1 /*
2 * Copyright (c) 2016, Alliance for Open Media. All rights reserved.
3 *
4 * This source code is subject to the terms of the BSD 2 Clause License and
5 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6 * was not distributed with this source code in the LICENSE file, you can
7 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8 * Media Patent License 1.0 was not distributed with this source code in the
9 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10 */
11
12 #include <immintrin.h>
13
14 #include "config/aom_dsp_rtcd.h"
15
16 #include "aom_dsp/x86/masked_variance_intrin_ssse3.h"
17 #include "aom_dsp/x86/synonyms.h"
18
mm256_add_hi_lo_epi16(const __m256i val)19 static inline __m128i mm256_add_hi_lo_epi16(const __m256i val) {
20 return _mm_add_epi16(_mm256_castsi256_si128(val),
21 _mm256_extractf128_si256(val, 1));
22 }
23
mm256_add_hi_lo_epi32(const __m256i val)24 static inline __m128i mm256_add_hi_lo_epi32(const __m256i val) {
25 return _mm_add_epi32(_mm256_castsi256_si128(val),
26 _mm256_extractf128_si256(val, 1));
27 }
28
variance_kernel_avx2(const __m256i src,const __m256i ref,__m256i * const sse,__m256i * const sum)29 static inline void variance_kernel_avx2(const __m256i src, const __m256i ref,
30 __m256i *const sse,
31 __m256i *const sum) {
32 const __m256i adj_sub = _mm256_set1_epi16((short)0xff01); // (1,-1)
33
34 // unpack into pairs of source and reference values
35 const __m256i src_ref0 = _mm256_unpacklo_epi8(src, ref);
36 const __m256i src_ref1 = _mm256_unpackhi_epi8(src, ref);
37
38 // subtract adjacent elements using src*1 + ref*-1
39 const __m256i diff0 = _mm256_maddubs_epi16(src_ref0, adj_sub);
40 const __m256i diff1 = _mm256_maddubs_epi16(src_ref1, adj_sub);
41 const __m256i madd0 = _mm256_madd_epi16(diff0, diff0);
42 const __m256i madd1 = _mm256_madd_epi16(diff1, diff1);
43
44 // add to the running totals
45 *sum = _mm256_add_epi16(*sum, _mm256_add_epi16(diff0, diff1));
46 *sse = _mm256_add_epi32(*sse, _mm256_add_epi32(madd0, madd1));
47 }
48
variance_final_from_32bit_sum_avx2(__m256i vsse,__m128i vsum,unsigned int * const sse)49 static inline int variance_final_from_32bit_sum_avx2(__m256i vsse, __m128i vsum,
50 unsigned int *const sse) {
51 // extract the low lane and add it to the high lane
52 const __m128i sse_reg_128 = mm256_add_hi_lo_epi32(vsse);
53
54 // unpack sse and sum registers and add
55 const __m128i sse_sum_lo = _mm_unpacklo_epi32(sse_reg_128, vsum);
56 const __m128i sse_sum_hi = _mm_unpackhi_epi32(sse_reg_128, vsum);
57 const __m128i sse_sum = _mm_add_epi32(sse_sum_lo, sse_sum_hi);
58
59 // perform the final summation and extract the results
60 const __m128i res = _mm_add_epi32(sse_sum, _mm_srli_si128(sse_sum, 8));
61 *((int *)sse) = _mm_cvtsi128_si32(res);
62 return _mm_extract_epi32(res, 1);
63 }
64
65 // handle pixels (<= 512)
variance_final_512_avx2(__m256i vsse,__m256i vsum,unsigned int * const sse)66 static inline int variance_final_512_avx2(__m256i vsse, __m256i vsum,
67 unsigned int *const sse) {
68 // extract the low lane and add it to the high lane
69 const __m128i vsum_128 = mm256_add_hi_lo_epi16(vsum);
70 const __m128i vsum_64 = _mm_add_epi16(vsum_128, _mm_srli_si128(vsum_128, 8));
71 const __m128i sum_int32 = _mm_cvtepi16_epi32(vsum_64);
72 return variance_final_from_32bit_sum_avx2(vsse, sum_int32, sse);
73 }
74
75 // handle 1024 pixels (32x32, 16x64, 64x16)
variance_final_1024_avx2(__m256i vsse,__m256i vsum,unsigned int * const sse)76 static inline int variance_final_1024_avx2(__m256i vsse, __m256i vsum,
77 unsigned int *const sse) {
78 // extract the low lane and add it to the high lane
79 const __m128i vsum_128 = mm256_add_hi_lo_epi16(vsum);
80 const __m128i vsum_64 =
81 _mm_add_epi32(_mm_cvtepi16_epi32(vsum_128),
82 _mm_cvtepi16_epi32(_mm_srli_si128(vsum_128, 8)));
83 return variance_final_from_32bit_sum_avx2(vsse, vsum_64, sse);
84 }
85
sum_to_32bit_avx2(const __m256i sum)86 static inline __m256i sum_to_32bit_avx2(const __m256i sum) {
87 const __m256i sum_lo = _mm256_cvtepi16_epi32(_mm256_castsi256_si128(sum));
88 const __m256i sum_hi =
89 _mm256_cvtepi16_epi32(_mm256_extractf128_si256(sum, 1));
90 return _mm256_add_epi32(sum_lo, sum_hi);
91 }
92
93 // handle 2048 pixels (32x64, 64x32)
variance_final_2048_avx2(__m256i vsse,__m256i vsum,unsigned int * const sse)94 static inline int variance_final_2048_avx2(__m256i vsse, __m256i vsum,
95 unsigned int *const sse) {
96 vsum = sum_to_32bit_avx2(vsum);
97 const __m128i vsum_128 = mm256_add_hi_lo_epi32(vsum);
98 return variance_final_from_32bit_sum_avx2(vsse, vsum_128, sse);
99 }
100
variance16_kernel_avx2(const uint8_t * const src,const int src_stride,const uint8_t * const ref,const int ref_stride,__m256i * const sse,__m256i * const sum)101 static inline void variance16_kernel_avx2(
102 const uint8_t *const src, const int src_stride, const uint8_t *const ref,
103 const int ref_stride, __m256i *const sse, __m256i *const sum) {
104 const __m128i s0 = _mm_loadu_si128((__m128i const *)(src + 0 * src_stride));
105 const __m128i s1 = _mm_loadu_si128((__m128i const *)(src + 1 * src_stride));
106 const __m128i r0 = _mm_loadu_si128((__m128i const *)(ref + 0 * ref_stride));
107 const __m128i r1 = _mm_loadu_si128((__m128i const *)(ref + 1 * ref_stride));
108 const __m256i s = _mm256_inserti128_si256(_mm256_castsi128_si256(s0), s1, 1);
109 const __m256i r = _mm256_inserti128_si256(_mm256_castsi128_si256(r0), r1, 1);
110 variance_kernel_avx2(s, r, sse, sum);
111 }
112
variance32_kernel_avx2(const uint8_t * const src,const uint8_t * const ref,__m256i * const sse,__m256i * const sum)113 static inline void variance32_kernel_avx2(const uint8_t *const src,
114 const uint8_t *const ref,
115 __m256i *const sse,
116 __m256i *const sum) {
117 const __m256i s = _mm256_loadu_si256((__m256i const *)(src));
118 const __m256i r = _mm256_loadu_si256((__m256i const *)(ref));
119 variance_kernel_avx2(s, r, sse, sum);
120 }
121
variance16_avx2(const uint8_t * src,const int src_stride,const uint8_t * ref,const int ref_stride,const int h,__m256i * const vsse,__m256i * const vsum)122 static inline void variance16_avx2(const uint8_t *src, const int src_stride,
123 const uint8_t *ref, const int ref_stride,
124 const int h, __m256i *const vsse,
125 __m256i *const vsum) {
126 *vsum = _mm256_setzero_si256();
127
128 for (int i = 0; i < h; i += 2) {
129 variance16_kernel_avx2(src, src_stride, ref, ref_stride, vsse, vsum);
130 src += 2 * src_stride;
131 ref += 2 * ref_stride;
132 }
133 }
134
variance32_avx2(const uint8_t * src,const int src_stride,const uint8_t * ref,const int ref_stride,const int h,__m256i * const vsse,__m256i * const vsum)135 static inline void variance32_avx2(const uint8_t *src, const int src_stride,
136 const uint8_t *ref, const int ref_stride,
137 const int h, __m256i *const vsse,
138 __m256i *const vsum) {
139 *vsum = _mm256_setzero_si256();
140
141 for (int i = 0; i < h; i++) {
142 variance32_kernel_avx2(src, ref, vsse, vsum);
143 src += src_stride;
144 ref += ref_stride;
145 }
146 }
147
variance64_avx2(const uint8_t * src,const int src_stride,const uint8_t * ref,const int ref_stride,const int h,__m256i * const vsse,__m256i * const vsum)148 static inline void variance64_avx2(const uint8_t *src, const int src_stride,
149 const uint8_t *ref, const int ref_stride,
150 const int h, __m256i *const vsse,
151 __m256i *const vsum) {
152 *vsum = _mm256_setzero_si256();
153
154 for (int i = 0; i < h; i++) {
155 variance32_kernel_avx2(src + 0, ref + 0, vsse, vsum);
156 variance32_kernel_avx2(src + 32, ref + 32, vsse, vsum);
157 src += src_stride;
158 ref += ref_stride;
159 }
160 }
161
variance128_avx2(const uint8_t * src,const int src_stride,const uint8_t * ref,const int ref_stride,const int h,__m256i * const vsse,__m256i * const vsum)162 static inline void variance128_avx2(const uint8_t *src, const int src_stride,
163 const uint8_t *ref, const int ref_stride,
164 const int h, __m256i *const vsse,
165 __m256i *const vsum) {
166 *vsum = _mm256_setzero_si256();
167
168 for (int i = 0; i < h; i++) {
169 variance32_kernel_avx2(src + 0, ref + 0, vsse, vsum);
170 variance32_kernel_avx2(src + 32, ref + 32, vsse, vsum);
171 variance32_kernel_avx2(src + 64, ref + 64, vsse, vsum);
172 variance32_kernel_avx2(src + 96, ref + 96, vsse, vsum);
173 src += src_stride;
174 ref += ref_stride;
175 }
176 }
177
178 #define AOM_VAR_NO_LOOP_AVX2(bw, bh, bits, max_pixel) \
179 unsigned int aom_variance##bw##x##bh##_avx2( \
180 const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, \
181 unsigned int *sse) { \
182 __m256i vsse = _mm256_setzero_si256(); \
183 __m256i vsum; \
184 variance##bw##_avx2(src, src_stride, ref, ref_stride, bh, &vsse, &vsum); \
185 const int sum = variance_final_##max_pixel##_avx2(vsse, vsum, sse); \
186 return *sse - (uint32_t)(((int64_t)sum * sum) >> bits); \
187 }
188
189 AOM_VAR_NO_LOOP_AVX2(16, 8, 7, 512)
190 AOM_VAR_NO_LOOP_AVX2(16, 16, 8, 512)
191 AOM_VAR_NO_LOOP_AVX2(16, 32, 9, 512)
192
193 AOM_VAR_NO_LOOP_AVX2(32, 16, 9, 512)
194 AOM_VAR_NO_LOOP_AVX2(32, 32, 10, 1024)
195 AOM_VAR_NO_LOOP_AVX2(32, 64, 11, 2048)
196
197 AOM_VAR_NO_LOOP_AVX2(64, 32, 11, 2048)
198
199 #if !CONFIG_REALTIME_ONLY
200 AOM_VAR_NO_LOOP_AVX2(64, 16, 10, 1024)
201 AOM_VAR_NO_LOOP_AVX2(32, 8, 8, 512)
202 AOM_VAR_NO_LOOP_AVX2(16, 64, 10, 1024)
203 AOM_VAR_NO_LOOP_AVX2(16, 4, 6, 512)
204 #endif
205
206 #define AOM_VAR_LOOP_AVX2(bw, bh, bits, uh) \
207 unsigned int aom_variance##bw##x##bh##_avx2( \
208 const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, \
209 unsigned int *sse) { \
210 __m256i vsse = _mm256_setzero_si256(); \
211 __m256i vsum = _mm256_setzero_si256(); \
212 for (int i = 0; i < (bh / uh); i++) { \
213 __m256i vsum16; \
214 variance##bw##_avx2(src, src_stride, ref, ref_stride, uh, &vsse, \
215 &vsum16); \
216 vsum = _mm256_add_epi32(vsum, sum_to_32bit_avx2(vsum16)); \
217 src += uh * src_stride; \
218 ref += uh * ref_stride; \
219 } \
220 const __m128i vsum_128 = mm256_add_hi_lo_epi32(vsum); \
221 const int sum = variance_final_from_32bit_sum_avx2(vsse, vsum_128, sse); \
222 return *sse - (unsigned int)(((int64_t)sum * sum) >> bits); \
223 }
224
225 AOM_VAR_LOOP_AVX2(64, 64, 12, 32) // 64x32 * ( 64/32)
226 AOM_VAR_LOOP_AVX2(64, 128, 13, 32) // 64x32 * (128/32)
227 AOM_VAR_LOOP_AVX2(128, 64, 13, 16) // 128x16 * ( 64/16)
228 AOM_VAR_LOOP_AVX2(128, 128, 14, 16) // 128x16 * (128/16)
229
aom_mse16x16_avx2(const uint8_t * src,int src_stride,const uint8_t * ref,int ref_stride,unsigned int * sse)230 unsigned int aom_mse16x16_avx2(const uint8_t *src, int src_stride,
231 const uint8_t *ref, int ref_stride,
232 unsigned int *sse) {
233 aom_variance16x16_avx2(src, src_stride, ref, ref_stride, sse);
234 return *sse;
235 }
236
mm256_loadu2(const uint8_t * p0,const uint8_t * p1)237 static inline __m256i mm256_loadu2(const uint8_t *p0, const uint8_t *p1) {
238 const __m256i d =
239 _mm256_castsi128_si256(_mm_loadu_si128((const __m128i *)p1));
240 return _mm256_insertf128_si256(d, _mm_loadu_si128((const __m128i *)p0), 1);
241 }
242
243 #if CONFIG_AV1_HIGHBITDEPTH
mm256_loadu2_16(const uint16_t * p0,const uint16_t * p1)244 static inline __m256i mm256_loadu2_16(const uint16_t *p0, const uint16_t *p1) {
245 const __m256i d =
246 _mm256_castsi128_si256(_mm_loadu_si128((const __m128i *)p1));
247 return _mm256_insertf128_si256(d, _mm_loadu_si128((const __m128i *)p0), 1);
248 }
249 #endif // CONFIG_AV1_HIGHBITDEPTH
250
comp_mask_pred_line_avx2(const __m256i s0,const __m256i s1,const __m256i a,uint8_t * comp_pred)251 static inline void comp_mask_pred_line_avx2(const __m256i s0, const __m256i s1,
252 const __m256i a,
253 uint8_t *comp_pred) {
254 const __m256i alpha_max = _mm256_set1_epi8(AOM_BLEND_A64_MAX_ALPHA);
255 const int16_t round_bits = 15 - AOM_BLEND_A64_ROUND_BITS;
256 const __m256i round_offset = _mm256_set1_epi16(1 << (round_bits));
257
258 const __m256i ma = _mm256_sub_epi8(alpha_max, a);
259
260 const __m256i ssAL = _mm256_unpacklo_epi8(s0, s1);
261 const __m256i aaAL = _mm256_unpacklo_epi8(a, ma);
262 const __m256i ssAH = _mm256_unpackhi_epi8(s0, s1);
263 const __m256i aaAH = _mm256_unpackhi_epi8(a, ma);
264
265 const __m256i blendAL = _mm256_maddubs_epi16(ssAL, aaAL);
266 const __m256i blendAH = _mm256_maddubs_epi16(ssAH, aaAH);
267 const __m256i roundAL = _mm256_mulhrs_epi16(blendAL, round_offset);
268 const __m256i roundAH = _mm256_mulhrs_epi16(blendAH, round_offset);
269
270 const __m256i roundA = _mm256_packus_epi16(roundAL, roundAH);
271 _mm256_storeu_si256((__m256i *)(comp_pred), roundA);
272 }
273
aom_comp_avg_pred_avx2(uint8_t * comp_pred,const uint8_t * pred,int width,int height,const uint8_t * ref,int ref_stride)274 void aom_comp_avg_pred_avx2(uint8_t *comp_pred, const uint8_t *pred, int width,
275 int height, const uint8_t *ref, int ref_stride) {
276 int row = 0;
277 if (width == 8) {
278 do {
279 const __m256i pred_0123 = _mm256_loadu_si256((const __m256i *)(pred));
280 const __m128i ref_0 = _mm_loadl_epi64((const __m128i *)(ref));
281 const __m128i ref_1 =
282 _mm_loadl_epi64((const __m128i *)(ref + ref_stride));
283 const __m128i ref_2 =
284 _mm_loadl_epi64((const __m128i *)(ref + 2 * ref_stride));
285 const __m128i ref_3 =
286 _mm_loadl_epi64((const __m128i *)(ref + 3 * ref_stride));
287 const __m128i ref_01 = _mm_unpacklo_epi64(ref_0, ref_1);
288 const __m128i ref_23 = _mm_unpacklo_epi64(ref_2, ref_3);
289
290 const __m256i ref_0123 =
291 _mm256_inserti128_si256(_mm256_castsi128_si256(ref_01), ref_23, 1);
292 const __m256i average = _mm256_avg_epu8(pred_0123, ref_0123);
293 _mm256_storeu_si256((__m256i *)(comp_pred), average);
294
295 row += 4;
296 pred += 32;
297 comp_pred += 32;
298 ref += 4 * ref_stride;
299 } while (row < height);
300 } else if (width == 16) {
301 do {
302 const __m256i pred_0 = _mm256_loadu_si256((const __m256i *)(pred));
303 const __m256i pred_1 = _mm256_loadu_si256((const __m256i *)(pred + 32));
304 const __m256i tmp0 =
305 _mm256_castsi128_si256(_mm_loadu_si128((const __m128i *)(ref)));
306 const __m256i ref_0 = _mm256_inserti128_si256(
307 tmp0, _mm_loadu_si128((const __m128i *)(ref + ref_stride)), 1);
308 const __m256i tmp1 = _mm256_castsi128_si256(
309 _mm_loadu_si128((const __m128i *)(ref + 2 * ref_stride)));
310 const __m256i ref_1 = _mm256_inserti128_si256(
311 tmp1, _mm_loadu_si128((const __m128i *)(ref + 3 * ref_stride)), 1);
312 const __m256i average_0 = _mm256_avg_epu8(pred_0, ref_0);
313 const __m256i average_1 = _mm256_avg_epu8(pred_1, ref_1);
314 _mm256_storeu_si256((__m256i *)(comp_pred), average_0);
315 _mm256_storeu_si256((__m256i *)(comp_pred + 32), average_1);
316
317 row += 4;
318 pred += 64;
319 comp_pred += 64;
320 ref += 4 * ref_stride;
321 } while (row < height);
322 } else if (width == 32) {
323 do {
324 const __m256i pred_0 = _mm256_loadu_si256((const __m256i *)(pred));
325 const __m256i pred_1 = _mm256_loadu_si256((const __m256i *)(pred + 32));
326 const __m256i ref_0 = _mm256_loadu_si256((const __m256i *)(ref));
327 const __m256i ref_1 =
328 _mm256_loadu_si256((const __m256i *)(ref + ref_stride));
329 const __m256i average_0 = _mm256_avg_epu8(pred_0, ref_0);
330 const __m256i average_1 = _mm256_avg_epu8(pred_1, ref_1);
331 _mm256_storeu_si256((__m256i *)(comp_pred), average_0);
332 _mm256_storeu_si256((__m256i *)(comp_pred + 32), average_1);
333
334 row += 2;
335 pred += 64;
336 comp_pred += 64;
337 ref += 2 * ref_stride;
338 } while (row < height);
339 } else if (width % 64 == 0) {
340 do {
341 for (int x = 0; x < width; x += 64) {
342 const __m256i pred_0 = _mm256_loadu_si256((const __m256i *)(pred + x));
343 const __m256i pred_1 =
344 _mm256_loadu_si256((const __m256i *)(pred + x + 32));
345 const __m256i ref_0 = _mm256_loadu_si256((const __m256i *)(ref + x));
346 const __m256i ref_1 =
347 _mm256_loadu_si256((const __m256i *)(ref + x + 32));
348 const __m256i average_0 = _mm256_avg_epu8(pred_0, ref_0);
349 const __m256i average_1 = _mm256_avg_epu8(pred_1, ref_1);
350 _mm256_storeu_si256((__m256i *)(comp_pred + x), average_0);
351 _mm256_storeu_si256((__m256i *)(comp_pred + x + 32), average_1);
352 }
353 row++;
354 pred += width;
355 comp_pred += width;
356 ref += ref_stride;
357 } while (row < height);
358 } else {
359 aom_comp_avg_pred_c(comp_pred, pred, width, height, ref, ref_stride);
360 }
361 }
362
aom_comp_mask_pred_avx2(uint8_t * comp_pred,const uint8_t * pred,int width,int height,const uint8_t * ref,int ref_stride,const uint8_t * mask,int mask_stride,int invert_mask)363 void aom_comp_mask_pred_avx2(uint8_t *comp_pred, const uint8_t *pred, int width,
364 int height, const uint8_t *ref, int ref_stride,
365 const uint8_t *mask, int mask_stride,
366 int invert_mask) {
367 int i = 0;
368 const uint8_t *src0 = invert_mask ? pred : ref;
369 const uint8_t *src1 = invert_mask ? ref : pred;
370 const int stride0 = invert_mask ? width : ref_stride;
371 const int stride1 = invert_mask ? ref_stride : width;
372 if (width == 8) {
373 comp_mask_pred_8_ssse3(comp_pred, height, src0, stride0, src1, stride1,
374 mask, mask_stride);
375 } else if (width == 16) {
376 do {
377 const __m256i sA0 = mm256_loadu2(src0 + stride0, src0);
378 const __m256i sA1 = mm256_loadu2(src1 + stride1, src1);
379 const __m256i aA = mm256_loadu2(mask + mask_stride, mask);
380 src0 += (stride0 << 1);
381 src1 += (stride1 << 1);
382 mask += (mask_stride << 1);
383 const __m256i sB0 = mm256_loadu2(src0 + stride0, src0);
384 const __m256i sB1 = mm256_loadu2(src1 + stride1, src1);
385 const __m256i aB = mm256_loadu2(mask + mask_stride, mask);
386 src0 += (stride0 << 1);
387 src1 += (stride1 << 1);
388 mask += (mask_stride << 1);
389 // comp_pred's stride == width == 16
390 comp_mask_pred_line_avx2(sA0, sA1, aA, comp_pred);
391 comp_mask_pred_line_avx2(sB0, sB1, aB, comp_pred + 32);
392 comp_pred += (16 << 2);
393 i += 4;
394 } while (i < height);
395 } else {
396 do {
397 for (int x = 0; x < width; x += 32) {
398 const __m256i sA0 = _mm256_lddqu_si256((const __m256i *)(src0 + x));
399 const __m256i sA1 = _mm256_lddqu_si256((const __m256i *)(src1 + x));
400 const __m256i aA = _mm256_lddqu_si256((const __m256i *)(mask + x));
401
402 comp_mask_pred_line_avx2(sA0, sA1, aA, comp_pred);
403 comp_pred += 32;
404 }
405 src0 += stride0;
406 src1 += stride1;
407 mask += mask_stride;
408 i++;
409 } while (i < height);
410 }
411 }
412
413 #if CONFIG_AV1_HIGHBITDEPTH
highbd_comp_mask_pred_line_avx2(const __m256i s0,const __m256i s1,const __m256i a)414 static inline __m256i highbd_comp_mask_pred_line_avx2(const __m256i s0,
415 const __m256i s1,
416 const __m256i a) {
417 const __m256i alpha_max = _mm256_set1_epi16((1 << AOM_BLEND_A64_ROUND_BITS));
418 const __m256i round_const =
419 _mm256_set1_epi32((1 << AOM_BLEND_A64_ROUND_BITS) >> 1);
420 const __m256i a_inv = _mm256_sub_epi16(alpha_max, a);
421
422 const __m256i s_lo = _mm256_unpacklo_epi16(s0, s1);
423 const __m256i a_lo = _mm256_unpacklo_epi16(a, a_inv);
424 const __m256i pred_lo = _mm256_madd_epi16(s_lo, a_lo);
425 const __m256i pred_l = _mm256_srai_epi32(
426 _mm256_add_epi32(pred_lo, round_const), AOM_BLEND_A64_ROUND_BITS);
427
428 const __m256i s_hi = _mm256_unpackhi_epi16(s0, s1);
429 const __m256i a_hi = _mm256_unpackhi_epi16(a, a_inv);
430 const __m256i pred_hi = _mm256_madd_epi16(s_hi, a_hi);
431 const __m256i pred_h = _mm256_srai_epi32(
432 _mm256_add_epi32(pred_hi, round_const), AOM_BLEND_A64_ROUND_BITS);
433
434 const __m256i comp = _mm256_packs_epi32(pred_l, pred_h);
435
436 return comp;
437 }
438
aom_highbd_comp_mask_pred_avx2(uint8_t * comp_pred8,const uint8_t * pred8,int width,int height,const uint8_t * ref8,int ref_stride,const uint8_t * mask,int mask_stride,int invert_mask)439 void aom_highbd_comp_mask_pred_avx2(uint8_t *comp_pred8, const uint8_t *pred8,
440 int width, int height, const uint8_t *ref8,
441 int ref_stride, const uint8_t *mask,
442 int mask_stride, int invert_mask) {
443 int i = 0;
444 uint16_t *pred = CONVERT_TO_SHORTPTR(pred8);
445 uint16_t *ref = CONVERT_TO_SHORTPTR(ref8);
446 uint16_t *comp_pred = CONVERT_TO_SHORTPTR(comp_pred8);
447 const uint16_t *src0 = invert_mask ? pred : ref;
448 const uint16_t *src1 = invert_mask ? ref : pred;
449 const int stride0 = invert_mask ? width : ref_stride;
450 const int stride1 = invert_mask ? ref_stride : width;
451 const __m256i zero = _mm256_setzero_si256();
452
453 if (width == 8) {
454 do {
455 const __m256i s0 = mm256_loadu2_16(src0 + stride0, src0);
456 const __m256i s1 = mm256_loadu2_16(src1 + stride1, src1);
457
458 const __m128i m_l = _mm_loadl_epi64((const __m128i *)mask);
459 const __m128i m_h = _mm_loadl_epi64((const __m128i *)(mask + 8));
460
461 __m256i m = _mm256_castsi128_si256(m_l);
462 m = _mm256_insertf128_si256(m, m_h, 1);
463 const __m256i m_16 = _mm256_unpacklo_epi8(m, zero);
464
465 const __m256i comp = highbd_comp_mask_pred_line_avx2(s0, s1, m_16);
466
467 _mm_storeu_si128((__m128i *)(comp_pred), _mm256_castsi256_si128(comp));
468
469 _mm_storeu_si128((__m128i *)(comp_pred + width),
470 _mm256_extractf128_si256(comp, 1));
471
472 src0 += (stride0 << 1);
473 src1 += (stride1 << 1);
474 mask += (mask_stride << 1);
475 comp_pred += (width << 1);
476 i += 2;
477 } while (i < height);
478 } else if (width == 16) {
479 do {
480 const __m256i s0 = _mm256_loadu_si256((const __m256i *)(src0));
481 const __m256i s1 = _mm256_loadu_si256((const __m256i *)(src1));
482 const __m256i m_16 =
483 _mm256_cvtepu8_epi16(_mm_loadu_si128((const __m128i *)mask));
484
485 const __m256i comp = highbd_comp_mask_pred_line_avx2(s0, s1, m_16);
486
487 _mm256_storeu_si256((__m256i *)comp_pred, comp);
488
489 src0 += stride0;
490 src1 += stride1;
491 mask += mask_stride;
492 comp_pred += width;
493 i += 1;
494 } while (i < height);
495 } else {
496 do {
497 for (int x = 0; x < width; x += 32) {
498 const __m256i s0 = _mm256_loadu_si256((const __m256i *)(src0 + x));
499 const __m256i s2 = _mm256_loadu_si256((const __m256i *)(src0 + x + 16));
500 const __m256i s1 = _mm256_loadu_si256((const __m256i *)(src1 + x));
501 const __m256i s3 = _mm256_loadu_si256((const __m256i *)(src1 + x + 16));
502
503 const __m256i m01_16 =
504 _mm256_cvtepu8_epi16(_mm_loadu_si128((const __m128i *)(mask + x)));
505 const __m256i m23_16 = _mm256_cvtepu8_epi16(
506 _mm_loadu_si128((const __m128i *)(mask + x + 16)));
507
508 const __m256i comp = highbd_comp_mask_pred_line_avx2(s0, s1, m01_16);
509 const __m256i comp1 = highbd_comp_mask_pred_line_avx2(s2, s3, m23_16);
510
511 _mm256_storeu_si256((__m256i *)comp_pred, comp);
512 _mm256_storeu_si256((__m256i *)(comp_pred + 16), comp1);
513
514 comp_pred += 32;
515 }
516 src0 += stride0;
517 src1 += stride1;
518 mask += mask_stride;
519 i += 1;
520 } while (i < height);
521 }
522 }
523 #endif // CONFIG_AV1_HIGHBITDEPTH
524
mse_4xh_16bit_avx2(uint8_t * dst,int dstride,uint16_t * src,int sstride,int h)525 static uint64_t mse_4xh_16bit_avx2(uint8_t *dst, int dstride, uint16_t *src,
526 int sstride, int h) {
527 uint64_t sum = 0;
528 __m128i dst0_4x8, dst1_4x8, dst2_4x8, dst3_4x8, dst_16x8;
529 __m128i src0_4x16, src1_4x16, src2_4x16, src3_4x16;
530 __m256i src0_8x16, src1_8x16, dst_16x16, src_16x16;
531 __m256i res0_4x64, res1_4x64;
532 __m256i sub_result;
533 const __m256i zeros = _mm256_broadcastsi128_si256(_mm_setzero_si128());
534 __m256i square_result = _mm256_broadcastsi128_si256(_mm_setzero_si128());
535 for (int i = 0; i < h; i += 4) {
536 dst0_4x8 = _mm_cvtsi32_si128(*(int const *)(&dst[(i + 0) * dstride]));
537 dst1_4x8 = _mm_cvtsi32_si128(*(int const *)(&dst[(i + 1) * dstride]));
538 dst2_4x8 = _mm_cvtsi32_si128(*(int const *)(&dst[(i + 2) * dstride]));
539 dst3_4x8 = _mm_cvtsi32_si128(*(int const *)(&dst[(i + 3) * dstride]));
540 dst_16x8 = _mm_unpacklo_epi64(_mm_unpacklo_epi32(dst0_4x8, dst1_4x8),
541 _mm_unpacklo_epi32(dst2_4x8, dst3_4x8));
542 dst_16x16 = _mm256_cvtepu8_epi16(dst_16x8);
543
544 src0_4x16 = _mm_loadl_epi64((__m128i const *)(&src[(i + 0) * sstride]));
545 src1_4x16 = _mm_loadl_epi64((__m128i const *)(&src[(i + 1) * sstride]));
546 src2_4x16 = _mm_loadl_epi64((__m128i const *)(&src[(i + 2) * sstride]));
547 src3_4x16 = _mm_loadl_epi64((__m128i const *)(&src[(i + 3) * sstride]));
548 src0_8x16 =
549 _mm256_castsi128_si256(_mm_unpacklo_epi64(src0_4x16, src1_4x16));
550 src1_8x16 =
551 _mm256_castsi128_si256(_mm_unpacklo_epi64(src2_4x16, src3_4x16));
552 src_16x16 = _mm256_permute2x128_si256(src0_8x16, src1_8x16, 0x20);
553
554 // r15 r14 r13------------r1 r0 - 16 bit
555 sub_result = _mm256_abs_epi16(_mm256_sub_epi16(src_16x16, dst_16x16));
556
557 // s7 s6 s5 s4 s3 s2 s1 s0 - 32bit
558 src_16x16 = _mm256_madd_epi16(sub_result, sub_result);
559
560 // accumulation of result
561 square_result = _mm256_add_epi32(square_result, src_16x16);
562 }
563
564 // s5 s4 s1 s0 - 64bit
565 res0_4x64 = _mm256_unpacklo_epi32(square_result, zeros);
566 // s7 s6 s3 s2 - 64bit
567 res1_4x64 = _mm256_unpackhi_epi32(square_result, zeros);
568 // r3 r2 r1 r0 - 64bit
569 res0_4x64 = _mm256_add_epi64(res0_4x64, res1_4x64);
570 // r1+r3 r2+r0 - 64bit
571 const __m128i sum_1x64 =
572 _mm_add_epi64(_mm256_castsi256_si128(res0_4x64),
573 _mm256_extracti128_si256(res0_4x64, 1));
574 xx_storel_64(&sum, _mm_add_epi64(sum_1x64, _mm_srli_si128(sum_1x64, 8)));
575 return sum;
576 }
577
578 // Compute mse of four consecutive 4x4 blocks.
579 // In src buffer, each 4x4 block in a 32x32 filter block is stored sequentially.
580 // Hence src_blk_stride is same as block width. Whereas dst buffer is a frame
581 // buffer, thus dstride is a frame level stride.
mse_4xh_quad_16bit_avx2(uint8_t * dst,int dstride,uint16_t * src,int src_blk_stride,int h)582 static uint64_t mse_4xh_quad_16bit_avx2(uint8_t *dst, int dstride,
583 uint16_t *src, int src_blk_stride,
584 int h) {
585 uint64_t sum = 0;
586 __m128i dst0_16x8, dst1_16x8, dst2_16x8, dst3_16x8;
587 __m256i dst0_16x16, dst1_16x16, dst2_16x16, dst3_16x16;
588 __m256i res0_4x64, res1_4x64;
589 __m256i sub_result_0, sub_result_1, sub_result_2, sub_result_3;
590 const __m256i zeros = _mm256_broadcastsi128_si256(_mm_setzero_si128());
591 __m256i square_result = zeros;
592 uint16_t *src_temp = src;
593
594 for (int i = 0; i < h; i += 4) {
595 dst0_16x8 = _mm_loadu_si128((__m128i *)(&dst[(i + 0) * dstride]));
596 dst1_16x8 = _mm_loadu_si128((__m128i *)(&dst[(i + 1) * dstride]));
597 dst2_16x8 = _mm_loadu_si128((__m128i *)(&dst[(i + 2) * dstride]));
598 dst3_16x8 = _mm_loadu_si128((__m128i *)(&dst[(i + 3) * dstride]));
599
600 // row0 of 1st,2nd, 3rd and 4th 4x4 blocks- d00 d10 d20 d30
601 dst0_16x16 = _mm256_cvtepu8_epi16(dst0_16x8);
602 // row1 of 1st,2nd, 3rd and 4th 4x4 blocks - d01 d11 d21 d31
603 dst1_16x16 = _mm256_cvtepu8_epi16(dst1_16x8);
604 // row2 of 1st,2nd, 3rd and 4th 4x4 blocks - d02 d12 d22 d32
605 dst2_16x16 = _mm256_cvtepu8_epi16(dst2_16x8);
606 // row3 of 1st,2nd, 3rd and 4th 4x4 blocks - d03 d13 d23 d33
607 dst3_16x16 = _mm256_cvtepu8_epi16(dst3_16x8);
608
609 // All rows of 1st 4x4 block - r00 r01 r02 r03
610 __m256i src0_16x16 = _mm256_loadu_si256((__m256i const *)(&src_temp[0]));
611 // All rows of 2nd 4x4 block - r10 r11 r12 r13
612 __m256i src1_16x16 =
613 _mm256_loadu_si256((__m256i const *)(&src_temp[src_blk_stride]));
614 // All rows of 3rd 4x4 block - r20 r21 r22 r23
615 __m256i src2_16x16 =
616 _mm256_loadu_si256((__m256i const *)(&src_temp[2 * src_blk_stride]));
617 // All rows of 4th 4x4 block - r30 r31 r32 r33
618 __m256i src3_16x16 =
619 _mm256_loadu_si256((__m256i const *)(&src_temp[3 * src_blk_stride]));
620
621 // r00 r10 r02 r12
622 __m256i tmp0_16x16 = _mm256_unpacklo_epi64(src0_16x16, src1_16x16);
623 // r01 r11 r03 r13
624 __m256i tmp1_16x16 = _mm256_unpackhi_epi64(src0_16x16, src1_16x16);
625 // r20 r30 r22 r32
626 __m256i tmp2_16x16 = _mm256_unpacklo_epi64(src2_16x16, src3_16x16);
627 // r21 r31 r23 r33
628 __m256i tmp3_16x16 = _mm256_unpackhi_epi64(src2_16x16, src3_16x16);
629
630 // r00 r10 r20 r30
631 src0_16x16 = _mm256_permute2f128_si256(tmp0_16x16, tmp2_16x16, 0x20);
632 // r01 r11 r21 r31
633 src1_16x16 = _mm256_permute2f128_si256(tmp1_16x16, tmp3_16x16, 0x20);
634 // r02 r12 r22 r32
635 src2_16x16 = _mm256_permute2f128_si256(tmp0_16x16, tmp2_16x16, 0x31);
636 // r03 r13 r23 r33
637 src3_16x16 = _mm256_permute2f128_si256(tmp1_16x16, tmp3_16x16, 0x31);
638
639 // r15 r14 r13------------r1 r0 - 16 bit
640 sub_result_0 = _mm256_abs_epi16(_mm256_sub_epi16(src0_16x16, dst0_16x16));
641 sub_result_1 = _mm256_abs_epi16(_mm256_sub_epi16(src1_16x16, dst1_16x16));
642 sub_result_2 = _mm256_abs_epi16(_mm256_sub_epi16(src2_16x16, dst2_16x16));
643 sub_result_3 = _mm256_abs_epi16(_mm256_sub_epi16(src3_16x16, dst3_16x16));
644
645 // s7 s6 s5 s4 s3 s2 s1 s0 - 32bit
646 src0_16x16 = _mm256_madd_epi16(sub_result_0, sub_result_0);
647 src1_16x16 = _mm256_madd_epi16(sub_result_1, sub_result_1);
648 src2_16x16 = _mm256_madd_epi16(sub_result_2, sub_result_2);
649 src3_16x16 = _mm256_madd_epi16(sub_result_3, sub_result_3);
650
651 // accumulation of result
652 src0_16x16 = _mm256_add_epi32(src0_16x16, src1_16x16);
653 src2_16x16 = _mm256_add_epi32(src2_16x16, src3_16x16);
654 const __m256i square_result_0 = _mm256_add_epi32(src0_16x16, src2_16x16);
655 square_result = _mm256_add_epi32(square_result, square_result_0);
656 src_temp += 16;
657 }
658
659 // s5 s4 s1 s0 - 64bit
660 res0_4x64 = _mm256_unpacklo_epi32(square_result, zeros);
661 // s7 s6 s3 s2 - 64bit
662 res1_4x64 = _mm256_unpackhi_epi32(square_result, zeros);
663 // r3 r2 r1 r0 - 64bit
664 res0_4x64 = _mm256_add_epi64(res0_4x64, res1_4x64);
665 // r1+r3 r2+r0 - 64bit
666 const __m128i sum_1x64 =
667 _mm_add_epi64(_mm256_castsi256_si128(res0_4x64),
668 _mm256_extracti128_si256(res0_4x64, 1));
669 xx_storel_64(&sum, _mm_add_epi64(sum_1x64, _mm_srli_si128(sum_1x64, 8)));
670 return sum;
671 }
672
mse_8xh_16bit_avx2(uint8_t * dst,int dstride,uint16_t * src,int sstride,int h)673 static uint64_t mse_8xh_16bit_avx2(uint8_t *dst, int dstride, uint16_t *src,
674 int sstride, int h) {
675 uint64_t sum = 0;
676 __m128i dst0_8x8, dst1_8x8, dst3_16x8;
677 __m256i src0_8x16, src1_8x16, src_16x16, dst_16x16;
678 __m256i res0_4x64, res1_4x64;
679 __m256i sub_result;
680 const __m256i zeros = _mm256_broadcastsi128_si256(_mm_setzero_si128());
681 __m256i square_result = _mm256_broadcastsi128_si256(_mm_setzero_si128());
682
683 for (int i = 0; i < h; i += 2) {
684 dst0_8x8 = _mm_loadl_epi64((__m128i const *)(&dst[(i + 0) * dstride]));
685 dst1_8x8 = _mm_loadl_epi64((__m128i const *)(&dst[(i + 1) * dstride]));
686 dst3_16x8 = _mm_unpacklo_epi64(dst0_8x8, dst1_8x8);
687 dst_16x16 = _mm256_cvtepu8_epi16(dst3_16x8);
688
689 src0_8x16 =
690 _mm256_castsi128_si256(_mm_loadu_si128((__m128i *)&src[i * sstride]));
691 src1_8x16 = _mm256_castsi128_si256(
692 _mm_loadu_si128((__m128i *)&src[(i + 1) * sstride]));
693 src_16x16 = _mm256_permute2x128_si256(src0_8x16, src1_8x16, 0x20);
694
695 // r15 r14 r13 - - - r1 r0 - 16 bit
696 sub_result = _mm256_abs_epi16(_mm256_sub_epi16(src_16x16, dst_16x16));
697
698 // s7 s6 s5 s4 s3 s2 s1 s0 - 32bit
699 src_16x16 = _mm256_madd_epi16(sub_result, sub_result);
700
701 // accumulation of result
702 square_result = _mm256_add_epi32(square_result, src_16x16);
703 }
704
705 // s5 s4 s1 s0 - 64bit
706 res0_4x64 = _mm256_unpacklo_epi32(square_result, zeros);
707 // s7 s6 s3 s2 - 64bit
708 res1_4x64 = _mm256_unpackhi_epi32(square_result, zeros);
709 // r3 r2 r1 r0 - 64bit
710 res0_4x64 = _mm256_add_epi64(res0_4x64, res1_4x64);
711 // r1+r3 r2+r0 - 64bit
712 const __m128i sum_1x64 =
713 _mm_add_epi64(_mm256_castsi256_si128(res0_4x64),
714 _mm256_extracti128_si256(res0_4x64, 1));
715 xx_storel_64(&sum, _mm_add_epi64(sum_1x64, _mm_srli_si128(sum_1x64, 8)));
716 return sum;
717 }
718
719 // Compute mse of two consecutive 8x8 blocks.
720 // In src buffer, each 8x8 block in a 64x64 filter block is stored sequentially.
721 // Hence src_blk_stride is same as block width. Whereas dst buffer is a frame
722 // buffer, thus dstride is a frame level stride.
mse_8xh_dual_16bit_avx2(uint8_t * dst,int dstride,uint16_t * src,int src_blk_stride,int h)723 static uint64_t mse_8xh_dual_16bit_avx2(uint8_t *dst, int dstride,
724 uint16_t *src, int src_blk_stride,
725 int h) {
726 uint64_t sum = 0;
727 __m128i dst0_16x8, dst1_16x8;
728 __m256i dst0_16x16, dst1_16x16;
729 __m256i res0_4x64, res1_4x64;
730 __m256i sub_result_0, sub_result_1;
731 const __m256i zeros = _mm256_broadcastsi128_si256(_mm_setzero_si128());
732 __m256i square_result = zeros;
733 uint16_t *src_temp = src;
734
735 for (int i = 0; i < h; i += 2) {
736 dst0_16x8 = _mm_loadu_si128((__m128i *)(&dst[(i + 0) * dstride]));
737 dst1_16x8 = _mm_loadu_si128((__m128i *)(&dst[(i + 1) * dstride]));
738
739 // row0 of 1st and 2nd 8x8 block - d00 d10
740 dst0_16x16 = _mm256_cvtepu8_epi16(dst0_16x8);
741 // row1 of 1st and 2nd 8x8 block - d01 d11
742 dst1_16x16 = _mm256_cvtepu8_epi16(dst1_16x8);
743
744 // 2 rows of 1st 8x8 block - r00 r01
745 __m256i src0_16x16 = _mm256_loadu_si256((__m256i const *)(&src_temp[0]));
746 // 2 rows of 2nd 8x8 block - r10 r11
747 __m256i src1_16x16 =
748 _mm256_loadu_si256((__m256i const *)(&src_temp[src_blk_stride]));
749 // r00 r10 - 128bit
750 __m256i tmp0_16x16 =
751 _mm256_permute2f128_si256(src0_16x16, src1_16x16, 0x20);
752 // r01 r11 - 128bit
753 __m256i tmp1_16x16 =
754 _mm256_permute2f128_si256(src0_16x16, src1_16x16, 0x31);
755
756 // r15 r14 r13------------r1 r0 - 16 bit
757 sub_result_0 = _mm256_abs_epi16(_mm256_sub_epi16(tmp0_16x16, dst0_16x16));
758 sub_result_1 = _mm256_abs_epi16(_mm256_sub_epi16(tmp1_16x16, dst1_16x16));
759
760 // s7 s6 s5 s4 s3 s2 s1 s0 - 32bit each
761 src0_16x16 = _mm256_madd_epi16(sub_result_0, sub_result_0);
762 src1_16x16 = _mm256_madd_epi16(sub_result_1, sub_result_1);
763
764 // accumulation of result
765 src0_16x16 = _mm256_add_epi32(src0_16x16, src1_16x16);
766 square_result = _mm256_add_epi32(square_result, src0_16x16);
767 src_temp += 16;
768 }
769
770 // s5 s4 s1 s0 - 64bit
771 res0_4x64 = _mm256_unpacklo_epi32(square_result, zeros);
772 // s7 s6 s3 s2 - 64bit
773 res1_4x64 = _mm256_unpackhi_epi32(square_result, zeros);
774 // r3 r2 r1 r0 - 64bit
775 res0_4x64 = _mm256_add_epi64(res0_4x64, res1_4x64);
776 // r1+r3 r2+r0 - 64bit
777 const __m128i sum_1x64 =
778 _mm_add_epi64(_mm256_castsi256_si128(res0_4x64),
779 _mm256_extracti128_si256(res0_4x64, 1));
780 xx_storel_64(&sum, _mm_add_epi64(sum_1x64, _mm_srli_si128(sum_1x64, 8)));
781 return sum;
782 }
783
aom_mse_wxh_16bit_avx2(uint8_t * dst,int dstride,uint16_t * src,int sstride,int w,int h)784 uint64_t aom_mse_wxh_16bit_avx2(uint8_t *dst, int dstride, uint16_t *src,
785 int sstride, int w, int h) {
786 assert((w == 8 || w == 4) && (h == 8 || h == 4) &&
787 "w=8/4 and h=8/4 must be satisfied");
788 switch (w) {
789 case 4: return mse_4xh_16bit_avx2(dst, dstride, src, sstride, h);
790 case 8: return mse_8xh_16bit_avx2(dst, dstride, src, sstride, h);
791 default: assert(0 && "unsupported width"); return -1;
792 }
793 }
794
795 // Computes mse of two 8x8 or four 4x4 consecutive blocks. Luma plane uses 8x8
796 // block and Chroma uses 4x4 block. In src buffer, each block in a filter block
797 // is stored sequentially. Hence src_blk_stride is same as block width. Whereas
798 // dst buffer is a frame buffer, thus dstride is a frame level stride.
aom_mse_16xh_16bit_avx2(uint8_t * dst,int dstride,uint16_t * src,int w,int h)799 uint64_t aom_mse_16xh_16bit_avx2(uint8_t *dst, int dstride, uint16_t *src,
800 int w, int h) {
801 assert((w == 8 || w == 4) && (h == 8 || h == 4) &&
802 "w=8/4 and h=8/4 must be satisfied");
803 switch (w) {
804 case 4: return mse_4xh_quad_16bit_avx2(dst, dstride, src, w * h, h);
805 case 8: return mse_8xh_dual_16bit_avx2(dst, dstride, src, w * h, h);
806 default: assert(0 && "unsupported width"); return -1;
807 }
808 }
809
calc_sum_sse_wd32_avx2(const uint8_t * src,const uint8_t * ref,__m256i set_one_minusone,__m256i sse_8x16[2],__m256i sum_8x16[2])810 static inline void calc_sum_sse_wd32_avx2(const uint8_t *src,
811 const uint8_t *ref,
812 __m256i set_one_minusone,
813 __m256i sse_8x16[2],
814 __m256i sum_8x16[2]) {
815 const __m256i s00_256 = _mm256_loadu_si256((__m256i const *)(src));
816 const __m256i r00_256 = _mm256_loadu_si256((__m256i const *)(ref));
817
818 const __m256i u_low_256 = _mm256_unpacklo_epi8(s00_256, r00_256);
819 const __m256i u_high_256 = _mm256_unpackhi_epi8(s00_256, r00_256);
820
821 const __m256i diff0 = _mm256_maddubs_epi16(u_low_256, set_one_minusone);
822 const __m256i diff1 = _mm256_maddubs_epi16(u_high_256, set_one_minusone);
823
824 sse_8x16[0] = _mm256_add_epi32(sse_8x16[0], _mm256_madd_epi16(diff0, diff0));
825 sse_8x16[1] = _mm256_add_epi32(sse_8x16[1], _mm256_madd_epi16(diff1, diff1));
826 sum_8x16[0] = _mm256_add_epi16(sum_8x16[0], diff0);
827 sum_8x16[1] = _mm256_add_epi16(sum_8x16[1], diff1);
828 }
829
calc_sum_sse_order(__m256i * sse_hx16,__m256i * sum_hx16,unsigned int * tot_sse,int * tot_sum)830 static inline __m256i calc_sum_sse_order(__m256i *sse_hx16, __m256i *sum_hx16,
831 unsigned int *tot_sse, int *tot_sum) {
832 // s00 s01 s10 s11 s20 s21 s30 s31
833 const __m256i sse_results = _mm256_hadd_epi32(sse_hx16[0], sse_hx16[1]);
834 // d00 d01 d02 d03 | d10 d11 d12 d13 | d20 d21 d22 d23 | d30 d31 d32 d33
835 const __m256i sum_result_r0 = _mm256_hadd_epi16(sum_hx16[0], sum_hx16[1]);
836 // d00 d01 d10 d11 | d00 d02 d10 d11 | d20 d21 d30 d31 | d20 d21 d30 d31
837 const __m256i sum_result_1 = _mm256_hadd_epi16(sum_result_r0, sum_result_r0);
838 // d00 d01 d10 d11 d20 d21 d30 d31 | X
839 const __m256i sum_result_3 = _mm256_permute4x64_epi64(sum_result_1, 0x08);
840 // d00 d01 d10 d11 d20 d21 d30 d31
841 const __m256i sum_results =
842 _mm256_cvtepi16_epi32(_mm256_castsi256_si128(sum_result_3));
843
844 // Add sum & sse registers appropriately to get total sum & sse separately.
845 // s0 s1 d0 d1 s2 s3 d2 d3
846 const __m256i sum_sse_add = _mm256_hadd_epi32(sse_results, sum_results);
847 // s0 s1 s2 s3 d0 d1 d2 d3
848 const __m256i sum_sse_order_add = _mm256_permute4x64_epi64(sum_sse_add, 0xd8);
849 // s0+s1 s2+s3 s0+s1 s2+s3 d0+d1 d2+d3 d0+d1 d2+d3
850 const __m256i sum_sse_order_add_1 =
851 _mm256_hadd_epi32(sum_sse_order_add, sum_sse_order_add);
852 // s0 x x x | d0 x x x
853 const __m256i sum_sse_order_add_final =
854 _mm256_hadd_epi32(sum_sse_order_add_1, sum_sse_order_add_1);
855 // s0
856 const uint32_t first_value =
857 (uint32_t)_mm256_extract_epi32(sum_sse_order_add_final, 0);
858 *tot_sse += first_value;
859 // d0
860 const int second_value = _mm256_extract_epi32(sum_sse_order_add_final, 4);
861 *tot_sum += second_value;
862 return sum_sse_order_add;
863 }
864
get_var_sse_sum_8x8_quad_avx2(const uint8_t * src,int src_stride,const uint8_t * ref,const int ref_stride,const int h,uint32_t * sse8x8,int * sum8x8,unsigned int * tot_sse,int * tot_sum,uint32_t * var8x8)865 static inline void get_var_sse_sum_8x8_quad_avx2(
866 const uint8_t *src, int src_stride, const uint8_t *ref,
867 const int ref_stride, const int h, uint32_t *sse8x8, int *sum8x8,
868 unsigned int *tot_sse, int *tot_sum, uint32_t *var8x8) {
869 assert(h <= 128); // May overflow for larger height.
870 __m256i sse_8x16[2], sum_8x16[2];
871 sum_8x16[0] = _mm256_setzero_si256();
872 sse_8x16[0] = _mm256_setzero_si256();
873 sum_8x16[1] = sum_8x16[0];
874 sse_8x16[1] = sse_8x16[0];
875 const __m256i set_one_minusone = _mm256_set1_epi16((short)0xff01);
876
877 for (int i = 0; i < h; i++) {
878 // Process 8x32 block of one row.
879 calc_sum_sse_wd32_avx2(src, ref, set_one_minusone, sse_8x16, sum_8x16);
880 src += src_stride;
881 ref += ref_stride;
882 }
883
884 const __m256i sum_sse_order_add =
885 calc_sum_sse_order(sse_8x16, sum_8x16, tot_sse, tot_sum);
886
887 // s0 s1 s2 s3
888 _mm_storeu_si128((__m128i *)sse8x8,
889 _mm256_castsi256_si128(sum_sse_order_add));
890 // d0 d1 d2 d3
891 const __m128i sum_temp8x8 = _mm256_extractf128_si256(sum_sse_order_add, 1);
892 _mm_storeu_si128((__m128i *)sum8x8, sum_temp8x8);
893
894 // (d0xd0 >> 6)=f0 (d1xd1 >> 6)=f1 (d2xd2 >> 6)=f2 (d3xd3 >> 6)=f3
895 const __m128i mull_results =
896 _mm_srli_epi32(_mm_mullo_epi32(sum_temp8x8, sum_temp8x8), 6);
897 // s0-f0=v0 s1-f1=v1 s2-f2=v2 s3-f3=v3
898 const __m128i variance_8x8 =
899 _mm_sub_epi32(_mm256_castsi256_si128(sum_sse_order_add), mull_results);
900 // v0 v1 v2 v3
901 _mm_storeu_si128((__m128i *)var8x8, variance_8x8);
902 }
903
get_var_sse_sum_16x16_dual_avx2(const uint8_t * src,int src_stride,const uint8_t * ref,const int ref_stride,const int h,uint32_t * sse16x16,unsigned int * tot_sse,int * tot_sum,uint32_t * var16x16)904 static inline void get_var_sse_sum_16x16_dual_avx2(
905 const uint8_t *src, int src_stride, const uint8_t *ref,
906 const int ref_stride, const int h, uint32_t *sse16x16,
907 unsigned int *tot_sse, int *tot_sum, uint32_t *var16x16) {
908 assert(h <= 128); // May overflow for larger height.
909 __m256i sse_16x16[2], sum_16x16[2];
910 sum_16x16[0] = _mm256_setzero_si256();
911 sse_16x16[0] = _mm256_setzero_si256();
912 sum_16x16[1] = sum_16x16[0];
913 sse_16x16[1] = sse_16x16[0];
914 const __m256i set_one_minusone = _mm256_set1_epi16((short)0xff01);
915
916 for (int i = 0; i < h; i++) {
917 // Process 16x32 block of one row.
918 calc_sum_sse_wd32_avx2(src, ref, set_one_minusone, sse_16x16, sum_16x16);
919 src += src_stride;
920 ref += ref_stride;
921 }
922
923 const __m256i sum_sse_order_add =
924 calc_sum_sse_order(sse_16x16, sum_16x16, tot_sse, tot_sum);
925
926 const __m256i sum_sse_order_add_1 =
927 _mm256_hadd_epi32(sum_sse_order_add, sum_sse_order_add);
928
929 // s0+s1 s2+s3 x x
930 _mm_storel_epi64((__m128i *)sse16x16,
931 _mm256_castsi256_si128(sum_sse_order_add_1));
932
933 // d0+d1 d2+d3 x x
934 const __m128i sum_temp16x16 =
935 _mm256_extractf128_si256(sum_sse_order_add_1, 1);
936
937 // (d0xd0 >> 6)=f0 (d1xd1 >> 6)=f1 (d2xd2 >> 6)=f2 (d3xd3 >> 6)=f3
938 const __m128i mull_results =
939 _mm_srli_epi32(_mm_mullo_epi32(sum_temp16x16, sum_temp16x16), 8);
940
941 // s0-f0=v0 s1-f1=v1 s2-f2=v2 s3-f3=v3
942 const __m128i variance_16x16 =
943 _mm_sub_epi32(_mm256_castsi256_si128(sum_sse_order_add_1), mull_results);
944
945 // v0 v1 v2 v3
946 _mm_storel_epi64((__m128i *)var16x16, variance_16x16);
947 }
948
aom_get_var_sse_sum_8x8_quad_avx2(const uint8_t * src_ptr,int source_stride,const uint8_t * ref_ptr,int ref_stride,uint32_t * sse8x8,int * sum8x8,unsigned int * tot_sse,int * tot_sum,uint32_t * var8x8)949 void aom_get_var_sse_sum_8x8_quad_avx2(const uint8_t *src_ptr,
950 int source_stride,
951 const uint8_t *ref_ptr, int ref_stride,
952 uint32_t *sse8x8, int *sum8x8,
953 unsigned int *tot_sse, int *tot_sum,
954 uint32_t *var8x8) {
955 get_var_sse_sum_8x8_quad_avx2(src_ptr, source_stride, ref_ptr, ref_stride, 8,
956 sse8x8, sum8x8, tot_sse, tot_sum, var8x8);
957 }
958
aom_get_var_sse_sum_16x16_dual_avx2(const uint8_t * src_ptr,int source_stride,const uint8_t * ref_ptr,int ref_stride,uint32_t * sse16x16,unsigned int * tot_sse,int * tot_sum,uint32_t * var16x16)959 void aom_get_var_sse_sum_16x16_dual_avx2(const uint8_t *src_ptr,
960 int source_stride,
961 const uint8_t *ref_ptr, int ref_stride,
962 uint32_t *sse16x16,
963 unsigned int *tot_sse, int *tot_sum,
964 uint32_t *var16x16) {
965 get_var_sse_sum_16x16_dual_avx2(src_ptr, source_stride, ref_ptr, ref_stride,
966 16, sse16x16, tot_sse, tot_sum, var16x16);
967 }
968