xref: /aosp_15_r20/external/pytorch/aten/src/ATen/native/AdaptiveMaxPooling2d.cpp (revision da0073e96a02ea20f0ac840b70461e3646d07c45)
1 #define TORCH_ASSERT_ONLY_METHOD_OPERATORS
2 #include <ATen/core/Tensor.h>
3 #include <ATen/native/AdaptivePooling.h>
4 #include <c10/util/irange.h>
5 
6 #ifndef AT_PER_OPERATOR_HEADERS
7 #include <ATen/Functions.h>
8 #include <ATen/NativeFunctions.h>
9 #else
10 #include <ATen/ops/adaptive_max_pool2d_backward_native.h>
11 #include <ATen/ops/adaptive_max_pool2d_native.h>
12 #endif
13 
14 namespace at::meta {
TORCH_META_FUNC(adaptive_max_pool2d)15 TORCH_META_FUNC(adaptive_max_pool2d) (const Tensor& input, IntArrayRef output_size) {
16   int ndim = input.ndimension();
17   TORCH_CHECK(ndim == 3 || ndim == 4,
18               "adaptive_max_pool2d(): Expected 3D or 4D tensor, but got: ",
19               input.sizes());
20   for (const auto i : c10::irange(1, ndim)) {
21     TORCH_CHECK(input.size(i) > 0,
22         "adaptive_max_pool2d(): Expected input to have non-zero size for non-batch dimensions, "
23         "but input has sizes ", input.sizes(), " with dimension ", i,
24         " being empty");
25   }
26 
27   TORCH_CHECK(output_size.size() == 2,
28       "adaptive_max_pool2d(): internal error: output_size.size() must be 2");
29 
30   int dimH = 1;
31   int64_t sizeB = 1;
32   int64_t sizeD = 0;
33 
34   if (input.ndimension() == 4) {
35     sizeB = input.size(0);
36     dimH++;
37   }
38 
39   sizeD = input.size(dimH - 1);
40 
41   int64_t osizeH = output_size[0];
42   int64_t osizeW = output_size[1];
43 
44   /* resize output */
45   if (input.ndimension() == 3) {
46     set_output_raw_strided(0, {sizeD, osizeH, osizeW}, {}, input.options());
47     /* indices will contain i,j locations for each output point */
48     set_output_raw_strided(1, {sizeD, osizeH, osizeW}, {}, input.options().dtype(kLong));
49   } else {
50     set_output_raw_strided(0, {sizeB, sizeD, osizeH, osizeW}, {}, input.options().memory_format(input.suggest_memory_format()));
51     /* indices will contain i,j locations for each output point */
52     set_output_raw_strided(1, {sizeB, sizeD, osizeH, osizeW}, {}, input.options().memory_format(input.suggest_memory_format()).dtype(kLong));
53   }
54 }
55 
TORCH_META_FUNC(adaptive_max_pool2d_backward)56 TORCH_META_FUNC(adaptive_max_pool2d_backward)
57 (const Tensor& grad_output, const Tensor& input, const Tensor& indices) {
58   int64_t ndim = grad_output.ndimension();
59   TORCH_CHECK(ndim == 3 || ndim == 4,
60     "adaptive_max_pooling2d_backward(): Expected 3D or 4D grad_output, but got: ", grad_output.sizes());
61 
62   at::native::adaptive_pool_empty_output_check(grad_output, "adaptive_max_pool2d_backward");
63 
64   TORCH_CHECK(input.dtype() == grad_output.dtype(),
65     "expected dtype ", input.dtype(), " for `grad_output` but got dtype ", grad_output.dtype());
66 
67   set_output_raw_strided(0, input.sizes(), {}, input.options().memory_format(input.suggest_memory_format()));
68 }
69 } // namespace at::meta
70 
71 namespace at::native {
72 
TORCH_IMPL_FUNC(adaptive_max_pool2d_out_cpu)73 TORCH_IMPL_FUNC(adaptive_max_pool2d_out_cpu)
74 (const Tensor& input, IntArrayRef output_size, const Tensor& output, const Tensor& indices) {
75   adaptive_max_pool2d_kernel(kCPU, output, indices, input, output_size);
76 }
77 
TORCH_IMPL_FUNC(adaptive_max_pool2d_backward_out_cpu)78 TORCH_IMPL_FUNC(adaptive_max_pool2d_backward_out_cpu)
79 (const Tensor& grad_output, const Tensor& input, const Tensor& indices, const Tensor& grad_input) {
80   grad_input.zero_();
81   adaptive_max_pool2d_backward_kernel(kCPU, grad_input, grad_output, indices);
82  }
83 
84 DEFINE_DISPATCH(adaptive_max_pool2d_kernel);
85 DEFINE_DISPATCH(adaptive_max_pool2d_backward_kernel);
86 
87 } // namespace at::native
88