1 /*
2 * Copyright (c) 2024, Alliance for Open Media. All rights reserved.
3 *
4 * This source code is subject to the terms of the BSD 2 Clause License and
5 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6 * was not distributed with this source code in the LICENSE file, you can
7 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8 * Media Patent License 1.0 was not distributed with this source code in the
9 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10 */
11
12 #include <assert.h>
13 #include <arm_neon.h>
14 #include <stddef.h>
15 #include <stdint.h>
16
17 #include "config/aom_config.h"
18 #include "config/av1_rtcd.h"
19
20 #include "aom_dsp/aom_dsp_common.h"
21 #include "aom_dsp/aom_filter.h"
22 #include "aom_dsp/arm/mem_neon.h"
23 #include "aom_dsp/arm/transpose_neon.h"
24 #include "aom_ports/mem.h"
25 #include "av1/common/arm/convolve_scale_neon.h"
26 #include "av1/common/convolve.h"
27 #include "av1/common/enums.h"
28 #include "av1/common/filter.h"
29
30 // clang-format off
31 DECLARE_ALIGNED(16, static const uint8_t, kScale2DotProdPermuteTbl[32]) = {
32 0, 1, 2, 3, 2, 3, 4, 5, 4, 5, 6, 7, 6, 7, 8, 9,
33 4, 5, 6, 7, 6, 7, 8, 9, 8, 9, 10, 11, 10, 11, 12, 13
34 };
35 // clang-format on
36
convolve8_4_h(const uint8x8_t s0,const uint8x8_t s1,const uint8x8_t s2,const uint8x8_t s3,const int8x8_t filter,const int32x4_t horiz_const)37 static inline int16x4_t convolve8_4_h(const uint8x8_t s0, const uint8x8_t s1,
38 const uint8x8_t s2, const uint8x8_t s3,
39 const int8x8_t filter,
40 const int32x4_t horiz_const) {
41 const int8x16_t filters = vcombine_s8(filter, filter);
42
43 uint8x16_t s01 = vcombine_u8(s0, s1);
44 uint8x16_t s23 = vcombine_u8(s2, s3);
45
46 // Transform sample range to [-128, 127] for 8-bit signed dot product.
47 int8x16_t s01_128 = vreinterpretq_s8_u8(vsubq_u8(s01, vdupq_n_u8(128)));
48 int8x16_t s23_128 = vreinterpretq_s8_u8(vsubq_u8(s23, vdupq_n_u8(128)));
49
50 int32x4_t sum01 = vdotq_s32(horiz_const, s01_128, filters);
51 int32x4_t sum23 = vdotq_s32(horiz_const, s23_128, filters);
52
53 int32x4_t sum = vpaddq_s32(sum01, sum23);
54
55 // We halved the filter values so -1 from right shift.
56 return vshrn_n_s32(sum, ROUND0_BITS - 1);
57 }
58
convolve8_8_h(const uint8x8_t s0,const uint8x8_t s1,const uint8x8_t s2,const uint8x8_t s3,const uint8x8_t s4,const uint8x8_t s5,const uint8x8_t s6,const uint8x8_t s7,const int8x8_t filter,const int32x4_t horiz_const)59 static inline int16x8_t convolve8_8_h(const uint8x8_t s0, const uint8x8_t s1,
60 const uint8x8_t s2, const uint8x8_t s3,
61 const uint8x8_t s4, const uint8x8_t s5,
62 const uint8x8_t s6, const uint8x8_t s7,
63 const int8x8_t filter,
64 const int32x4_t horiz_const) {
65 const int8x16_t filters = vcombine_s8(filter, filter);
66
67 uint8x16_t s01 = vcombine_u8(s0, s1);
68 uint8x16_t s23 = vcombine_u8(s2, s3);
69 uint8x16_t s45 = vcombine_u8(s4, s5);
70 uint8x16_t s67 = vcombine_u8(s6, s7);
71
72 // Transform sample range to [-128, 127] for 8-bit signed dot product.
73 int8x16_t s01_128 = vreinterpretq_s8_u8(vsubq_u8(s01, vdupq_n_u8(128)));
74 int8x16_t s23_128 = vreinterpretq_s8_u8(vsubq_u8(s23, vdupq_n_u8(128)));
75 int8x16_t s45_128 = vreinterpretq_s8_u8(vsubq_u8(s45, vdupq_n_u8(128)));
76 int8x16_t s67_128 = vreinterpretq_s8_u8(vsubq_u8(s67, vdupq_n_u8(128)));
77
78 int32x4_t sum01 = vdotq_s32(horiz_const, s01_128, filters);
79 int32x4_t sum23 = vdotq_s32(horiz_const, s23_128, filters);
80 int32x4_t sum45 = vdotq_s32(horiz_const, s45_128, filters);
81 int32x4_t sum67 = vdotq_s32(horiz_const, s67_128, filters);
82
83 int32x4_t sum0123 = vpaddq_s32(sum01, sum23);
84 int32x4_t sum4567 = vpaddq_s32(sum45, sum67);
85
86 // We halved the filter values so -1 from right shift.
87 return vcombine_s16(vshrn_n_s32(sum0123, ROUND0_BITS - 1),
88 vshrn_n_s32(sum4567, ROUND0_BITS - 1));
89 }
90
convolve_horiz_scale_neon_dotprod(const uint8_t * src,int src_stride,int16_t * dst,int dst_stride,int w,int h,const int16_t * x_filter,const int subpel_x_qn,const int x_step_qn)91 static inline void convolve_horiz_scale_neon_dotprod(
92 const uint8_t *src, int src_stride, int16_t *dst, int dst_stride, int w,
93 int h, const int16_t *x_filter, const int subpel_x_qn,
94 const int x_step_qn) {
95 DECLARE_ALIGNED(16, int16_t, temp[8 * 8]);
96 const int bd = 8;
97 // A shim of 1 << (ROUND0_BITS - 1) enables us to use non-rounding
98 // shifts - which are generally faster than rounding shifts on modern CPUs.
99 const int32_t horiz_offset =
100 (1 << (bd + FILTER_BITS - 1)) + (1 << (ROUND0_BITS - 1));
101 // The shim of 128 << FILTER_BITS is needed because we are subtracting 128
102 // from every source value.
103 const int32_t dotprod_offset = 128 << FILTER_BITS;
104 // Divide the total by 4: we halved the filter values and will use a pairwise
105 // add in the convolution kernel.
106 const int32x4_t horiz_offset_vec =
107 vdupq_n_s32((horiz_offset + dotprod_offset) >> 2);
108
109 if (w == 4) {
110 do {
111 int x_qn = subpel_x_qn;
112
113 // Process a 4x4 tile.
114 for (int r = 0; r < 4; r++) {
115 const uint8_t *const s = &src[x_qn >> SCALE_SUBPEL_BITS];
116
117 const ptrdiff_t filter_offset =
118 SUBPEL_TAPS * ((x_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS);
119 // Filter values are all even so halve them to fit in int8_t.
120 const int8x8_t filter =
121 vshrn_n_s16(vld1q_s16(x_filter + filter_offset), 1);
122
123 uint8x8_t t0, t1, t2, t3;
124 load_u8_8x4(s, src_stride, &t0, &t1, &t2, &t3);
125
126 int16x4_t d0 = convolve8_4_h(t0, t1, t2, t3, filter, horiz_offset_vec);
127
128 vst1_s16(&temp[r * 4], d0);
129
130 x_qn += x_step_qn;
131 }
132
133 // Transpose the 4x4 result tile and store.
134 int16x4_t d0, d1, d2, d3;
135 load_s16_4x4(temp, 4, &d0, &d1, &d2, &d3);
136
137 transpose_elems_inplace_s16_4x4(&d0, &d1, &d2, &d3);
138
139 store_s16_4x4(dst, dst_stride, d0, d1, d2, d3);
140
141 dst += 4 * dst_stride;
142 src += 4 * src_stride;
143 h -= 4;
144 } while (h > 0);
145 } else {
146 do {
147 int x_qn = subpel_x_qn;
148 int16_t *d = dst;
149 int width = w;
150
151 do {
152 // Process an 8x8 tile.
153 for (int r = 0; r < 8; r++) {
154 const uint8_t *const s = &src[(x_qn >> SCALE_SUBPEL_BITS)];
155
156 const ptrdiff_t filter_offset =
157 SUBPEL_TAPS * ((x_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS);
158 // Filter values are all even so halve them to fit in int8_t.
159 int8x8_t filter = vshrn_n_s16(vld1q_s16(x_filter + filter_offset), 1);
160
161 uint8x8_t t0, t1, t2, t3, t4, t5, t6, t7;
162 load_u8_8x8(s, src_stride, &t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7);
163
164 int16x8_t d0 = convolve8_8_h(t0, t1, t2, t3, t4, t5, t6, t7, filter,
165 horiz_offset_vec);
166
167 vst1q_s16(&temp[r * 8], d0);
168
169 x_qn += x_step_qn;
170 }
171
172 // Transpose the 8x8 result tile and store.
173 int16x8_t d0, d1, d2, d3, d4, d5, d6, d7;
174 load_s16_8x8(temp, 8, &d0, &d1, &d2, &d3, &d4, &d5, &d6, &d7);
175
176 transpose_elems_inplace_s16_8x8(&d0, &d1, &d2, &d3, &d4, &d5, &d6, &d7);
177
178 store_s16_8x8(d, dst_stride, d0, d1, d2, d3, d4, d5, d6, d7);
179
180 d += 8;
181 width -= 8;
182 } while (width != 0);
183
184 dst += 8 * dst_stride;
185 src += 8 * src_stride;
186 h -= 8;
187 } while (h > 0);
188 }
189 }
190
convolve8_4_h_scale_2(uint8x16_t samples,const int8x8_t filters,const int32x4_t horiz_const,const uint8x16x2_t permute_tbl)191 static inline int16x4_t convolve8_4_h_scale_2(uint8x16_t samples,
192 const int8x8_t filters,
193 const int32x4_t horiz_const,
194 const uint8x16x2_t permute_tbl) {
195 // Transform sample range to [-128, 127] for 8-bit signed dot product.
196 int8x16_t samples_128 =
197 vreinterpretq_s8_u8(vsubq_u8(samples, vdupq_n_u8(128)));
198
199 // Permute samples ready for dot product.
200 // { 0, 1, 2, 3, 2, 3, 4, 5, 4, 5, 6, 7, 6, 7, 8, 9 }
201 // { 4, 5, 6, 7, 6, 7, 8, 9, 8, 9, 10, 11, 10, 11, 12, 13 }
202 int8x16_t perm_samples[2] = { vqtbl1q_s8(samples_128, permute_tbl.val[0]),
203 vqtbl1q_s8(samples_128, permute_tbl.val[1]) };
204
205 int32x4_t sum = vdotq_lane_s32(horiz_const, perm_samples[0], filters, 0);
206 sum = vdotq_lane_s32(sum, perm_samples[1], filters, 1);
207
208 // We halved the filter values so -1 from right shift.
209 return vshrn_n_s32(sum, ROUND0_BITS - 1);
210 }
211
convolve8_8_h_scale_2(uint8x16_t samples[2],const int8x8_t filters,const int32x4_t horiz_const,const uint8x16x2_t permute_tbl)212 static inline int16x8_t convolve8_8_h_scale_2(uint8x16_t samples[2],
213 const int8x8_t filters,
214 const int32x4_t horiz_const,
215 const uint8x16x2_t permute_tbl) {
216 // Transform sample range to [-128, 127] for 8-bit signed dot product.
217 int8x16_t samples0_128 =
218 vreinterpretq_s8_u8(vsubq_u8(samples[0], vdupq_n_u8(128)));
219 int8x16_t samples1_128 =
220 vreinterpretq_s8_u8(vsubq_u8(samples[1], vdupq_n_u8(128)));
221
222 // Permute samples ready for dot product.
223 // { 0, 1, 2, 3, 2, 3, 4, 5, 4, 5, 6, 7, 6, 7, 8, 9 }
224 // { 4, 5, 6, 7, 6, 7, 8, 9, 8, 9, 10, 11, 10, 11, 12, 13 }
225 int8x16_t perm_samples[4] = { vqtbl1q_s8(samples0_128, permute_tbl.val[0]),
226 vqtbl1q_s8(samples0_128, permute_tbl.val[1]),
227 vqtbl1q_s8(samples1_128, permute_tbl.val[0]),
228 vqtbl1q_s8(samples1_128, permute_tbl.val[1]) };
229
230 // First 4 output values.
231 int32x4_t sum0123 = vdotq_lane_s32(horiz_const, perm_samples[0], filters, 0);
232 sum0123 = vdotq_lane_s32(sum0123, perm_samples[1], filters, 1);
233 // Second 4 output values.
234 int32x4_t sum4567 = vdotq_lane_s32(horiz_const, perm_samples[2], filters, 0);
235 sum4567 = vdotq_lane_s32(sum4567, perm_samples[3], filters, 1);
236
237 // We halved the filter values so -1 from right shift.
238 return vcombine_s16(vshrn_n_s32(sum0123, ROUND0_BITS - 1),
239 vshrn_n_s32(sum4567, ROUND0_BITS - 1));
240 }
241
convolve_horiz_scale_2_neon_dotprod(const uint8_t * src,int src_stride,int16_t * dst,int dst_stride,int w,int h,const int16_t * x_filter)242 static inline void convolve_horiz_scale_2_neon_dotprod(
243 const uint8_t *src, int src_stride, int16_t *dst, int dst_stride, int w,
244 int h, const int16_t *x_filter) {
245 const int bd = 8;
246 // A shim of 1 << (ROUND0_BITS - 1) enables us to use non-rounding
247 // shifts - which are generally faster than rounding shifts on modern CPUs.
248 const int32_t horiz_offset =
249 (1 << (bd + FILTER_BITS - 1)) + (1 << (ROUND0_BITS - 1));
250 // The shim of 128 << FILTER_BITS is needed because we are subtracting 128
251 // from every source value.
252 const int32_t dotprod_offset = 128 << FILTER_BITS;
253 // Divide the total by 2 because we halved the filter values.
254 const int32x4_t horiz_offset_vec =
255 vdupq_n_s32((horiz_offset + dotprod_offset) >> 1);
256
257 const uint8x16x2_t permute_tbl = vld1q_u8_x2(kScale2DotProdPermuteTbl);
258 // Filter values are all even so halve them to fit in int8_t.
259 const int8x8_t filter = vshrn_n_s16(vld1q_s16(x_filter), 1);
260
261 if (w == 4) {
262 do {
263 const uint8_t *s = src;
264 int16_t *d = dst;
265 int width = w;
266
267 do {
268 uint8x16_t s0, s1, s2, s3;
269 load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3);
270
271 int16x4_t d0 =
272 convolve8_4_h_scale_2(s0, filter, horiz_offset_vec, permute_tbl);
273 int16x4_t d1 =
274 convolve8_4_h_scale_2(s1, filter, horiz_offset_vec, permute_tbl);
275 int16x4_t d2 =
276 convolve8_4_h_scale_2(s2, filter, horiz_offset_vec, permute_tbl);
277 int16x4_t d3 =
278 convolve8_4_h_scale_2(s3, filter, horiz_offset_vec, permute_tbl);
279
280 store_s16_4x4(d, dst_stride, d0, d1, d2, d3);
281
282 s += 8;
283 d += 4;
284 width -= 4;
285 } while (width != 0);
286
287 dst += 4 * dst_stride;
288 src += 4 * src_stride;
289 h -= 4;
290 } while (h > 0);
291 } else {
292 do {
293 const uint8_t *s = src;
294 int16_t *d = dst;
295 int width = w;
296
297 do {
298 uint8x16_t s0[2], s1[2], s2[2], s3[2];
299 load_u8_16x4(s, src_stride, &s0[0], &s1[0], &s2[0], &s3[0]);
300 load_u8_16x4(s + 8, src_stride, &s0[1], &s1[1], &s2[1], &s3[1]);
301
302 int16x8_t d0 =
303 convolve8_8_h_scale_2(s0, filter, horiz_offset_vec, permute_tbl);
304 int16x8_t d1 =
305 convolve8_8_h_scale_2(s1, filter, horiz_offset_vec, permute_tbl);
306 int16x8_t d2 =
307 convolve8_8_h_scale_2(s2, filter, horiz_offset_vec, permute_tbl);
308 int16x8_t d3 =
309 convolve8_8_h_scale_2(s3, filter, horiz_offset_vec, permute_tbl);
310
311 store_s16_8x4(d, dst_stride, d0, d1, d2, d3);
312
313 s += 16;
314 d += 8;
315 width -= 8;
316 } while (width != 0);
317
318 dst += 4 * dst_stride;
319 src += 4 * src_stride;
320 h -= 4;
321 } while (h > 0);
322 }
323 }
324
av1_convolve_2d_scale_neon_dotprod(const uint8_t * src,int src_stride,uint8_t * dst,int dst_stride,int w,int h,const InterpFilterParams * filter_params_x,const InterpFilterParams * filter_params_y,const int subpel_x_qn,const int x_step_qn,const int subpel_y_qn,const int y_step_qn,ConvolveParams * conv_params)325 void av1_convolve_2d_scale_neon_dotprod(
326 const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, int w,
327 int h, const InterpFilterParams *filter_params_x,
328 const InterpFilterParams *filter_params_y, const int subpel_x_qn,
329 const int x_step_qn, const int subpel_y_qn, const int y_step_qn,
330 ConvolveParams *conv_params) {
331 if (w < 4 || h < 4) {
332 av1_convolve_2d_scale_c(src, src_stride, dst, dst_stride, w, h,
333 filter_params_x, filter_params_y, subpel_x_qn,
334 x_step_qn, subpel_y_qn, y_step_qn, conv_params);
335 return;
336 }
337
338 // For the interpolation 8-tap filters are used.
339 assert(filter_params_y->taps <= 8 && filter_params_x->taps <= 8);
340
341 DECLARE_ALIGNED(32, int16_t,
342 im_block[(2 * MAX_SB_SIZE + MAX_FILTER_TAP) * MAX_SB_SIZE]);
343 int im_h = (((h - 1) * y_step_qn + subpel_y_qn) >> SCALE_SUBPEL_BITS) +
344 filter_params_y->taps;
345 int im_stride = MAX_SB_SIZE;
346 CONV_BUF_TYPE *dst16 = conv_params->dst;
347 const int dst16_stride = conv_params->dst_stride;
348
349 // Account for needing filter_taps / 2 - 1 lines prior and filter_taps / 2
350 // lines post both horizontally and vertically.
351 const ptrdiff_t horiz_offset = filter_params_x->taps / 2 - 1;
352 const ptrdiff_t vert_offset = (filter_params_y->taps / 2 - 1) * src_stride;
353
354 // Horizontal filter
355 if (x_step_qn != 2 * (1 << SCALE_SUBPEL_BITS)) {
356 convolve_horiz_scale_neon_dotprod(
357 src - horiz_offset - vert_offset, src_stride, im_block, im_stride, w,
358 im_h, filter_params_x->filter_ptr, subpel_x_qn, x_step_qn);
359 } else {
360 assert(subpel_x_qn < (1 << SCALE_SUBPEL_BITS));
361 // The filter index is calculated using the
362 // ((subpel_x_qn + x * x_step_qn) & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS
363 // equation, where the values of x are from 0 to w. If x_step_qn is a
364 // multiple of SCALE_SUBPEL_MASK we can leave it out of the equation.
365 const ptrdiff_t filter_offset =
366 SUBPEL_TAPS * ((subpel_x_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS);
367 const int16_t *x_filter = filter_params_x->filter_ptr + filter_offset;
368
369 // The source index is calculated using the (subpel_x_qn + x * x_step_qn) >>
370 // SCALE_SUBPEL_BITS, where the values of x are from 0 to w. If subpel_x_qn
371 // < (1 << SCALE_SUBPEL_BITS) and x_step_qn % (1 << SCALE_SUBPEL_BITS) == 0,
372 // the source index can be determined using the value x * (x_step_qn /
373 // (1 << SCALE_SUBPEL_BITS)).
374 convolve_horiz_scale_2_neon_dotprod(src - horiz_offset - vert_offset,
375 src_stride, im_block, im_stride, w,
376 im_h, x_filter);
377 }
378
379 // Vertical filter
380 if (filter_params_y->interp_filter == MULTITAP_SHARP) {
381 if (UNLIKELY(conv_params->is_compound)) {
382 if (conv_params->do_average) {
383 if (conv_params->use_dist_wtd_comp_avg) {
384 compound_dist_wtd_convolve_vert_scale_8tap_neon(
385 im_block, im_stride, dst, dst_stride, dst16, dst16_stride, w, h,
386 filter_params_y->filter_ptr, conv_params, subpel_y_qn, y_step_qn);
387 } else {
388 compound_avg_convolve_vert_scale_8tap_neon(
389 im_block, im_stride, dst, dst_stride, dst16, dst16_stride, w, h,
390 filter_params_y->filter_ptr, subpel_y_qn, y_step_qn);
391 }
392 } else {
393 compound_convolve_vert_scale_8tap_neon(
394 im_block, im_stride, dst16, dst16_stride, w, h,
395 filter_params_y->filter_ptr, subpel_y_qn, y_step_qn);
396 }
397 } else {
398 convolve_vert_scale_8tap_neon(im_block, im_stride, dst, dst_stride, w, h,
399 filter_params_y->filter_ptr, subpel_y_qn,
400 y_step_qn);
401 }
402 } else {
403 if (UNLIKELY(conv_params->is_compound)) {
404 if (conv_params->do_average) {
405 if (conv_params->use_dist_wtd_comp_avg) {
406 compound_dist_wtd_convolve_vert_scale_6tap_neon(
407 im_block + im_stride, im_stride, dst, dst_stride, dst16,
408 dst16_stride, w, h, filter_params_y->filter_ptr, conv_params,
409 subpel_y_qn, y_step_qn);
410 } else {
411 compound_avg_convolve_vert_scale_6tap_neon(
412 im_block + im_stride, im_stride, dst, dst_stride, dst16,
413 dst16_stride, w, h, filter_params_y->filter_ptr, subpel_y_qn,
414 y_step_qn);
415 }
416 } else {
417 compound_convolve_vert_scale_6tap_neon(
418 im_block + im_stride, im_stride, dst16, dst16_stride, w, h,
419 filter_params_y->filter_ptr, subpel_y_qn, y_step_qn);
420 }
421 } else {
422 convolve_vert_scale_6tap_neon(
423 im_block + im_stride, im_stride, dst, dst_stride, w, h,
424 filter_params_y->filter_ptr, subpel_y_qn, y_step_qn);
425 }
426 }
427 }
428