; idx--) {
165       Instruction* insn = block->instructions[idx].get();
166       if (is_phi(insn))
167          break;
168 
169       ctx.program->needs_vcc |= instr_needs_vcc(insn);
170       insn->register_demand = RegisterDemand(new_demand.vgpr, new_demand.sgpr);
171 
172       bool has_vgpr_def = false;
173 
174       /* KILL */
175       for (Definition& definition : insn->definitions) {
176          has_vgpr_def |= definition.regClass().type() == RegType::vgpr &&
177                          !definition.regClass().is_linear_vgpr();
178 
179          if (!definition.isTemp()) {
180             continue;
181          }
182          if (definition.isFixed() && definition.physReg() == vcc)
183             ctx.program->needs_vcc = true;
184 
185          const Temp temp = definition.getTemp();
186          const size_t n = live.erase(temp.id());
187 
188          if (n) {
189             new_demand -= temp;
190             definition.setKill(false);
191          } else {
192             insn->register_demand += temp;
193             definition.setKill(true);
194          }
195       }
196 
197       if (ctx.program->gfx_level >= GFX10 && insn->isVALU() &&
198           insn->definitions.back().regClass() == s2) {
199          /* RDNA2 ISA doc, 6.2.4. Wave64 Destination Restrictions:
200           * The first pass of a wave64 VALU instruction may not overwrite a scalar value used by
201           * the second half.
202           */
203          bool carry_in = insn->opcode == aco_opcode::v_addc_co_u32 ||
204                          insn->opcode == aco_opcode::v_subb_co_u32 ||
205                          insn->opcode == aco_opcode::v_subbrev_co_u32;
206          for (unsigned op_idx = 0; op_idx < (carry_in ? 2 : insn->operands.size()); op_idx++) {
207             if (insn->operands[op_idx].isOfType(RegType::sgpr))
208                insn->operands[op_idx].setLateKill(true);
209          }
210       } else if (insn->opcode == aco_opcode::p_bpermute_readlane ||
211                  insn->opcode == aco_opcode::p_bpermute_permlane ||
212                  insn->opcode == aco_opcode::p_bpermute_shared_vgpr ||
213                  insn->opcode == aco_opcode::p_dual_src_export_gfx11 ||
214                  insn->opcode == aco_opcode::v_mqsad_u32_u8) {
215          for (Operand& op : insn->operands)
216             op.setLateKill(true);
217       } else if (insn->opcode == aco_opcode::p_interp_gfx11 && insn->operands.size() == 7) {
218          insn->operands[5].setLateKill(true); /* we re-use the destination reg in the middle */
219       } else if (insn->opcode == aco_opcode::v_interp_p1_f32 && ctx.program->dev.has_16bank_lds) {
220          insn->operands[0].setLateKill(true);
221       } else if (insn->opcode == aco_opcode::p_init_scratch) {
222          insn->operands.back().setLateKill(true);
223       } else if (instr_info.classes[(int)insn->opcode] == instr_class::wmma) {
224          insn->operands[0].setLateKill(true);
225          insn->operands[1].setLateKill(true);
226       }
227 
228       /* Check if a definition clobbers some operand */
229       int op_idx = get_op_fixed_to_def(insn);
230       if (op_idx != -1)
231          insn->operands[op_idx].setClobbered(true);
232 
233       /* we need to do this in a separate loop because the next one can
234        * setKill() for several operands at once and we don't want to
235        * overwrite that in a later iteration */
236       for (Operand& op : insn->operands) {
237          op.setKill(false);
238          /* Linear vgprs must be late kill: this is to ensure linear VGPR operands and
239           * normal VGPR definitions don't try to use the same register, which is problematic
240           * because of assignment restrictions.
241           */
242          if (op.hasRegClass() && op.regClass().is_linear_vgpr() && !op.isUndefined() &&
243              has_vgpr_def)
244             op.setLateKill(true);
245       }
246 
247       /* GEN */
248       RegisterDemand operand_demand;
249       for (unsigned i = 0; i < insn->operands.size(); ++i) {
250          Operand& operand = insn->operands[i];
251          if (!operand.isTemp())
252             continue;
253 
254          const Temp temp = operand.getTemp();
255          if (operand.isFixed() && ctx.program->progress < CompilationProgress::after_ra) {
256             assert(!operand.isLateKill());
257             ctx.program->needs_vcc |= operand.physReg() == vcc;
258 
259             /* Check if this operand gets overwritten by a precolored definition. */
260             if (std::any_of(insn->definitions.begin(), insn->definitions.end(),
261                             [=](Definition def)
262                             {
263                                return def.isFixed() &&
264                                       def.physReg() + def.size() > operand.physReg() &&
265                                       operand.physReg() + operand.size() > def.physReg();
266                             }))
267                operand.setClobbered(true);
268 
269             /* Check if this temp is fixed to a different register as well.
270              * This assumes that operands of one instruction are not precolored twice to
271              * the same register. In this case, register pressure might be overestimated.
272              */
273             for (unsigned j = i + 1; !operand.isCopyKill() && j < insn->operands.size(); ++j) {
274                if (insn->operands[j].isTemp() && insn->operands[j].getTemp() == temp &&
275                    insn->operands[j].isFixed()) {
276                   operand_demand += temp;
277                   insn->operands[j].setCopyKill(true);
278                }
279             }
280          }
281 
282          if (operand.isKill())
283             continue;
284 
285          if (live.insert(temp.id()).second) {
286             operand.setFirstKill(true);
287             for (unsigned j = i + 1; j < insn->operands.size(); ++j) {
288                if (insn->operands[j].isTemp() && insn->operands[j].getTemp() == temp)
289                   insn->operands[j].setKill(true);
290             }
291             if (operand.isLateKill())
292                insn->register_demand += temp;
293             new_demand += temp;
294          } else if (operand.isClobbered()) {
295             operand_demand += temp;
296          }
297       }
298 
299       operand_demand += new_demand;
300       insn->register_demand.update(operand_demand);
301       block->register_demand.update(insn->register_demand);
302    }
303 
304    /* handle phi definitions */
305    for (int phi_idx = 0; phi_idx <= idx; phi_idx++) {
306       Instruction* insn = block->instructions[phi_idx].get();
307       insn->register_demand = new_demand;
308 
309       assert(is_phi(insn) && insn->definitions.size() == 1);
310       if (!insn->definitions[0].isTemp()) {
311          assert(insn->definitions[0].isFixed() && insn->definitions[0].physReg() == exec);
312          continue;
313       }
314       Definition& definition = insn->definitions[0];
315       if (definition.isFixed() && definition.physReg() == vcc)
316          ctx.program->needs_vcc = true;
317       const size_t n = live.erase(definition.tempId());
318       if (n && (definition.isKill() || ctx.handled_once > block->index)) {
319          Block::edge_vec& preds =
320             insn->opcode == aco_opcode::p_phi ? block->logical_preds : block->linear_preds;
321          for (unsigned i = 0; i < preds.size(); i++) {
322             if (insn->operands[i].isTemp())
323                ctx.worklist = std::max<int>(ctx.worklist, preds[i]);
324          }
325       }
326       definition.setKill(!n);
327    }
328 
329    /* handle phi operands */
330    for (int phi_idx = 0; phi_idx <= idx; phi_idx++) {
331       Instruction* insn = block->instructions[phi_idx].get();
332       assert(is_phi(insn));
333       /* Ignore dead phis. */
334       if (insn->definitions[0].isKill())
335          continue;
336       for (Operand& operand : insn->operands) {
337          if (!operand.isTemp())
338             continue;
339          if (operand.isFixed() && operand.physReg() == vcc)
340             ctx.program->needs_vcc = true;
341 
342          /* set if the operand is killed by this (or another) phi instruction */
343          operand.setKill(!live.count(operand.tempId()));
344       }
345    }
346 
347    if (ctx.program->live.live_in[block->index].insert(live)) {
348       if (block->linear_preds.size()) {
349          assert(block->logical_preds.empty() ||
350                 block->logical_preds.back() <= block->linear_preds.back());
351          ctx.worklist = std::max<int>(ctx.worklist, block->linear_preds.back());
352       } else {
353          ASSERTED bool is_valid = validate_ir(ctx.program);
354          assert(!is_valid);
355       }
356    }
357 
358    block->live_in_demand = new_demand;
359    block->live_in_demand.sgpr += 2; /* Add 2 SGPRs for potential long-jumps. */
360    block->register_demand.update(block->live_in_demand);
361    ctx.program->max_reg_demand.update(block->register_demand);
362    ctx.handled_once = std::min(ctx.handled_once, block->index);
363 
364    assert(!block->linear_preds.empty() || (new_demand == RegisterDemand() && live.empty()));
365 }
366 
367 unsigned
calc_waves_per_workgroup(Program * program)368 calc_waves_per_workgroup(Program* program)
369 {
370    /* When workgroup size is not known, just go with wave_size */
371    unsigned workgroup_size =
372       program->workgroup_size == UINT_MAX ? program->wave_size : program->workgroup_size;
373 
374    return align(workgroup_size, program->wave_size) / program->wave_size;
375 }
376 } /* end namespace */
377 
378 bool
uses_scratch(Program * program)379 uses_scratch(Program* program)
380 {
381    /* RT uses scratch but we don't yet know how much. */
382    return program->config->scratch_bytes_per_wave || program->stage == raytracing_cs;
383 }
384 
385 uint16_t
get_extra_sgprs(Program * program)386 get_extra_sgprs(Program* program)
387 {
388    /* We don't use this register on GFX6-8 and it's removed on GFX10+. */
389    bool needs_flat_scr = uses_scratch(program) && program->gfx_level == GFX9;
390 
391    if (program->gfx_level >= GFX10) {
392       assert(!program->dev.xnack_enabled);
393       return 0;
394    } else if (program->gfx_level >= GFX8) {
395       if (needs_flat_scr)
396          return 6;
397       else if (program->dev.xnack_enabled)
398          return 4;
399       else if (program->needs_vcc)
400          return 2;
401       else
402          return 0;
403    } else {
404       assert(!program->dev.xnack_enabled);
405       if (needs_flat_scr)
406          return 4;
407       else if (program->needs_vcc)
408          return 2;
409       else
410          return 0;
411    }
412 }
413 
414 uint16_t
get_sgpr_alloc(Program * program,uint16_t addressable_sgprs)415 get_sgpr_alloc(Program* program, uint16_t addressable_sgprs)
416 {
417    uint16_t sgprs = addressable_sgprs + get_extra_sgprs(program);
418    uint16_t granule = program->dev.sgpr_alloc_granule;
419    return ALIGN_NPOT(std::max(sgprs, granule), granule);
420 }
421 
422 uint16_t
get_vgpr_alloc(Program * program,uint16_t addressable_vgprs)423 get_vgpr_alloc(Program* program, uint16_t addressable_vgprs)
424 {
425    assert(addressable_vgprs <= program->dev.vgpr_limit);
426    uint16_t granule = program->dev.vgpr_alloc_granule;
427    return ALIGN_NPOT(std::max(addressable_vgprs, granule), granule);
428 }
429 
430 unsigned
round_down(unsigned a,unsigned b)431 round_down(unsigned a, unsigned b)
432 {
433    return a - (a % b);
434 }
435 
436 uint16_t
get_addr_sgpr_from_waves(Program * program,uint16_t waves)437 get_addr_sgpr_from_waves(Program* program, uint16_t waves)
438 {
439    /* it's not possible to allocate more than 128 SGPRs */
440    uint16_t sgprs = std::min(program->dev.physical_sgprs / waves, 128);
441    sgprs = round_down(sgprs, program->dev.sgpr_alloc_granule);
442    sgprs -= get_extra_sgprs(program);
443    return std::min(sgprs, program->dev.sgpr_limit);
444 }
445 
446 uint16_t
get_addr_vgpr_from_waves(Program * program,uint16_t waves)447 get_addr_vgpr_from_waves(Program* program, uint16_t waves)
448 {
449    uint16_t vgprs = program->dev.physical_vgprs / waves;
450    vgprs = vgprs / program->dev.vgpr_alloc_granule * program->dev.vgpr_alloc_granule;
451    vgprs -= program->config->num_shared_vgprs / 2;
452    return std::min(vgprs, program->dev.vgpr_limit);
453 }
454 
455 void
calc_min_waves(Program * program)456 calc_min_waves(Program* program)
457 {
458    unsigned waves_per_workgroup = calc_waves_per_workgroup(program);
459    unsigned simd_per_cu_wgp = program->dev.simd_per_cu * (program->wgp_mode ? 2 : 1);
460    program->min_waves = DIV_ROUND_UP(waves_per_workgroup, simd_per_cu_wgp);
461 }
462 
463 uint16_t
max_suitable_waves(Program * program,uint16_t waves)464 max_suitable_waves(Program* program, uint16_t waves)
465 {
466    unsigned num_simd = program->dev.simd_per_cu * (program->wgp_mode ? 2 : 1);
467    unsigned waves_per_workgroup = calc_waves_per_workgroup(program);
468    unsigned num_workgroups = waves * num_simd / waves_per_workgroup;
469 
470    /* Adjust #workgroups for LDS */
471    unsigned lds_per_workgroup = align(program->config->lds_size * program->dev.lds_encoding_granule,
472                                       program->dev.lds_alloc_granule);
473 
474    if (program->stage == fragment_fs) {
475       /* PS inputs are moved from PC (parameter cache) to LDS before PS waves are launched.
476        * Each PS input occupies 3x vec4 of LDS space. See Figure 10.3 in GCN3 ISA manual.
477        * These limit occupancy the same way as other stages' LDS usage does.
478        */
479       unsigned lds_bytes_per_interp = 3 * 16;
480       unsigned lds_param_bytes = lds_bytes_per_interp * program->info.ps.num_interp;
481       lds_per_workgroup += align(lds_param_bytes, program->dev.lds_alloc_granule);
482    }
483    unsigned lds_limit = program->wgp_mode ? program->dev.lds_limit * 2 : program->dev.lds_limit;
484    if (lds_per_workgroup)
485       num_workgroups = std::min(num_workgroups, lds_limit / lds_per_workgroup);
486 
487    /* Hardware limitation */
488    if (waves_per_workgroup > 1)
489       num_workgroups = std::min(num_workgroups, program->wgp_mode ? 32u : 16u);
490 
491    /* Adjust #waves for workgroup multiples:
492     * In cases like waves_per_workgroup=3 or lds=65536 and
493     * waves_per_workgroup=1, we want the maximum possible number of waves per
494     * SIMD and not the minimum. so DIV_ROUND_UP is used
495     */
496    unsigned workgroup_waves = num_workgroups * waves_per_workgroup;
497    return DIV_ROUND_UP(workgroup_waves, num_simd);
498 }
499 
500 void
update_vgpr_sgpr_demand(Program * program,const RegisterDemand new_demand)501 update_vgpr_sgpr_demand(Program* program, const RegisterDemand new_demand)
502 {
503    assert(program->min_waves >= 1);
504    uint16_t sgpr_limit = get_addr_sgpr_from_waves(program, program->min_waves);
505    uint16_t vgpr_limit = get_addr_vgpr_from_waves(program, program->min_waves);
506 
507    /* this won't compile, register pressure reduction necessary */
508    if (new_demand.vgpr > vgpr_limit || new_demand.sgpr > sgpr_limit) {
509       program->num_waves = 0;
510       program->max_reg_demand = new_demand;
511    } else {
512       program->num_waves = program->dev.physical_sgprs / get_sgpr_alloc(program, new_demand.sgpr);
513       uint16_t vgpr_demand =
514          get_vgpr_alloc(program, new_demand.vgpr) + program->config->num_shared_vgprs / 2;
515       program->num_waves =
516          std::min<uint16_t>(program->num_waves, program->dev.physical_vgprs / vgpr_demand);
517       program->num_waves = std::min(program->num_waves, program->dev.max_waves_per_simd);
518 
519       /* Adjust for LDS and workgroup multiples and calculate max_reg_demand */
520       program->num_waves = max_suitable_waves(program, program->num_waves);
521       program->max_reg_demand.vgpr = get_addr_vgpr_from_waves(program, program->num_waves);
522       program->max_reg_demand.sgpr = get_addr_sgpr_from_waves(program, program->num_waves);
523    }
524 }
525 
526 void
live_var_analysis(Program * program)527 live_var_analysis(Program* program)
528 {
529    program->live.live_in.clear();
530    program->live.memory.release();
531    program->live.live_in.resize(program->blocks.size(), IDSet(program->live.memory));
532    program->max_reg_demand = RegisterDemand();
533    program->needs_vcc = program->gfx_level >= GFX10;
534 
535    live_ctx ctx;
536    ctx.program = program;
537    ctx.worklist = program->blocks.size() - 1;
538    ctx.handled_once = program->blocks.size();
539 
540    /* this implementation assumes that the block idx corresponds to the block's position in
541     * program->blocks vector */
542    while (ctx.worklist >= 0) {
543       process_live_temps_per_block(ctx, &program->blocks[ctx.worklist--]);
544    }
545 
546    /* calculate the program's register demand and number of waves */
547    if (program->progress < CompilationProgress::after_ra)
548       update_vgpr_sgpr_demand(program, program->max_reg_demand);
549 }
550 
551 } // namespace aco
552