1 /*
2 * Copyright (C) 2020 Collabora, Ltd.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include "bi_quirks.h"
25 #include "compiler.h"
26
27 /* This file contains the final passes of the compiler. Running after
28 * scheduling and RA, the IR is now finalized, so we need to emit it to actual
29 * bits on the wire (as well as fixup branches) */
30
31 static uint64_t
bi_pack_header(bi_clause * clause,bi_clause * next_1,bi_clause * next_2)32 bi_pack_header(bi_clause *clause, bi_clause *next_1, bi_clause *next_2)
33 {
34 /* next_dependencies are the union of the dependencies of successors'
35 * dependencies */
36
37 unsigned dependency_wait = next_1 ? next_1->dependencies : 0;
38 dependency_wait |= next_2 ? next_2->dependencies : 0;
39
40 /* Signal barriers (slot #7) immediately. This is not optimal but good
41 * enough. Doing better requires extending the IR and scheduler.
42 */
43 if (clause->message_type == BIFROST_MESSAGE_BARRIER)
44 dependency_wait |= BITFIELD_BIT(7);
45
46 bool staging_barrier = next_1 ? next_1->staging_barrier : false;
47 staging_barrier |= next_2 ? next_2->staging_barrier : 0;
48
49 struct bifrost_header header = {
50 .flow_control = (next_1 == NULL && next_2 == NULL) ? BIFROST_FLOW_END
51 : clause->flow_control,
52 .terminate_discarded_threads = clause->td,
53 .next_clause_prefetch = clause->next_clause_prefetch && next_1,
54 .staging_barrier = staging_barrier,
55 .staging_register = clause->staging_register,
56 .dependency_wait = dependency_wait,
57 .dependency_slot = clause->scoreboard_id,
58 .message_type = clause->message_type,
59 .next_message_type = next_1 ? next_1->message_type : 0,
60 .flush_to_zero = clause->ftz ? BIFROST_FTZ_ALWAYS : BIFROST_FTZ_DISABLE,
61 };
62
63 uint64_t u = 0;
64 memcpy(&u, &header, sizeof(header));
65 return u;
66 }
67
68 /* Assigns a slot for reading, before anything is written */
69
70 static void
bi_assign_slot_read(bi_registers * regs,bi_index src)71 bi_assign_slot_read(bi_registers *regs, bi_index src)
72 {
73 /* We only assign for registers */
74 if (src.type != BI_INDEX_REGISTER)
75 return;
76
77 /* Check if we already assigned the slot */
78 for (unsigned i = 0; i <= 1; ++i) {
79 if (regs->slot[i] == src.value && regs->enabled[i])
80 return;
81 }
82
83 if (regs->slot[2] == src.value && regs->slot23.slot2 == BIFROST_OP_READ)
84 return;
85
86 /* Assign it now */
87
88 for (unsigned i = 0; i <= 1; ++i) {
89 if (!regs->enabled[i]) {
90 regs->slot[i] = src.value;
91 regs->enabled[i] = true;
92 return;
93 }
94 }
95
96 if (!regs->slot23.slot3) {
97 regs->slot[2] = src.value;
98 regs->slot23.slot2 = BIFROST_OP_READ;
99 return;
100 }
101
102 bi_print_slots(regs, stderr);
103 unreachable("Failed to find a free slot for src");
104 }
105
106 static bi_registers
bi_assign_slots(bi_tuple * now,bi_tuple * prev)107 bi_assign_slots(bi_tuple *now, bi_tuple *prev)
108 {
109 /* We assign slots for the main register mechanism. Special ops
110 * use the data registers, which has its own mechanism entirely
111 * and thus gets skipped over here. */
112
113 bool read_dreg = now->add && bi_opcode_props[now->add->op].sr_read;
114 bool write_dreg = prev->add && bi_opcode_props[prev->add->op].sr_write;
115
116 /* First, assign reads */
117
118 if (now->fma)
119 bi_foreach_src(now->fma, src)
120 bi_assign_slot_read(&now->regs, (now->fma)->src[src]);
121
122 if (now->add) {
123 bi_foreach_src(now->add, src) {
124 /* This is not a real source, we shouldn't assign a
125 * slot for it.
126 */
127 if (now->add->op == BI_OPCODE_BLEND && src == 4)
128 continue;
129
130 if (!(src == 0 && read_dreg))
131 bi_assign_slot_read(&now->regs, (now->add)->src[src]);
132 }
133 }
134
135 /* Next, assign writes. Staging writes are assigned separately, but
136 * +ATEST wants its destination written to both a staging register
137 * _and_ a regular write, because it may not generate a message */
138
139 if (prev->add && prev->add->nr_dests &&
140 (!write_dreg || prev->add->op == BI_OPCODE_ATEST)) {
141 bi_index idx = prev->add->dest[0];
142
143 if (idx.type == BI_INDEX_REGISTER) {
144 now->regs.slot[3] = idx.value;
145 now->regs.slot23.slot3 = BIFROST_OP_WRITE;
146 }
147 }
148
149 if (prev->fma && prev->fma->nr_dests) {
150 bi_index idx = prev->fma->dest[0];
151
152 if (idx.type == BI_INDEX_REGISTER) {
153 if (now->regs.slot23.slot3) {
154 /* Scheduler constraint: cannot read 3 and write 2 */
155 assert(!now->regs.slot23.slot2);
156 now->regs.slot[2] = idx.value;
157 now->regs.slot23.slot2 = BIFROST_OP_WRITE;
158 } else {
159 now->regs.slot[3] = idx.value;
160 now->regs.slot23.slot3 = BIFROST_OP_WRITE;
161 now->regs.slot23.slot3_fma = true;
162 }
163 }
164 }
165
166 return now->regs;
167 }
168
169 static enum bifrost_reg_mode
bi_pack_register_mode(bi_registers r)170 bi_pack_register_mode(bi_registers r)
171 {
172 /* Handle idle as a special case */
173 if (!(r.slot23.slot2 | r.slot23.slot3))
174 return r.first_instruction ? BIFROST_IDLE_1 : BIFROST_IDLE;
175
176 /* Otherwise, use the LUT */
177 for (unsigned i = 0; i < ARRAY_SIZE(bifrost_reg_ctrl_lut); ++i) {
178 if (memcmp(bifrost_reg_ctrl_lut + i, &r.slot23, sizeof(r.slot23)) == 0)
179 return i;
180 }
181
182 bi_print_slots(&r, stderr);
183 unreachable("Invalid slot assignment");
184 }
185
186 static uint64_t
bi_pack_registers(bi_registers regs)187 bi_pack_registers(bi_registers regs)
188 {
189 enum bifrost_reg_mode mode = bi_pack_register_mode(regs);
190 struct bifrost_regs s = {0};
191 uint64_t packed = 0;
192
193 /* Need to pack 5-bit mode as a 4-bit field. The decoder moves bit 3 to bit 4
194 * for first instruction and adds 16 when reg 2 == reg 3 */
195
196 unsigned ctrl;
197 bool r2_equals_r3 = false;
198
199 if (regs.first_instruction) {
200 /* Bit 3 implicitly must be clear for first instructions.
201 * The affected patterns all write both ADD/FMA, but that
202 * is forbidden for the last instruction (whose writes are
203 * encoded by the first), so this does not add additional
204 * encoding constraints */
205 assert(!(mode & 0x8));
206
207 /* Move bit 4 to bit 3, since bit 3 is clear */
208 ctrl = (mode & 0x7) | ((mode & 0x10) >> 1);
209
210 /* If we can let r2 equal r3, we have to or the hardware raises
211 * INSTR_INVALID_ENC (it's unclear why). */
212 if (!(regs.slot23.slot2 && regs.slot23.slot3))
213 r2_equals_r3 = true;
214 } else {
215 /* We force r2=r3 or not for the upper bit */
216 ctrl = (mode & 0xF);
217 r2_equals_r3 = (mode & 0x10);
218 }
219
220 if (regs.enabled[1]) {
221 /* Gotta save that bit!~ Required by the 63-x trick */
222 assert(regs.slot[1] > regs.slot[0]);
223 assert(regs.enabled[0]);
224
225 /* Do the 63-x trick, see docs/disasm */
226 if (regs.slot[0] > 31) {
227 regs.slot[0] = 63 - regs.slot[0];
228 regs.slot[1] = 63 - regs.slot[1];
229 }
230
231 assert(regs.slot[0] <= 31);
232 assert(regs.slot[1] <= 63);
233
234 s.ctrl = ctrl;
235 s.reg1 = regs.slot[1];
236 s.reg0 = regs.slot[0];
237 } else {
238 /* slot 1 disabled, so set to zero and use slot 1 for ctrl */
239 s.ctrl = 0;
240 s.reg1 = ctrl << 2;
241
242 if (regs.enabled[0]) {
243 /* Bit 0 upper bit of slot 0 */
244 s.reg1 |= (regs.slot[0] >> 5);
245
246 /* Rest of slot 0 in usual spot */
247 s.reg0 = (regs.slot[0] & 0b11111);
248 } else {
249 /* Bit 1 set if slot 0 also disabled */
250 s.reg1 |= (1 << 1);
251 }
252 }
253
254 /* Force r2 =/!= r3 as needed */
255 if (r2_equals_r3) {
256 assert(regs.slot[3] == regs.slot[2] ||
257 !(regs.slot23.slot2 && regs.slot23.slot3));
258
259 if (regs.slot23.slot2)
260 regs.slot[3] = regs.slot[2];
261 else
262 regs.slot[2] = regs.slot[3];
263 } else if (!regs.first_instruction) {
264 /* Enforced by the encoding anyway */
265 assert(regs.slot[2] != regs.slot[3]);
266 }
267
268 s.reg2 = regs.slot[2];
269 s.reg3 = regs.slot[3];
270 s.fau_idx = regs.fau_idx;
271
272 memcpy(&packed, &s, sizeof(s));
273 return packed;
274 }
275
276 /* We must ensure slot 1 > slot 0 for the 63-x trick to function, so we fix
277 * this up at pack time. (Scheduling doesn't care.) */
278
279 static void
bi_flip_slots(bi_registers * regs)280 bi_flip_slots(bi_registers *regs)
281 {
282 if (regs->enabled[0] && regs->enabled[1] && regs->slot[1] < regs->slot[0]) {
283 unsigned temp = regs->slot[0];
284 regs->slot[0] = regs->slot[1];
285 regs->slot[1] = temp;
286 }
287 }
288
289 static inline enum bifrost_packed_src
bi_get_src_slot(bi_registers * regs,unsigned reg)290 bi_get_src_slot(bi_registers *regs, unsigned reg)
291 {
292 if (regs->slot[0] == reg && regs->enabled[0])
293 return BIFROST_SRC_PORT0;
294 else if (regs->slot[1] == reg && regs->enabled[1])
295 return BIFROST_SRC_PORT1;
296 else if (regs->slot[2] == reg && regs->slot23.slot2 == BIFROST_OP_READ)
297 return BIFROST_SRC_PORT2;
298 else
299 unreachable("Tried to access register with no port");
300 }
301
302 static inline enum bifrost_packed_src
bi_get_src_new(bi_instr * ins,bi_registers * regs,unsigned s)303 bi_get_src_new(bi_instr *ins, bi_registers *regs, unsigned s)
304 {
305 if (!ins || s >= ins->nr_srcs)
306 return 0;
307
308 bi_index src = ins->src[s];
309
310 if (src.type == BI_INDEX_REGISTER)
311 return bi_get_src_slot(regs, src.value);
312 else if (src.type == BI_INDEX_PASS)
313 return src.value;
314 else {
315 /* TODO make safer */
316 return BIFROST_SRC_STAGE;
317 }
318 }
319
320 static struct bi_packed_tuple
bi_pack_tuple(bi_clause * clause,bi_tuple * tuple,bi_tuple * prev,bool first_tuple,gl_shader_stage stage)321 bi_pack_tuple(bi_clause *clause, bi_tuple *tuple, bi_tuple *prev,
322 bool first_tuple, gl_shader_stage stage)
323 {
324 bi_assign_slots(tuple, prev);
325 tuple->regs.fau_idx = tuple->fau_idx;
326 tuple->regs.first_instruction = first_tuple;
327
328 bi_flip_slots(&tuple->regs);
329
330 bool sr_read = tuple->add && bi_opcode_props[(tuple->add)->op].sr_read;
331
332 uint64_t reg = bi_pack_registers(tuple->regs);
333 uint64_t fma =
334 bi_pack_fma(tuple->fma, bi_get_src_new(tuple->fma, &tuple->regs, 0),
335 bi_get_src_new(tuple->fma, &tuple->regs, 1),
336 bi_get_src_new(tuple->fma, &tuple->regs, 2),
337 bi_get_src_new(tuple->fma, &tuple->regs, 3));
338
339 uint64_t add = bi_pack_add(
340 tuple->add, bi_get_src_new(tuple->add, &tuple->regs, sr_read + 0),
341 bi_get_src_new(tuple->add, &tuple->regs, sr_read + 1),
342 bi_get_src_new(tuple->add, &tuple->regs, sr_read + 2), 0);
343
344 if (tuple->add) {
345 bi_instr *add = tuple->add;
346
347 bool sr_write =
348 bi_opcode_props[add->op].sr_write && !bi_is_null(add->dest[0]);
349
350 if (sr_read && !bi_is_null(add->src[0])) {
351 assert(add->src[0].type == BI_INDEX_REGISTER);
352 clause->staging_register = add->src[0].value;
353
354 if (sr_write)
355 assert(bi_is_equiv(add->src[0], add->dest[0]));
356 } else if (sr_write) {
357 assert(add->dest[0].type == BI_INDEX_REGISTER);
358 clause->staging_register = add->dest[0].value;
359 }
360 }
361
362 struct bi_packed_tuple packed = {
363 .lo = reg | (fma << 35) | ((add & 0b111111) << 58),
364 .hi = add >> 6,
365 };
366
367 return packed;
368 }
369
370 /* A block contains at most one PC-relative constant, from a terminal branch.
371 * Find the last instruction and if it is a relative branch, fix up the
372 * PC-relative constant to contain the absolute offset. This occurs at pack
373 * time instead of schedule time because the number of quadwords between each
374 * block is not known until after all other passes have finished.
375 */
376
377 static void
bi_assign_branch_offset(bi_context * ctx,bi_block * block)378 bi_assign_branch_offset(bi_context *ctx, bi_block *block)
379 {
380 if (list_is_empty(&block->clauses))
381 return;
382
383 bi_clause *clause = list_last_entry(&block->clauses, bi_clause, link);
384 bi_instr *br = bi_last_instr_in_clause(clause);
385
386 if (!br->branch_target)
387 return;
388
389 /* Put it in the high place */
390 int32_t qwords = bi_block_offset(ctx, clause, br->branch_target);
391 int32_t bytes = qwords * 16;
392
393 /* Copy so we can toy with the sign without undefined behaviour */
394 uint32_t raw = 0;
395 memcpy(&raw, &bytes, sizeof(raw));
396
397 /* Clear off top bits for A1/B1 bits */
398 raw &= ~0xF0000000;
399
400 /* Put in top 32-bits */
401 assert(clause->pcrel_idx < 8);
402 clause->constants[clause->pcrel_idx] |= ((uint64_t)raw) << 32ull;
403 }
404
405 static void
bi_pack_constants(unsigned tuple_count,uint64_t * constants,unsigned word_idx,unsigned constant_words,bool ec0_packed,struct util_dynarray * emission)406 bi_pack_constants(unsigned tuple_count, uint64_t *constants, unsigned word_idx,
407 unsigned constant_words, bool ec0_packed,
408 struct util_dynarray *emission)
409 {
410 unsigned index = (word_idx << 1) + ec0_packed;
411
412 /* Do more constants follow */
413 bool more = (word_idx + 1) < constant_words;
414
415 /* Indexed first by tuple count and second by constant word number,
416 * indicates the position in the clause */
417 unsigned pos_lookup[8][3] = {
418 {0}, {1}, {3}, {2, 5}, {4, 8}, {7, 11, 14}, {6, 10, 13}, {9, 12},
419 };
420
421 /* Compute the pos, and check everything is reasonable */
422 assert((tuple_count - 1) < 8);
423 assert(word_idx < 3);
424 unsigned pos = pos_lookup[tuple_count - 1][word_idx];
425 assert(pos != 0 || (tuple_count == 1 && word_idx == 0));
426
427 struct bifrost_fmt_constant quad = {
428 .pos = pos,
429 .tag = more ? BIFROST_FMTC_CONSTANTS : BIFROST_FMTC_FINAL,
430 .imm_1 = constants[index + 0] >> 4,
431 .imm_2 = constants[index + 1] >> 4,
432 };
433
434 util_dynarray_append(emission, struct bifrost_fmt_constant, quad);
435 }
436
437 uint8_t
bi_pack_literal(enum bi_clause_subword literal)438 bi_pack_literal(enum bi_clause_subword literal)
439 {
440 assert(literal >= BI_CLAUSE_SUBWORD_LITERAL_0);
441 assert(literal <= BI_CLAUSE_SUBWORD_LITERAL_7);
442
443 return (literal - BI_CLAUSE_SUBWORD_LITERAL_0);
444 }
445
446 static inline uint8_t
bi_clause_upper(unsigned val,struct bi_packed_tuple * tuples,ASSERTED unsigned tuple_count)447 bi_clause_upper(unsigned val, struct bi_packed_tuple *tuples,
448 ASSERTED unsigned tuple_count)
449 {
450 assert(val < tuple_count);
451
452 /* top 3-bits of 78-bits is tuple >> 75 == (tuple >> 64) >> 11 */
453 struct bi_packed_tuple tuple = tuples[val];
454 return (tuple.hi >> 11);
455 }
456
457 uint8_t
bi_pack_upper(enum bi_clause_subword upper,struct bi_packed_tuple * tuples,ASSERTED unsigned tuple_count)458 bi_pack_upper(enum bi_clause_subword upper, struct bi_packed_tuple *tuples,
459 ASSERTED unsigned tuple_count)
460 {
461 assert(upper >= BI_CLAUSE_SUBWORD_UPPER_0);
462 assert(upper <= BI_CLAUSE_SUBWORD_UPPER_7);
463
464 return bi_clause_upper(upper - BI_CLAUSE_SUBWORD_UPPER_0, tuples,
465 tuple_count);
466 }
467
468 uint64_t
bi_pack_tuple_bits(enum bi_clause_subword idx,struct bi_packed_tuple * tuples,ASSERTED unsigned tuple_count,unsigned offset,unsigned nbits)469 bi_pack_tuple_bits(enum bi_clause_subword idx, struct bi_packed_tuple *tuples,
470 ASSERTED unsigned tuple_count, unsigned offset,
471 unsigned nbits)
472 {
473 assert(idx >= BI_CLAUSE_SUBWORD_TUPLE_0);
474 assert(idx <= BI_CLAUSE_SUBWORD_TUPLE_7);
475
476 unsigned val = (idx - BI_CLAUSE_SUBWORD_TUPLE_0);
477 assert(val < tuple_count);
478
479 struct bi_packed_tuple tuple = tuples[val];
480
481 assert(offset + nbits < 78);
482 assert(nbits <= 64);
483
484 /* (X >> start) & m
485 * = (((hi << 64) | lo) >> start) & m
486 * = (((hi << 64) >> start) | (lo >> start)) & m
487 * = { ((hi << (64 - start)) | (lo >> start)) & m if start <= 64
488 * { ((hi >> (start - 64)) | (lo >> start)) & m if start >= 64
489 * = { ((hi << (64 - start)) & m) | ((lo >> start) & m) if start <= 64
490 * { ((hi >> (start - 64)) & m) | ((lo >> start) & m) if start >= 64
491 *
492 * By setting m = 2^64 - 1, we justify doing the respective shifts as
493 * 64-bit integers. Zero special cased to avoid undefined behaviour.
494 */
495
496 uint64_t lo = (tuple.lo >> offset);
497 uint64_t hi = (offset == 0) ? 0
498 : (offset > 64) ? (tuple.hi >> (offset - 64))
499 : (tuple.hi << (64 - offset));
500
501 return (lo | hi) & ((1ULL << nbits) - 1);
502 }
503
504 static inline uint16_t
bi_pack_lu(enum bi_clause_subword word,struct bi_packed_tuple * tuples,ASSERTED unsigned tuple_count)505 bi_pack_lu(enum bi_clause_subword word, struct bi_packed_tuple *tuples,
506 ASSERTED unsigned tuple_count)
507 {
508 return (word >= BI_CLAUSE_SUBWORD_UPPER_0)
509 ? bi_pack_upper(word, tuples, tuple_count)
510 : bi_pack_literal(word);
511 }
512
513 uint8_t
bi_pack_sync(enum bi_clause_subword t1,enum bi_clause_subword t2,enum bi_clause_subword t3,struct bi_packed_tuple * tuples,ASSERTED unsigned tuple_count,bool z)514 bi_pack_sync(enum bi_clause_subword t1, enum bi_clause_subword t2,
515 enum bi_clause_subword t3, struct bi_packed_tuple *tuples,
516 ASSERTED unsigned tuple_count, bool z)
517 {
518 uint8_t sync = (bi_pack_lu(t3, tuples, tuple_count) << 0) |
519 (bi_pack_lu(t2, tuples, tuple_count) << 3);
520
521 if (t1 == BI_CLAUSE_SUBWORD_Z)
522 sync |= z << 6;
523 else
524 sync |= bi_pack_literal(t1) << 6;
525
526 return sync;
527 }
528
529 static inline uint64_t
bi_pack_t_ec(enum bi_clause_subword word,struct bi_packed_tuple * tuples,ASSERTED unsigned tuple_count,uint64_t ec0)530 bi_pack_t_ec(enum bi_clause_subword word, struct bi_packed_tuple *tuples,
531 ASSERTED unsigned tuple_count, uint64_t ec0)
532 {
533 if (word == BI_CLAUSE_SUBWORD_CONSTANT)
534 return ec0;
535 else
536 return bi_pack_tuple_bits(word, tuples, tuple_count, 0, 60);
537 }
538
539 static uint32_t
bi_pack_subwords_56(enum bi_clause_subword t,struct bi_packed_tuple * tuples,ASSERTED unsigned tuple_count,uint64_t header,uint64_t ec0,unsigned tuple_subword)540 bi_pack_subwords_56(enum bi_clause_subword t, struct bi_packed_tuple *tuples,
541 ASSERTED unsigned tuple_count, uint64_t header,
542 uint64_t ec0, unsigned tuple_subword)
543 {
544 switch (t) {
545 case BI_CLAUSE_SUBWORD_HEADER:
546 return (header & ((1 << 30) - 1));
547 case BI_CLAUSE_SUBWORD_RESERVED:
548 return 0;
549 case BI_CLAUSE_SUBWORD_CONSTANT:
550 return (ec0 >> 15) & ((1 << 30) - 1);
551 default:
552 return bi_pack_tuple_bits(t, tuples, tuple_count, tuple_subword * 15, 30);
553 }
554 }
555
556 static uint16_t
bi_pack_subword(enum bi_clause_subword t,unsigned format,struct bi_packed_tuple * tuples,ASSERTED unsigned tuple_count,uint64_t header,uint64_t ec0,unsigned m0,unsigned tuple_subword)557 bi_pack_subword(enum bi_clause_subword t, unsigned format,
558 struct bi_packed_tuple *tuples, ASSERTED unsigned tuple_count,
559 uint64_t header, uint64_t ec0, unsigned m0,
560 unsigned tuple_subword)
561 {
562 switch (t) {
563 case BI_CLAUSE_SUBWORD_HEADER:
564 return header >> 30;
565 case BI_CLAUSE_SUBWORD_M:
566 return m0;
567 case BI_CLAUSE_SUBWORD_CONSTANT:
568 return (format == 5 || format == 10) ? (ec0 & ((1 << 15) - 1))
569 : (ec0 >> (15 + 30));
570 case BI_CLAUSE_SUBWORD_UPPER_23:
571 return (bi_clause_upper(2, tuples, tuple_count) << 12) |
572 (bi_clause_upper(3, tuples, tuple_count) << 9);
573 case BI_CLAUSE_SUBWORD_UPPER_56:
574 return (bi_clause_upper(5, tuples, tuple_count) << 12) |
575 (bi_clause_upper(6, tuples, tuple_count) << 9);
576 case BI_CLAUSE_SUBWORD_UPPER_0 ... BI_CLAUSE_SUBWORD_UPPER_7:
577 return bi_pack_upper(t, tuples, tuple_count) << 12;
578 default:
579 return bi_pack_tuple_bits(t, tuples, tuple_count, tuple_subword * 15, 15);
580 }
581 }
582
583 /* EC0 is 60-bits (bottom 4 already shifted off) */
584 void
bi_pack_format(struct util_dynarray * emission,unsigned index,struct bi_packed_tuple * tuples,ASSERTED unsigned tuple_count,uint64_t header,uint64_t ec0,unsigned m0,bool z)585 bi_pack_format(struct util_dynarray *emission, unsigned index,
586 struct bi_packed_tuple *tuples, ASSERTED unsigned tuple_count,
587 uint64_t header, uint64_t ec0, unsigned m0, bool z)
588 {
589 struct bi_clause_format format = bi_clause_formats[index];
590
591 uint8_t sync = bi_pack_sync(format.tag_1, format.tag_2, format.tag_3, tuples,
592 tuple_count, z);
593
594 uint64_t s0_s3 = bi_pack_t_ec(format.s0_s3, tuples, tuple_count, ec0);
595
596 uint16_t s4 = bi_pack_subword(format.s4, format.format, tuples, tuple_count,
597 header, ec0, m0, 4);
598
599 uint32_t s5_s6 =
600 bi_pack_subwords_56(format.s5_s6, tuples, tuple_count, header, ec0,
601 (format.format == 2 || format.format == 7) ? 0 : 3);
602
603 uint64_t s7 = bi_pack_subword(format.s7, format.format, tuples, tuple_count,
604 header, ec0, m0, 2);
605
606 /* Now that subwords are packed, split into 64-bit halves and emit */
607 uint64_t lo = sync | ((s0_s3 & ((1ull << 56) - 1)) << 8);
608 uint64_t hi = (s0_s3 >> 56) | ((uint64_t)s4 << 4) | ((uint64_t)s5_s6 << 19) |
609 ((uint64_t)s7 << 49);
610
611 util_dynarray_append(emission, uint64_t, lo);
612 util_dynarray_append(emission, uint64_t, hi);
613 }
614
615 static void
bi_pack_clause(bi_context * ctx,bi_clause * clause,bi_clause * next_1,bi_clause * next_2,struct util_dynarray * emission,gl_shader_stage stage)616 bi_pack_clause(bi_context *ctx, bi_clause *clause, bi_clause *next_1,
617 bi_clause *next_2, struct util_dynarray *emission,
618 gl_shader_stage stage)
619 {
620 struct bi_packed_tuple ins[8] = {0};
621
622 for (unsigned i = 0; i < clause->tuple_count; ++i) {
623 unsigned prev = ((i == 0) ? clause->tuple_count : i) - 1;
624 ins[i] = bi_pack_tuple(clause, &clause->tuples[i], &clause->tuples[prev],
625 i == 0, stage);
626
627 bi_instr *add = clause->tuples[i].add;
628
629 /* Different GPUs support different forms of the CLPER.i32
630 * instruction. Check we use the right one for the target.
631 */
632 if (add && add->op == BI_OPCODE_CLPER_OLD_I32)
633 assert(ctx->quirks & BIFROST_LIMITED_CLPER);
634 else if (add && add->op == BI_OPCODE_CLPER_I32)
635 assert(!(ctx->quirks & BIFROST_LIMITED_CLPER));
636 }
637
638 bool ec0_packed = bi_ec0_packed(clause->tuple_count);
639
640 if (ec0_packed)
641 clause->constant_count = MAX2(clause->constant_count, 1);
642
643 unsigned constant_quads =
644 DIV_ROUND_UP(clause->constant_count - (ec0_packed ? 1 : 0), 2);
645
646 uint64_t header = bi_pack_header(clause, next_1, next_2);
647 uint64_t ec0 = (clause->constants[0] >> 4);
648 unsigned m0 = (clause->pcrel_idx == 0) ? 4 : 0;
649
650 unsigned counts[8] = {
651 1, 2, 3, 3, 4, 5, 5, 6,
652 };
653
654 unsigned indices[8][6] = {
655 {1}, {0, 2}, {0, 3, 4}, {0, 3, 6},
656 {0, 3, 7, 8}, {0, 3, 5, 9, 10}, {0, 3, 5, 9, 11}, {0, 3, 5, 9, 12, 13},
657 };
658
659 unsigned count = counts[clause->tuple_count - 1];
660
661 for (unsigned pos = 0; pos < count; ++pos) {
662 ASSERTED unsigned idx = indices[clause->tuple_count - 1][pos];
663 assert(bi_clause_formats[idx].pos == pos);
664 assert((bi_clause_formats[idx].tag_1 == BI_CLAUSE_SUBWORD_Z) ==
665 (pos == count - 1));
666
667 /* Whether to end the clause immediately after the last tuple */
668 bool z = (constant_quads == 0);
669
670 bi_pack_format(emission, indices[clause->tuple_count - 1][pos], ins,
671 clause->tuple_count, header, ec0, m0, z);
672 }
673
674 /* Pack the remaining constants */
675
676 for (unsigned pos = 0; pos < constant_quads; ++pos) {
677 bi_pack_constants(clause->tuple_count, clause->constants, pos,
678 constant_quads, ec0_packed, emission);
679 }
680 }
681
682 static void
bi_collect_blend_ret_addr(bi_context * ctx,struct util_dynarray * emission,const bi_clause * clause)683 bi_collect_blend_ret_addr(bi_context *ctx, struct util_dynarray *emission,
684 const bi_clause *clause)
685 {
686 /* No need to collect return addresses when we're in a blend shader. */
687 if (ctx->inputs->is_blend)
688 return;
689
690 const bi_tuple *tuple = &clause->tuples[clause->tuple_count - 1];
691 const bi_instr *ins = tuple->add;
692
693 if (!ins || ins->op != BI_OPCODE_BLEND)
694 return;
695
696 unsigned loc = tuple->regs.fau_idx - BIR_FAU_BLEND_0;
697 assert(loc < ARRAY_SIZE(ctx->info.bifrost->blend));
698 assert(!ctx->info.bifrost->blend[loc].return_offset);
699 ctx->info.bifrost->blend[loc].return_offset =
700 util_dynarray_num_elements(emission, uint8_t);
701 assert(!(ctx->info.bifrost->blend[loc].return_offset & 0x7));
702 }
703
704 /*
705 * The second register destination of TEXC_DUAL is encoded into the texture
706 * operation descriptor during register allocation. It's dropped as late as
707 * possible (instruction packing) so the register remains recorded in the IR,
708 * for clause scoreboarding and so on.
709 */
710 static void
bi_lower_texc_dual(bi_context * ctx)711 bi_lower_texc_dual(bi_context *ctx)
712 {
713 bi_foreach_instr_global(ctx, I) {
714 if (I->op == BI_OPCODE_TEXC_DUAL) {
715 /* In hardware, TEXC has 1 destination */
716 I->op = BI_OPCODE_TEXC;
717 bi_drop_dests(I, 1);
718 }
719 }
720 }
721
722 unsigned
bi_pack(bi_context * ctx,struct util_dynarray * emission)723 bi_pack(bi_context *ctx, struct util_dynarray *emission)
724 {
725 unsigned previous_size = emission->size;
726
727 bi_lower_texc_dual(ctx);
728
729 bi_foreach_block(ctx, block) {
730 bi_assign_branch_offset(ctx, block);
731
732 bi_foreach_clause_in_block(block, clause) {
733 bool is_last = (clause->link.next == &block->clauses);
734
735 /* Get the succeeding clauses, either two successors of
736 * the block for the last clause in the block or just
737 * the next clause within the block */
738
739 bi_clause *next = NULL, *next_2 = NULL;
740
741 if (is_last) {
742 next = bi_next_clause(ctx, block->successors[0], NULL);
743 next_2 = bi_next_clause(ctx, block->successors[1], NULL);
744 } else {
745 next = bi_next_clause(ctx, block, clause);
746 }
747
748 previous_size = emission->size;
749
750 bi_pack_clause(ctx, clause, next, next_2, emission, ctx->stage);
751
752 if (!is_last)
753 bi_collect_blend_ret_addr(ctx, emission, clause);
754 }
755 }
756
757 return emission->size - previous_size;
758 }
759