1 /* 2 [auto_generated] 3 boost/numeric/odeint/stepper/base/explicit_stepper_base.hpp 4 5 [begin_description] 6 Base class for all explicit Runge Kutta steppers. 7 [end_description] 8 9 Copyright 2010-2013 Karsten Ahnert 10 Copyright 2010-2012 Mario Mulansky 11 Copyright 2012 Christoph Koke 12 13 Distributed under the Boost Software License, Version 1.0. 14 (See accompanying file LICENSE_1_0.txt or 15 copy at http://www.boost.org/LICENSE_1_0.txt) 16 */ 17 18 19 #ifndef BOOST_NUMERIC_ODEINT_STEPPER_BASE_EXPLICIT_STEPPER_BASE_HPP_INCLUDED 20 #define BOOST_NUMERIC_ODEINT_STEPPER_BASE_EXPLICIT_STEPPER_BASE_HPP_INCLUDED 21 22 23 #include <boost/utility/enable_if.hpp> 24 #include <boost/type_traits/is_same.hpp> 25 26 #include <boost/numeric/odeint/util/bind.hpp> 27 #include <boost/numeric/odeint/util/unwrap_reference.hpp> 28 29 #include <boost/numeric/odeint/util/state_wrapper.hpp> 30 #include <boost/numeric/odeint/util/resizer.hpp> 31 #include <boost/numeric/odeint/util/is_resizeable.hpp> 32 33 #include <boost/numeric/odeint/stepper/stepper_categories.hpp> 34 35 #include <boost/numeric/odeint/stepper/base/algebra_stepper_base.hpp> 36 37 namespace boost { 38 namespace numeric { 39 namespace odeint { 40 41 /* 42 * base class for explicit steppers 43 * models the stepper concept 44 * 45 * this class provides the following overloads 46 * do_step( sys , x , t , dt ) 47 * do_step( sys , in , t , out , dt ) 48 * do_step( sys , x , dxdt_in , t , dt ) 49 * do_step( sys , in , dxdt_in , t , out , dt ) 50 */ 51 52 template< 53 class Stepper , 54 unsigned short Order , 55 class State , 56 class Value , 57 class Deriv , 58 class Time , 59 class Algebra , 60 class Operations , 61 class Resizer 62 > 63 class explicit_stepper_base : public algebra_stepper_base< Algebra , Operations > 64 { 65 public: 66 67 #ifndef DOXYGEN_SKIP 68 typedef explicit_stepper_base< Stepper , Order , State , Value , Deriv , Time , Algebra , Operations , Resizer > internal_stepper_base_type; 69 #endif // DOXYGEN_SKIP 70 71 72 typedef State state_type; 73 typedef Value value_type; 74 typedef Deriv deriv_type; 75 typedef Time time_type; 76 typedef Resizer resizer_type; 77 typedef Stepper stepper_type; 78 typedef stepper_tag stepper_category; 79 typedef algebra_stepper_base< Algebra , Operations > algebra_stepper_base_type; 80 typedef typename algebra_stepper_base_type::algebra_type algebra_type; 81 typedef typename algebra_stepper_base_type::operations_type operations_type; 82 typedef unsigned short order_type; 83 84 #ifndef DOXYGEN_SKIP 85 typedef state_wrapper< state_type > wrapped_state_type; 86 typedef state_wrapper< deriv_type > wrapped_deriv_type; 87 #endif // DOXYGEN_SKIP 88 89 90 static const order_type order_value = Order; 91 92 explicit_stepper_base(const algebra_type & algebra=algebra_type ())93 explicit_stepper_base( const algebra_type &algebra = algebra_type() ) 94 : algebra_stepper_base_type( algebra ) 95 { } 96 97 /** 98 * \return Returns the order of the stepper. 99 */ order(void) const100 order_type order( void ) const 101 { 102 return order_value; 103 } 104 105 106 /* 107 * Version 1 : do_step( sys , x , t , dt ) 108 * 109 * the two overloads are needed in order to solve the forwarding problem 110 */ 111 template< class System , class StateInOut > do_step(System system,StateInOut & x,time_type t,time_type dt)112 void do_step( System system , StateInOut &x , time_type t , time_type dt ) 113 { 114 do_step_v1( system , x , t , dt ); 115 } 116 117 /** 118 * \brief Second version to solve the forwarding problem, can be called with Boost.Range as StateInOut. 119 */ 120 template< class System , class StateInOut > do_step(System system,const StateInOut & x,time_type t,time_type dt)121 void do_step( System system , const StateInOut &x , time_type t , time_type dt ) 122 { 123 do_step_v1( system , x , t , dt ); 124 } 125 126 /* 127 * Version 2 : do_step( sys , x , dxdt , t , dt ) 128 * 129 * this version does not solve the forwarding problem, boost.range can not be used 130 * 131 * the disable is needed to avoid ambiguous overloads if state_type = time_type 132 */ 133 template< class System , class StateInOut , class DerivIn > 134 typename boost::disable_if< boost::is_same< DerivIn , time_type > , void >::type do_step(System system,StateInOut & x,const DerivIn & dxdt,time_type t,time_type dt)135 do_step( System system , StateInOut &x , const DerivIn &dxdt , time_type t , time_type dt ) 136 { 137 this->stepper().do_step_impl( system , x , dxdt , t , x , dt ); 138 } 139 140 141 /* 142 * named Version 2: do_step_dxdt_impl( sys , in , dxdt , t , dt ) 143 * 144 * this version is needed when this stepper is used for initializing 145 * multistep stepper like adams-bashforth. Hence we provide an explicitely 146 * named version that is not disabled. Meant for internal use only. 147 */ 148 template < class System, class StateInOut, class DerivIn > do_step_dxdt_impl(System system,StateInOut & x,const DerivIn & dxdt,time_type t,time_type dt)149 void do_step_dxdt_impl( System system, StateInOut &x, const DerivIn &dxdt, 150 time_type t, time_type dt ) 151 { 152 this->stepper().do_step_impl( system , x , dxdt , t , x , dt ); 153 } 154 155 156 /* 157 * Version 3 : do_step( sys , in , t , out , dt ) 158 * 159 * this version does not solve the forwarding problem, boost.range can not be used 160 */ 161 template< class System , class StateIn , class StateOut > do_step(System system,const StateIn & in,time_type t,StateOut & out,time_type dt)162 void do_step( System system , const StateIn &in , time_type t , StateOut &out , time_type dt ) 163 { 164 typename odeint::unwrap_reference< System >::type &sys = system; 165 m_resizer.adjust_size( in , detail::bind( &internal_stepper_base_type::template resize_impl<StateIn> , detail::ref( *this ) , detail::_1 ) ); 166 sys( in , m_dxdt.m_v ,t ); 167 this->stepper().do_step_impl( system , in , m_dxdt.m_v , t , out , dt ); 168 } 169 170 171 /* 172 * Version 4 : do_step( sys , in , dxdt , t , out , dt ) 173 * 174 * this version does not solve the forwarding problem, boost.range can not be used 175 */ 176 template< class System , class StateIn , class DerivIn , class StateOut > do_step(System system,const StateIn & in,const DerivIn & dxdt,time_type t,StateOut & out,time_type dt)177 void do_step( System system , const StateIn &in , const DerivIn &dxdt , time_type t , StateOut &out , time_type dt ) 178 { 179 this->stepper().do_step_impl( system , in , dxdt , t , out , dt ); 180 } 181 182 183 /* 184 * named Version 4: do_step_dxdt_impl( sys , in , dxdt , t , out, dt ) 185 * 186 * this version is needed when this stepper is used for initializing 187 * multistep stepper like adams-bashforth. Hence we provide an explicitely 188 * named version. Meant for internal use only. 189 */ 190 template < class System, class StateIn, class DerivIn, class StateOut > do_step_dxdt_impl(System system,const StateIn & in,const DerivIn & dxdt,time_type t,StateOut & out,time_type dt)191 void do_step_dxdt_impl( System system, const StateIn &in, 192 const DerivIn &dxdt, time_type t, StateOut &out, 193 time_type dt ) 194 { 195 this->stepper().do_step_impl( system , in , dxdt , t , out , dt ); 196 } 197 198 template< class StateIn > adjust_size(const StateIn & x)199 void adjust_size( const StateIn &x ) 200 { 201 resize_impl( x ); 202 } 203 204 private: 205 stepper(void)206 stepper_type& stepper( void ) 207 { 208 return *static_cast< stepper_type* >( this ); 209 } 210 stepper(void) const211 const stepper_type& stepper( void ) const 212 { 213 return *static_cast< const stepper_type* >( this ); 214 } 215 216 217 template< class StateIn > resize_impl(const StateIn & x)218 bool resize_impl( const StateIn &x ) 219 { 220 return adjust_size_by_resizeability( m_dxdt , x , typename is_resizeable<deriv_type>::type() ); 221 } 222 223 224 template< class System , class StateInOut > do_step_v1(System system,StateInOut & x,time_type t,time_type dt)225 void do_step_v1( System system , StateInOut &x , time_type t , time_type dt ) 226 { 227 typename odeint::unwrap_reference< System >::type &sys = system; 228 m_resizer.adjust_size( x , detail::bind( &internal_stepper_base_type::template resize_impl< StateInOut > , detail::ref( *this ) , detail::_1 ) ); 229 sys( x , m_dxdt.m_v ,t ); 230 this->stepper().do_step_impl( system , x , m_dxdt.m_v , t , x , dt ); 231 } 232 233 234 resizer_type m_resizer; 235 236 protected: 237 238 wrapped_deriv_type m_dxdt; 239 }; 240 241 242 /******* DOXYGEN *********/ 243 244 /** 245 * \class explicit_stepper_base 246 * \brief Base class for explicit steppers without step size control and without dense output. 247 * 248 * This class serves as the base class for all explicit steppers with algebra and operations. 249 * Step size control and error estimation as well as dense output are not provided. explicit_stepper_base 250 * is used as the interface in a CRTP (currently recurring template pattern). In order to work 251 * correctly the parent class needs to have a method `do_step_impl( system , in , dxdt_in , t , out , dt )`. 252 * This is method is used by explicit_stepper_base. explicit_stepper_base derives from 253 * algebra_stepper_base. An example how this class can be used is 254 * 255 * \code 256 * template< class State , class Value , class Deriv , class Time , class Algebra , class Operations , class Resizer > 257 * class custom_euler : public explicit_stepper_base< 1 , State , Value , Deriv , Time , Algebra , Operations , Resizer > 258 * { 259 * public: 260 * 261 * typedef explicit_stepper_base< 1 , State , Value , Deriv , Time , Algebra , Operations , Resizer > base_type; 262 * 263 * custom_euler( const Algebra &algebra = Algebra() ) { } 264 * 265 * template< class Sys , class StateIn , class DerivIn , class StateOut > 266 * void do_step_impl( Sys sys , const StateIn &in , const DerivIn &dxdt , Time t , StateOut &out , Time dt ) 267 * { 268 * m_algebra.for_each3( out , in , dxdt , Operations::scale_sum2< Value , Time >( 1.0 , dt ); 269 * } 270 * 271 * template< class State > 272 * void adjust_size( const State &x ) 273 * { 274 * base_type::adjust_size( x ); 275 * } 276 * }; 277 * \endcode 278 * 279 * For the Stepper concept only the `do_step( sys , x , t , dt )` needs to be implemented. But this class 280 * provides additional `do_step` variants since the stepper is explicit. These methods can be used to increase 281 * the performance in some situation, for example if one needs to analyze `dxdt` during each step. In this case 282 * one can use 283 * 284 * \code 285 * sys( x , dxdt , t ); 286 * stepper.do_step( sys , x , dxdt , t , dt ); // the value of dxdt is used here 287 * t += dt; 288 * \endcode 289 * 290 * In detail explicit_stepper_base provides the following `do_step` variants 291 * - `do_step( sys , x , t , dt )` - The classical `do_step` method needed to fulfill the Stepper concept. The state is updated in-place. 292 * A type modelling a Boost.Range can be used for x. 293 * - `do_step( sys , in , t , out , dt )` - This method updates the state out-of-place, hence the result of the step is stored in `out`. 294 * - `do_step( sys , x , dxdt , t , dt )` - This method updates the state in-place, but the derivative at the point `t` must be 295 * explicitly passed in `dxdt`. For an example see the code snippet above. 296 * - `do_step( sys , in , dxdt , t , out , dt )` - This method update the state out-of-place and expects that the derivative at the point 297 * `t` is explicitly passed in `dxdt`. It is a combination of the two `do_step` methods above. 298 * 299 * \note The system is always passed as value, which might result in poor performance if it contains data. In this case it can be used with `boost::ref` 300 * or `std::ref`, for example `stepper.do_step( boost::ref( sys ) , x , t , dt );` 301 * 302 * \note The time `t` is not advanced by the stepper. This has to done manually, or by the appropriate `integrate` routines or `iterator`s. 303 * 304 * \tparam Stepper The stepper on which this class should work. It is used via CRTP, hence explicit_stepper_base 305 * provides the interface for the Stepper. 306 * \tparam Order The order of the stepper. 307 * \tparam State The state type for the stepper. 308 * \tparam Value The value type for the stepper. This should be a floating point type, like float, 309 * double, or a multiprecision type. It must not necessary be the value_type of the State. For example 310 * the State can be a `vector< complex< double > >` in this case the Value must be double. 311 * The default value is double. 312 * \tparam Deriv The type representing time derivatives of the state type. It is usually the same type as the 313 * state type, only if used with Boost.Units both types differ. 314 * \tparam Time The type representing the time. Usually the same type as the value type. When Boost.Units is 315 * used, this type has usually a unit. 316 * \tparam Algebra The algebra type which must fulfill the Algebra Concept. 317 * \tparam Operations The type for the operations which must fulfill the Operations Concept. 318 * \tparam Resizer The resizer policy class. 319 */ 320 321 322 /** 323 * \fn explicit_stepper_base::explicit_stepper_base( const algebra_type &algebra ) 324 * \brief Constructs a explicit_stepper_base class. This constructor can be used as a default 325 * constructor if the algebra has a default constructor. 326 * \param algebra A copy of algebra is made and stored inside explicit_stepper_base. 327 */ 328 329 /** 330 * \fn explicit_stepper_base::order_type order( void ) const 331 * \return Returns the order of the stepper. 332 */ 333 334 /** 335 * \fn explicit_stepper_base::do_step( System system , StateInOut &x , time_type t , time_type dt ) 336 * \brief This method performs one step. It transforms the result in-place. 337 * 338 * \param system The system function to solve, hence the r.h.s. of the ordinary differential equation. It must fulfill the 339 * Simple System concept. 340 * \param x The state of the ODE which should be solved. After calling do_step the result is updated in x. 341 * \param t The value of the time, at which the step should be performed. 342 * \param dt The step size. 343 */ 344 345 346 /** 347 * \fn explicit_stepper_base::do_step( System system , StateInOut &x , const DerivIn &dxdt , time_type t , time_type dt ) 348 349 * \brief The method performs one step. Additionally to the other method 350 * the derivative of x is also passed to this method. It is supposed to be used in the following way: 351 * 352 * \code 353 * sys( x , dxdt , t ); 354 * stepper.do_step( sys , x , dxdt , t , dt ); 355 * \endcode 356 * 357 * The result is updated in place in x. This method is disabled if Time and Deriv are of the same type. In this 358 * case the method could not be distinguished from other `do_step` versions. 359 * 360 * \note This method does not solve the forwarding problem. 361 * 362 * \param system The system function to solve, hence the r.h.s. of the ODE. It must fulfill the 363 * Simple System concept. 364 * \param x The state of the ODE which should be solved. After calling do_step the result is updated in x. 365 * \param dxdt The derivative of x at t. 366 * \param t The value of the time, at which the step should be performed. 367 * \param dt The step size. 368 */ 369 370 /** 371 * \fn void explicit_stepper_base::do_step( System system , const StateIn &in , time_type t , StateOut &out , time_type dt ) 372 * \brief The method performs one step. The state of the ODE is updated out-of-place. 373 * \note This method does not solve the forwarding problem. 374 * 375 * \param system The system function to solve, hence the r.h.s. of the ODE. It must fulfill the 376 * Simple System concept. 377 * \param in The state of the ODE which should be solved. in is not modified in this method 378 * \param t The value of the time, at which the step should be performed. 379 * \param out The result of the step is written in out. 380 * \param dt The step size. 381 */ 382 383 /** 384 * \fn void explicit_stepper_base::do_step( System system , const StateIn &in , const DerivIn &dxdt , time_type t , StateOut &out , time_type dt ) 385 * \brief The method performs one step. The state of the ODE is updated out-of-place. 386 * Furthermore, the derivative of x at t is passed to the stepper. 387 * It is supposed to be used in the following way: 388 * 389 * \code 390 * sys( in , dxdt , t ); 391 * stepper.do_step( sys , in , dxdt , t , out , dt ); 392 * \endcode 393 * 394 * \note This method does not solve the forwarding problem. 395 * 396 * \param system The system function to solve, hence the r.h.s. of the ODE. It must fulfill the 397 * Simple System concept. 398 * \param in The state of the ODE which should be solved. in is not modified in this method 399 * \param dxdt The derivative of x at t. 400 * \param t The value of the time, at which the step should be performed. 401 * \param out The result of the step is written in out. 402 * \param dt The step size. 403 */ 404 405 /** 406 * \fn void explicit_stepper_base::adjust_size( const StateIn &x ) 407 * \brief Adjust the size of all temporaries in the stepper manually. 408 * \param x A state from which the size of the temporaries to be resized is deduced. 409 */ 410 411 } // odeint 412 } // numeric 413 } // boost 414 415 #endif // BOOST_NUMERIC_ODEINT_STEPPER_BASE_EXPLICIT_STEPPER_BASE_HPP_INCLUDED 416