xref: /aosp_15_r20/external/libaom/av1/common/arm/av1_convolve_scale_neon_dotprod.c (revision 77c1e3ccc04c968bd2bc212e87364f250e820521)
1 /*
2  * Copyright (c) 2024, Alliance for Open Media. All rights reserved.
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #include <assert.h>
13 #include <arm_neon.h>
14 #include <stddef.h>
15 #include <stdint.h>
16 
17 #include "config/aom_config.h"
18 #include "config/av1_rtcd.h"
19 
20 #include "aom_dsp/aom_dsp_common.h"
21 #include "aom_dsp/aom_filter.h"
22 #include "aom_dsp/arm/mem_neon.h"
23 #include "aom_dsp/arm/transpose_neon.h"
24 #include "aom_ports/mem.h"
25 #include "av1/common/arm/convolve_scale_neon.h"
26 #include "av1/common/convolve.h"
27 #include "av1/common/enums.h"
28 #include "av1/common/filter.h"
29 
30 // clang-format off
31 DECLARE_ALIGNED(16, static const uint8_t, kScale2DotProdPermuteTbl[32]) = {
32   0, 1, 2, 3, 2, 3, 4, 5, 4, 5,  6,  7,  6,  7,  8,  9,
33   4, 5, 6, 7, 6, 7, 8, 9, 8, 9, 10, 11, 10, 11, 12, 13
34 };
35 // clang-format on
36 
convolve8_4_h(const uint8x8_t s0,const uint8x8_t s1,const uint8x8_t s2,const uint8x8_t s3,const int8x8_t filter,const int32x4_t horiz_const)37 static inline int16x4_t convolve8_4_h(const uint8x8_t s0, const uint8x8_t s1,
38                                       const uint8x8_t s2, const uint8x8_t s3,
39                                       const int8x8_t filter,
40                                       const int32x4_t horiz_const) {
41   const int8x16_t filters = vcombine_s8(filter, filter);
42 
43   uint8x16_t s01 = vcombine_u8(s0, s1);
44   uint8x16_t s23 = vcombine_u8(s2, s3);
45 
46   // Transform sample range to [-128, 127] for 8-bit signed dot product.
47   int8x16_t s01_128 = vreinterpretq_s8_u8(vsubq_u8(s01, vdupq_n_u8(128)));
48   int8x16_t s23_128 = vreinterpretq_s8_u8(vsubq_u8(s23, vdupq_n_u8(128)));
49 
50   int32x4_t sum01 = vdotq_s32(horiz_const, s01_128, filters);
51   int32x4_t sum23 = vdotq_s32(horiz_const, s23_128, filters);
52 
53   int32x4_t sum = vpaddq_s32(sum01, sum23);
54 
55   // We halved the filter values so -1 from right shift.
56   return vshrn_n_s32(sum, ROUND0_BITS - 1);
57 }
58 
convolve8_8_h(const uint8x8_t s0,const uint8x8_t s1,const uint8x8_t s2,const uint8x8_t s3,const uint8x8_t s4,const uint8x8_t s5,const uint8x8_t s6,const uint8x8_t s7,const int8x8_t filter,const int32x4_t horiz_const)59 static inline int16x8_t convolve8_8_h(const uint8x8_t s0, const uint8x8_t s1,
60                                       const uint8x8_t s2, const uint8x8_t s3,
61                                       const uint8x8_t s4, const uint8x8_t s5,
62                                       const uint8x8_t s6, const uint8x8_t s7,
63                                       const int8x8_t filter,
64                                       const int32x4_t horiz_const) {
65   const int8x16_t filters = vcombine_s8(filter, filter);
66 
67   uint8x16_t s01 = vcombine_u8(s0, s1);
68   uint8x16_t s23 = vcombine_u8(s2, s3);
69   uint8x16_t s45 = vcombine_u8(s4, s5);
70   uint8x16_t s67 = vcombine_u8(s6, s7);
71 
72   // Transform sample range to [-128, 127] for 8-bit signed dot product.
73   int8x16_t s01_128 = vreinterpretq_s8_u8(vsubq_u8(s01, vdupq_n_u8(128)));
74   int8x16_t s23_128 = vreinterpretq_s8_u8(vsubq_u8(s23, vdupq_n_u8(128)));
75   int8x16_t s45_128 = vreinterpretq_s8_u8(vsubq_u8(s45, vdupq_n_u8(128)));
76   int8x16_t s67_128 = vreinterpretq_s8_u8(vsubq_u8(s67, vdupq_n_u8(128)));
77 
78   int32x4_t sum01 = vdotq_s32(horiz_const, s01_128, filters);
79   int32x4_t sum23 = vdotq_s32(horiz_const, s23_128, filters);
80   int32x4_t sum45 = vdotq_s32(horiz_const, s45_128, filters);
81   int32x4_t sum67 = vdotq_s32(horiz_const, s67_128, filters);
82 
83   int32x4_t sum0123 = vpaddq_s32(sum01, sum23);
84   int32x4_t sum4567 = vpaddq_s32(sum45, sum67);
85 
86   // We halved the filter values so -1 from right shift.
87   return vcombine_s16(vshrn_n_s32(sum0123, ROUND0_BITS - 1),
88                       vshrn_n_s32(sum4567, ROUND0_BITS - 1));
89 }
90 
convolve_horiz_scale_neon_dotprod(const uint8_t * src,int src_stride,int16_t * dst,int dst_stride,int w,int h,const int16_t * x_filter,const int subpel_x_qn,const int x_step_qn)91 static inline void convolve_horiz_scale_neon_dotprod(
92     const uint8_t *src, int src_stride, int16_t *dst, int dst_stride, int w,
93     int h, const int16_t *x_filter, const int subpel_x_qn,
94     const int x_step_qn) {
95   DECLARE_ALIGNED(16, int16_t, temp[8 * 8]);
96   const int bd = 8;
97   // A shim of 1 << (ROUND0_BITS - 1) enables us to use non-rounding
98   // shifts - which are generally faster than rounding shifts on modern CPUs.
99   const int32_t horiz_offset =
100       (1 << (bd + FILTER_BITS - 1)) + (1 << (ROUND0_BITS - 1));
101   // The shim of 128 << FILTER_BITS is needed because we are subtracting 128
102   // from every source value.
103   const int32_t dotprod_offset = 128 << FILTER_BITS;
104   // Divide the total by 4: we halved the filter values and will use a pairwise
105   // add in the convolution kernel.
106   const int32x4_t horiz_offset_vec =
107       vdupq_n_s32((horiz_offset + dotprod_offset) >> 2);
108 
109   if (w == 4) {
110     do {
111       int x_qn = subpel_x_qn;
112 
113       // Process a 4x4 tile.
114       for (int r = 0; r < 4; r++) {
115         const uint8_t *const s = &src[x_qn >> SCALE_SUBPEL_BITS];
116 
117         const ptrdiff_t filter_offset =
118             SUBPEL_TAPS * ((x_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS);
119         // Filter values are all even so halve them to fit in int8_t.
120         const int8x8_t filter =
121             vshrn_n_s16(vld1q_s16(x_filter + filter_offset), 1);
122 
123         uint8x8_t t0, t1, t2, t3;
124         load_u8_8x4(s, src_stride, &t0, &t1, &t2, &t3);
125 
126         int16x4_t d0 = convolve8_4_h(t0, t1, t2, t3, filter, horiz_offset_vec);
127 
128         vst1_s16(&temp[r * 4], d0);
129 
130         x_qn += x_step_qn;
131       }
132 
133       // Transpose the 4x4 result tile and store.
134       int16x4_t d0, d1, d2, d3;
135       load_s16_4x4(temp, 4, &d0, &d1, &d2, &d3);
136 
137       transpose_elems_inplace_s16_4x4(&d0, &d1, &d2, &d3);
138 
139       store_s16_4x4(dst, dst_stride, d0, d1, d2, d3);
140 
141       dst += 4 * dst_stride;
142       src += 4 * src_stride;
143       h -= 4;
144     } while (h > 0);
145   } else {
146     do {
147       int x_qn = subpel_x_qn;
148       int16_t *d = dst;
149       int width = w;
150 
151       do {
152         // Process an 8x8 tile.
153         for (int r = 0; r < 8; r++) {
154           const uint8_t *const s = &src[(x_qn >> SCALE_SUBPEL_BITS)];
155 
156           const ptrdiff_t filter_offset =
157               SUBPEL_TAPS * ((x_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS);
158           // Filter values are all even so halve them to fit in int8_t.
159           int8x8_t filter = vshrn_n_s16(vld1q_s16(x_filter + filter_offset), 1);
160 
161           uint8x8_t t0, t1, t2, t3, t4, t5, t6, t7;
162           load_u8_8x8(s, src_stride, &t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7);
163 
164           int16x8_t d0 = convolve8_8_h(t0, t1, t2, t3, t4, t5, t6, t7, filter,
165                                        horiz_offset_vec);
166 
167           vst1q_s16(&temp[r * 8], d0);
168 
169           x_qn += x_step_qn;
170         }
171 
172         // Transpose the 8x8 result tile and store.
173         int16x8_t d0, d1, d2, d3, d4, d5, d6, d7;
174         load_s16_8x8(temp, 8, &d0, &d1, &d2, &d3, &d4, &d5, &d6, &d7);
175 
176         transpose_elems_inplace_s16_8x8(&d0, &d1, &d2, &d3, &d4, &d5, &d6, &d7);
177 
178         store_s16_8x8(d, dst_stride, d0, d1, d2, d3, d4, d5, d6, d7);
179 
180         d += 8;
181         width -= 8;
182       } while (width != 0);
183 
184       dst += 8 * dst_stride;
185       src += 8 * src_stride;
186       h -= 8;
187     } while (h > 0);
188   }
189 }
190 
convolve8_4_h_scale_2(uint8x16_t samples,const int8x8_t filters,const int32x4_t horiz_const,const uint8x16x2_t permute_tbl)191 static inline int16x4_t convolve8_4_h_scale_2(uint8x16_t samples,
192                                               const int8x8_t filters,
193                                               const int32x4_t horiz_const,
194                                               const uint8x16x2_t permute_tbl) {
195   // Transform sample range to [-128, 127] for 8-bit signed dot product.
196   int8x16_t samples_128 =
197       vreinterpretq_s8_u8(vsubq_u8(samples, vdupq_n_u8(128)));
198 
199   // Permute samples ready for dot product.
200   // { 0, 1, 2, 3, 2, 3, 4, 5, 4, 5,  6,  7,  6,  7,  8,  9 }
201   // { 4, 5, 6, 7, 6, 7, 8, 9, 8, 9, 10, 11, 10, 11, 12, 13 }
202   int8x16_t perm_samples[2] = { vqtbl1q_s8(samples_128, permute_tbl.val[0]),
203                                 vqtbl1q_s8(samples_128, permute_tbl.val[1]) };
204 
205   int32x4_t sum = vdotq_lane_s32(horiz_const, perm_samples[0], filters, 0);
206   sum = vdotq_lane_s32(sum, perm_samples[1], filters, 1);
207 
208   // We halved the filter values so -1 from right shift.
209   return vshrn_n_s32(sum, ROUND0_BITS - 1);
210 }
211 
convolve8_8_h_scale_2(uint8x16_t samples[2],const int8x8_t filters,const int32x4_t horiz_const,const uint8x16x2_t permute_tbl)212 static inline int16x8_t convolve8_8_h_scale_2(uint8x16_t samples[2],
213                                               const int8x8_t filters,
214                                               const int32x4_t horiz_const,
215                                               const uint8x16x2_t permute_tbl) {
216   // Transform sample range to [-128, 127] for 8-bit signed dot product.
217   int8x16_t samples0_128 =
218       vreinterpretq_s8_u8(vsubq_u8(samples[0], vdupq_n_u8(128)));
219   int8x16_t samples1_128 =
220       vreinterpretq_s8_u8(vsubq_u8(samples[1], vdupq_n_u8(128)));
221 
222   // Permute samples ready for dot product.
223   // { 0, 1, 2, 3, 2, 3, 4, 5, 4, 5,  6,  7,  6,  7,  8,  9 }
224   // { 4, 5, 6, 7, 6, 7, 8, 9, 8, 9, 10, 11, 10, 11, 12, 13 }
225   int8x16_t perm_samples[4] = { vqtbl1q_s8(samples0_128, permute_tbl.val[0]),
226                                 vqtbl1q_s8(samples0_128, permute_tbl.val[1]),
227                                 vqtbl1q_s8(samples1_128, permute_tbl.val[0]),
228                                 vqtbl1q_s8(samples1_128, permute_tbl.val[1]) };
229 
230   // First 4 output values.
231   int32x4_t sum0123 = vdotq_lane_s32(horiz_const, perm_samples[0], filters, 0);
232   sum0123 = vdotq_lane_s32(sum0123, perm_samples[1], filters, 1);
233   // Second 4 output values.
234   int32x4_t sum4567 = vdotq_lane_s32(horiz_const, perm_samples[2], filters, 0);
235   sum4567 = vdotq_lane_s32(sum4567, perm_samples[3], filters, 1);
236 
237   // We halved the filter values so -1 from right shift.
238   return vcombine_s16(vshrn_n_s32(sum0123, ROUND0_BITS - 1),
239                       vshrn_n_s32(sum4567, ROUND0_BITS - 1));
240 }
241 
convolve_horiz_scale_2_neon_dotprod(const uint8_t * src,int src_stride,int16_t * dst,int dst_stride,int w,int h,const int16_t * x_filter)242 static inline void convolve_horiz_scale_2_neon_dotprod(
243     const uint8_t *src, int src_stride, int16_t *dst, int dst_stride, int w,
244     int h, const int16_t *x_filter) {
245   const int bd = 8;
246   // A shim of 1 << (ROUND0_BITS - 1) enables us to use non-rounding
247   // shifts - which are generally faster than rounding shifts on modern CPUs.
248   const int32_t horiz_offset =
249       (1 << (bd + FILTER_BITS - 1)) + (1 << (ROUND0_BITS - 1));
250   // The shim of 128 << FILTER_BITS is needed because we are subtracting 128
251   // from every source value.
252   const int32_t dotprod_offset = 128 << FILTER_BITS;
253   // Divide the total by 2 because we halved the filter values.
254   const int32x4_t horiz_offset_vec =
255       vdupq_n_s32((horiz_offset + dotprod_offset) >> 1);
256 
257   const uint8x16x2_t permute_tbl = vld1q_u8_x2(kScale2DotProdPermuteTbl);
258   // Filter values are all even so halve them to fit in int8_t.
259   const int8x8_t filter = vshrn_n_s16(vld1q_s16(x_filter), 1);
260 
261   if (w == 4) {
262     do {
263       const uint8_t *s = src;
264       int16_t *d = dst;
265       int width = w;
266 
267       do {
268         uint8x16_t s0, s1, s2, s3;
269         load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3);
270 
271         int16x4_t d0 =
272             convolve8_4_h_scale_2(s0, filter, horiz_offset_vec, permute_tbl);
273         int16x4_t d1 =
274             convolve8_4_h_scale_2(s1, filter, horiz_offset_vec, permute_tbl);
275         int16x4_t d2 =
276             convolve8_4_h_scale_2(s2, filter, horiz_offset_vec, permute_tbl);
277         int16x4_t d3 =
278             convolve8_4_h_scale_2(s3, filter, horiz_offset_vec, permute_tbl);
279 
280         store_s16_4x4(d, dst_stride, d0, d1, d2, d3);
281 
282         s += 8;
283         d += 4;
284         width -= 4;
285       } while (width != 0);
286 
287       dst += 4 * dst_stride;
288       src += 4 * src_stride;
289       h -= 4;
290     } while (h > 0);
291   } else {
292     do {
293       const uint8_t *s = src;
294       int16_t *d = dst;
295       int width = w;
296 
297       do {
298         uint8x16_t s0[2], s1[2], s2[2], s3[2];
299         load_u8_16x4(s, src_stride, &s0[0], &s1[0], &s2[0], &s3[0]);
300         load_u8_16x4(s + 8, src_stride, &s0[1], &s1[1], &s2[1], &s3[1]);
301 
302         int16x8_t d0 =
303             convolve8_8_h_scale_2(s0, filter, horiz_offset_vec, permute_tbl);
304         int16x8_t d1 =
305             convolve8_8_h_scale_2(s1, filter, horiz_offset_vec, permute_tbl);
306         int16x8_t d2 =
307             convolve8_8_h_scale_2(s2, filter, horiz_offset_vec, permute_tbl);
308         int16x8_t d3 =
309             convolve8_8_h_scale_2(s3, filter, horiz_offset_vec, permute_tbl);
310 
311         store_s16_8x4(d, dst_stride, d0, d1, d2, d3);
312 
313         s += 16;
314         d += 8;
315         width -= 8;
316       } while (width != 0);
317 
318       dst += 4 * dst_stride;
319       src += 4 * src_stride;
320       h -= 4;
321     } while (h > 0);
322   }
323 }
324 
av1_convolve_2d_scale_neon_dotprod(const uint8_t * src,int src_stride,uint8_t * dst,int dst_stride,int w,int h,const InterpFilterParams * filter_params_x,const InterpFilterParams * filter_params_y,const int subpel_x_qn,const int x_step_qn,const int subpel_y_qn,const int y_step_qn,ConvolveParams * conv_params)325 void av1_convolve_2d_scale_neon_dotprod(
326     const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, int w,
327     int h, const InterpFilterParams *filter_params_x,
328     const InterpFilterParams *filter_params_y, const int subpel_x_qn,
329     const int x_step_qn, const int subpel_y_qn, const int y_step_qn,
330     ConvolveParams *conv_params) {
331   if (w < 4 || h < 4) {
332     av1_convolve_2d_scale_c(src, src_stride, dst, dst_stride, w, h,
333                             filter_params_x, filter_params_y, subpel_x_qn,
334                             x_step_qn, subpel_y_qn, y_step_qn, conv_params);
335     return;
336   }
337 
338   // For the interpolation 8-tap filters are used.
339   assert(filter_params_y->taps <= 8 && filter_params_x->taps <= 8);
340 
341   DECLARE_ALIGNED(32, int16_t,
342                   im_block[(2 * MAX_SB_SIZE + MAX_FILTER_TAP) * MAX_SB_SIZE]);
343   int im_h = (((h - 1) * y_step_qn + subpel_y_qn) >> SCALE_SUBPEL_BITS) +
344              filter_params_y->taps;
345   int im_stride = MAX_SB_SIZE;
346   CONV_BUF_TYPE *dst16 = conv_params->dst;
347   const int dst16_stride = conv_params->dst_stride;
348 
349   // Account for needing filter_taps / 2 - 1 lines prior and filter_taps / 2
350   // lines post both horizontally and vertically.
351   const ptrdiff_t horiz_offset = filter_params_x->taps / 2 - 1;
352   const ptrdiff_t vert_offset = (filter_params_y->taps / 2 - 1) * src_stride;
353 
354   // Horizontal filter
355   if (x_step_qn != 2 * (1 << SCALE_SUBPEL_BITS)) {
356     convolve_horiz_scale_neon_dotprod(
357         src - horiz_offset - vert_offset, src_stride, im_block, im_stride, w,
358         im_h, filter_params_x->filter_ptr, subpel_x_qn, x_step_qn);
359   } else {
360     assert(subpel_x_qn < (1 << SCALE_SUBPEL_BITS));
361     // The filter index is calculated using the
362     // ((subpel_x_qn + x * x_step_qn) & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS
363     // equation, where the values of x are from 0 to w. If x_step_qn is a
364     // multiple of SCALE_SUBPEL_MASK we can leave it out of the equation.
365     const ptrdiff_t filter_offset =
366         SUBPEL_TAPS * ((subpel_x_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS);
367     const int16_t *x_filter = filter_params_x->filter_ptr + filter_offset;
368 
369     // The source index is calculated using the (subpel_x_qn + x * x_step_qn) >>
370     // SCALE_SUBPEL_BITS, where the values of x are from 0 to w. If subpel_x_qn
371     // < (1 << SCALE_SUBPEL_BITS) and x_step_qn % (1 << SCALE_SUBPEL_BITS) == 0,
372     // the source index can be determined using the value x * (x_step_qn /
373     // (1 << SCALE_SUBPEL_BITS)).
374     convolve_horiz_scale_2_neon_dotprod(src - horiz_offset - vert_offset,
375                                         src_stride, im_block, im_stride, w,
376                                         im_h, x_filter);
377   }
378 
379   // Vertical filter
380   if (filter_params_y->interp_filter == MULTITAP_SHARP) {
381     if (UNLIKELY(conv_params->is_compound)) {
382       if (conv_params->do_average) {
383         if (conv_params->use_dist_wtd_comp_avg) {
384           compound_dist_wtd_convolve_vert_scale_8tap_neon(
385               im_block, im_stride, dst, dst_stride, dst16, dst16_stride, w, h,
386               filter_params_y->filter_ptr, conv_params, subpel_y_qn, y_step_qn);
387         } else {
388           compound_avg_convolve_vert_scale_8tap_neon(
389               im_block, im_stride, dst, dst_stride, dst16, dst16_stride, w, h,
390               filter_params_y->filter_ptr, subpel_y_qn, y_step_qn);
391         }
392       } else {
393         compound_convolve_vert_scale_8tap_neon(
394             im_block, im_stride, dst16, dst16_stride, w, h,
395             filter_params_y->filter_ptr, subpel_y_qn, y_step_qn);
396       }
397     } else {
398       convolve_vert_scale_8tap_neon(im_block, im_stride, dst, dst_stride, w, h,
399                                     filter_params_y->filter_ptr, subpel_y_qn,
400                                     y_step_qn);
401     }
402   } else {
403     if (UNLIKELY(conv_params->is_compound)) {
404       if (conv_params->do_average) {
405         if (conv_params->use_dist_wtd_comp_avg) {
406           compound_dist_wtd_convolve_vert_scale_6tap_neon(
407               im_block + im_stride, im_stride, dst, dst_stride, dst16,
408               dst16_stride, w, h, filter_params_y->filter_ptr, conv_params,
409               subpel_y_qn, y_step_qn);
410         } else {
411           compound_avg_convolve_vert_scale_6tap_neon(
412               im_block + im_stride, im_stride, dst, dst_stride, dst16,
413               dst16_stride, w, h, filter_params_y->filter_ptr, subpel_y_qn,
414               y_step_qn);
415         }
416       } else {
417         compound_convolve_vert_scale_6tap_neon(
418             im_block + im_stride, im_stride, dst16, dst16_stride, w, h,
419             filter_params_y->filter_ptr, subpel_y_qn, y_step_qn);
420       }
421     } else {
422       convolve_vert_scale_6tap_neon(
423           im_block + im_stride, im_stride, dst, dst_stride, w, h,
424           filter_params_y->filter_ptr, subpel_y_qn, y_step_qn);
425     }
426   }
427 }
428