xref: /aosp_15_r20/external/vboot_reference/cgpt/cgpt_common.c (revision 8617a60d3594060b7ecbd21bc622a7c14f3cf2bc)
1 /* Copyright 2010 The ChromiumOS Authors
2  * Use of this source code is governed by a BSD-style license that can be
3  * found in the LICENSE file.
4  *
5  * Utility for ChromeOS-specific GPT partitions, Please see corresponding .c
6  * files for more details.
7  */
8 
9 #include <errno.h>
10 #include <fcntl.h>
11 #include <getopt.h>
12 #if !defined(HAVE_MACOS) && !defined(__FreeBSD__) && !defined(__OpenBSD__)
13 #include <linux/major.h>
14 #include <mtd/mtd-user.h>
15 #endif
16 #include <stdarg.h>
17 #include <stdint.h>
18 #include <stdio.h>
19 #include <stdlib.h>
20 #include <string.h>
21 #include <sys/ioctl.h>
22 #include <sys/mount.h>
23 #include <sys/stat.h>
24 #include <sys/types.h>
25 #include <unistd.h>
26 
27 #include "cgpt.h"
28 #include "cgptlib_internal.h"
29 #include "crc32.h"
30 #include "vboot_host.h"
31 
32 static const char kErrorTag[] = "ERROR";
33 static const char kWarningTag[] = "WARNING";
34 
LogToStderr(const char * tag,const char * format,va_list ap)35 static void LogToStderr(const char *tag, const char *format, va_list ap) {
36   fprintf(stderr, "%s: ", tag);
37   vfprintf(stderr, format, ap);
38 }
39 
Error(const char * format,...)40 void Error(const char *format, ...) {
41   va_list ap;
42   va_start(ap, format);
43   LogToStderr(kErrorTag, format, ap);
44   va_end(ap);
45 }
46 
Warning(const char * format,...)47 void Warning(const char *format, ...) {
48   va_list ap;
49   va_start(ap, format);
50   LogToStderr(kWarningTag, format, ap);
51   va_end(ap);
52 }
53 
check_int_parse(char option,const char * buf)54 int check_int_parse(char option, const char *buf) {
55   if (!*optarg || (buf && *buf)) {
56     Error("invalid argument to -%c: \"%s\"\n", option, optarg);
57     return 1;
58   }
59   return 0;
60 }
61 
check_int_limit(char option,int val,int low,int high)62 int check_int_limit(char option, int val, int low, int high) {
63   if (val < low || val > high) {
64     Error("value for -%c must be between %d and %d", option, low, high);
65     return 1;
66   }
67   return 0;
68 }
69 
CheckValid(const struct drive * drive)70 int CheckValid(const struct drive *drive) {
71   if ((drive->gpt.valid_headers != MASK_BOTH) ||
72       (drive->gpt.valid_entries != MASK_BOTH)) {
73     Warning("One of the GPT headers/entries is invalid\n\n");
74     return CGPT_FAILED;
75   }
76   return CGPT_OK;
77 }
78 
Load(struct drive * drive,uint8_t * buf,const uint64_t sector,const uint64_t sector_bytes,const uint64_t sector_count)79 int Load(struct drive *drive, uint8_t *buf,
80                 const uint64_t sector,
81                 const uint64_t sector_bytes,
82                 const uint64_t sector_count) {
83   int count;  /* byte count to read */
84   int nread;
85 
86   require(buf);
87   if (!sector_count || !sector_bytes) {
88     Error("%s() failed at line %d: sector_count=%" PRIu64 ", sector_bytes=%" PRIu64 "\n",
89           __FUNCTION__, __LINE__, sector_count, sector_bytes);
90     return CGPT_FAILED;
91   }
92   /* Make sure that sector_bytes * sector_count doesn't roll over. */
93   if (sector_bytes > (UINT64_MAX / sector_count)) {
94     Error("%s() failed at line %d: sector_count=%" PRIu64 ", sector_bytes=%" PRIu64 "\n",
95           __FUNCTION__, __LINE__, sector_count, sector_bytes);
96     return CGPT_FAILED;
97   }
98   count = sector_bytes * sector_count;
99 
100   if (-1 == lseek(drive->fd, sector * sector_bytes, SEEK_SET)) {
101     Error("Can't seek: %s\n", strerror(errno));
102     return CGPT_FAILED;
103   }
104 
105   nread = read(drive->fd, buf, count);
106   if (nread < count) {
107     Error("Can't read enough: %d, not %d\n", nread, count);
108     return CGPT_FAILED;
109   }
110 
111   return CGPT_OK;
112 }
113 
114 
ReadPMBR(struct drive * drive)115 int ReadPMBR(struct drive *drive) {
116   if (-1 == lseek(drive->fd, 0, SEEK_SET))
117     return CGPT_FAILED;
118 
119   int nread = read(drive->fd, &drive->pmbr, sizeof(struct pmbr));
120   if (nread != sizeof(struct pmbr))
121     return CGPT_FAILED;
122 
123   return CGPT_OK;
124 }
125 
WritePMBR(struct drive * drive)126 int WritePMBR(struct drive *drive) {
127   if (-1 == lseek(drive->fd, 0, SEEK_SET))
128     return CGPT_FAILED;
129 
130   int nwrote = write(drive->fd, &drive->pmbr, sizeof(struct pmbr));
131   if (nwrote != sizeof(struct pmbr))
132     return CGPT_FAILED;
133 
134   return CGPT_OK;
135 }
136 
Save(struct drive * drive,const uint8_t * buf,const uint64_t sector,const uint64_t sector_bytes,const uint64_t sector_count)137 int Save(struct drive *drive, const uint8_t *buf,
138                 const uint64_t sector,
139                 const uint64_t sector_bytes,
140                 const uint64_t sector_count) {
141   int count;  /* byte count to write */
142   int nwrote;
143 
144   require(buf);
145   count = sector_bytes * sector_count;
146 
147   if (-1 == lseek(drive->fd, sector * sector_bytes, SEEK_SET))
148     return CGPT_FAILED;
149 
150   nwrote = write(drive->fd, buf, count);
151   if (nwrote < count)
152     return CGPT_FAILED;
153 
154   return CGPT_OK;
155 }
156 
GptLoad(struct drive * drive,uint32_t sector_bytes)157 static int GptLoad(struct drive *drive, uint32_t sector_bytes) {
158   drive->gpt.sector_bytes = sector_bytes;
159   if (drive->size % drive->gpt.sector_bytes) {
160     Error("Media size (%llu) is not a multiple of sector size(%d)\n",
161           (long long unsigned int)drive->size, drive->gpt.sector_bytes);
162     return -1;
163   }
164   drive->gpt.streaming_drive_sectors = drive->size / drive->gpt.sector_bytes;
165 
166   drive->gpt.primary_header = malloc(drive->gpt.sector_bytes);
167   drive->gpt.secondary_header = malloc(drive->gpt.sector_bytes);
168   drive->gpt.primary_entries = malloc(GPT_ENTRIES_ALLOC_SIZE);
169   drive->gpt.secondary_entries = malloc(GPT_ENTRIES_ALLOC_SIZE);
170   if (!drive->gpt.primary_header || !drive->gpt.secondary_header ||
171       !drive->gpt.primary_entries || !drive->gpt.secondary_entries)
172     return -1;
173 
174   /* TODO(namnguyen): Remove this and totally trust gpt_drive_sectors. */
175   if (!(drive->gpt.flags & GPT_FLAG_EXTERNAL)) {
176     drive->gpt.gpt_drive_sectors = drive->gpt.streaming_drive_sectors;
177   } /* Else, we trust gpt.gpt_drive_sectors. */
178 
179   // Read the data.
180   if (CGPT_OK != Load(drive, drive->gpt.primary_header,
181                       GPT_PMBR_SECTORS,
182                       drive->gpt.sector_bytes, GPT_HEADER_SECTORS)) {
183     Error("Cannot read primary GPT header\n");
184     return -1;
185   }
186   if (CGPT_OK != Load(drive, drive->gpt.secondary_header,
187                       drive->gpt.gpt_drive_sectors - GPT_PMBR_SECTORS,
188                       drive->gpt.sector_bytes, GPT_HEADER_SECTORS)) {
189     Error("Cannot read secondary GPT header\n");
190     return -1;
191   }
192   GptHeader* primary_header = (GptHeader*)drive->gpt.primary_header;
193   if (CheckHeader(primary_header, 0, drive->gpt.streaming_drive_sectors,
194                   drive->gpt.gpt_drive_sectors,
195                   drive->gpt.flags,
196                   drive->gpt.sector_bytes) == 0) {
197     if (CGPT_OK != Load(drive, drive->gpt.primary_entries,
198                         primary_header->entries_lba,
199                         drive->gpt.sector_bytes,
200                         CalculateEntriesSectors(primary_header,
201                           drive->gpt.sector_bytes))) {
202       Error("Cannot read primary partition entry array\n");
203       return -1;
204     }
205   } else {
206     Warning("Primary GPT header is %s\n",
207       memcmp(primary_header->signature, GPT_HEADER_SIGNATURE_IGNORED,
208              GPT_HEADER_SIGNATURE_SIZE) ? "invalid" : "being ignored");
209   }
210   GptHeader* secondary_header = (GptHeader*)drive->gpt.secondary_header;
211   if (CheckHeader(secondary_header, 1, drive->gpt.streaming_drive_sectors,
212                   drive->gpt.gpt_drive_sectors,
213                   drive->gpt.flags,
214                   drive->gpt.sector_bytes) == 0) {
215     if (CGPT_OK != Load(drive, drive->gpt.secondary_entries,
216                         secondary_header->entries_lba,
217                         drive->gpt.sector_bytes,
218                         CalculateEntriesSectors(secondary_header,
219                           drive->gpt.sector_bytes))) {
220       Error("Cannot read secondary partition entry array\n");
221       return -1;
222     }
223   } else {
224     Warning("Secondary GPT header is %s\n",
225       memcmp(primary_header->signature, GPT_HEADER_SIGNATURE_IGNORED,
226              GPT_HEADER_SIGNATURE_SIZE) ? "invalid" : "being ignored");
227   }
228   return 0;
229 }
230 
GptSave(struct drive * drive)231 static int GptSave(struct drive *drive) {
232   int errors = 0;
233 
234   if (!(drive->gpt.ignored & MASK_PRIMARY)) {
235     if (drive->gpt.modified & GPT_MODIFIED_HEADER1) {
236       if (CGPT_OK != Save(drive, drive->gpt.primary_header,
237                           GPT_PMBR_SECTORS,
238                           drive->gpt.sector_bytes, GPT_HEADER_SECTORS)) {
239         errors++;
240         Error("Cannot write primary header: %s\n", strerror(errno));
241       }
242     }
243     GptHeader* primary_header = (GptHeader*)drive->gpt.primary_header;
244     if (drive->gpt.modified & GPT_MODIFIED_ENTRIES1) {
245       if (CGPT_OK != Save(drive, drive->gpt.primary_entries,
246                           primary_header->entries_lba,
247                           drive->gpt.sector_bytes,
248                           CalculateEntriesSectors(primary_header,
249                             drive->gpt.sector_bytes))) {
250         errors++;
251         Error("Cannot write primary entries: %s\n", strerror(errno));
252       }
253     }
254 
255     // Sync primary GPT before touching secondary so one is always valid.
256     if (drive->gpt.modified & (GPT_MODIFIED_HEADER1 | GPT_MODIFIED_ENTRIES1))
257       if (fsync(drive->fd) < 0 && errno == EIO) {
258         errors++;
259         Error("I/O error when trying to write primary GPT\n");
260       }
261   }
262 
263   // Only start writing secondary GPT if primary was written correctly.
264   if (!errors && !(drive->gpt.ignored & MASK_SECONDARY)) {
265     if (drive->gpt.modified & GPT_MODIFIED_HEADER2) {
266       if (CGPT_OK != Save(drive, drive->gpt.secondary_header,
267                          drive->gpt.gpt_drive_sectors - GPT_PMBR_SECTORS,
268                          drive->gpt.sector_bytes, GPT_HEADER_SECTORS)) {
269         errors++;
270         Error("Cannot write secondary header: %s\n", strerror(errno));
271       }
272     }
273     GptHeader* secondary_header = (GptHeader*)drive->gpt.secondary_header;
274     if (drive->gpt.modified & GPT_MODIFIED_ENTRIES2) {
275       if (CGPT_OK != Save(drive, drive->gpt.secondary_entries,
276                           secondary_header->entries_lba,
277                           drive->gpt.sector_bytes,
278                           CalculateEntriesSectors(secondary_header,
279                             drive->gpt.sector_bytes))) {
280         errors++;
281         Error("Cannot write secondary entries: %s\n", strerror(errno));
282       }
283     }
284   }
285 
286   return errors ? -1 : 0;
287 }
288 
289 /*
290  * Query drive size and bytes per sector. Return zero on success. On error,
291  * -1 is returned and errno is set appropriately.
292  */
ObtainDriveSize(int fd,uint64_t * size,uint32_t * sector_bytes)293 static int ObtainDriveSize(int fd, uint64_t* size, uint32_t* sector_bytes) {
294   struct stat stat;
295   if (fstat(fd, &stat) == -1) {
296     return -1;
297   }
298 #if !defined(HAVE_MACOS) && !defined(__FreeBSD__) && !defined(__OpenBSD__)
299   if ((stat.st_mode & S_IFMT) != S_IFREG) {
300     if (ioctl(fd, BLKGETSIZE64, size) < 0) {
301       return -1;
302     }
303     if (ioctl(fd, BLKSSZGET, sector_bytes) < 0) {
304       return -1;
305     }
306   } else {
307     *sector_bytes = 512;  /* bytes */
308     *size = stat.st_size;
309   }
310 #else
311   *sector_bytes = 512;  /* bytes */
312   *size = stat.st_size;
313 #endif
314   return 0;
315 }
316 
DriveOpen(const char * drive_path,struct drive * drive,int mode,uint64_t drive_size)317 int DriveOpen(const char *drive_path, struct drive *drive, int mode,
318               uint64_t drive_size) {
319   uint32_t sector_bytes;
320 
321   require(drive_path);
322   require(drive);
323 
324   // Clear struct for proper error handling.
325   memset(drive, 0, sizeof(struct drive));
326 
327   drive->fd = open(drive_path, mode |
328 #if !defined(HAVE_MACOS) && !defined(__FreeBSD__) && !defined(__OpenBSD__)
329 		               O_LARGEFILE |
330 #endif
331 			       O_NOFOLLOW);
332   if (drive->fd == -1) {
333     Error("Can't open %s: %s\n", drive_path, strerror(errno));
334     return CGPT_FAILED;
335   }
336 
337   uint64_t gpt_drive_size;
338   if (ObtainDriveSize(drive->fd, &gpt_drive_size, &sector_bytes) != 0) {
339     Error("Can't get drive size and bytes per sector for %s: %s\n",
340           drive_path, strerror(errno));
341     goto error_close;
342   }
343 
344   drive->gpt.gpt_drive_sectors = gpt_drive_size / sector_bytes;
345   if (drive_size == 0) {
346     drive->size = gpt_drive_size;
347     drive->gpt.flags = 0;
348   } else {
349     drive->size = drive_size;
350     drive->gpt.flags = GPT_FLAG_EXTERNAL;
351   }
352 
353 
354   if (GptLoad(drive, sector_bytes)) {
355     goto error_close;
356   }
357 
358   // We just load the data. Caller must validate it.
359   return CGPT_OK;
360 
361 error_close:
362   (void) DriveClose(drive, 0);
363   return CGPT_FAILED;
364 }
365 
366 
DriveClose(struct drive * drive,int update_as_needed)367 int DriveClose(struct drive *drive, int update_as_needed) {
368   int errors = 0;
369 
370   if (update_as_needed) {
371     if (GptSave(drive)) {
372         errors++;
373     }
374   }
375 
376   free(drive->gpt.primary_header);
377   drive->gpt.primary_header = NULL;
378   free(drive->gpt.primary_entries);
379   drive->gpt.primary_entries = NULL;
380   free(drive->gpt.secondary_header);
381   drive->gpt.secondary_header = NULL;
382   free(drive->gpt.secondary_entries);
383   drive->gpt.secondary_entries = NULL;
384 
385   // Sync early! Only sync file descriptor here, and leave the whole system sync
386   // outside cgpt because whole system sync would trigger tons of disk accesses
387   // and timeout tests.
388   fsync(drive->fd);
389 
390   close(drive->fd);
391 
392   return errors ? CGPT_FAILED : CGPT_OK;
393 }
394 
395 
396 /* GUID conversion functions. Accepted format:
397  *
398  *   "C12A7328-F81F-11D2-BA4B-00A0C93EC93B"
399  *
400  * Returns CGPT_OK if parsing is successful; otherwise CGPT_FAILED.
401  */
StrToGuid(const char * str,Guid * guid)402 int StrToGuid(const char *str, Guid *guid) {
403   uint32_t time_low;
404   uint16_t time_mid;
405   uint16_t time_high_and_version;
406   unsigned int chunk[11];
407 
408   if (11 != sscanf(str, "%08X-%04X-%04X-%02X%02X-%02X%02X%02X%02X%02X%02X",
409                    chunk+0,
410                    chunk+1,
411                    chunk+2,
412                    chunk+3,
413                    chunk+4,
414                    chunk+5,
415                    chunk+6,
416                    chunk+7,
417                    chunk+8,
418                    chunk+9,
419                    chunk+10)) {
420     printf("FAILED\n");
421     return CGPT_FAILED;
422   }
423 
424   time_low = chunk[0] & 0xffffffff;
425   time_mid = chunk[1] & 0xffff;
426   time_high_and_version = chunk[2] & 0xffff;
427 
428   guid->u.Uuid.time_low = htole32(time_low);
429   guid->u.Uuid.time_mid = htole16(time_mid);
430   guid->u.Uuid.time_high_and_version = htole16(time_high_and_version);
431 
432   guid->u.Uuid.clock_seq_high_and_reserved = chunk[3] & 0xff;
433   guid->u.Uuid.clock_seq_low = chunk[4] & 0xff;
434   guid->u.Uuid.node[0] = chunk[5] & 0xff;
435   guid->u.Uuid.node[1] = chunk[6] & 0xff;
436   guid->u.Uuid.node[2] = chunk[7] & 0xff;
437   guid->u.Uuid.node[3] = chunk[8] & 0xff;
438   guid->u.Uuid.node[4] = chunk[9] & 0xff;
439   guid->u.Uuid.node[5] = chunk[10] & 0xff;
440 
441   return CGPT_OK;
442 }
GuidToStr(const Guid * guid,char * str,unsigned int buflen)443 void GuidToStr(const Guid *guid, char *str, unsigned int buflen) {
444   require(buflen >= GUID_STRLEN);
445   require(snprintf(str, buflen,
446                   "%08X-%04X-%04X-%02X%02X-%02X%02X%02X%02X%02X%02X",
447                   le32toh(guid->u.Uuid.time_low),
448                   le16toh(guid->u.Uuid.time_mid),
449                   le16toh(guid->u.Uuid.time_high_and_version),
450                   guid->u.Uuid.clock_seq_high_and_reserved,
451                   guid->u.Uuid.clock_seq_low,
452                   guid->u.Uuid.node[0], guid->u.Uuid.node[1],
453                   guid->u.Uuid.node[2], guid->u.Uuid.node[3],
454                   guid->u.Uuid.node[4], guid->u.Uuid.node[5]) == GUID_STRLEN-1);
455 }
456 
457 /* Convert possibly unterminated UTF16 string to UTF8.
458  * Caller must prepare enough space for UTF8, which could be up to
459  * twice the byte length of UTF16 string plus the terminating '\0'.
460  * See the following table for encoding lengths.
461  *
462  *     Code point       UTF16       UTF8
463  *   0x0000-0x007F     2 bytes     1 byte
464  *   0x0080-0x07FF     2 bytes     2 bytes
465  *   0x0800-0xFFFF     2 bytes     3 bytes
466  *  0x10000-0x10FFFF   4 bytes     4 bytes
467  *
468  * This function uses a simple state meachine to convert UTF-16 char(s) to
469  * a code point. Once a code point is parsed out, the state machine throws
470  * out sequencial UTF-8 chars in one time.
471  *
472  * Return: CGPT_OK --- all character are converted successfully.
473  *         CGPT_FAILED --- convert error, i.e. output buffer is too short.
474  */
UTF16ToUTF8(const uint16_t * utf16,unsigned int maxinput,uint8_t * utf8,unsigned int maxoutput)475 int UTF16ToUTF8(const uint16_t *utf16, unsigned int maxinput,
476                 uint8_t *utf8, unsigned int maxoutput)
477 {
478   size_t s16idx, s8idx;
479   uint32_t code_point = 0;
480   int code_point_ready = 1;  // code point is ready to output.
481   int retval = CGPT_OK;
482 
483   if (!utf16 || !maxinput || !utf8 || !maxoutput)
484     return CGPT_FAILED;
485 
486   maxoutput--;                             /* plan for termination now */
487 
488   for (s16idx = s8idx = 0;
489        s16idx < maxinput && utf16[s16idx] && maxoutput;
490        s16idx++) {
491     uint16_t codeunit = le16toh(utf16[s16idx]);
492 
493     if (code_point_ready) {
494       if (codeunit >= 0xD800 && codeunit <= 0xDBFF) {
495         /* high surrogate, need the low surrogate. */
496         code_point_ready = 0;
497         code_point = (codeunit & 0x03FF) + 0x0040;
498       } else {
499         /* BMP char, output it. */
500         code_point = codeunit;
501       }
502     } else {
503       /* expect the low surrogate */
504       if (codeunit >= 0xDC00 && codeunit <= 0xDFFF) {
505         code_point = (code_point << 10) | (codeunit & 0x03FF);
506         code_point_ready = 1;
507       } else {
508         /* the second code unit is NOT the low surrogate. Unexpected. */
509         code_point_ready = 0;
510         retval = CGPT_FAILED;
511         break;
512       }
513     }
514 
515     /* If UTF code point is ready, output it. */
516     if (code_point_ready) {
517       require(code_point <= 0x10FFFF);
518       if (code_point <= 0x7F && maxoutput >= 1) {
519         maxoutput -= 1;
520         utf8[s8idx++] = code_point & 0x7F;
521       } else if (code_point <= 0x7FF && maxoutput >= 2) {
522         maxoutput -= 2;
523         utf8[s8idx++] = 0xC0 | (code_point >> 6);
524         utf8[s8idx++] = 0x80 | (code_point & 0x3F);
525       } else if (code_point <= 0xFFFF && maxoutput >= 3) {
526         maxoutput -= 3;
527         utf8[s8idx++] = 0xE0 | (code_point >> 12);
528         utf8[s8idx++] = 0x80 | ((code_point >> 6) & 0x3F);
529         utf8[s8idx++] = 0x80 | (code_point & 0x3F);
530       } else if (code_point <= 0x10FFFF && maxoutput >= 4) {
531         maxoutput -= 4;
532         utf8[s8idx++] = 0xF0 | (code_point >> 18);
533         utf8[s8idx++] = 0x80 | ((code_point >> 12) & 0x3F);
534         utf8[s8idx++] = 0x80 | ((code_point >> 6) & 0x3F);
535         utf8[s8idx++] = 0x80 | (code_point & 0x3F);
536       } else {
537         /* buffer underrun */
538         retval = CGPT_FAILED;
539         break;
540       }
541     }
542   }
543   utf8[s8idx++] = 0;
544   return retval;
545 }
546 
547 /* Convert UTF8 string to UTF16. The UTF8 string must be null-terminated.
548  * Caller must prepare enough space for UTF16, including a terminating 0x0000.
549  * See the following table for encoding lengths. In any case, the caller
550  * just needs to prepare the byte length of UTF8 plus the terminating 0x0000.
551  *
552  *     Code point       UTF16       UTF8
553  *   0x0000-0x007F     2 bytes     1 byte
554  *   0x0080-0x07FF     2 bytes     2 bytes
555  *   0x0800-0xFFFF     2 bytes     3 bytes
556  *  0x10000-0x10FFFF   4 bytes     4 bytes
557  *
558  * This function converts UTF8 chars to a code point first. Then, convrts it
559  * to UTF16 code unit(s).
560  *
561  * Return: CGPT_OK --- all character are converted successfully.
562  *         CGPT_FAILED --- convert error, i.e. output buffer is too short.
563  */
UTF8ToUTF16(const uint8_t * utf8,uint16_t * utf16,unsigned int maxoutput)564 int UTF8ToUTF16(const uint8_t *utf8, uint16_t *utf16, unsigned int maxoutput)
565 {
566   size_t s16idx, s8idx;
567   uint32_t code_point = 0;
568   unsigned int expected_units = 1;
569   unsigned int decoded_units = 1;
570   int retval = CGPT_OK;
571 
572   if (!utf8 || !utf16 || !maxoutput)
573     return CGPT_FAILED;
574 
575   maxoutput--;                             /* plan for termination */
576 
577   for (s8idx = s16idx = 0;
578        utf8[s8idx] && maxoutput;
579        s8idx++) {
580     uint8_t code_unit;
581     code_unit = utf8[s8idx];
582 
583     if (expected_units != decoded_units) {
584       /* Trailing bytes of multi-byte character */
585       if ((code_unit & 0xC0) == 0x80) {
586         code_point = (code_point << 6) | (code_unit & 0x3F);
587         ++decoded_units;
588       } else {
589         /* Unexpected code unit. */
590         retval = CGPT_FAILED;
591         break;
592       }
593     } else {
594       /* parsing a new code point. */
595       decoded_units = 1;
596       if (code_unit <= 0x7F) {
597         code_point = code_unit;
598         expected_units = 1;
599       } else if (code_unit <= 0xBF) {
600         /* 0x80-0xBF must NOT be the heading byte unit of a new code point. */
601         retval = CGPT_FAILED;
602         break;
603       } else if (code_unit >= 0xC2 && code_unit <= 0xDF) {
604         code_point = code_unit & 0x1F;
605         expected_units = 2;
606       } else if (code_unit >= 0xE0 && code_unit <= 0xEF) {
607         code_point = code_unit & 0x0F;
608         expected_units = 3;
609       } else if (code_unit >= 0xF0 && code_unit <= 0xF4) {
610         code_point = code_unit & 0x07;
611         expected_units = 4;
612       } else {
613         /* illegal code unit: 0xC0-0xC1, 0xF5-0xFF */
614         retval = CGPT_FAILED;
615         break;
616       }
617     }
618 
619     /* If no more unit is needed, output the UTF16 unit(s). */
620     if ((retval == CGPT_OK) &&
621         (expected_units == decoded_units)) {
622       /* Check if the encoding is the shortest possible UTF-8 sequence. */
623       switch (expected_units) {
624         case 2:
625           if (code_point <= 0x7F) retval = CGPT_FAILED;
626           break;
627         case 3:
628           if (code_point <= 0x7FF) retval = CGPT_FAILED;
629           break;
630         case 4:
631           if (code_point <= 0xFFFF) retval = CGPT_FAILED;
632           break;
633       }
634       if (retval == CGPT_FAILED) break;  /* leave immediately */
635 
636       if ((code_point <= 0xD7FF) ||
637           (code_point >= 0xE000 && code_point <= 0xFFFF)) {
638         utf16[s16idx++] = code_point;
639         maxoutput -= 1;
640       } else if (code_point >= 0x10000 && code_point <= 0x10FFFF &&
641                  maxoutput >= 2) {
642         utf16[s16idx++] = 0xD800 | ((code_point >> 10) - 0x0040);
643         utf16[s16idx++] = 0xDC00 | (code_point & 0x03FF);
644         maxoutput -= 2;
645       } else {
646         /* Three possibilities fall into here. Both are failure cases.
647          *   a. surrogate pair (non-BMP characters; 0xD800~0xDFFF)
648          *   b. invalid code point > 0x10FFFF
649          *   c. buffer underrun
650          */
651         retval = CGPT_FAILED;
652         break;
653       }
654     }
655   }
656 
657   /* A null-terminator shows up before the UTF8 sequence ends. */
658   if (expected_units != decoded_units) {
659     retval = CGPT_FAILED;
660   }
661 
662   utf16[s16idx++] = 0;
663   return retval;
664 }
665 
666 /* global types to compare against */
667 const Guid guid_chromeos_firmware = GPT_ENT_TYPE_CHROMEOS_FIRMWARE;
668 const Guid guid_chromeos_kernel =   GPT_ENT_TYPE_CHROMEOS_KERNEL;
669 const Guid guid_chromeos_rootfs =   GPT_ENT_TYPE_CHROMEOS_ROOTFS;
670 const Guid guid_basic_data =        GPT_ENT_TYPE_BASIC_DATA;
671 const Guid guid_linux_data =        GPT_ENT_TYPE_LINUX_FS;
672 const Guid guid_chromeos_reserved = GPT_ENT_TYPE_CHROMEOS_RESERVED;
673 const Guid guid_efi =               GPT_ENT_TYPE_EFI;
674 const Guid guid_unused =            GPT_ENT_TYPE_UNUSED;
675 const Guid guid_chromeos_minios =   GPT_ENT_TYPE_CHROMEOS_MINIOS;
676 const Guid guid_chromeos_hibernate = GPT_ENT_TYPE_CHROMEOS_HIBERNATE;
677 
678 static const struct {
679   const Guid *type;
680   const char *name;
681   const char *description;
682 } supported_types[] = {
683   {&guid_chromeos_firmware, "firmware", "ChromeOS firmware"},
684   {&guid_chromeos_kernel, "kernel", "ChromeOS kernel"},
685   {&guid_chromeos_rootfs, "rootfs", "ChromeOS rootfs"},
686   {&guid_linux_data, "data", "Linux data"},
687   {&guid_basic_data, "basicdata", "Basic data"},
688   {&guid_chromeos_reserved, "reserved", "ChromeOS reserved"},
689   {&guid_efi, "efi", "EFI System Partition"},
690   {&guid_unused, "unused", "Unused (nonexistent) partition"},
691   {&guid_chromeos_minios, "minios", "ChromeOS miniOS"},
692   {&guid_chromeos_hibernate, "hibernate", "ChromeOS hibernate"},
693 };
694 
695 /* Resolves human-readable GPT type.
696  * Returns CGPT_OK if found.
697  * Returns CGPT_FAILED if no known type found. */
ResolveType(const Guid * type,char * buf)698 int ResolveType(const Guid *type, char *buf) {
699   int i;
700   for (i = 0; i < ARRAY_COUNT(supported_types); ++i) {
701     if (!memcmp(type, supported_types[i].type, sizeof(Guid))) {
702       strcpy(buf, supported_types[i].description);
703       return CGPT_OK;
704     }
705   }
706   return CGPT_FAILED;
707 }
708 
SupportedType(const char * name,Guid * type)709 int SupportedType(const char *name, Guid *type) {
710   int i;
711   for (i = 0; i < ARRAY_COUNT(supported_types); ++i) {
712     if (!strcmp(name, supported_types[i].name)) {
713       memcpy(type, supported_types[i].type, sizeof(Guid));
714       return CGPT_OK;
715     }
716   }
717   return CGPT_FAILED;
718 }
719 
PrintTypes(void)720 void PrintTypes(void) {
721   int i;
722   printf("The partition type may also be given as one of these aliases:\n\n");
723   for (i = 0; i < ARRAY_COUNT(supported_types); ++i) {
724     printf("    %-10s  %s\n", supported_types[i].name,
725                           supported_types[i].description);
726   }
727   printf("\n");
728 }
729 
GetGptHeader(const GptData * gpt)730 static GptHeader* GetGptHeader(const GptData *gpt) {
731   if (gpt->valid_headers & MASK_PRIMARY)
732     return (GptHeader*)gpt->primary_header;
733   else if (gpt->valid_headers & MASK_SECONDARY)
734     return (GptHeader*)gpt->secondary_header;
735   else
736     return 0;
737 }
738 
GetNumberOfEntries(const struct drive * drive)739 uint32_t GetNumberOfEntries(const struct drive *drive) {
740   GptHeader *header = GetGptHeader(&drive->gpt);
741   if (!header)
742     return 0;
743   return header->number_of_entries;
744 }
745 
746 
GetEntry(GptData * gpt,int secondary,uint32_t entry_index)747 GptEntry *GetEntry(GptData *gpt, int secondary, uint32_t entry_index) {
748   GptHeader *header = GetGptHeader(gpt);
749   uint8_t *entries;
750   uint32_t stride = header->size_of_entry;
751   require(stride);
752   require(entry_index < header->number_of_entries);
753 
754   if (secondary == PRIMARY) {
755     entries = gpt->primary_entries;
756   } else if (secondary == SECONDARY) {
757     entries = gpt->secondary_entries;
758   } else {  /* ANY_VALID */
759     require(secondary == ANY_VALID);
760     if (gpt->valid_entries & MASK_PRIMARY) {
761       entries = gpt->primary_entries;
762     } else {
763       require(gpt->valid_entries & MASK_SECONDARY);
764       entries = gpt->secondary_entries;
765     }
766   }
767 
768   return (GptEntry*)(&entries[stride * entry_index]);
769 }
770 
SetRequired(struct drive * drive,int secondary,uint32_t entry_index,int required)771 void SetRequired(struct drive *drive, int secondary, uint32_t entry_index,
772                  int required) {
773   require(required >= 0 && required <= CGPT_ATTRIBUTE_MAX_REQUIRED);
774   GptEntry *entry;
775   entry = GetEntry(&drive->gpt, secondary, entry_index);
776   SetEntryRequired(entry, required);
777 }
778 
GetRequired(struct drive * drive,int secondary,uint32_t entry_index)779 int GetRequired(struct drive *drive, int secondary, uint32_t entry_index) {
780   GptEntry *entry;
781   entry = GetEntry(&drive->gpt, secondary, entry_index);
782   return GetEntryRequired(entry);
783 }
784 
SetLegacyBoot(struct drive * drive,int secondary,uint32_t entry_index,int legacy_boot)785 void SetLegacyBoot(struct drive *drive, int secondary, uint32_t entry_index,
786                    int legacy_boot) {
787   require(legacy_boot >= 0 && legacy_boot <= CGPT_ATTRIBUTE_MAX_LEGACY_BOOT);
788   GptEntry *entry;
789   entry = GetEntry(&drive->gpt, secondary, entry_index);
790   SetEntryLegacyBoot(entry, legacy_boot);
791 }
792 
GetLegacyBoot(struct drive * drive,int secondary,uint32_t entry_index)793 int GetLegacyBoot(struct drive *drive, int secondary, uint32_t entry_index) {
794   GptEntry *entry;
795   entry = GetEntry(&drive->gpt, secondary, entry_index);
796   return GetEntryLegacyBoot(entry);
797 }
798 
SetPriority(struct drive * drive,int secondary,uint32_t entry_index,int priority)799 void SetPriority(struct drive *drive, int secondary, uint32_t entry_index,
800                  int priority) {
801   require(priority >= 0 && priority <= CGPT_ATTRIBUTE_MAX_PRIORITY);
802   GptEntry *entry;
803   entry = GetEntry(&drive->gpt, secondary, entry_index);
804   SetEntryPriority(entry, priority);
805 }
806 
GetPriority(struct drive * drive,int secondary,uint32_t entry_index)807 int GetPriority(struct drive *drive, int secondary, uint32_t entry_index) {
808   GptEntry *entry;
809   entry = GetEntry(&drive->gpt, secondary, entry_index);
810   return GetEntryPriority(entry);
811 }
812 
SetTries(struct drive * drive,int secondary,uint32_t entry_index,int tries)813 void SetTries(struct drive *drive, int secondary, uint32_t entry_index,
814               int tries) {
815   require(tries >= 0 && tries <= CGPT_ATTRIBUTE_MAX_TRIES);
816   GptEntry *entry;
817   entry = GetEntry(&drive->gpt, secondary, entry_index);
818   SetEntryTries(entry, tries);
819 }
820 
GetTries(struct drive * drive,int secondary,uint32_t entry_index)821 int GetTries(struct drive *drive, int secondary, uint32_t entry_index) {
822   GptEntry *entry;
823   entry = GetEntry(&drive->gpt, secondary, entry_index);
824   return GetEntryTries(entry);
825 }
826 
SetSuccessful(struct drive * drive,int secondary,uint32_t entry_index,int success)827 void SetSuccessful(struct drive *drive, int secondary, uint32_t entry_index,
828                    int success) {
829   require(success >= 0 && success <= CGPT_ATTRIBUTE_MAX_SUCCESSFUL);
830   GptEntry *entry;
831   entry = GetEntry(&drive->gpt, secondary, entry_index);
832   SetEntrySuccessful(entry, success);
833 }
834 
GetSuccessful(struct drive * drive,int secondary,uint32_t entry_index)835 int GetSuccessful(struct drive *drive, int secondary, uint32_t entry_index) {
836   GptEntry *entry;
837   entry = GetEntry(&drive->gpt, secondary, entry_index);
838   return GetEntrySuccessful(entry);
839 }
840 
SetErrorCounter(struct drive * drive,int secondary,uint32_t entry_index,int error_counter)841 void SetErrorCounter(struct drive *drive, int secondary, uint32_t entry_index,
842                      int error_counter) {
843   require(error_counter >= 0 &&
844           error_counter <= CGPT_ATTRIBUTE_MAX_ERROR_COUNTER);
845   GptEntry *entry;
846   entry = GetEntry(&drive->gpt, secondary, entry_index);
847   SetEntryErrorCounter(entry, error_counter);
848 }
849 
GetErrorCounter(struct drive * drive,int secondary,uint32_t entry_index)850 int GetErrorCounter(struct drive *drive, int secondary, uint32_t entry_index) {
851   GptEntry *entry;
852   entry = GetEntry(&drive->gpt, secondary, entry_index);
853   return GetEntryErrorCounter(entry);
854 }
855 
SetRaw(struct drive * drive,int secondary,uint32_t entry_index,uint32_t raw)856 void SetRaw(struct drive *drive, int secondary, uint32_t entry_index,
857             uint32_t raw) {
858   GptEntry *entry;
859   entry = GetEntry(&drive->gpt, secondary, entry_index);
860   entry->attrs.fields.gpt_att = (uint16_t)raw;
861 }
862 
UpdateAllEntries(struct drive * drive)863 void UpdateAllEntries(struct drive *drive) {
864   RepairEntries(&drive->gpt, MASK_PRIMARY);
865   RepairHeader(&drive->gpt, MASK_PRIMARY);
866 
867   drive->gpt.modified |= (GPT_MODIFIED_HEADER1 | GPT_MODIFIED_ENTRIES1 |
868                           GPT_MODIFIED_HEADER2 | GPT_MODIFIED_ENTRIES2);
869   UpdateCrc(&drive->gpt);
870 }
871 
IsUnused(struct drive * drive,int secondary,uint32_t index)872 int IsUnused(struct drive *drive, int secondary, uint32_t index) {
873   GptEntry *entry;
874   entry = GetEntry(&drive->gpt, secondary, index);
875   return GuidIsZero(&entry->type);
876 }
877 
IsKernel(struct drive * drive,int secondary,uint32_t index)878 int IsKernel(struct drive *drive, int secondary, uint32_t index) {
879   GptEntry *entry;
880   entry = GetEntry(&drive->gpt, secondary, index);
881   return GuidEqual(&entry->type, &guid_chromeos_kernel);
882 }
883 
884 
885 #define TOSTRING(A) #A
GptError(int errnum)886 const char *GptError(int errnum) {
887   const char *error_string[] = {
888     TOSTRING(GPT_SUCCESS),
889     TOSTRING(GPT_ERROR_NO_VALID_KERNEL),
890     TOSTRING(GPT_ERROR_INVALID_HEADERS),
891     TOSTRING(GPT_ERROR_INVALID_ENTRIES),
892     TOSTRING(GPT_ERROR_INVALID_SECTOR_SIZE),
893     TOSTRING(GPT_ERROR_INVALID_SECTOR_NUMBER),
894     TOSTRING(GPT_ERROR_INVALID_UPDATE_TYPE)
895   };
896   if (errnum < 0 || errnum >= ARRAY_COUNT(error_string))
897     return "<illegal value>";
898   return error_string[errnum];
899 }
900 
901 /*  Update CRC value if necessary.  */
UpdateCrc(GptData * gpt)902 void UpdateCrc(GptData *gpt) {
903   GptHeader *primary_header, *secondary_header;
904 
905   primary_header = (GptHeader*)gpt->primary_header;
906   secondary_header = (GptHeader*)gpt->secondary_header;
907 
908   if (gpt->modified & GPT_MODIFIED_ENTRIES1 &&
909       memcmp(primary_header, GPT_HEADER_SIGNATURE2,
910              GPT_HEADER_SIGNATURE_SIZE)) {
911     size_t entries_size = primary_header->size_of_entry *
912         primary_header->number_of_entries;
913     primary_header->entries_crc32 =
914         Crc32(gpt->primary_entries, entries_size);
915   }
916   if (gpt->modified & GPT_MODIFIED_ENTRIES2) {
917     size_t entries_size = secondary_header->size_of_entry *
918         secondary_header->number_of_entries;
919     secondary_header->entries_crc32 =
920         Crc32(gpt->secondary_entries, entries_size);
921   }
922   if (gpt->modified & GPT_MODIFIED_HEADER1) {
923     primary_header->header_crc32 = 0;
924     primary_header->header_crc32 = Crc32(
925         (const uint8_t *)primary_header, sizeof(GptHeader));
926   }
927   if (gpt->modified & GPT_MODIFIED_HEADER2) {
928     secondary_header->header_crc32 = 0;
929     secondary_header->header_crc32 = Crc32(
930         (const uint8_t *)secondary_header, sizeof(GptHeader));
931   }
932 }
933 /* Two headers are NOT bitwise identical. For example, my_lba pointers to header
934  * itself so that my_lba in primary and secondary is definitely different.
935  * Only the following fields should be identical.
936  *
937  *   first_usable_lba
938  *   last_usable_lba
939  *   number_of_entries
940  *   size_of_entry
941  *   disk_uuid
942  *
943  * If any of above field are not matched, overwrite secondary with primary since
944  * we always trust primary.
945  * If any one of header is invalid, copy from another. */
IsSynonymous(const GptHeader * a,const GptHeader * b)946 int IsSynonymous(const GptHeader* a, const GptHeader* b) {
947   if ((a->first_usable_lba == b->first_usable_lba) &&
948       (a->last_usable_lba == b->last_usable_lba) &&
949       (a->number_of_entries == b->number_of_entries) &&
950       (a->size_of_entry == b->size_of_entry) &&
951       (!memcmp(&a->disk_uuid, &b->disk_uuid, sizeof(Guid))))
952     return 1;
953   return 0;
954 }
955 
956 /* Primary entries and secondary entries should be bitwise identical.
957  * If two entries tables are valid, compare them. If not the same,
958  * overwrites secondary with primary (primary always has higher priority),
959  * and marks secondary as modified.
960  * If only one is valid, overwrites invalid one.
961  * If all are invalid, does nothing.
962  * This function returns bit masks for GptData.modified field.
963  * Note that CRC is NOT re-computed in this function.
964  */
RepairEntries(GptData * gpt,const uint32_t valid_entries)965 uint8_t RepairEntries(GptData *gpt, const uint32_t valid_entries) {
966   /* If we have an alternate GPT header signature, don't overwrite
967    * the secondary GPT with the primary one as that might wipe the
968    * partition table. Also don't overwrite the primary one with the
969    * secondary one as that will stop Windows from booting. */
970   GptHeader* h = (GptHeader*)(gpt->primary_header);
971   if (!memcmp(h->signature, GPT_HEADER_SIGNATURE2, GPT_HEADER_SIGNATURE_SIZE))
972     return 0;
973 
974   if (gpt->valid_headers & MASK_PRIMARY) {
975     h = (GptHeader*)gpt->primary_header;
976   } else if (gpt->valid_headers & MASK_SECONDARY) {
977     h = (GptHeader*)gpt->secondary_header;
978   } else {
979     /* We cannot trust any header, don't update entries. */
980     return 0;
981   }
982 
983   size_t entries_size = h->number_of_entries * h->size_of_entry;
984   if (valid_entries == MASK_BOTH) {
985     if (memcmp(gpt->primary_entries, gpt->secondary_entries, entries_size)) {
986       memcpy(gpt->secondary_entries, gpt->primary_entries, entries_size);
987       return GPT_MODIFIED_ENTRIES2;
988     }
989   } else if (valid_entries == MASK_PRIMARY) {
990     memcpy(gpt->secondary_entries, gpt->primary_entries, entries_size);
991     return GPT_MODIFIED_ENTRIES2;
992   } else if (valid_entries == MASK_SECONDARY) {
993     memcpy(gpt->primary_entries, gpt->secondary_entries, entries_size);
994     return GPT_MODIFIED_ENTRIES1;
995   }
996 
997   return 0;
998 }
999 
1000 /* The above five fields are shared between primary and secondary headers.
1001  * We can recover one header from another through copying those fields. */
CopySynonymousParts(GptHeader * target,const GptHeader * source)1002 static void CopySynonymousParts(GptHeader* target, const GptHeader* source) {
1003   target->first_usable_lba = source->first_usable_lba;
1004   target->last_usable_lba = source->last_usable_lba;
1005   target->number_of_entries = source->number_of_entries;
1006   target->size_of_entry = source->size_of_entry;
1007   memcpy(&target->disk_uuid, &source->disk_uuid, sizeof(Guid));
1008 }
1009 
1010 /* This function repairs primary and secondary headers if possible.
1011  * If both headers are valid (CRC32 is correct) but
1012  *   a) indicate inconsistent usable LBA ranges,
1013  *   b) inconsistent partition entry size and number,
1014  *   c) inconsistent disk_uuid,
1015  * we will use the primary header to overwrite secondary header.
1016  * If primary is invalid (CRC32 is wrong), then we repair it from secondary.
1017  * If secondary is invalid (CRC32 is wrong), then we repair it from primary.
1018  * This function returns the bitmasks for modified header.
1019  * Note that CRC value is NOT re-computed in this function. UpdateCrc() will
1020  * do it later.
1021  */
RepairHeader(GptData * gpt,const uint32_t valid_headers)1022 uint8_t RepairHeader(GptData *gpt, const uint32_t valid_headers) {
1023   GptHeader *primary_header, *secondary_header;
1024 
1025   primary_header = (GptHeader*)gpt->primary_header;
1026   secondary_header = (GptHeader*)gpt->secondary_header;
1027 
1028   if (valid_headers == MASK_BOTH) {
1029     if (!IsSynonymous(primary_header, secondary_header)) {
1030       CopySynonymousParts(secondary_header, primary_header);
1031       return GPT_MODIFIED_HEADER2;
1032     }
1033   } else if (valid_headers == MASK_PRIMARY) {
1034     memcpy(secondary_header, primary_header, sizeof(GptHeader));
1035     secondary_header->my_lba = gpt->gpt_drive_sectors - 1;  /* the last sector */
1036     secondary_header->alternate_lba = primary_header->my_lba;
1037     secondary_header->entries_lba = secondary_header->my_lba -
1038         CalculateEntriesSectors(primary_header, gpt->sector_bytes);
1039     return GPT_MODIFIED_HEADER2;
1040   } else if (valid_headers == MASK_SECONDARY) {
1041     memcpy(primary_header, secondary_header, sizeof(GptHeader));
1042     primary_header->my_lba = GPT_PMBR_SECTORS;  /* the second sector on drive */
1043     primary_header->alternate_lba = secondary_header->my_lba;
1044     /* TODO (namnguyen): Preserve (header, entries) padding space. */
1045     primary_header->entries_lba = primary_header->my_lba + GPT_HEADER_SECTORS;
1046     return GPT_MODIFIED_HEADER1;
1047   }
1048 
1049   return 0;
1050 }
1051 
CgptGetNumNonEmptyPartitions(CgptShowParams * params)1052 int CgptGetNumNonEmptyPartitions(CgptShowParams *params) {
1053   struct drive drive;
1054   int gpt_retval;
1055   int retval;
1056 
1057   if (params == NULL)
1058     return CGPT_FAILED;
1059 
1060   if (CGPT_OK != DriveOpen(params->drive_name, &drive, O_RDONLY,
1061                            params->drive_size))
1062     return CGPT_FAILED;
1063 
1064   if (GPT_SUCCESS != (gpt_retval = GptValidityCheck(&drive.gpt))) {
1065     Error("GptValidityCheck() returned %d: %s\n",
1066           gpt_retval, GptError(gpt_retval));
1067     retval = CGPT_FAILED;
1068     goto done;
1069   }
1070 
1071   params->num_partitions = 0;
1072   int numEntries = GetNumberOfEntries(&drive);
1073   int i;
1074   for (i = 0; i < numEntries; i++) {
1075       GptEntry *entry = GetEntry(&drive.gpt, ANY_VALID, i);
1076       if (GuidIsZero(&entry->type))
1077         continue;
1078 
1079       params->num_partitions++;
1080   }
1081 
1082   retval = CGPT_OK;
1083 
1084 done:
1085   DriveClose(&drive, 0);
1086   return retval;
1087 }
1088 
GuidEqual(const Guid * guid1,const Guid * guid2)1089 int GuidEqual(const Guid *guid1, const Guid *guid2) {
1090   return (0 == memcmp(guid1, guid2, sizeof(Guid)));
1091 }
1092 
GuidIsZero(const Guid * gp)1093 int GuidIsZero(const Guid *gp) {
1094   return GuidEqual(gp, &guid_unused);
1095 }
1096 
PMBRToStr(struct pmbr * pmbr,char * str,unsigned int buflen)1097 void PMBRToStr(struct pmbr *pmbr, char *str, unsigned int buflen) {
1098   char buf[GUID_STRLEN];
1099   if (GuidIsZero(&pmbr->boot_guid)) {
1100     require(snprintf(str, buflen, "PMBR") < buflen);
1101   } else {
1102     GuidToStr(&pmbr->boot_guid, buf, sizeof(buf));
1103     require(snprintf(str, buflen, "PMBR (Boot GUID: %s)", buf) < buflen);
1104   }
1105 }
1106 
1107 /*
1108  * This is here because some CGPT functionality is provided in libvboot_host.a
1109  * for other host utilities. GenerateGuid() is implemented (in cgpt.c which is
1110  * *not* linked into libvboot_host.a) by calling into libuuid. We don't want to
1111  * mandate libuuid as a dependency for every utilitity that wants to link
1112  * libvboot_host.a, since they usually don't use the functionality that needs
1113  * to generate new UUIDs anyway (just other functionality implemented in the
1114  * same files).
1115  */
1116 #ifndef HAVE_MACOS
GenerateGuid(Guid * newguid)1117 __attribute__((weak)) int GenerateGuid(Guid *newguid) { return CGPT_FAILED; };
1118 #endif
1119