xref: /aosp_15_r20/external/go-cmp/cmp/compare.go (revision 88d15eac089d7f20c739ff1001d56b91872b21a1)
1// Copyright 2017, The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// Package cmp determines equality of values.
6//
7// This package is intended to be a more powerful and safer alternative to
8// reflect.DeepEqual for comparing whether two values are semantically equal.
9// It is intended to only be used in tests, as performance is not a goal and
10// it may panic if it cannot compare the values. Its propensity towards
11// panicking means that its unsuitable for production environments where a
12// spurious panic may be fatal.
13//
14// The primary features of cmp are:
15//
16//   - When the default behavior of equality does not suit the test's needs,
17//     custom equality functions can override the equality operation.
18//     For example, an equality function may report floats as equal so long as
19//     they are within some tolerance of each other.
20//
21//   - Types with an Equal method may use that method to determine equality.
22//     This allows package authors to determine the equality operation
23//     for the types that they define.
24//
25//   - If no custom equality functions are used and no Equal method is defined,
26//     equality is determined by recursively comparing the primitive kinds on
27//     both values, much like reflect.DeepEqual. Unlike reflect.DeepEqual,
28//     unexported fields are not compared by default; they result in panics
29//     unless suppressed by using an Ignore option (see cmpopts.IgnoreUnexported)
30//     or explicitly compared using the Exporter option.
31package cmp
32
33import (
34	"fmt"
35	"reflect"
36	"strings"
37
38	"github.com/google/go-cmp/cmp/internal/diff"
39	"github.com/google/go-cmp/cmp/internal/function"
40	"github.com/google/go-cmp/cmp/internal/value"
41)
42
43// TODO(≥go1.18): Use any instead of interface{}.
44
45// Equal reports whether x and y are equal by recursively applying the
46// following rules in the given order to x and y and all of their sub-values:
47//
48//   - Let S be the set of all Ignore, Transformer, and Comparer options that
49//     remain after applying all path filters, value filters, and type filters.
50//     If at least one Ignore exists in S, then the comparison is ignored.
51//     If the number of Transformer and Comparer options in S is non-zero,
52//     then Equal panics because it is ambiguous which option to use.
53//     If S contains a single Transformer, then use that to transform
54//     the current values and recursively call Equal on the output values.
55//     If S contains a single Comparer, then use that to compare the current values.
56//     Otherwise, evaluation proceeds to the next rule.
57//
58//   - If the values have an Equal method of the form "(T) Equal(T) bool" or
59//     "(T) Equal(I) bool" where T is assignable to I, then use the result of
60//     x.Equal(y) even if x or y is nil. Otherwise, no such method exists and
61//     evaluation proceeds to the next rule.
62//
63//   - Lastly, try to compare x and y based on their basic kinds.
64//     Simple kinds like booleans, integers, floats, complex numbers, strings,
65//     and channels are compared using the equivalent of the == operator in Go.
66//     Functions are only equal if they are both nil, otherwise they are unequal.
67//
68// Structs are equal if recursively calling Equal on all fields report equal.
69// If a struct contains unexported fields, Equal panics unless an Ignore option
70// (e.g., cmpopts.IgnoreUnexported) ignores that field or the Exporter option
71// explicitly permits comparing the unexported field.
72//
73// Slices are equal if they are both nil or both non-nil, where recursively
74// calling Equal on all non-ignored slice or array elements report equal.
75// Empty non-nil slices and nil slices are not equal; to equate empty slices,
76// consider using cmpopts.EquateEmpty.
77//
78// Maps are equal if they are both nil or both non-nil, where recursively
79// calling Equal on all non-ignored map entries report equal.
80// Map keys are equal according to the == operator.
81// To use custom comparisons for map keys, consider using cmpopts.SortMaps.
82// Empty non-nil maps and nil maps are not equal; to equate empty maps,
83// consider using cmpopts.EquateEmpty.
84//
85// Pointers and interfaces are equal if they are both nil or both non-nil,
86// where they have the same underlying concrete type and recursively
87// calling Equal on the underlying values reports equal.
88//
89// Before recursing into a pointer, slice element, or map, the current path
90// is checked to detect whether the address has already been visited.
91// If there is a cycle, then the pointed at values are considered equal
92// only if both addresses were previously visited in the same path step.
93func Equal(x, y interface{}, opts ...Option) bool {
94	s := newState(opts)
95	s.compareAny(rootStep(x, y))
96	return s.result.Equal()
97}
98
99// Diff returns a human-readable report of the differences between two values:
100// y - x. It returns an empty string if and only if Equal returns true for the
101// same input values and options.
102//
103// The output is displayed as a literal in pseudo-Go syntax.
104// At the start of each line, a "-" prefix indicates an element removed from x,
105// a "+" prefix to indicates an element added from y, and the lack of a prefix
106// indicates an element common to both x and y. If possible, the output
107// uses fmt.Stringer.String or error.Error methods to produce more humanly
108// readable outputs. In such cases, the string is prefixed with either an
109// 's' or 'e' character, respectively, to indicate that the method was called.
110//
111// Do not depend on this output being stable. If you need the ability to
112// programmatically interpret the difference, consider using a custom Reporter.
113func Diff(x, y interface{}, opts ...Option) string {
114	s := newState(opts)
115
116	// Optimization: If there are no other reporters, we can optimize for the
117	// common case where the result is equal (and thus no reported difference).
118	// This avoids the expensive construction of a difference tree.
119	if len(s.reporters) == 0 {
120		s.compareAny(rootStep(x, y))
121		if s.result.Equal() {
122			return ""
123		}
124		s.result = diff.Result{} // Reset results
125	}
126
127	r := new(defaultReporter)
128	s.reporters = append(s.reporters, reporter{r})
129	s.compareAny(rootStep(x, y))
130	d := r.String()
131	if (d == "") != s.result.Equal() {
132		panic("inconsistent difference and equality results")
133	}
134	return d
135}
136
137// rootStep constructs the first path step. If x and y have differing types,
138// then they are stored within an empty interface type.
139func rootStep(x, y interface{}) PathStep {
140	vx := reflect.ValueOf(x)
141	vy := reflect.ValueOf(y)
142
143	// If the inputs are different types, auto-wrap them in an empty interface
144	// so that they have the same parent type.
145	var t reflect.Type
146	if !vx.IsValid() || !vy.IsValid() || vx.Type() != vy.Type() {
147		t = anyType
148		if vx.IsValid() {
149			vvx := reflect.New(t).Elem()
150			vvx.Set(vx)
151			vx = vvx
152		}
153		if vy.IsValid() {
154			vvy := reflect.New(t).Elem()
155			vvy.Set(vy)
156			vy = vvy
157		}
158	} else {
159		t = vx.Type()
160	}
161
162	return &pathStep{t, vx, vy}
163}
164
165type state struct {
166	// These fields represent the "comparison state".
167	// Calling statelessCompare must not result in observable changes to these.
168	result    diff.Result // The current result of comparison
169	curPath   Path        // The current path in the value tree
170	curPtrs   pointerPath // The current set of visited pointers
171	reporters []reporter  // Optional reporters
172
173	// recChecker checks for infinite cycles applying the same set of
174	// transformers upon the output of itself.
175	recChecker recChecker
176
177	// dynChecker triggers pseudo-random checks for option correctness.
178	// It is safe for statelessCompare to mutate this value.
179	dynChecker dynChecker
180
181	// These fields, once set by processOption, will not change.
182	exporters []exporter // List of exporters for structs with unexported fields
183	opts      Options    // List of all fundamental and filter options
184}
185
186func newState(opts []Option) *state {
187	// Always ensure a validator option exists to validate the inputs.
188	s := &state{opts: Options{validator{}}}
189	s.curPtrs.Init()
190	s.processOption(Options(opts))
191	return s
192}
193
194func (s *state) processOption(opt Option) {
195	switch opt := opt.(type) {
196	case nil:
197	case Options:
198		for _, o := range opt {
199			s.processOption(o)
200		}
201	case coreOption:
202		type filtered interface {
203			isFiltered() bool
204		}
205		if fopt, ok := opt.(filtered); ok && !fopt.isFiltered() {
206			panic(fmt.Sprintf("cannot use an unfiltered option: %v", opt))
207		}
208		s.opts = append(s.opts, opt)
209	case exporter:
210		s.exporters = append(s.exporters, opt)
211	case reporter:
212		s.reporters = append(s.reporters, opt)
213	default:
214		panic(fmt.Sprintf("unknown option %T", opt))
215	}
216}
217
218// statelessCompare compares two values and returns the result.
219// This function is stateless in that it does not alter the current result,
220// or output to any registered reporters.
221func (s *state) statelessCompare(step PathStep) diff.Result {
222	// We do not save and restore curPath and curPtrs because all of the
223	// compareX methods should properly push and pop from them.
224	// It is an implementation bug if the contents of the paths differ from
225	// when calling this function to when returning from it.
226
227	oldResult, oldReporters := s.result, s.reporters
228	s.result = diff.Result{} // Reset result
229	s.reporters = nil        // Remove reporters to avoid spurious printouts
230	s.compareAny(step)
231	res := s.result
232	s.result, s.reporters = oldResult, oldReporters
233	return res
234}
235
236func (s *state) compareAny(step PathStep) {
237	// Update the path stack.
238	s.curPath.push(step)
239	defer s.curPath.pop()
240	for _, r := range s.reporters {
241		r.PushStep(step)
242		defer r.PopStep()
243	}
244	s.recChecker.Check(s.curPath)
245
246	// Cycle-detection for slice elements (see NOTE in compareSlice).
247	t := step.Type()
248	vx, vy := step.Values()
249	if si, ok := step.(SliceIndex); ok && si.isSlice && vx.IsValid() && vy.IsValid() {
250		px, py := vx.Addr(), vy.Addr()
251		if eq, visited := s.curPtrs.Push(px, py); visited {
252			s.report(eq, reportByCycle)
253			return
254		}
255		defer s.curPtrs.Pop(px, py)
256	}
257
258	// Rule 1: Check whether an option applies on this node in the value tree.
259	if s.tryOptions(t, vx, vy) {
260		return
261	}
262
263	// Rule 2: Check whether the type has a valid Equal method.
264	if s.tryMethod(t, vx, vy) {
265		return
266	}
267
268	// Rule 3: Compare based on the underlying kind.
269	switch t.Kind() {
270	case reflect.Bool:
271		s.report(vx.Bool() == vy.Bool(), 0)
272	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
273		s.report(vx.Int() == vy.Int(), 0)
274	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
275		s.report(vx.Uint() == vy.Uint(), 0)
276	case reflect.Float32, reflect.Float64:
277		s.report(vx.Float() == vy.Float(), 0)
278	case reflect.Complex64, reflect.Complex128:
279		s.report(vx.Complex() == vy.Complex(), 0)
280	case reflect.String:
281		s.report(vx.String() == vy.String(), 0)
282	case reflect.Chan, reflect.UnsafePointer:
283		s.report(vx.Pointer() == vy.Pointer(), 0)
284	case reflect.Func:
285		s.report(vx.IsNil() && vy.IsNil(), 0)
286	case reflect.Struct:
287		s.compareStruct(t, vx, vy)
288	case reflect.Slice, reflect.Array:
289		s.compareSlice(t, vx, vy)
290	case reflect.Map:
291		s.compareMap(t, vx, vy)
292	case reflect.Ptr:
293		s.comparePtr(t, vx, vy)
294	case reflect.Interface:
295		s.compareInterface(t, vx, vy)
296	default:
297		panic(fmt.Sprintf("%v kind not handled", t.Kind()))
298	}
299}
300
301func (s *state) tryOptions(t reflect.Type, vx, vy reflect.Value) bool {
302	// Evaluate all filters and apply the remaining options.
303	if opt := s.opts.filter(s, t, vx, vy); opt != nil {
304		opt.apply(s, vx, vy)
305		return true
306	}
307	return false
308}
309
310func (s *state) tryMethod(t reflect.Type, vx, vy reflect.Value) bool {
311	// Check if this type even has an Equal method.
312	m, ok := t.MethodByName("Equal")
313	if !ok || !function.IsType(m.Type, function.EqualAssignable) {
314		return false
315	}
316
317	eq := s.callTTBFunc(m.Func, vx, vy)
318	s.report(eq, reportByMethod)
319	return true
320}
321
322func (s *state) callTRFunc(f, v reflect.Value, step Transform) reflect.Value {
323	if !s.dynChecker.Next() {
324		return f.Call([]reflect.Value{v})[0]
325	}
326
327	// Run the function twice and ensure that we get the same results back.
328	// We run in goroutines so that the race detector (if enabled) can detect
329	// unsafe mutations to the input.
330	c := make(chan reflect.Value)
331	go detectRaces(c, f, v)
332	got := <-c
333	want := f.Call([]reflect.Value{v})[0]
334	if step.vx, step.vy = got, want; !s.statelessCompare(step).Equal() {
335		// To avoid false-positives with non-reflexive equality operations,
336		// we sanity check whether a value is equal to itself.
337		if step.vx, step.vy = want, want; !s.statelessCompare(step).Equal() {
338			return want
339		}
340		panic(fmt.Sprintf("non-deterministic function detected: %s", function.NameOf(f)))
341	}
342	return want
343}
344
345func (s *state) callTTBFunc(f, x, y reflect.Value) bool {
346	if !s.dynChecker.Next() {
347		return f.Call([]reflect.Value{x, y})[0].Bool()
348	}
349
350	// Swapping the input arguments is sufficient to check that
351	// f is symmetric and deterministic.
352	// We run in goroutines so that the race detector (if enabled) can detect
353	// unsafe mutations to the input.
354	c := make(chan reflect.Value)
355	go detectRaces(c, f, y, x)
356	got := <-c
357	want := f.Call([]reflect.Value{x, y})[0].Bool()
358	if !got.IsValid() || got.Bool() != want {
359		panic(fmt.Sprintf("non-deterministic or non-symmetric function detected: %s", function.NameOf(f)))
360	}
361	return want
362}
363
364func detectRaces(c chan<- reflect.Value, f reflect.Value, vs ...reflect.Value) {
365	var ret reflect.Value
366	defer func() {
367		recover() // Ignore panics, let the other call to f panic instead
368		c <- ret
369	}()
370	ret = f.Call(vs)[0]
371}
372
373func (s *state) compareStruct(t reflect.Type, vx, vy reflect.Value) {
374	var addr bool
375	var vax, vay reflect.Value // Addressable versions of vx and vy
376
377	var mayForce, mayForceInit bool
378	step := StructField{&structField{}}
379	for i := 0; i < t.NumField(); i++ {
380		step.typ = t.Field(i).Type
381		step.vx = vx.Field(i)
382		step.vy = vy.Field(i)
383		step.name = t.Field(i).Name
384		step.idx = i
385		step.unexported = !isExported(step.name)
386		if step.unexported {
387			if step.name == "_" {
388				continue
389			}
390			// Defer checking of unexported fields until later to give an
391			// Ignore a chance to ignore the field.
392			if !vax.IsValid() || !vay.IsValid() {
393				// For retrieveUnexportedField to work, the parent struct must
394				// be addressable. Create a new copy of the values if
395				// necessary to make them addressable.
396				addr = vx.CanAddr() || vy.CanAddr()
397				vax = makeAddressable(vx)
398				vay = makeAddressable(vy)
399			}
400			if !mayForceInit {
401				for _, xf := range s.exporters {
402					mayForce = mayForce || xf(t)
403				}
404				mayForceInit = true
405			}
406			step.mayForce = mayForce
407			step.paddr = addr
408			step.pvx = vax
409			step.pvy = vay
410			step.field = t.Field(i)
411		}
412		s.compareAny(step)
413	}
414}
415
416func (s *state) compareSlice(t reflect.Type, vx, vy reflect.Value) {
417	isSlice := t.Kind() == reflect.Slice
418	if isSlice && (vx.IsNil() || vy.IsNil()) {
419		s.report(vx.IsNil() && vy.IsNil(), 0)
420		return
421	}
422
423	// NOTE: It is incorrect to call curPtrs.Push on the slice header pointer
424	// since slices represents a list of pointers, rather than a single pointer.
425	// The pointer checking logic must be handled on a per-element basis
426	// in compareAny.
427	//
428	// A slice header (see reflect.SliceHeader) in Go is a tuple of a starting
429	// pointer P, a length N, and a capacity C. Supposing each slice element has
430	// a memory size of M, then the slice is equivalent to the list of pointers:
431	//	[P+i*M for i in range(N)]
432	//
433	// For example, v[:0] and v[:1] are slices with the same starting pointer,
434	// but they are clearly different values. Using the slice pointer alone
435	// violates the assumption that equal pointers implies equal values.
436
437	step := SliceIndex{&sliceIndex{pathStep: pathStep{typ: t.Elem()}, isSlice: isSlice}}
438	withIndexes := func(ix, iy int) SliceIndex {
439		if ix >= 0 {
440			step.vx, step.xkey = vx.Index(ix), ix
441		} else {
442			step.vx, step.xkey = reflect.Value{}, -1
443		}
444		if iy >= 0 {
445			step.vy, step.ykey = vy.Index(iy), iy
446		} else {
447			step.vy, step.ykey = reflect.Value{}, -1
448		}
449		return step
450	}
451
452	// Ignore options are able to ignore missing elements in a slice.
453	// However, detecting these reliably requires an optimal differencing
454	// algorithm, for which diff.Difference is not.
455	//
456	// Instead, we first iterate through both slices to detect which elements
457	// would be ignored if standing alone. The index of non-discarded elements
458	// are stored in a separate slice, which diffing is then performed on.
459	var indexesX, indexesY []int
460	var ignoredX, ignoredY []bool
461	for ix := 0; ix < vx.Len(); ix++ {
462		ignored := s.statelessCompare(withIndexes(ix, -1)).NumDiff == 0
463		if !ignored {
464			indexesX = append(indexesX, ix)
465		}
466		ignoredX = append(ignoredX, ignored)
467	}
468	for iy := 0; iy < vy.Len(); iy++ {
469		ignored := s.statelessCompare(withIndexes(-1, iy)).NumDiff == 0
470		if !ignored {
471			indexesY = append(indexesY, iy)
472		}
473		ignoredY = append(ignoredY, ignored)
474	}
475
476	// Compute an edit-script for slices vx and vy (excluding ignored elements).
477	edits := diff.Difference(len(indexesX), len(indexesY), func(ix, iy int) diff.Result {
478		return s.statelessCompare(withIndexes(indexesX[ix], indexesY[iy]))
479	})
480
481	// Replay the ignore-scripts and the edit-script.
482	var ix, iy int
483	for ix < vx.Len() || iy < vy.Len() {
484		var e diff.EditType
485		switch {
486		case ix < len(ignoredX) && ignoredX[ix]:
487			e = diff.UniqueX
488		case iy < len(ignoredY) && ignoredY[iy]:
489			e = diff.UniqueY
490		default:
491			e, edits = edits[0], edits[1:]
492		}
493		switch e {
494		case diff.UniqueX:
495			s.compareAny(withIndexes(ix, -1))
496			ix++
497		case diff.UniqueY:
498			s.compareAny(withIndexes(-1, iy))
499			iy++
500		default:
501			s.compareAny(withIndexes(ix, iy))
502			ix++
503			iy++
504		}
505	}
506}
507
508func (s *state) compareMap(t reflect.Type, vx, vy reflect.Value) {
509	if vx.IsNil() || vy.IsNil() {
510		s.report(vx.IsNil() && vy.IsNil(), 0)
511		return
512	}
513
514	// Cycle-detection for maps.
515	if eq, visited := s.curPtrs.Push(vx, vy); visited {
516		s.report(eq, reportByCycle)
517		return
518	}
519	defer s.curPtrs.Pop(vx, vy)
520
521	// We combine and sort the two map keys so that we can perform the
522	// comparisons in a deterministic order.
523	step := MapIndex{&mapIndex{pathStep: pathStep{typ: t.Elem()}}}
524	for _, k := range value.SortKeys(append(vx.MapKeys(), vy.MapKeys()...)) {
525		step.vx = vx.MapIndex(k)
526		step.vy = vy.MapIndex(k)
527		step.key = k
528		if !step.vx.IsValid() && !step.vy.IsValid() {
529			// It is possible for both vx and vy to be invalid if the
530			// key contained a NaN value in it.
531			//
532			// Even with the ability to retrieve NaN keys in Go 1.12,
533			// there still isn't a sensible way to compare the values since
534			// a NaN key may map to multiple unordered values.
535			// The most reasonable way to compare NaNs would be to compare the
536			// set of values. However, this is impossible to do efficiently
537			// since set equality is provably an O(n^2) operation given only
538			// an Equal function. If we had a Less function or Hash function,
539			// this could be done in O(n*log(n)) or O(n), respectively.
540			//
541			// Rather than adding complex logic to deal with NaNs, make it
542			// the user's responsibility to compare such obscure maps.
543			const help = "consider providing a Comparer to compare the map"
544			panic(fmt.Sprintf("%#v has map key with NaNs\n%s", s.curPath, help))
545		}
546		s.compareAny(step)
547	}
548}
549
550func (s *state) comparePtr(t reflect.Type, vx, vy reflect.Value) {
551	if vx.IsNil() || vy.IsNil() {
552		s.report(vx.IsNil() && vy.IsNil(), 0)
553		return
554	}
555
556	// Cycle-detection for pointers.
557	if eq, visited := s.curPtrs.Push(vx, vy); visited {
558		s.report(eq, reportByCycle)
559		return
560	}
561	defer s.curPtrs.Pop(vx, vy)
562
563	vx, vy = vx.Elem(), vy.Elem()
564	s.compareAny(Indirect{&indirect{pathStep{t.Elem(), vx, vy}}})
565}
566
567func (s *state) compareInterface(t reflect.Type, vx, vy reflect.Value) {
568	if vx.IsNil() || vy.IsNil() {
569		s.report(vx.IsNil() && vy.IsNil(), 0)
570		return
571	}
572	vx, vy = vx.Elem(), vy.Elem()
573	if vx.Type() != vy.Type() {
574		s.report(false, 0)
575		return
576	}
577	s.compareAny(TypeAssertion{&typeAssertion{pathStep{vx.Type(), vx, vy}}})
578}
579
580func (s *state) report(eq bool, rf resultFlags) {
581	if rf&reportByIgnore == 0 {
582		if eq {
583			s.result.NumSame++
584			rf |= reportEqual
585		} else {
586			s.result.NumDiff++
587			rf |= reportUnequal
588		}
589	}
590	for _, r := range s.reporters {
591		r.Report(Result{flags: rf})
592	}
593}
594
595// recChecker tracks the state needed to periodically perform checks that
596// user provided transformers are not stuck in an infinitely recursive cycle.
597type recChecker struct{ next int }
598
599// Check scans the Path for any recursive transformers and panics when any
600// recursive transformers are detected. Note that the presence of a
601// recursive Transformer does not necessarily imply an infinite cycle.
602// As such, this check only activates after some minimal number of path steps.
603func (rc *recChecker) Check(p Path) {
604	const minLen = 1 << 16
605	if rc.next == 0 {
606		rc.next = minLen
607	}
608	if len(p) < rc.next {
609		return
610	}
611	rc.next <<= 1
612
613	// Check whether the same transformer has appeared at least twice.
614	var ss []string
615	m := map[Option]int{}
616	for _, ps := range p {
617		if t, ok := ps.(Transform); ok {
618			t := t.Option()
619			if m[t] == 1 { // Transformer was used exactly once before
620				tf := t.(*transformer).fnc.Type()
621				ss = append(ss, fmt.Sprintf("%v: %v => %v", t, tf.In(0), tf.Out(0)))
622			}
623			m[t]++
624		}
625	}
626	if len(ss) > 0 {
627		const warning = "recursive set of Transformers detected"
628		const help = "consider using cmpopts.AcyclicTransformer"
629		set := strings.Join(ss, "\n\t")
630		panic(fmt.Sprintf("%s:\n\t%s\n%s", warning, set, help))
631	}
632}
633
634// dynChecker tracks the state needed to periodically perform checks that
635// user provided functions are symmetric and deterministic.
636// The zero value is safe for immediate use.
637type dynChecker struct{ curr, next int }
638
639// Next increments the state and reports whether a check should be performed.
640//
641// Checks occur every Nth function call, where N is a triangular number:
642//
643//	0 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 ...
644//
645// See https://en.wikipedia.org/wiki/Triangular_number
646//
647// This sequence ensures that the cost of checks drops significantly as
648// the number of functions calls grows larger.
649func (dc *dynChecker) Next() bool {
650	ok := dc.curr == dc.next
651	if ok {
652		dc.curr = 0
653		dc.next++
654	}
655	dc.curr++
656	return ok
657}
658
659// makeAddressable returns a value that is always addressable.
660// It returns the input verbatim if it is already addressable,
661// otherwise it creates a new value and returns an addressable copy.
662func makeAddressable(v reflect.Value) reflect.Value {
663	if v.CanAddr() {
664		return v
665	}
666	vc := reflect.New(v.Type()).Elem()
667	vc.Set(v)
668	return vc
669}
670