xref: /aosp_15_r20/external/libaom/av1/common/av1_common_int.h (revision 77c1e3ccc04c968bd2bc212e87364f250e820521)
1 /*
2  * Copyright (c) 2016, Alliance for Open Media. All rights reserved.
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #ifndef AOM_AV1_COMMON_AV1_COMMON_INT_H_
13 #define AOM_AV1_COMMON_AV1_COMMON_INT_H_
14 
15 #include <stdbool.h>
16 
17 #include "config/aom_config.h"
18 #include "config/av1_rtcd.h"
19 
20 #include "aom/internal/aom_codec_internal.h"
21 #include "aom_dsp/flow_estimation/corner_detect.h"
22 #include "aom_util/aom_pthread.h"
23 #include "av1/common/alloccommon.h"
24 #include "av1/common/av1_loopfilter.h"
25 #include "av1/common/entropy.h"
26 #include "av1/common/entropymode.h"
27 #include "av1/common/entropymv.h"
28 #include "av1/common/enums.h"
29 #include "av1/common/frame_buffers.h"
30 #include "av1/common/mv.h"
31 #include "av1/common/quant_common.h"
32 #include "av1/common/restoration.h"
33 #include "av1/common/tile_common.h"
34 #include "av1/common/timing.h"
35 #include "aom_dsp/grain_params.h"
36 #include "aom_dsp/grain_table.h"
37 #include "aom_dsp/odintrin.h"
38 #ifdef __cplusplus
39 extern "C" {
40 #endif
41 
42 #if defined(__clang__) && defined(__has_warning)
43 #if __has_feature(cxx_attributes) && __has_warning("-Wimplicit-fallthrough")
44 #define AOM_FALLTHROUGH_INTENDED [[clang::fallthrough]]  // NOLINT
45 #endif
46 #elif defined(__GNUC__) && __GNUC__ >= 7
47 #define AOM_FALLTHROUGH_INTENDED __attribute__((fallthrough))  // NOLINT
48 #endif
49 
50 #ifndef AOM_FALLTHROUGH_INTENDED
51 #define AOM_FALLTHROUGH_INTENDED \
52   do {                           \
53   } while (0)
54 #endif
55 
56 #define CDEF_MAX_STRENGTHS 16
57 
58 /* Constant values while waiting for the sequence header */
59 #define FRAME_ID_LENGTH 15
60 #define DELTA_FRAME_ID_LENGTH 14
61 
62 #define FRAME_CONTEXTS (FRAME_BUFFERS + 1)
63 // Extra frame context which is always kept at default values
64 #define FRAME_CONTEXT_DEFAULTS (FRAME_CONTEXTS - 1)
65 #define PRIMARY_REF_BITS 3
66 #define PRIMARY_REF_NONE 7
67 
68 #define NUM_PING_PONG_BUFFERS 2
69 
70 #define MAX_NUM_TEMPORAL_LAYERS 8
71 #define MAX_NUM_SPATIAL_LAYERS 4
72 /* clang-format off */
73 // clang-format seems to think this is a pointer dereference and not a
74 // multiplication.
75 #define MAX_NUM_OPERATING_POINTS \
76   (MAX_NUM_TEMPORAL_LAYERS * MAX_NUM_SPATIAL_LAYERS)
77 /* clang-format on */
78 
79 // TODO(jingning): Turning this on to set up transform coefficient
80 // processing timer.
81 #define TXCOEFF_TIMER 0
82 #define TXCOEFF_COST_TIMER 0
83 
84 /*!\cond */
85 
86 enum {
87   SINGLE_REFERENCE = 0,
88   COMPOUND_REFERENCE = 1,
89   REFERENCE_MODE_SELECT = 2,
90   REFERENCE_MODES = 3,
91 } UENUM1BYTE(REFERENCE_MODE);
92 
93 enum {
94   /**
95    * Frame context updates are disabled
96    */
97   REFRESH_FRAME_CONTEXT_DISABLED,
98   /**
99    * Update frame context to values resulting from backward probability
100    * updates based on entropy/counts in the decoded frame
101    */
102   REFRESH_FRAME_CONTEXT_BACKWARD,
103 } UENUM1BYTE(REFRESH_FRAME_CONTEXT_MODE);
104 
105 #define MFMV_STACK_SIZE 3
106 typedef struct {
107   int_mv mfmv0;
108   uint8_t ref_frame_offset;
109 } TPL_MV_REF;
110 
111 typedef struct {
112   int_mv mv;
113   MV_REFERENCE_FRAME ref_frame;
114 } MV_REF;
115 
116 typedef struct RefCntBuffer {
117   // For a RefCntBuffer, the following are reference-holding variables:
118   // - cm->ref_frame_map[]
119   // - cm->cur_frame
120   // - cm->scaled_ref_buf[] (encoder only)
121   // - pbi->output_frame_index[] (decoder only)
122   // With that definition, 'ref_count' is the number of reference-holding
123   // variables that are currently referencing this buffer.
124   // For example:
125   // - suppose this buffer is at index 'k' in the buffer pool, and
126   // - Total 'n' of the variables / array elements above have value 'k' (that
127   // is, they are pointing to buffer at index 'k').
128   // Then, pool->frame_bufs[k].ref_count = n.
129   int ref_count;
130 
131   unsigned int order_hint;
132   unsigned int ref_order_hints[INTER_REFS_PER_FRAME];
133 
134   // These variables are used only in encoder and compare the absolute
135   // display order hint to compute the relative distance and overcome
136   // the limitation of get_relative_dist() which returns incorrect
137   // distance when a very old frame is used as a reference.
138   unsigned int display_order_hint;
139   unsigned int ref_display_order_hint[INTER_REFS_PER_FRAME];
140   // Frame's level within the hierarchical structure.
141   unsigned int pyramid_level;
142   MV_REF *mvs;
143   uint8_t *seg_map;
144   struct segmentation seg;
145   int mi_rows;
146   int mi_cols;
147   // Width and height give the size of the buffer (before any upscaling, unlike
148   // the sizes that can be derived from the buf structure)
149   int width;
150   int height;
151   WarpedMotionParams global_motion[REF_FRAMES];
152   int showable_frame;  // frame can be used as show existing frame in future
153   uint8_t film_grain_params_present;
154   aom_film_grain_t film_grain_params;
155   aom_codec_frame_buffer_t raw_frame_buffer;
156   YV12_BUFFER_CONFIG buf;
157   int temporal_id;  // Temporal layer ID of the frame
158   int spatial_id;   // Spatial layer ID of the frame
159   FRAME_TYPE frame_type;
160 
161   // This is only used in the encoder but needs to be indexed per ref frame
162   // so it's extremely convenient to keep it here.
163   int interp_filter_selected[SWITCHABLE];
164 
165   // Inter frame reference frame delta for loop filter
166   int8_t ref_deltas[REF_FRAMES];
167 
168   // 0 = ZERO_MV, MV
169   int8_t mode_deltas[MAX_MODE_LF_DELTAS];
170 
171   FRAME_CONTEXT frame_context;
172 } RefCntBuffer;
173 
174 typedef struct BufferPool {
175 // Protect BufferPool from being accessed by several FrameWorkers at
176 // the same time during frame parallel decode.
177 // TODO(hkuang): Try to use atomic variable instead of locking the whole pool.
178 // TODO(wtc): Remove this. See
179 // https://chromium-review.googlesource.com/c/webm/libvpx/+/560630.
180 #if CONFIG_MULTITHREAD
181   pthread_mutex_t pool_mutex;
182 #endif
183 
184   // Private data associated with the frame buffer callbacks.
185   void *cb_priv;
186 
187   aom_get_frame_buffer_cb_fn_t get_fb_cb;
188   aom_release_frame_buffer_cb_fn_t release_fb_cb;
189 
190   RefCntBuffer *frame_bufs;
191   uint8_t num_frame_bufs;
192 
193   // Frame buffers allocated internally by the codec.
194   InternalFrameBufferList int_frame_buffers;
195 } BufferPool;
196 
197 /*!\endcond */
198 
199 /*!\brief Parameters related to CDEF */
200 typedef struct {
201   //! CDEF column line buffer
202   uint16_t *colbuf[MAX_MB_PLANE];
203   //! CDEF top & bottom line buffer
204   uint16_t *linebuf[MAX_MB_PLANE];
205   //! CDEF intermediate buffer
206   uint16_t *srcbuf;
207   //! CDEF column line buffer sizes
208   size_t allocated_colbuf_size[MAX_MB_PLANE];
209   //! CDEF top and bottom line buffer sizes
210   size_t allocated_linebuf_size[MAX_MB_PLANE];
211   //! CDEF intermediate buffer size
212   size_t allocated_srcbuf_size;
213   //! CDEF damping factor
214   int cdef_damping;
215   //! Number of CDEF strength values
216   int nb_cdef_strengths;
217   //! CDEF strength values for luma
218   int cdef_strengths[CDEF_MAX_STRENGTHS];
219   //! CDEF strength values for chroma
220   int cdef_uv_strengths[CDEF_MAX_STRENGTHS];
221   //! Number of CDEF strength values in bits
222   int cdef_bits;
223   //! Number of rows in the frame in 4 pixel
224   int allocated_mi_rows;
225   //! Number of CDEF workers
226   int allocated_num_workers;
227 } CdefInfo;
228 
229 /*!\cond */
230 
231 typedef struct {
232   int delta_q_present_flag;
233   // Resolution of delta quant
234   int delta_q_res;
235   int delta_lf_present_flag;
236   // Resolution of delta lf level
237   int delta_lf_res;
238   // This is a flag for number of deltas of loop filter level
239   // 0: use 1 delta, for y_vertical, y_horizontal, u, and v
240   // 1: use separate deltas for each filter level
241   int delta_lf_multi;
242 } DeltaQInfo;
243 
244 typedef struct {
245   int enable_order_hint;        // 0 - disable order hint, and related tools
246   int order_hint_bits_minus_1;  // dist_wtd_comp, ref_frame_mvs,
247                                 // frame_sign_bias
248                                 // if 0, enable_dist_wtd_comp and
249                                 // enable_ref_frame_mvs must be set as 0.
250   int enable_dist_wtd_comp;     // 0 - disable dist-wtd compound modes
251                                 // 1 - enable it
252   int enable_ref_frame_mvs;     // 0 - disable ref frame mvs
253                                 // 1 - enable it
254 } OrderHintInfo;
255 
256 // Sequence header structure.
257 // Note: All syntax elements of sequence_header_obu that need to be
258 // bit-identical across multiple sequence headers must be part of this struct,
259 // so that consistency is checked by are_seq_headers_consistent() function.
260 // One exception is the last member 'op_params' that is ignored by
261 // are_seq_headers_consistent() function.
262 typedef struct SequenceHeader {
263   int num_bits_width;
264   int num_bits_height;
265   int max_frame_width;
266   int max_frame_height;
267   // Whether current and reference frame IDs are signaled in the bitstream.
268   // Frame id numbers are additional information that do not affect the
269   // decoding process, but provide decoders with a way of detecting missing
270   // reference frames so that appropriate action can be taken.
271   uint8_t frame_id_numbers_present_flag;
272   int frame_id_length;
273   int delta_frame_id_length;
274   BLOCK_SIZE sb_size;  // Size of the superblock used for this frame
275   int mib_size;        // Size of the superblock in units of MI blocks
276   int mib_size_log2;   // Log 2 of above.
277 
278   OrderHintInfo order_hint_info;
279 
280   uint8_t force_screen_content_tools;  // 0 - force off
281                                        // 1 - force on
282                                        // 2 - adaptive
283   uint8_t still_picture;               // Video is a single frame still picture
284   uint8_t reduced_still_picture_hdr;   // Use reduced header for still picture
285   uint8_t force_integer_mv;            // 0 - Don't force. MV can use subpel
286                                        // 1 - force to integer
287                                        // 2 - adaptive
288   uint8_t enable_filter_intra;         // enables/disables filterintra
289   uint8_t enable_intra_edge_filter;    // enables/disables edge upsampling
290   uint8_t enable_interintra_compound;  // enables/disables interintra_compound
291   uint8_t enable_masked_compound;      // enables/disables masked compound
292   uint8_t enable_dual_filter;          // 0 - disable dual interpolation filter
293                                        // 1 - enable vert/horz filter selection
294   uint8_t enable_warped_motion;        // 0 - disable warp for the sequence
295                                        // 1 - enable warp for the sequence
296   uint8_t enable_superres;             // 0 - Disable superres for the sequence
297                                        //     and no frame level superres flag
298                                        // 1 - Enable superres for the sequence
299                                        //     enable per-frame superres flag
300   uint8_t enable_cdef;                 // To turn on/off CDEF
301   uint8_t enable_restoration;          // To turn on/off loop restoration
302   BITSTREAM_PROFILE profile;
303 
304   // Color config.
305   aom_bit_depth_t bit_depth;  // AOM_BITS_8 in profile 0 or 1,
306                               // AOM_BITS_10 or AOM_BITS_12 in profile 2 or 3.
307   uint8_t use_highbitdepth;   // If true, we need to use 16bit frame buffers.
308   uint8_t monochrome;         // Monochrome video
309   aom_color_primaries_t color_primaries;
310   aom_transfer_characteristics_t transfer_characteristics;
311   aom_matrix_coefficients_t matrix_coefficients;
312   int color_range;
313   int subsampling_x;  // Chroma subsampling for x
314   int subsampling_y;  // Chroma subsampling for y
315   aom_chroma_sample_position_t chroma_sample_position;
316   uint8_t separate_uv_delta_q;
317   uint8_t film_grain_params_present;
318 
319   // Operating point info.
320   int operating_points_cnt_minus_1;
321   int operating_point_idc[MAX_NUM_OPERATING_POINTS];
322   // True if operating_point_idc[op] is not equal to 0 for any value of op from
323   // 0 to operating_points_cnt_minus_1.
324   bool has_nonzero_operating_point_idc;
325   int timing_info_present;
326   aom_timing_info_t timing_info;
327   uint8_t decoder_model_info_present_flag;
328   aom_dec_model_info_t decoder_model_info;
329   uint8_t display_model_info_present_flag;
330   AV1_LEVEL seq_level_idx[MAX_NUM_OPERATING_POINTS];
331   uint8_t tier[MAX_NUM_OPERATING_POINTS];  // seq_tier in spec. One bit: 0 or 1.
332 
333   // IMPORTANT: the op_params member must be at the end of the struct so that
334   // are_seq_headers_consistent() can be implemented with a memcmp() call.
335   // TODO(urvang): We probably don't need the +1 here.
336   aom_dec_model_op_parameters_t op_params[MAX_NUM_OPERATING_POINTS + 1];
337 } SequenceHeader;
338 
339 typedef struct {
340   int skip_mode_allowed;
341   int skip_mode_flag;
342   int ref_frame_idx_0;
343   int ref_frame_idx_1;
344 } SkipModeInfo;
345 
346 typedef struct {
347   FRAME_TYPE frame_type;
348   REFERENCE_MODE reference_mode;
349 
350   unsigned int order_hint;
351   unsigned int display_order_hint;
352   // Frame's level within the hierarchical structure.
353   unsigned int pyramid_level;
354   unsigned int frame_number;
355   SkipModeInfo skip_mode_info;
356   int refresh_frame_flags;  // Which ref frames are overwritten by this frame
357   int frame_refs_short_signaling;
358 } CurrentFrame;
359 
360 /*!\endcond */
361 
362 /*!
363  * \brief Frame level features.
364  */
365 typedef struct {
366   /*!
367    * If true, CDF update in the symbol encoding/decoding process is disabled.
368    */
369   bool disable_cdf_update;
370   /*!
371    * If true, motion vectors are specified to eighth pel precision; and
372    * if false, motion vectors are specified to quarter pel precision.
373    */
374   bool allow_high_precision_mv;
375   /*!
376    * If true, force integer motion vectors; if false, use the default.
377    */
378   bool cur_frame_force_integer_mv;
379   /*!
380    * If true, palette tool and/or intra block copy tools may be used.
381    */
382   bool allow_screen_content_tools;
383   bool allow_intrabc;       /*!< If true, intra block copy tool may be used. */
384   bool allow_warped_motion; /*!< If true, frame may use warped motion mode. */
385   /*!
386    * If true, using previous frames' motion vectors for prediction is allowed.
387    */
388   bool allow_ref_frame_mvs;
389   /*!
390    * If true, frame is fully lossless at coded resolution.
391    * */
392   bool coded_lossless;
393   /*!
394    * If true, frame is fully lossless at upscaled resolution.
395    */
396   bool all_lossless;
397   /*!
398    * If true, the frame is restricted to a reduced subset of the full set of
399    * transform types.
400    */
401   bool reduced_tx_set_used;
402   /*!
403    * If true, error resilient mode is enabled.
404    * Note: Error resilient mode allows the syntax of a frame to be parsed
405    * independently of previously decoded frames.
406    */
407   bool error_resilient_mode;
408   /*!
409    * If false, only MOTION_MODE that may be used is SIMPLE_TRANSLATION;
410    * if true, all MOTION_MODES may be used.
411    */
412   bool switchable_motion_mode;
413   TX_MODE tx_mode;            /*!< Transform mode at frame level. */
414   InterpFilter interp_filter; /*!< Interpolation filter at frame level. */
415   /*!
416    * The reference frame that contains the CDF values and other state that
417    * should be loaded at the start of the frame.
418    */
419   int primary_ref_frame;
420   /*!
421    * Byte alignment of the planes in the reference buffers.
422    */
423   int byte_alignment;
424   /*!
425    * Flag signaling how frame contexts should be updated at the end of
426    * a frame decode.
427    */
428   REFRESH_FRAME_CONTEXT_MODE refresh_frame_context;
429 } FeatureFlags;
430 
431 /*!
432  * \brief Params related to tiles.
433  */
434 typedef struct CommonTileParams {
435   int cols;          /*!< number of tile columns that frame is divided into */
436   int rows;          /*!< number of tile rows that frame is divided into */
437   int max_width_sb;  /*!< maximum tile width in superblock units. */
438   int max_height_sb; /*!< maximum tile height in superblock units. */
439 
440   /*!
441    * Min width of non-rightmost tile in MI units. Only valid if cols > 1.
442    */
443   int min_inner_width;
444 
445   /*!
446    * If true, tiles are uniformly spaced with power-of-two number of rows and
447    * columns.
448    * If false, tiles have explicitly configured widths and heights.
449    */
450   int uniform_spacing;
451 
452   /**
453    * \name Members only valid when uniform_spacing == 1
454    */
455   /**@{*/
456   int log2_cols; /*!< log2 of 'cols'. */
457   int log2_rows; /*!< log2 of 'rows'. */
458   int width;     /*!< tile width in MI units */
459   int height;    /*!< tile height in MI units */
460   /**@}*/
461 
462   /*!
463    * Min num of tile columns possible based on 'max_width_sb' and frame width.
464    */
465   int min_log2_cols;
466   /*!
467    * Min num of tile rows possible based on 'max_height_sb' and frame height.
468    */
469   int min_log2_rows;
470   /*!
471    * Max num of tile columns possible based on frame width.
472    */
473   int max_log2_cols;
474   /*!
475    * Max num of tile rows possible based on frame height.
476    */
477   int max_log2_rows;
478   /*!
479    * log2 of min number of tiles (same as min_log2_cols + min_log2_rows).
480    */
481   int min_log2;
482   /*!
483    * col_start_sb[i] is the start position of tile column i in superblock units.
484    * valid for 0 <= i <= cols
485    */
486   int col_start_sb[MAX_TILE_COLS + 1];
487   /*!
488    * row_start_sb[i] is the start position of tile row i in superblock units.
489    * valid for 0 <= i <= rows
490    */
491   int row_start_sb[MAX_TILE_ROWS + 1];
492   /*!
493    * If true, we are using large scale tile mode.
494    */
495   unsigned int large_scale;
496   /*!
497    * Only relevant when large_scale == 1.
498    * If true, the independent decoding of a single tile or a section of a frame
499    * is allowed.
500    */
501   unsigned int single_tile_decoding;
502 } CommonTileParams;
503 
504 typedef struct CommonModeInfoParams CommonModeInfoParams;
505 /*!
506  * \brief Params related to MB_MODE_INFO arrays and related info.
507  */
508 struct CommonModeInfoParams {
509   /*!
510    * Number of rows in the frame in 16 pixel units.
511    * This is computed from frame height aligned to a multiple of 8.
512    */
513   int mb_rows;
514   /*!
515    * Number of cols in the frame in 16 pixel units.
516    * This is computed from frame width aligned to a multiple of 8.
517    */
518   int mb_cols;
519 
520   /*!
521    * Total MBs = mb_rows * mb_cols.
522    */
523   int MBs;
524 
525   /*!
526    * Number of rows in the frame in 4 pixel (MB_MODE_INFO) units.
527    * This is computed from frame height aligned to a multiple of 8.
528    */
529   int mi_rows;
530   /*!
531    * Number of cols in the frame in 4 pixel (MB_MODE_INFO) units.
532    * This is computed from frame width aligned to a multiple of 8.
533    */
534   int mi_cols;
535 
536   /*!
537    * An array of MB_MODE_INFO structs for every 'mi_alloc_bsize' sized block
538    * in the frame.
539    * Note: This array should be treated like a scratch memory, and should NOT be
540    * accessed directly, in most cases. Please use 'mi_grid_base' array instead.
541    */
542   MB_MODE_INFO *mi_alloc;
543   /*!
544    * Number of allocated elements in 'mi_alloc'.
545    */
546   int mi_alloc_size;
547   /*!
548    * Stride for 'mi_alloc' array.
549    */
550   int mi_alloc_stride;
551   /*!
552    * The minimum block size that each element in 'mi_alloc' can correspond to.
553    * For decoder, this is always BLOCK_4X4.
554    * For encoder, this is BLOCK_8X8 for resolution >= 4k case or REALTIME mode
555    * case. Otherwise, this is BLOCK_4X4.
556    */
557   BLOCK_SIZE mi_alloc_bsize;
558 
559   /*!
560    * Grid of pointers to 4x4 MB_MODE_INFO structs allocated in 'mi_alloc'.
561    * It's possible that:
562    * - Multiple pointers in the grid point to the same element in 'mi_alloc'
563    * (for example, for all 4x4 blocks that belong to the same partition block).
564    * - Some pointers can be NULL (for example, for blocks outside visible area).
565    */
566   MB_MODE_INFO **mi_grid_base;
567   /*!
568    * Number of allocated elements in 'mi_grid_base' (and 'tx_type_map' also).
569    */
570   int mi_grid_size;
571   /*!
572    * Stride for 'mi_grid_base' (and 'tx_type_map' also).
573    */
574   int mi_stride;
575 
576   /*!
577    * An array of tx types for each 4x4 block in the frame.
578    * Number of allocated elements is same as 'mi_grid_size', and stride is
579    * same as 'mi_grid_size'. So, indexing into 'tx_type_map' is same as that of
580    * 'mi_grid_base'.
581    */
582   TX_TYPE *tx_type_map;
583 
584   /**
585    * \name Function pointers to allow separate logic for encoder and decoder.
586    */
587   /**@{*/
588   /*!
589    * Free the memory allocated to arrays in 'mi_params'.
590    * \param[in,out]   mi_params   object containing common mode info parameters
591    */
592   void (*free_mi)(struct CommonModeInfoParams *mi_params);
593   /*!
594    * Initialize / reset appropriate arrays in 'mi_params'.
595    * \param[in,out]   mi_params   object containing common mode info parameters
596    */
597   void (*setup_mi)(struct CommonModeInfoParams *mi_params);
598   /*!
599    * Allocate required memory for arrays in 'mi_params'.
600    * \param[in,out]   mi_params           object containing common mode info
601    *                                      parameters
602    * \param           width               frame width
603    * \param           height              frame height
604    * \param           min_partition_size  minimum partition size allowed while
605    *                                      encoding
606    */
607   void (*set_mb_mi)(struct CommonModeInfoParams *mi_params, int width,
608                     int height, BLOCK_SIZE min_partition_size);
609   /**@}*/
610 };
611 
612 typedef struct CommonQuantParams CommonQuantParams;
613 /*!
614  * \brief Parameters related to quantization at the frame level.
615  */
616 struct CommonQuantParams {
617   /*!
618    * Base qindex of the frame in the range 0 to 255.
619    */
620   int base_qindex;
621 
622   /*!
623    * Delta of qindex (from base_qindex) for Y plane DC coefficient.
624    * Note: y_ac_delta_q is implicitly 0.
625    */
626   int y_dc_delta_q;
627 
628   /*!
629    * Delta of qindex (from base_qindex) for U plane DC coefficients.
630    */
631   int u_dc_delta_q;
632   /*!
633    * Delta of qindex (from base_qindex) for U plane AC coefficients.
634    */
635   int v_dc_delta_q;
636 
637   /*!
638    * Delta of qindex (from base_qindex) for V plane DC coefficients.
639    * Same as those for U plane if cm->seq_params->separate_uv_delta_q == 0.
640    */
641   int u_ac_delta_q;
642   /*!
643    * Delta of qindex (from base_qindex) for V plane AC coefficients.
644    * Same as those for U plane if cm->seq_params->separate_uv_delta_q == 0.
645    */
646   int v_ac_delta_q;
647 
648   /*
649    * Note: The qindex per superblock may have a delta from the qindex obtained
650    * at frame level from parameters above, based on 'cm->delta_q_info'.
651    */
652 
653   /**
654    * \name True dequantizers.
655    * The dequantizers below are true dequantizers used only in the
656    * dequantization process.  They have the same coefficient
657    * shift/scale as TX.
658    */
659   /**@{*/
660   int16_t y_dequant_QTX[MAX_SEGMENTS][2]; /*!< Dequant for Y plane */
661   int16_t u_dequant_QTX[MAX_SEGMENTS][2]; /*!< Dequant for U plane */
662   int16_t v_dequant_QTX[MAX_SEGMENTS][2]; /*!< Dequant for V plane */
663   /**@}*/
664 
665   /**
666    * \name Global quantization matrix tables.
667    */
668   /**@{*/
669   /*!
670    * Global dequantization matrix table.
671    */
672   const qm_val_t *giqmatrix[NUM_QM_LEVELS][3][TX_SIZES_ALL];
673   /*!
674    * Global quantization matrix table.
675    */
676   const qm_val_t *gqmatrix[NUM_QM_LEVELS][3][TX_SIZES_ALL];
677   /**@}*/
678 
679   /**
680    * \name Local dequantization matrix tables for each frame.
681    */
682   /**@{*/
683   /*!
684    * Local dequant matrix for Y plane.
685    */
686   const qm_val_t *y_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
687   /*!
688    * Local dequant matrix for U plane.
689    */
690   const qm_val_t *u_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
691   /*!
692    * Local dequant matrix for V plane.
693    */
694   const qm_val_t *v_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
695   /**@}*/
696 
697   /*!
698    * Flag indicating whether quantization matrices are being used:
699    *  - If true, qm_level_y, qm_level_u and qm_level_v indicate the level
700    *    indices to be used to access appropriate global quant matrix tables.
701    *  - If false, we implicitly use level index 'NUM_QM_LEVELS - 1'.
702    */
703   bool using_qmatrix;
704   /**
705    * \name Valid only when using_qmatrix == true
706    * Indicate the level indices to be used to access appropriate global quant
707    * matrix tables.
708    */
709   /**@{*/
710   int qmatrix_level_y; /*!< Level index for Y plane */
711   int qmatrix_level_u; /*!< Level index for U plane */
712   int qmatrix_level_v; /*!< Level index for V plane */
713   /**@}*/
714 };
715 
716 typedef struct CommonContexts CommonContexts;
717 /*!
718  * \brief Contexts used for transmitting various symbols in the bitstream.
719  */
720 struct CommonContexts {
721   /*!
722    * Context used by 'FRAME_CONTEXT.partition_cdf' to transmit partition type.
723    * partition[i][j] is the context for ith tile row, jth mi_col.
724    */
725   PARTITION_CONTEXT **partition;
726 
727   /*!
728    * Context used to derive context for multiple symbols:
729    * - 'TXB_CTX.txb_skip_ctx' used by 'FRAME_CONTEXT.txb_skip_cdf' to transmit
730    * to transmit skip_txfm flag.
731    * - 'TXB_CTX.dc_sign_ctx' used by 'FRAME_CONTEXT.dc_sign_cdf' to transmit
732    * sign.
733    * entropy[i][j][k] is the context for ith plane, jth tile row, kth mi_col.
734    */
735   ENTROPY_CONTEXT **entropy[MAX_MB_PLANE];
736 
737   /*!
738    * Context used to derive context for 'FRAME_CONTEXT.txfm_partition_cdf' to
739    * transmit 'is_split' flag to indicate if this transform block should be
740    * split into smaller sub-blocks.
741    * txfm[i][j] is the context for ith tile row, jth mi_col.
742    */
743   TXFM_CONTEXT **txfm;
744 
745   /*!
746    * Dimensions that were used to allocate the arrays above.
747    * If these dimensions change, the arrays may have to be re-allocated.
748    */
749   int num_planes;    /*!< Corresponds to av1_num_planes(cm) */
750   int num_tile_rows; /*!< Corresponds to cm->tiles.row */
751   int num_mi_cols;   /*!< Corresponds to cm->mi_params.mi_cols */
752 };
753 
754 /*!
755  * \brief Top level common structure used by both encoder and decoder.
756  */
757 typedef struct AV1Common {
758   /*!
759    * Information about the current frame that is being coded.
760    */
761   CurrentFrame current_frame;
762   /*!
763    * Code and details about current error status.
764    */
765   struct aom_internal_error_info *error;
766 
767   /*!
768    * AV1 allows two types of frame scaling operations:
769    * 1. Frame super-resolution: that allows coding a frame at lower resolution
770    * and after decoding the frame, normatively scales and restores the frame --
771    * inside the coding loop.
772    * 2. Frame resize: that allows coding frame at lower/higher resolution, and
773    * then non-normatively upscale the frame at the time of rendering -- outside
774    * the coding loop.
775    * Hence, the need for 3 types of dimensions.
776    */
777 
778   /**
779    * \name Coded frame dimensions.
780    */
781   /**@{*/
782   int width;  /*!< Coded frame width */
783   int height; /*!< Coded frame height */
784   /**@}*/
785 
786   /**
787    * \name Rendered frame dimensions.
788    * Dimensions after applying both super-resolution and resize to the coded
789    * frame. Different from coded dimensions if super-resolution and/or resize
790    * are being used for this frame.
791    */
792   /**@{*/
793   int render_width;  /*!< Rendered frame width */
794   int render_height; /*!< Rendered frame height */
795   /**@}*/
796 
797   /**
798    * \name Super-resolved frame dimensions.
799    * Frame dimensions after applying super-resolution to the coded frame (if
800    * present), but before applying resize.
801    * Larger than the coded dimensions if super-resolution is being used for
802    * this frame.
803    * Different from rendered dimensions if resize is being used for this frame.
804    */
805   /**@{*/
806   int superres_upscaled_width;  /*!< Super-resolved frame width */
807   int superres_upscaled_height; /*!< Super-resolved frame height */
808   /**@}*/
809 
810   /*!
811    * The denominator of the superres scale used by this frame.
812    * Note: The numerator is fixed to be SCALE_NUMERATOR.
813    */
814   uint8_t superres_scale_denominator;
815 
816   /*!
817    * buffer_removal_times[op_num] specifies the frame removal time in units of
818    * DecCT clock ticks counted from the removal time of the last random access
819    * point for operating point op_num.
820    * TODO(urvang): We probably don't need the +1 here.
821    */
822   uint32_t buffer_removal_times[MAX_NUM_OPERATING_POINTS + 1];
823   /*!
824    * Presentation time of the frame in clock ticks DispCT counted from the
825    * removal time of the last random access point for the operating point that
826    * is being decoded.
827    */
828   uint32_t frame_presentation_time;
829 
830   /*!
831    * Buffer where previous frame is stored.
832    */
833   RefCntBuffer *prev_frame;
834 
835   /*!
836    * Buffer into which the current frame will be stored and other related info.
837    * TODO(hkuang): Combine this with cur_buf in macroblockd.
838    */
839   RefCntBuffer *cur_frame;
840 
841   /*!
842    * For encoder, we have a two-level mapping from reference frame type to the
843    * corresponding buffer in the buffer pool:
844    * * 'remapped_ref_idx[i - 1]' maps reference type 'i' (range: LAST_FRAME ...
845    * EXTREF_FRAME) to a remapped index 'j' (in range: 0 ... REF_FRAMES - 1)
846    * * Later, 'cm->ref_frame_map[j]' maps the remapped index 'j' to a pointer to
847    * the reference counted buffer structure RefCntBuffer, taken from the buffer
848    * pool cm->buffer_pool->frame_bufs.
849    *
850    * LAST_FRAME,                        ...,      EXTREF_FRAME
851    *      |                                           |
852    *      v                                           v
853    * remapped_ref_idx[LAST_FRAME - 1],  ...,  remapped_ref_idx[EXTREF_FRAME - 1]
854    *      |                                           |
855    *      v                                           v
856    * ref_frame_map[],                   ...,     ref_frame_map[]
857    *
858    * Note: INTRA_FRAME always refers to the current frame, so there's no need to
859    * have a remapped index for the same.
860    */
861   int remapped_ref_idx[REF_FRAMES];
862 
863   /*!
864    * Scale of the current frame with respect to itself.
865    * This is currently used for intra block copy, which behaves like an inter
866    * prediction mode, where the reference frame is the current frame itself.
867    */
868   struct scale_factors sf_identity;
869 
870   /*!
871    * Scale factors of the reference frame with respect to the current frame.
872    * This is required for generating inter prediction and will be non-identity
873    * for a reference frame, if it has different dimensions than the coded
874    * dimensions of the current frame.
875    */
876   struct scale_factors ref_scale_factors[REF_FRAMES];
877 
878   /*!
879    * For decoder, ref_frame_map[i] maps reference type 'i' to a pointer to
880    * the buffer in the buffer pool 'cm->buffer_pool.frame_bufs'.
881    * For encoder, ref_frame_map[j] (where j = remapped_ref_idx[i]) maps
882    * remapped reference index 'j' (that is, original reference type 'i') to
883    * a pointer to the buffer in the buffer pool 'cm->buffer_pool.frame_bufs'.
884    */
885   RefCntBuffer *ref_frame_map[REF_FRAMES];
886 
887   /*!
888    * If true, this frame is actually shown after decoding.
889    * If false, this frame is coded in the bitstream, but not shown. It is only
890    * used as a reference for other frames coded later.
891    */
892   int show_frame;
893 
894   /*!
895    * If true, this frame can be used as a show-existing frame for other frames
896    * coded later.
897    * When 'show_frame' is true, this is always true for all non-keyframes.
898    * When 'show_frame' is false, this value is transmitted in the bitstream.
899    */
900   int showable_frame;
901 
902   /*!
903    * If true, show an existing frame coded before, instead of actually coding a
904    * frame. The existing frame comes from one of the existing reference buffers,
905    * as signaled in the bitstream.
906    */
907   int show_existing_frame;
908 
909   /*!
910    * Whether some features are allowed or not.
911    */
912   FeatureFlags features;
913 
914   /*!
915    * Params related to MB_MODE_INFO arrays and related info.
916    */
917   CommonModeInfoParams mi_params;
918 
919 #if CONFIG_ENTROPY_STATS
920   /*!
921    * Context type used by token CDFs, in the range 0 .. (TOKEN_CDF_Q_CTXS - 1).
922    */
923   int coef_cdf_category;
924 #endif  // CONFIG_ENTROPY_STATS
925 
926   /*!
927    * Quantization params.
928    */
929   CommonQuantParams quant_params;
930 
931   /*!
932    * Segmentation info for current frame.
933    */
934   struct segmentation seg;
935 
936   /*!
937    * Segmentation map for previous frame.
938    */
939   uint8_t *last_frame_seg_map;
940 
941   /**
942    * \name Deblocking filter parameters.
943    */
944   /**@{*/
945   loop_filter_info_n lf_info; /*!< Loop filter info */
946   struct loopfilter lf;       /*!< Loop filter parameters */
947   /**@}*/
948 
949   /**
950    * \name Loop Restoration filter parameters.
951    */
952   /**@{*/
953   RestorationInfo rst_info[MAX_MB_PLANE]; /*!< Loop Restoration filter info */
954   int32_t *rst_tmpbuf; /*!< Scratch buffer for self-guided restoration */
955   RestorationLineBuffers *rlbs; /*!< Line buffers needed by loop restoration */
956   YV12_BUFFER_CONFIG rst_frame; /*!< Stores the output of loop restoration */
957   /**@}*/
958 
959   /*!
960    * CDEF (Constrained Directional Enhancement Filter) parameters.
961    */
962   CdefInfo cdef_info;
963 
964   /*!
965    * Parameters for film grain synthesis.
966    */
967   aom_film_grain_t film_grain_params;
968 
969   /*!
970    * Parameters for delta quantization and delta loop filter level.
971    */
972   DeltaQInfo delta_q_info;
973 
974   /*!
975    * Global motion parameters for each reference frame.
976    */
977   WarpedMotionParams global_motion[REF_FRAMES];
978 
979   /*!
980    * Elements part of the sequence header, that are applicable for all the
981    * frames in the video.
982    */
983   SequenceHeader *seq_params;
984 
985   /*!
986    * Current CDFs of all the symbols for the current frame.
987    */
988   FRAME_CONTEXT *fc;
989   /*!
990    * Default CDFs used when features.primary_ref_frame = PRIMARY_REF_NONE
991    * (e.g. for a keyframe). These default CDFs are defined by the bitstream and
992    * copied from default CDF tables for each symbol.
993    */
994   FRAME_CONTEXT *default_frame_context;
995 
996   /*!
997    * Parameters related to tiling.
998    */
999   CommonTileParams tiles;
1000 
1001   /*!
1002    * External BufferPool passed from outside.
1003    */
1004   BufferPool *buffer_pool;
1005 
1006   /*!
1007    * Above context buffers and their sizes.
1008    * Note: above contexts are allocated in this struct, as their size is
1009    * dependent on frame width, while left contexts are declared and allocated in
1010    * MACROBLOCKD struct, as they have a fixed size.
1011    */
1012   CommonContexts above_contexts;
1013 
1014   /**
1015    * \name Signaled when cm->seq_params->frame_id_numbers_present_flag == 1
1016    */
1017   /**@{*/
1018   int current_frame_id;         /*!< frame ID for the current frame. */
1019   int ref_frame_id[REF_FRAMES]; /*!< frame IDs for the reference frames. */
1020   /**@}*/
1021 
1022   /*!
1023    * Motion vectors provided by motion field estimation.
1024    * tpl_mvs[row * stride + col] stores MV for block at [mi_row, mi_col] where:
1025    * mi_row = 2 * row,
1026    * mi_col = 2 * col, and
1027    * stride = cm->mi_params.mi_stride / 2
1028    */
1029   TPL_MV_REF *tpl_mvs;
1030   /*!
1031    * Allocated size of 'tpl_mvs' array. Refer to 'ensure_mv_buffer()' function.
1032    */
1033   int tpl_mvs_mem_size;
1034   /*!
1035    * ref_frame_sign_bias[k] is 1 if relative distance between reference 'k' and
1036    * current frame is positive; and 0 otherwise.
1037    */
1038   int ref_frame_sign_bias[REF_FRAMES];
1039   /*!
1040    * ref_frame_side[k] is 1 if relative distance between reference 'k' and
1041    * current frame is positive, -1 if relative distance is 0; and 0 otherwise.
1042    * TODO(jingning): This can be combined with sign_bias later.
1043    */
1044   int8_t ref_frame_side[REF_FRAMES];
1045 
1046   /*!
1047    * Temporal layer ID of this frame
1048    * (in the range 0 ... (number_temporal_layers - 1)).
1049    */
1050   int temporal_layer_id;
1051 
1052   /*!
1053    * Spatial layer ID of this frame
1054    * (in the range 0 ... (number_spatial_layers - 1)).
1055    */
1056   int spatial_layer_id;
1057 
1058 #if TXCOEFF_TIMER
1059   int64_t cum_txcoeff_timer;
1060   int64_t txcoeff_timer;
1061   int txb_count;
1062 #endif  // TXCOEFF_TIMER
1063 
1064 #if TXCOEFF_COST_TIMER
1065   int64_t cum_txcoeff_cost_timer;
1066   int64_t txcoeff_cost_timer;
1067   int64_t txcoeff_cost_count;
1068 #endif  // TXCOEFF_COST_TIMER
1069 } AV1_COMMON;
1070 
1071 /*!\cond */
1072 
1073 // TODO(hkuang): Don't need to lock the whole pool after implementing atomic
1074 // frame reference count.
lock_buffer_pool(BufferPool * const pool)1075 static void lock_buffer_pool(BufferPool *const pool) {
1076 #if CONFIG_MULTITHREAD
1077   pthread_mutex_lock(&pool->pool_mutex);
1078 #else
1079   (void)pool;
1080 #endif
1081 }
1082 
unlock_buffer_pool(BufferPool * const pool)1083 static void unlock_buffer_pool(BufferPool *const pool) {
1084 #if CONFIG_MULTITHREAD
1085   pthread_mutex_unlock(&pool->pool_mutex);
1086 #else
1087   (void)pool;
1088 #endif
1089 }
1090 
get_ref_frame(AV1_COMMON * cm,int index)1091 static inline YV12_BUFFER_CONFIG *get_ref_frame(AV1_COMMON *cm, int index) {
1092   if (index < 0 || index >= REF_FRAMES) return NULL;
1093   if (cm->ref_frame_map[index] == NULL) return NULL;
1094   return &cm->ref_frame_map[index]->buf;
1095 }
1096 
get_free_fb(AV1_COMMON * cm)1097 static inline int get_free_fb(AV1_COMMON *cm) {
1098   RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs;
1099   int i;
1100 
1101   lock_buffer_pool(cm->buffer_pool);
1102   const int num_frame_bufs = cm->buffer_pool->num_frame_bufs;
1103   for (i = 0; i < num_frame_bufs; ++i)
1104     if (frame_bufs[i].ref_count == 0) break;
1105 
1106   if (i != num_frame_bufs) {
1107     if (frame_bufs[i].buf.use_external_reference_buffers) {
1108       // If this frame buffer's y_buffer, u_buffer, and v_buffer point to the
1109       // external reference buffers. Restore the buffer pointers to point to the
1110       // internally allocated memory.
1111       YV12_BUFFER_CONFIG *ybf = &frame_bufs[i].buf;
1112       ybf->y_buffer = ybf->store_buf_adr[0];
1113       ybf->u_buffer = ybf->store_buf_adr[1];
1114       ybf->v_buffer = ybf->store_buf_adr[2];
1115       ybf->use_external_reference_buffers = 0;
1116     }
1117 
1118     frame_bufs[i].ref_count = 1;
1119   } else {
1120     // We should never run out of free buffers. If this assertion fails, there
1121     // is a reference leak.
1122     assert(0 && "Ran out of free frame buffers. Likely a reference leak.");
1123     // Reset i to be INVALID_IDX to indicate no free buffer found.
1124     i = INVALID_IDX;
1125   }
1126 
1127   unlock_buffer_pool(cm->buffer_pool);
1128   return i;
1129 }
1130 
assign_cur_frame_new_fb(AV1_COMMON * const cm)1131 static inline RefCntBuffer *assign_cur_frame_new_fb(AV1_COMMON *const cm) {
1132   // Release the previously-used frame-buffer
1133   if (cm->cur_frame != NULL) {
1134     --cm->cur_frame->ref_count;
1135     cm->cur_frame = NULL;
1136   }
1137 
1138   // Assign a new framebuffer
1139   const int new_fb_idx = get_free_fb(cm);
1140   if (new_fb_idx == INVALID_IDX) return NULL;
1141 
1142   cm->cur_frame = &cm->buffer_pool->frame_bufs[new_fb_idx];
1143 #if CONFIG_AV1_ENCODER && !CONFIG_REALTIME_ONLY
1144   aom_invalidate_pyramid(cm->cur_frame->buf.y_pyramid);
1145   av1_invalidate_corner_list(cm->cur_frame->buf.corners);
1146 #endif  // CONFIG_AV1_ENCODER && !CONFIG_REALTIME_ONLY
1147   av1_zero(cm->cur_frame->interp_filter_selected);
1148   return cm->cur_frame;
1149 }
1150 
1151 // Modify 'lhs_ptr' to reference the buffer at 'rhs_ptr', and update the ref
1152 // counts accordingly.
assign_frame_buffer_p(RefCntBuffer ** lhs_ptr,RefCntBuffer * rhs_ptr)1153 static inline void assign_frame_buffer_p(RefCntBuffer **lhs_ptr,
1154                                          RefCntBuffer *rhs_ptr) {
1155   RefCntBuffer *const old_ptr = *lhs_ptr;
1156   if (old_ptr != NULL) {
1157     assert(old_ptr->ref_count > 0);
1158     // One less reference to the buffer at 'old_ptr', so decrease ref count.
1159     --old_ptr->ref_count;
1160   }
1161 
1162   *lhs_ptr = rhs_ptr;
1163   // One more reference to the buffer at 'rhs_ptr', so increase ref count.
1164   ++rhs_ptr->ref_count;
1165 }
1166 
frame_is_intra_only(const AV1_COMMON * const cm)1167 static inline int frame_is_intra_only(const AV1_COMMON *const cm) {
1168   return cm->current_frame.frame_type == KEY_FRAME ||
1169          cm->current_frame.frame_type == INTRA_ONLY_FRAME;
1170 }
1171 
frame_is_sframe(const AV1_COMMON * cm)1172 static inline int frame_is_sframe(const AV1_COMMON *cm) {
1173   return cm->current_frame.frame_type == S_FRAME;
1174 }
1175 
1176 // These functions take a reference frame label between LAST_FRAME and
1177 // EXTREF_FRAME inclusive.  Note that this is different to the indexing
1178 // previously used by the frame_refs[] array.
get_ref_frame_map_idx(const AV1_COMMON * const cm,const MV_REFERENCE_FRAME ref_frame)1179 static inline int get_ref_frame_map_idx(const AV1_COMMON *const cm,
1180                                         const MV_REFERENCE_FRAME ref_frame) {
1181   return (ref_frame >= LAST_FRAME && ref_frame <= EXTREF_FRAME)
1182              ? cm->remapped_ref_idx[ref_frame - LAST_FRAME]
1183              : INVALID_IDX;
1184 }
1185 
get_ref_frame_buf(const AV1_COMMON * const cm,const MV_REFERENCE_FRAME ref_frame)1186 static inline RefCntBuffer *get_ref_frame_buf(
1187     const AV1_COMMON *const cm, const MV_REFERENCE_FRAME ref_frame) {
1188   const int map_idx = get_ref_frame_map_idx(cm, ref_frame);
1189   return (map_idx != INVALID_IDX) ? cm->ref_frame_map[map_idx] : NULL;
1190 }
1191 
1192 // Both const and non-const versions of this function are provided so that it
1193 // can be used with a const AV1_COMMON if needed.
get_ref_scale_factors_const(const AV1_COMMON * const cm,const MV_REFERENCE_FRAME ref_frame)1194 static inline const struct scale_factors *get_ref_scale_factors_const(
1195     const AV1_COMMON *const cm, const MV_REFERENCE_FRAME ref_frame) {
1196   const int map_idx = get_ref_frame_map_idx(cm, ref_frame);
1197   return (map_idx != INVALID_IDX) ? &cm->ref_scale_factors[map_idx] : NULL;
1198 }
1199 
get_ref_scale_factors(AV1_COMMON * const cm,const MV_REFERENCE_FRAME ref_frame)1200 static inline struct scale_factors *get_ref_scale_factors(
1201     AV1_COMMON *const cm, const MV_REFERENCE_FRAME ref_frame) {
1202   const int map_idx = get_ref_frame_map_idx(cm, ref_frame);
1203   return (map_idx != INVALID_IDX) ? &cm->ref_scale_factors[map_idx] : NULL;
1204 }
1205 
get_primary_ref_frame_buf(const AV1_COMMON * const cm)1206 static inline RefCntBuffer *get_primary_ref_frame_buf(
1207     const AV1_COMMON *const cm) {
1208   const int primary_ref_frame = cm->features.primary_ref_frame;
1209   if (primary_ref_frame == PRIMARY_REF_NONE) return NULL;
1210   const int map_idx = get_ref_frame_map_idx(cm, primary_ref_frame + 1);
1211   return (map_idx != INVALID_IDX) ? cm->ref_frame_map[map_idx] : NULL;
1212 }
1213 
1214 // Returns 1 if this frame might allow mvs from some reference frame.
frame_might_allow_ref_frame_mvs(const AV1_COMMON * cm)1215 static inline int frame_might_allow_ref_frame_mvs(const AV1_COMMON *cm) {
1216   return !cm->features.error_resilient_mode &&
1217          cm->seq_params->order_hint_info.enable_ref_frame_mvs &&
1218          cm->seq_params->order_hint_info.enable_order_hint &&
1219          !frame_is_intra_only(cm);
1220 }
1221 
1222 // Returns 1 if this frame might use warped_motion
frame_might_allow_warped_motion(const AV1_COMMON * cm)1223 static inline int frame_might_allow_warped_motion(const AV1_COMMON *cm) {
1224   return !cm->features.error_resilient_mode && !frame_is_intra_only(cm) &&
1225          cm->seq_params->enable_warped_motion;
1226 }
1227 
ensure_mv_buffer(RefCntBuffer * buf,AV1_COMMON * cm)1228 static inline void ensure_mv_buffer(RefCntBuffer *buf, AV1_COMMON *cm) {
1229   const int buf_rows = buf->mi_rows;
1230   const int buf_cols = buf->mi_cols;
1231   const CommonModeInfoParams *const mi_params = &cm->mi_params;
1232 
1233   if (buf->mvs == NULL || buf_rows != mi_params->mi_rows ||
1234       buf_cols != mi_params->mi_cols) {
1235     aom_free(buf->mvs);
1236     buf->mi_rows = mi_params->mi_rows;
1237     buf->mi_cols = mi_params->mi_cols;
1238     CHECK_MEM_ERROR(cm, buf->mvs,
1239                     (MV_REF *)aom_calloc(((mi_params->mi_rows + 1) >> 1) *
1240                                              ((mi_params->mi_cols + 1) >> 1),
1241                                          sizeof(*buf->mvs)));
1242     aom_free(buf->seg_map);
1243     CHECK_MEM_ERROR(
1244         cm, buf->seg_map,
1245         (uint8_t *)aom_calloc(mi_params->mi_rows * mi_params->mi_cols,
1246                               sizeof(*buf->seg_map)));
1247   }
1248 
1249   const int mem_size =
1250       ((mi_params->mi_rows + MAX_MIB_SIZE) >> 1) * (mi_params->mi_stride >> 1);
1251 
1252   if (cm->tpl_mvs == NULL || cm->tpl_mvs_mem_size < mem_size) {
1253     aom_free(cm->tpl_mvs);
1254     CHECK_MEM_ERROR(cm, cm->tpl_mvs,
1255                     (TPL_MV_REF *)aom_calloc(mem_size, sizeof(*cm->tpl_mvs)));
1256     cm->tpl_mvs_mem_size = mem_size;
1257   }
1258 }
1259 
1260 #if !CONFIG_REALTIME_ONLY || CONFIG_AV1_DECODER
1261 void cfl_init(CFL_CTX *cfl, const SequenceHeader *seq_params);
1262 #endif
1263 
av1_num_planes(const AV1_COMMON * cm)1264 static inline int av1_num_planes(const AV1_COMMON *cm) {
1265   return cm->seq_params->monochrome ? 1 : MAX_MB_PLANE;
1266 }
1267 
av1_init_above_context(CommonContexts * above_contexts,int num_planes,int tile_row,MACROBLOCKD * xd)1268 static inline void av1_init_above_context(CommonContexts *above_contexts,
1269                                           int num_planes, int tile_row,
1270                                           MACROBLOCKD *xd) {
1271   for (int i = 0; i < num_planes; ++i) {
1272     xd->above_entropy_context[i] = above_contexts->entropy[i][tile_row];
1273   }
1274   xd->above_partition_context = above_contexts->partition[tile_row];
1275   xd->above_txfm_context = above_contexts->txfm[tile_row];
1276 }
1277 
av1_init_macroblockd(AV1_COMMON * cm,MACROBLOCKD * xd)1278 static inline void av1_init_macroblockd(AV1_COMMON *cm, MACROBLOCKD *xd) {
1279   const int num_planes = av1_num_planes(cm);
1280   const CommonQuantParams *const quant_params = &cm->quant_params;
1281 
1282   for (int i = 0; i < num_planes; ++i) {
1283     if (xd->plane[i].plane_type == PLANE_TYPE_Y) {
1284       memcpy(xd->plane[i].seg_dequant_QTX, quant_params->y_dequant_QTX,
1285              sizeof(quant_params->y_dequant_QTX));
1286       memcpy(xd->plane[i].seg_iqmatrix, quant_params->y_iqmatrix,
1287              sizeof(quant_params->y_iqmatrix));
1288 
1289     } else {
1290       if (i == AOM_PLANE_U) {
1291         memcpy(xd->plane[i].seg_dequant_QTX, quant_params->u_dequant_QTX,
1292                sizeof(quant_params->u_dequant_QTX));
1293         memcpy(xd->plane[i].seg_iqmatrix, quant_params->u_iqmatrix,
1294                sizeof(quant_params->u_iqmatrix));
1295       } else {
1296         memcpy(xd->plane[i].seg_dequant_QTX, quant_params->v_dequant_QTX,
1297                sizeof(quant_params->v_dequant_QTX));
1298         memcpy(xd->plane[i].seg_iqmatrix, quant_params->v_iqmatrix,
1299                sizeof(quant_params->v_iqmatrix));
1300       }
1301     }
1302   }
1303   xd->mi_stride = cm->mi_params.mi_stride;
1304   xd->error_info = cm->error;
1305 #if !CONFIG_REALTIME_ONLY || CONFIG_AV1_DECODER
1306   cfl_init(&xd->cfl, cm->seq_params);
1307 #endif
1308 }
1309 
set_entropy_context(MACROBLOCKD * xd,int mi_row,int mi_col,const int num_planes)1310 static inline void set_entropy_context(MACROBLOCKD *xd, int mi_row, int mi_col,
1311                                        const int num_planes) {
1312   int i;
1313   int row_offset = mi_row;
1314   int col_offset = mi_col;
1315   for (i = 0; i < num_planes; ++i) {
1316     struct macroblockd_plane *const pd = &xd->plane[i];
1317     // Offset the buffer pointer
1318     const BLOCK_SIZE bsize = xd->mi[0]->bsize;
1319     if (pd->subsampling_y && (mi_row & 0x01) && (mi_size_high[bsize] == 1))
1320       row_offset = mi_row - 1;
1321     if (pd->subsampling_x && (mi_col & 0x01) && (mi_size_wide[bsize] == 1))
1322       col_offset = mi_col - 1;
1323     int above_idx = col_offset;
1324     int left_idx = row_offset & MAX_MIB_MASK;
1325     pd->above_entropy_context =
1326         &xd->above_entropy_context[i][above_idx >> pd->subsampling_x];
1327     pd->left_entropy_context =
1328         &xd->left_entropy_context[i][left_idx >> pd->subsampling_y];
1329   }
1330 }
1331 
calc_mi_size(int len)1332 static inline int calc_mi_size(int len) {
1333   // len is in mi units. Align to a multiple of SBs.
1334   return ALIGN_POWER_OF_TWO(len, MAX_MIB_SIZE_LOG2);
1335 }
1336 
set_plane_n4(MACROBLOCKD * const xd,int bw,int bh,const int num_planes)1337 static inline void set_plane_n4(MACROBLOCKD *const xd, int bw, int bh,
1338                                 const int num_planes) {
1339   int i;
1340   for (i = 0; i < num_planes; i++) {
1341     xd->plane[i].width = (bw * MI_SIZE) >> xd->plane[i].subsampling_x;
1342     xd->plane[i].height = (bh * MI_SIZE) >> xd->plane[i].subsampling_y;
1343 
1344     xd->plane[i].width = AOMMAX(xd->plane[i].width, 4);
1345     xd->plane[i].height = AOMMAX(xd->plane[i].height, 4);
1346   }
1347 }
1348 
set_mi_row_col(MACROBLOCKD * xd,const TileInfo * const tile,int mi_row,int bh,int mi_col,int bw,int mi_rows,int mi_cols)1349 static inline void set_mi_row_col(MACROBLOCKD *xd, const TileInfo *const tile,
1350                                   int mi_row, int bh, int mi_col, int bw,
1351                                   int mi_rows, int mi_cols) {
1352   xd->mb_to_top_edge = -GET_MV_SUBPEL(mi_row * MI_SIZE);
1353   xd->mb_to_bottom_edge = GET_MV_SUBPEL((mi_rows - bh - mi_row) * MI_SIZE);
1354   xd->mb_to_left_edge = -GET_MV_SUBPEL((mi_col * MI_SIZE));
1355   xd->mb_to_right_edge = GET_MV_SUBPEL((mi_cols - bw - mi_col) * MI_SIZE);
1356 
1357   xd->mi_row = mi_row;
1358   xd->mi_col = mi_col;
1359 
1360   // Are edges available for intra prediction?
1361   xd->up_available = (mi_row > tile->mi_row_start);
1362 
1363   const int ss_x = xd->plane[1].subsampling_x;
1364   const int ss_y = xd->plane[1].subsampling_y;
1365 
1366   xd->left_available = (mi_col > tile->mi_col_start);
1367   xd->chroma_up_available = xd->up_available;
1368   xd->chroma_left_available = xd->left_available;
1369   if (ss_x && bw < mi_size_wide[BLOCK_8X8])
1370     xd->chroma_left_available = (mi_col - 1) > tile->mi_col_start;
1371   if (ss_y && bh < mi_size_high[BLOCK_8X8])
1372     xd->chroma_up_available = (mi_row - 1) > tile->mi_row_start;
1373   if (xd->up_available) {
1374     xd->above_mbmi = xd->mi[-xd->mi_stride];
1375   } else {
1376     xd->above_mbmi = NULL;
1377   }
1378 
1379   if (xd->left_available) {
1380     xd->left_mbmi = xd->mi[-1];
1381   } else {
1382     xd->left_mbmi = NULL;
1383   }
1384 
1385   const int chroma_ref = ((mi_row & 0x01) || !(bh & 0x01) || !ss_y) &&
1386                          ((mi_col & 0x01) || !(bw & 0x01) || !ss_x);
1387   xd->is_chroma_ref = chroma_ref;
1388   if (chroma_ref) {
1389     // To help calculate the "above" and "left" chroma blocks, note that the
1390     // current block may cover multiple luma blocks (e.g., if partitioned into
1391     // 4x4 luma blocks).
1392     // First, find the top-left-most luma block covered by this chroma block
1393     MB_MODE_INFO **base_mi =
1394         &xd->mi[-(mi_row & ss_y) * xd->mi_stride - (mi_col & ss_x)];
1395 
1396     // Then, we consider the luma region covered by the left or above 4x4 chroma
1397     // prediction. We want to point to the chroma reference block in that
1398     // region, which is the bottom-right-most mi unit.
1399     // This leads to the following offsets:
1400     MB_MODE_INFO *chroma_above_mi =
1401         xd->chroma_up_available ? base_mi[-xd->mi_stride + ss_x] : NULL;
1402     xd->chroma_above_mbmi = chroma_above_mi;
1403 
1404     MB_MODE_INFO *chroma_left_mi =
1405         xd->chroma_left_available ? base_mi[ss_y * xd->mi_stride - 1] : NULL;
1406     xd->chroma_left_mbmi = chroma_left_mi;
1407   }
1408 
1409   xd->height = bh;
1410   xd->width = bw;
1411 
1412   xd->is_last_vertical_rect = 0;
1413   if (xd->width < xd->height) {
1414     if (!((mi_col + xd->width) & (xd->height - 1))) {
1415       xd->is_last_vertical_rect = 1;
1416     }
1417   }
1418 
1419   xd->is_first_horizontal_rect = 0;
1420   if (xd->width > xd->height)
1421     if (!(mi_row & (xd->width - 1))) xd->is_first_horizontal_rect = 1;
1422 }
1423 
get_y_mode_cdf(FRAME_CONTEXT * tile_ctx,const MB_MODE_INFO * above_mi,const MB_MODE_INFO * left_mi)1424 static inline aom_cdf_prob *get_y_mode_cdf(FRAME_CONTEXT *tile_ctx,
1425                                            const MB_MODE_INFO *above_mi,
1426                                            const MB_MODE_INFO *left_mi) {
1427   const PREDICTION_MODE above = av1_above_block_mode(above_mi);
1428   const PREDICTION_MODE left = av1_left_block_mode(left_mi);
1429   const int above_ctx = intra_mode_context[above];
1430   const int left_ctx = intra_mode_context[left];
1431   return tile_ctx->kf_y_cdf[above_ctx][left_ctx];
1432 }
1433 
update_partition_context(MACROBLOCKD * xd,int mi_row,int mi_col,BLOCK_SIZE subsize,BLOCK_SIZE bsize)1434 static inline void update_partition_context(MACROBLOCKD *xd, int mi_row,
1435                                             int mi_col, BLOCK_SIZE subsize,
1436                                             BLOCK_SIZE bsize) {
1437   PARTITION_CONTEXT *const above_ctx = xd->above_partition_context + mi_col;
1438   PARTITION_CONTEXT *const left_ctx =
1439       xd->left_partition_context + (mi_row & MAX_MIB_MASK);
1440 
1441   const int bw = mi_size_wide[bsize];
1442   const int bh = mi_size_high[bsize];
1443   memset(above_ctx, partition_context_lookup[subsize].above, bw);
1444   memset(left_ctx, partition_context_lookup[subsize].left, bh);
1445 }
1446 
is_chroma_reference(int mi_row,int mi_col,BLOCK_SIZE bsize,int subsampling_x,int subsampling_y)1447 static inline int is_chroma_reference(int mi_row, int mi_col, BLOCK_SIZE bsize,
1448                                       int subsampling_x, int subsampling_y) {
1449   assert(bsize < BLOCK_SIZES_ALL);
1450   const int bw = mi_size_wide[bsize];
1451   const int bh = mi_size_high[bsize];
1452   int ref_pos = ((mi_row & 0x01) || !(bh & 0x01) || !subsampling_y) &&
1453                 ((mi_col & 0x01) || !(bw & 0x01) || !subsampling_x);
1454   return ref_pos;
1455 }
1456 
cdf_element_prob(const aom_cdf_prob * cdf,size_t element)1457 static inline aom_cdf_prob cdf_element_prob(const aom_cdf_prob *cdf,
1458                                             size_t element) {
1459   assert(cdf != NULL);
1460   return (element > 0 ? cdf[element - 1] : CDF_PROB_TOP) - cdf[element];
1461 }
1462 
partition_gather_horz_alike(aom_cdf_prob * out,const aom_cdf_prob * const in,BLOCK_SIZE bsize)1463 static inline void partition_gather_horz_alike(aom_cdf_prob *out,
1464                                                const aom_cdf_prob *const in,
1465                                                BLOCK_SIZE bsize) {
1466   (void)bsize;
1467   out[0] = CDF_PROB_TOP;
1468   out[0] -= cdf_element_prob(in, PARTITION_HORZ);
1469   out[0] -= cdf_element_prob(in, PARTITION_SPLIT);
1470   out[0] -= cdf_element_prob(in, PARTITION_HORZ_A);
1471   out[0] -= cdf_element_prob(in, PARTITION_HORZ_B);
1472   out[0] -= cdf_element_prob(in, PARTITION_VERT_A);
1473   if (bsize != BLOCK_128X128) out[0] -= cdf_element_prob(in, PARTITION_HORZ_4);
1474   out[0] = AOM_ICDF(out[0]);
1475   out[1] = AOM_ICDF(CDF_PROB_TOP);
1476 }
1477 
partition_gather_vert_alike(aom_cdf_prob * out,const aom_cdf_prob * const in,BLOCK_SIZE bsize)1478 static inline void partition_gather_vert_alike(aom_cdf_prob *out,
1479                                                const aom_cdf_prob *const in,
1480                                                BLOCK_SIZE bsize) {
1481   (void)bsize;
1482   out[0] = CDF_PROB_TOP;
1483   out[0] -= cdf_element_prob(in, PARTITION_VERT);
1484   out[0] -= cdf_element_prob(in, PARTITION_SPLIT);
1485   out[0] -= cdf_element_prob(in, PARTITION_HORZ_A);
1486   out[0] -= cdf_element_prob(in, PARTITION_VERT_A);
1487   out[0] -= cdf_element_prob(in, PARTITION_VERT_B);
1488   if (bsize != BLOCK_128X128) out[0] -= cdf_element_prob(in, PARTITION_VERT_4);
1489   out[0] = AOM_ICDF(out[0]);
1490   out[1] = AOM_ICDF(CDF_PROB_TOP);
1491 }
1492 
update_ext_partition_context(MACROBLOCKD * xd,int mi_row,int mi_col,BLOCK_SIZE subsize,BLOCK_SIZE bsize,PARTITION_TYPE partition)1493 static inline void update_ext_partition_context(MACROBLOCKD *xd, int mi_row,
1494                                                 int mi_col, BLOCK_SIZE subsize,
1495                                                 BLOCK_SIZE bsize,
1496                                                 PARTITION_TYPE partition) {
1497   if (bsize >= BLOCK_8X8) {
1498     const int hbs = mi_size_wide[bsize] / 2;
1499     BLOCK_SIZE bsize2 = get_partition_subsize(bsize, PARTITION_SPLIT);
1500     switch (partition) {
1501       case PARTITION_SPLIT:
1502         if (bsize != BLOCK_8X8) break;
1503         AOM_FALLTHROUGH_INTENDED;
1504       case PARTITION_NONE:
1505       case PARTITION_HORZ:
1506       case PARTITION_VERT:
1507       case PARTITION_HORZ_4:
1508       case PARTITION_VERT_4:
1509         update_partition_context(xd, mi_row, mi_col, subsize, bsize);
1510         break;
1511       case PARTITION_HORZ_A:
1512         update_partition_context(xd, mi_row, mi_col, bsize2, subsize);
1513         update_partition_context(xd, mi_row + hbs, mi_col, subsize, subsize);
1514         break;
1515       case PARTITION_HORZ_B:
1516         update_partition_context(xd, mi_row, mi_col, subsize, subsize);
1517         update_partition_context(xd, mi_row + hbs, mi_col, bsize2, subsize);
1518         break;
1519       case PARTITION_VERT_A:
1520         update_partition_context(xd, mi_row, mi_col, bsize2, subsize);
1521         update_partition_context(xd, mi_row, mi_col + hbs, subsize, subsize);
1522         break;
1523       case PARTITION_VERT_B:
1524         update_partition_context(xd, mi_row, mi_col, subsize, subsize);
1525         update_partition_context(xd, mi_row, mi_col + hbs, bsize2, subsize);
1526         break;
1527       default: assert(0 && "Invalid partition type");
1528     }
1529   }
1530 }
1531 
partition_plane_context(const MACROBLOCKD * xd,int mi_row,int mi_col,BLOCK_SIZE bsize)1532 static inline int partition_plane_context(const MACROBLOCKD *xd, int mi_row,
1533                                           int mi_col, BLOCK_SIZE bsize) {
1534   const PARTITION_CONTEXT *above_ctx = xd->above_partition_context + mi_col;
1535   const PARTITION_CONTEXT *left_ctx =
1536       xd->left_partition_context + (mi_row & MAX_MIB_MASK);
1537   // Minimum partition point is 8x8. Offset the bsl accordingly.
1538   const int bsl = mi_size_wide_log2[bsize] - mi_size_wide_log2[BLOCK_8X8];
1539   int above = (*above_ctx >> bsl) & 1, left = (*left_ctx >> bsl) & 1;
1540 
1541   assert(mi_size_wide_log2[bsize] == mi_size_high_log2[bsize]);
1542   assert(bsl >= 0);
1543 
1544   return (left * 2 + above) + bsl * PARTITION_PLOFFSET;
1545 }
1546 
1547 // Return the number of elements in the partition CDF when
1548 // partitioning the (square) block with luma block size of bsize.
partition_cdf_length(BLOCK_SIZE bsize)1549 static inline int partition_cdf_length(BLOCK_SIZE bsize) {
1550   if (bsize <= BLOCK_8X8)
1551     return PARTITION_TYPES;
1552   else if (bsize == BLOCK_128X128)
1553     return EXT_PARTITION_TYPES - 2;
1554   else
1555     return EXT_PARTITION_TYPES;
1556 }
1557 
max_block_wide(const MACROBLOCKD * xd,BLOCK_SIZE bsize,int plane)1558 static inline int max_block_wide(const MACROBLOCKD *xd, BLOCK_SIZE bsize,
1559                                  int plane) {
1560   assert(bsize < BLOCK_SIZES_ALL);
1561   int max_blocks_wide = block_size_wide[bsize];
1562 
1563   if (xd->mb_to_right_edge < 0) {
1564     const struct macroblockd_plane *const pd = &xd->plane[plane];
1565     max_blocks_wide += xd->mb_to_right_edge >> (3 + pd->subsampling_x);
1566   }
1567 
1568   // Scale the width in the transform block unit.
1569   return max_blocks_wide >> MI_SIZE_LOG2;
1570 }
1571 
max_block_high(const MACROBLOCKD * xd,BLOCK_SIZE bsize,int plane)1572 static inline int max_block_high(const MACROBLOCKD *xd, BLOCK_SIZE bsize,
1573                                  int plane) {
1574   int max_blocks_high = block_size_high[bsize];
1575 
1576   if (xd->mb_to_bottom_edge < 0) {
1577     const struct macroblockd_plane *const pd = &xd->plane[plane];
1578     max_blocks_high += xd->mb_to_bottom_edge >> (3 + pd->subsampling_y);
1579   }
1580 
1581   // Scale the height in the transform block unit.
1582   return max_blocks_high >> MI_SIZE_LOG2;
1583 }
1584 
av1_zero_above_context(AV1_COMMON * const cm,const MACROBLOCKD * xd,int mi_col_start,int mi_col_end,const int tile_row)1585 static inline void av1_zero_above_context(AV1_COMMON *const cm,
1586                                           const MACROBLOCKD *xd,
1587                                           int mi_col_start, int mi_col_end,
1588                                           const int tile_row) {
1589   const SequenceHeader *const seq_params = cm->seq_params;
1590   const int num_planes = av1_num_planes(cm);
1591   const int width = mi_col_end - mi_col_start;
1592   const int aligned_width =
1593       ALIGN_POWER_OF_TWO(width, seq_params->mib_size_log2);
1594   const int offset_y = mi_col_start;
1595   const int width_y = aligned_width;
1596   const int offset_uv = offset_y >> seq_params->subsampling_x;
1597   const int width_uv = width_y >> seq_params->subsampling_x;
1598   CommonContexts *const above_contexts = &cm->above_contexts;
1599 
1600   av1_zero_array(above_contexts->entropy[0][tile_row] + offset_y, width_y);
1601   if (num_planes > 1) {
1602     if (above_contexts->entropy[1][tile_row] &&
1603         above_contexts->entropy[2][tile_row]) {
1604       av1_zero_array(above_contexts->entropy[1][tile_row] + offset_uv,
1605                      width_uv);
1606       av1_zero_array(above_contexts->entropy[2][tile_row] + offset_uv,
1607                      width_uv);
1608     } else {
1609       aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME,
1610                          "Invalid value of planes");
1611     }
1612   }
1613 
1614   av1_zero_array(above_contexts->partition[tile_row] + mi_col_start,
1615                  aligned_width);
1616 
1617   memset(above_contexts->txfm[tile_row] + mi_col_start,
1618          tx_size_wide[TX_SIZES_LARGEST], aligned_width * sizeof(TXFM_CONTEXT));
1619 }
1620 
av1_zero_left_context(MACROBLOCKD * const xd)1621 static inline void av1_zero_left_context(MACROBLOCKD *const xd) {
1622   av1_zero(xd->left_entropy_context);
1623   av1_zero(xd->left_partition_context);
1624 
1625   memset(xd->left_txfm_context_buffer, tx_size_high[TX_SIZES_LARGEST],
1626          sizeof(xd->left_txfm_context_buffer));
1627 }
1628 
set_txfm_ctx(TXFM_CONTEXT * txfm_ctx,uint8_t txs,int len)1629 static inline void set_txfm_ctx(TXFM_CONTEXT *txfm_ctx, uint8_t txs, int len) {
1630   int i;
1631   for (i = 0; i < len; ++i) txfm_ctx[i] = txs;
1632 }
1633 
set_txfm_ctxs(TX_SIZE tx_size,int n4_w,int n4_h,int skip,const MACROBLOCKD * xd)1634 static inline void set_txfm_ctxs(TX_SIZE tx_size, int n4_w, int n4_h, int skip,
1635                                  const MACROBLOCKD *xd) {
1636   uint8_t bw = tx_size_wide[tx_size];
1637   uint8_t bh = tx_size_high[tx_size];
1638 
1639   if (skip) {
1640     bw = n4_w * MI_SIZE;
1641     bh = n4_h * MI_SIZE;
1642   }
1643 
1644   set_txfm_ctx(xd->above_txfm_context, bw, n4_w);
1645   set_txfm_ctx(xd->left_txfm_context, bh, n4_h);
1646 }
1647 
get_mi_grid_idx(const CommonModeInfoParams * const mi_params,int mi_row,int mi_col)1648 static inline int get_mi_grid_idx(const CommonModeInfoParams *const mi_params,
1649                                   int mi_row, int mi_col) {
1650   return mi_row * mi_params->mi_stride + mi_col;
1651 }
1652 
get_alloc_mi_idx(const CommonModeInfoParams * const mi_params,int mi_row,int mi_col)1653 static inline int get_alloc_mi_idx(const CommonModeInfoParams *const mi_params,
1654                                    int mi_row, int mi_col) {
1655   const int mi_alloc_size_1d = mi_size_wide[mi_params->mi_alloc_bsize];
1656   const int mi_alloc_row = mi_row / mi_alloc_size_1d;
1657   const int mi_alloc_col = mi_col / mi_alloc_size_1d;
1658 
1659   return mi_alloc_row * mi_params->mi_alloc_stride + mi_alloc_col;
1660 }
1661 
1662 // For this partition block, set pointers in mi_params->mi_grid_base and xd->mi.
set_mi_offsets(const CommonModeInfoParams * const mi_params,MACROBLOCKD * const xd,int mi_row,int mi_col)1663 static inline void set_mi_offsets(const CommonModeInfoParams *const mi_params,
1664                                   MACROBLOCKD *const xd, int mi_row,
1665                                   int mi_col) {
1666   // 'mi_grid_base' should point to appropriate memory in 'mi'.
1667   const int mi_grid_idx = get_mi_grid_idx(mi_params, mi_row, mi_col);
1668   const int mi_alloc_idx = get_alloc_mi_idx(mi_params, mi_row, mi_col);
1669   mi_params->mi_grid_base[mi_grid_idx] = &mi_params->mi_alloc[mi_alloc_idx];
1670   // 'xd->mi' should point to an offset in 'mi_grid_base';
1671   xd->mi = mi_params->mi_grid_base + mi_grid_idx;
1672   // 'xd->tx_type_map' should point to an offset in 'mi_params->tx_type_map'.
1673   xd->tx_type_map = mi_params->tx_type_map + mi_grid_idx;
1674   xd->tx_type_map_stride = mi_params->mi_stride;
1675 }
1676 
txfm_partition_update(TXFM_CONTEXT * above_ctx,TXFM_CONTEXT * left_ctx,TX_SIZE tx_size,TX_SIZE txb_size)1677 static inline void txfm_partition_update(TXFM_CONTEXT *above_ctx,
1678                                          TXFM_CONTEXT *left_ctx,
1679                                          TX_SIZE tx_size, TX_SIZE txb_size) {
1680   BLOCK_SIZE bsize = txsize_to_bsize[txb_size];
1681   int bh = mi_size_high[bsize];
1682   int bw = mi_size_wide[bsize];
1683   uint8_t txw = tx_size_wide[tx_size];
1684   uint8_t txh = tx_size_high[tx_size];
1685   int i;
1686   for (i = 0; i < bh; ++i) left_ctx[i] = txh;
1687   for (i = 0; i < bw; ++i) above_ctx[i] = txw;
1688 }
1689 
get_sqr_tx_size(int tx_dim)1690 static inline TX_SIZE get_sqr_tx_size(int tx_dim) {
1691   switch (tx_dim) {
1692     case 128:
1693     case 64: return TX_64X64; break;
1694     case 32: return TX_32X32; break;
1695     case 16: return TX_16X16; break;
1696     case 8: return TX_8X8; break;
1697     default: return TX_4X4;
1698   }
1699 }
1700 
get_tx_size(int width,int height)1701 static inline TX_SIZE get_tx_size(int width, int height) {
1702   if (width == height) {
1703     return get_sqr_tx_size(width);
1704   }
1705   if (width < height) {
1706     if (width + width == height) {
1707       switch (width) {
1708         case 4: return TX_4X8; break;
1709         case 8: return TX_8X16; break;
1710         case 16: return TX_16X32; break;
1711         case 32: return TX_32X64; break;
1712       }
1713     } else {
1714       switch (width) {
1715         case 4: return TX_4X16; break;
1716         case 8: return TX_8X32; break;
1717         case 16: return TX_16X64; break;
1718       }
1719     }
1720   } else {
1721     if (height + height == width) {
1722       switch (height) {
1723         case 4: return TX_8X4; break;
1724         case 8: return TX_16X8; break;
1725         case 16: return TX_32X16; break;
1726         case 32: return TX_64X32; break;
1727       }
1728     } else {
1729       switch (height) {
1730         case 4: return TX_16X4; break;
1731         case 8: return TX_32X8; break;
1732         case 16: return TX_64X16; break;
1733       }
1734     }
1735   }
1736   assert(0);
1737   return TX_4X4;
1738 }
1739 
txfm_partition_context(const TXFM_CONTEXT * const above_ctx,const TXFM_CONTEXT * const left_ctx,BLOCK_SIZE bsize,TX_SIZE tx_size)1740 static inline int txfm_partition_context(const TXFM_CONTEXT *const above_ctx,
1741                                          const TXFM_CONTEXT *const left_ctx,
1742                                          BLOCK_SIZE bsize, TX_SIZE tx_size) {
1743   const uint8_t txw = tx_size_wide[tx_size];
1744   const uint8_t txh = tx_size_high[tx_size];
1745   const int above = *above_ctx < txw;
1746   const int left = *left_ctx < txh;
1747   int category = TXFM_PARTITION_CONTEXTS;
1748 
1749   // dummy return, not used by others.
1750   if (tx_size <= TX_4X4) return 0;
1751 
1752   TX_SIZE max_tx_size =
1753       get_sqr_tx_size(AOMMAX(block_size_wide[bsize], block_size_high[bsize]));
1754 
1755   if (max_tx_size >= TX_8X8) {
1756     category =
1757         (txsize_sqr_up_map[tx_size] != max_tx_size && max_tx_size > TX_8X8) +
1758         (TX_SIZES - 1 - max_tx_size) * 2;
1759   }
1760   assert(category != TXFM_PARTITION_CONTEXTS);
1761   return category * 3 + above + left;
1762 }
1763 
1764 // Compute the next partition in the direction of the sb_type stored in the mi
1765 // array, starting with bsize.
get_partition(const AV1_COMMON * const cm,int mi_row,int mi_col,BLOCK_SIZE bsize)1766 static inline PARTITION_TYPE get_partition(const AV1_COMMON *const cm,
1767                                            int mi_row, int mi_col,
1768                                            BLOCK_SIZE bsize) {
1769   const CommonModeInfoParams *const mi_params = &cm->mi_params;
1770   if (mi_row >= mi_params->mi_rows || mi_col >= mi_params->mi_cols)
1771     return PARTITION_INVALID;
1772 
1773   const int offset = mi_row * mi_params->mi_stride + mi_col;
1774   MB_MODE_INFO **mi = mi_params->mi_grid_base + offset;
1775   const BLOCK_SIZE subsize = mi[0]->bsize;
1776 
1777   assert(bsize < BLOCK_SIZES_ALL);
1778 
1779   if (subsize == bsize) return PARTITION_NONE;
1780 
1781   const int bhigh = mi_size_high[bsize];
1782   const int bwide = mi_size_wide[bsize];
1783   const int sshigh = mi_size_high[subsize];
1784   const int sswide = mi_size_wide[subsize];
1785 
1786   if (bsize > BLOCK_8X8 && mi_row + bwide / 2 < mi_params->mi_rows &&
1787       mi_col + bhigh / 2 < mi_params->mi_cols) {
1788     // In this case, the block might be using an extended partition
1789     // type.
1790     const MB_MODE_INFO *const mbmi_right = mi[bwide / 2];
1791     const MB_MODE_INFO *const mbmi_below = mi[bhigh / 2 * mi_params->mi_stride];
1792 
1793     if (sswide == bwide) {
1794       // Smaller height but same width. Is PARTITION_HORZ_4, PARTITION_HORZ or
1795       // PARTITION_HORZ_B. To distinguish the latter two, check if the lower
1796       // half was split.
1797       if (sshigh * 4 == bhigh) return PARTITION_HORZ_4;
1798       assert(sshigh * 2 == bhigh);
1799 
1800       if (mbmi_below->bsize == subsize)
1801         return PARTITION_HORZ;
1802       else
1803         return PARTITION_HORZ_B;
1804     } else if (sshigh == bhigh) {
1805       // Smaller width but same height. Is PARTITION_VERT_4, PARTITION_VERT or
1806       // PARTITION_VERT_B. To distinguish the latter two, check if the right
1807       // half was split.
1808       if (sswide * 4 == bwide) return PARTITION_VERT_4;
1809       assert(sswide * 2 == bwide);
1810 
1811       if (mbmi_right->bsize == subsize)
1812         return PARTITION_VERT;
1813       else
1814         return PARTITION_VERT_B;
1815     } else {
1816       // Smaller width and smaller height. Might be PARTITION_SPLIT or could be
1817       // PARTITION_HORZ_A or PARTITION_VERT_A. If subsize isn't halved in both
1818       // dimensions, we immediately know this is a split (which will recurse to
1819       // get to subsize). Otherwise look down and to the right. With
1820       // PARTITION_VERT_A, the right block will have height bhigh; with
1821       // PARTITION_HORZ_A, the lower block with have width bwide. Otherwise
1822       // it's PARTITION_SPLIT.
1823       if (sswide * 2 != bwide || sshigh * 2 != bhigh) return PARTITION_SPLIT;
1824 
1825       if (mi_size_wide[mbmi_below->bsize] == bwide) return PARTITION_HORZ_A;
1826       if (mi_size_high[mbmi_right->bsize] == bhigh) return PARTITION_VERT_A;
1827 
1828       return PARTITION_SPLIT;
1829     }
1830   }
1831   const int vert_split = sswide < bwide;
1832   const int horz_split = sshigh < bhigh;
1833   const int split_idx = (vert_split << 1) | horz_split;
1834   assert(split_idx != 0);
1835 
1836   static const PARTITION_TYPE base_partitions[4] = {
1837     PARTITION_INVALID, PARTITION_HORZ, PARTITION_VERT, PARTITION_SPLIT
1838   };
1839 
1840   return base_partitions[split_idx];
1841 }
1842 
set_sb_size(SequenceHeader * const seq_params,BLOCK_SIZE sb_size)1843 static inline void set_sb_size(SequenceHeader *const seq_params,
1844                                BLOCK_SIZE sb_size) {
1845   seq_params->sb_size = sb_size;
1846   seq_params->mib_size = mi_size_wide[seq_params->sb_size];
1847   seq_params->mib_size_log2 = mi_size_wide_log2[seq_params->sb_size];
1848 }
1849 
1850 // Returns true if the frame is fully lossless at the coded resolution.
1851 // Note: If super-resolution is used, such a frame will still NOT be lossless at
1852 // the upscaled resolution.
is_coded_lossless(const AV1_COMMON * cm,const MACROBLOCKD * xd)1853 static inline int is_coded_lossless(const AV1_COMMON *cm,
1854                                     const MACROBLOCKD *xd) {
1855   int coded_lossless = 1;
1856   if (cm->seg.enabled) {
1857     for (int i = 0; i < MAX_SEGMENTS; ++i) {
1858       if (!xd->lossless[i]) {
1859         coded_lossless = 0;
1860         break;
1861       }
1862     }
1863   } else {
1864     coded_lossless = xd->lossless[0];
1865   }
1866   return coded_lossless;
1867 }
1868 
is_valid_seq_level_idx(AV1_LEVEL seq_level_idx)1869 static inline int is_valid_seq_level_idx(AV1_LEVEL seq_level_idx) {
1870   return seq_level_idx == SEQ_LEVEL_MAX ||
1871          (seq_level_idx < SEQ_LEVELS &&
1872           // The following levels are currently undefined.
1873           seq_level_idx != SEQ_LEVEL_2_2 && seq_level_idx != SEQ_LEVEL_2_3 &&
1874           seq_level_idx != SEQ_LEVEL_3_2 && seq_level_idx != SEQ_LEVEL_3_3 &&
1875           seq_level_idx != SEQ_LEVEL_4_2 && seq_level_idx != SEQ_LEVEL_4_3
1876 #if !CONFIG_CWG_C013
1877           && seq_level_idx != SEQ_LEVEL_7_0 && seq_level_idx != SEQ_LEVEL_7_1 &&
1878           seq_level_idx != SEQ_LEVEL_7_2 && seq_level_idx != SEQ_LEVEL_7_3 &&
1879           seq_level_idx != SEQ_LEVEL_8_0 && seq_level_idx != SEQ_LEVEL_8_1 &&
1880           seq_level_idx != SEQ_LEVEL_8_2 && seq_level_idx != SEQ_LEVEL_8_3
1881 #endif
1882          );
1883 }
1884 
1885 /*!\endcond */
1886 
1887 #ifdef __cplusplus
1888 }  // extern "C"
1889 #endif
1890 
1891 #endif  // AOM_AV1_COMMON_AV1_COMMON_INT_H_
1892