xref: /aosp_15_r20/external/ComputeLibrary/src/core/NEON/kernels/NEChannelShuffleLayerKernel.cpp (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2018-2021 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "src/core/NEON/kernels/NEChannelShuffleLayerKernel.h"
25 
26 #include "arm_compute/core/Error.h"
27 #include "arm_compute/core/Helpers.h"
28 #include "arm_compute/core/ITensor.h"
29 #include "arm_compute/core/TensorInfo.h"
30 #include "arm_compute/core/Utils.h"
31 #include "arm_compute/core/Validate.h"
32 #include "arm_compute/core/Window.h"
33 #include "src/core/CPP/Validate.h"
34 #include "src/core/helpers/AutoConfiguration.h"
35 #include "src/core/helpers/WindowHelpers.h"
36 
37 namespace arm_compute
38 {
39 namespace
40 {
validate_arguments(const ITensorInfo * input,const ITensorInfo * output,unsigned int num_groups)41 Status validate_arguments(const ITensorInfo *input, const ITensorInfo *output, unsigned int num_groups)
42 {
43     // Note: ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input) is not needed here as this kernel doesn't use CPU FP16 instructions.
44     ARM_COMPUTE_RETURN_ERROR_ON(input->data_type() == DataType::UNKNOWN);
45     ARM_COMPUTE_RETURN_ERROR_ON_DATA_LAYOUT_NOT_IN(input, DataLayout::NCHW, DataLayout::NHWC);
46 
47     const unsigned int channels = input->dimension(get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::CHANNEL));
48 
49     ARM_COMPUTE_RETURN_ERROR_ON_MSG(num_groups < 2, "Channel shuffling with less than 2 groups would be inefficient");
50     ARM_COMPUTE_RETURN_ERROR_ON_MSG(num_groups == channels, "Channel shuffling with same number of groups as number of channels would be inefficient");
51     ARM_COMPUTE_RETURN_ERROR_ON(num_groups > channels); // There cannot be more groups than channels
52     ARM_COMPUTE_RETURN_ERROR_ON_MSG((channels % num_groups) != 0, "The number of channels must be a multiple of the number of groups");
53 
54     // Checks performed when output is configured
55     if(output->total_size() != 0)
56     {
57         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input, output);
58         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
59         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(input, output);
60     }
61 
62     return Status{};
63 }
channel_shuffle_nhwc(const ITensor * input,ITensor * output,unsigned int num_groups,const Window & window)64 void channel_shuffle_nhwc(const ITensor *input, ITensor *output, unsigned int num_groups, const Window &window)
65 {
66     const DataLayout   data_layout = input->info()->data_layout();
67     const unsigned int channel_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL);
68 
69     const size_t       element_size = input->info()->element_size();
70     const unsigned int K            = input->info()->dimension(channel_idx) / num_groups;
71     const double       rK           = 1.0 / K;
72 
73     Iterator in(input, window);
74 
75     execute_window_loop(window, [&](const Coordinates & id)
76     {
77         // Shuffle channel
78         const unsigned int curr_channel = id.x();
79         const unsigned int group_id     = curr_channel * rK;
80         const unsigned int r            = group_id * K;
81         const unsigned int channel_id   = curr_channel - r;
82 
83         // Calculate output coordinates
84         Coordinates out_coords = id;
85         out_coords.set(Window::DimX, channel_id * num_groups + group_id);
86         std::copy_n(in.ptr(), element_size, output->ptr_to_element(out_coords));
87     },
88     in);
89 }
channel_shuffle_nchw(const ITensor * input,ITensor * output,unsigned int num_groups,const Window & window)90 void channel_shuffle_nchw(const ITensor *input, ITensor *output, unsigned int num_groups, const Window &window)
91 {
92     Window win = window;
93     win.set(Window::DimX, Window::Dimension(0, 1, 1));
94     win.set(Window::DimY, Window::Dimension(0, 1, 1));
95 
96     const DataLayout   data_layout = input->info()->data_layout();
97     const unsigned int width_idx   = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
98     const unsigned int channel_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL);
99 
100     const unsigned int height          = input->info()->tensor_shape().y();
101     const size_t       input_stride_y  = input->info()->strides_in_bytes().y();
102     const size_t       output_stride_y = output->info()->strides_in_bytes().y();
103     const size_t       row_size        = input->info()->dimension(width_idx) * input->info()->element_size();
104 
105     const unsigned int K  = input->info()->dimension(channel_idx) / num_groups;
106     const double       rK = 1.0 / K;
107 
108     Iterator in(input, win);
109 
110     execute_window_loop(win, [&](const Coordinates & id)
111     {
112         // Shuffle channel
113         const unsigned int curr_channel = id.z();
114         const unsigned int group_id     = curr_channel * rK;
115         const unsigned int r            = group_id * K;
116         const unsigned int channel_id   = curr_channel - r;
117 
118         // Calculate output coordinates
119         Coordinates out_coords = id;
120         out_coords.set(Window::DimZ, channel_id * num_groups + group_id);
121         const uint8_t *input_ptr  = in.ptr();
122         uint8_t       *output_ptr = output->ptr_to_element(out_coords);
123 
124         // Copy plane
125         for(unsigned int y = 0; y < height; ++y)
126         {
127             std::copy_n(input_ptr, row_size, output_ptr);
128             input_ptr += input_stride_y;
129             output_ptr += output_stride_y;
130         }
131     },
132     in);
133 }
134 } // namespace
135 
NEChannelShuffleLayerKernel()136 NEChannelShuffleLayerKernel::NEChannelShuffleLayerKernel()
137     : _input(nullptr), _output(nullptr), _num_groups()
138 {
139 }
140 
configure(const ITensor * input,ITensor * output,unsigned int num_groups)141 void NEChannelShuffleLayerKernel::configure(const ITensor *input, ITensor *output, unsigned int num_groups)
142 {
143     ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
144 
145     // Output tensor auto initialization if not yet initialized
146     auto_init_if_empty(*output->info(), *input->info()->clone());
147 
148     _input      = input;
149     _output     = output;
150     _num_groups = num_groups;
151 
152     ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), output->info(), num_groups));
153 
154     // Configure kernel window
155     Window win = calculate_max_window(*input->info(), Steps());
156 
157     // The NEChannelShuffleLayerKernel doesn't need padding so update_window_and_padding() can be skipped
158     INEKernel::configure(win);
159 }
160 
validate(const ITensorInfo * input,const ITensorInfo * output,unsigned int num_groups)161 Status NEChannelShuffleLayerKernel::validate(const ITensorInfo *input, const ITensorInfo *output, unsigned int num_groups)
162 {
163     ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, output, num_groups));
164     return Status{};
165 }
166 
run(const Window & window,const ThreadInfo & info)167 void NEChannelShuffleLayerKernel::run(const Window &window, const ThreadInfo &info)
168 {
169     ARM_COMPUTE_UNUSED(info);
170     ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
171     ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(IKernel::window(), window);
172 
173     switch(_input->info()->data_layout())
174     {
175         case DataLayout::NHWC:
176             channel_shuffle_nhwc(_input, _output, _num_groups, window);
177             break;
178         case DataLayout::NCHW:
179             channel_shuffle_nchw(_input, _output, _num_groups, window);
180             break;
181         default:
182             ARM_COMPUTE_ERROR("Unsupported data layout!");
183             break;
184     }
185 }
186 } // namespace arm_compute
187