xref: /aosp_15_r20/external/ComputeLibrary/src/cpu/kernels/fuse_batch_normalization/generic/impl.cpp (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2018-2022 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "src/cpu/kernels/fuse_batch_normalization/generic/impl.h"
25 
26 namespace arm_compute
27 {
28 namespace cpu
29 {
30 template <typename T>
fused_batch_normalization_conv(const ITensor * conv_weights,const ITensor * conv_bias,ITensor * fused_weights,ITensor * fused_bias,const ITensor * bn_mean,const ITensor * bn_var,const ITensor * bn_beta,const ITensor * bn_gamma,float epsilon,const Window & window)31 void fused_batch_normalization_conv(const ITensor *conv_weights, const ITensor *conv_bias, ITensor *fused_weights, ITensor *fused_bias,
32                                     const ITensor *bn_mean, const ITensor *bn_var, const ITensor *bn_beta, const ITensor *bn_gamma, float epsilon, const Window &window)
33 {
34     using ScalarType   = T;
35     const int size     = 16 / conv_weights->info()->element_size();
36     using ExactTagType = typename wrapper::traits::neon_bitvector_tag_t<T, wrapper::traits::BitWidth::W128>;
37 
38     const bool run_in_place_weights = (fused_weights == nullptr) || (fused_weights == conv_weights);
39     const bool run_in_place_bias    = (fused_bias == nullptr) || (conv_bias != nullptr && fused_bias == conv_bias);
40 
41     // Set build options
42     Window win = window;
43     win.set(Window::DimX, Window::Dimension(0, 1, 1));
44 
45     const int  window_step_x  = size;
46     const auto window_start_x = static_cast<int>(window.x().start());
47     const auto window_end_x   = static_cast<int>(window.x().end());
48 
49     Iterator conv_w_in(conv_weights, win);
50     Iterator conv_w_out(run_in_place_weights ? conv_weights : fused_weights, win);
51 
52     const auto conv_bias_in  = (conv_bias != nullptr ? reinterpret_cast<ScalarType *>(conv_bias->ptr_to_element(Coordinates(0, 0))) : nullptr);
53     auto       conv_bias_out = (run_in_place_bias ? conv_bias_in : reinterpret_cast<ScalarType *>(fused_bias->ptr_to_element(Coordinates(0, 0))));
54 
55     const auto input_mean  = reinterpret_cast<const ScalarType *>(bn_mean->ptr_to_element(Coordinates(0, 0)));
56     const auto input_var   = reinterpret_cast<const ScalarType *>(bn_var->ptr_to_element(Coordinates(0, 0)));
57     const auto input_gamma = (bn_gamma != nullptr) ? reinterpret_cast<const ScalarType *>(bn_gamma->ptr_to_element(Coordinates(0, 0))) : nullptr;
58     const auto input_beta  = (bn_beta != nullptr) ? reinterpret_cast<const ScalarType *>(bn_beta->ptr_to_element(Coordinates(0, 0))) : nullptr;
59 
60     auto       mean_vec    = wrapper::vdup_n(ScalarType(0), ExactTagType{});
61     auto       var_vec     = wrapper::vdup_n(ScalarType(0), ExactTagType{});
62     auto       gamma_vec   = wrapper::vdup_n(ScalarType(1), ExactTagType{});
63     auto       beta_vec    = wrapper::vdup_n(ScalarType(0), ExactTagType{});
64     auto       rvar_vec    = wrapper::vdup_n(ScalarType(0), ExactTagType{});
65     const auto epsilon_vec = wrapper::vdup_n(ScalarType(epsilon), ExactTagType{});
66 
67     auto mean                = ScalarType(0.0);
68     auto var                 = ScalarType(0.0);
69     auto gamma               = ScalarType(1.0);
70     auto beta                = ScalarType(0.0);
71     auto conv_bias_in_scalar = ScalarType(0.0);
72     execute_window_loop(win, [&](const Coordinates & id)
73     {
74         var = input_var[id[3]];
75         if(input_gamma != nullptr)
76         {
77             gamma = input_gamma[id[3]];
78         }
79 
80         if((id[0] == 0) && (id[1] == 0) && (id[2] == 0))
81         {
82             if(input_beta != nullptr)
83             {
84                 beta     = input_beta[id[3]];
85                 beta_vec = wrapper::vdup_n(beta, ExactTagType{});
86             }
87 
88             // Construct vectors
89             mean     = input_mean[id[3]];
90             mean_vec = wrapper::vdup_n(mean, ExactTagType{});
91 
92             if(conv_bias_in != nullptr)
93             {
94                 conv_bias_in_scalar = conv_bias_in[id[3]];
95             }
96             auto conv_bias_tmp_scalar = (conv_bias_in_scalar - mean) / std::sqrt(var + ScalarType(epsilon));
97             conv_bias_out[id[3]]      = (conv_bias_tmp_scalar * gamma) + beta;
98         }
99 
100         int  x              = window_start_x;
101         auto conv_w_in_ptr  = reinterpret_cast<const ScalarType *>(conv_w_in.ptr());
102         auto conv_w_out_ptr = reinterpret_cast<ScalarType *>(conv_w_out.ptr());
103         var_vec             = wrapper::vdup_n(var, ExactTagType{});
104         gamma_vec           = wrapper::vdup_n(gamma, ExactTagType{});
105         rvar_vec            = wrapper::vinvsqrt(wrapper::vadd(var_vec, epsilon_vec));
106 
107         for(; x <= (window_end_x - window_step_x); x += window_step_x)
108         {
109             auto wn = wrapper::vloadq(conv_w_in_ptr + x);
110             wn      = wrapper::vmul(wn, rvar_vec);
111             wn      = wrapper::vmul(wn, gamma_vec);
112 
113             // Store results
114             wrapper::vstore(conv_w_out_ptr + x, wn);
115         }
116 
117         // Compute left-over elements
118         for(; x < window_end_x; ++x)
119         {
120             *(conv_w_out_ptr + x) = *(conv_w_in_ptr + x) / std::sqrt(var + ScalarType(epsilon)) * gamma;
121         }
122     },
123     conv_w_in, conv_w_out);
124 }
125 
126 template void fused_batch_normalization_conv<float32_t>(const ITensor *conv_weights, const ITensor *conv_bias, ITensor *fused_weights, ITensor *fused_bias,
127                                                         const ITensor *bn_mean, const ITensor *bn_var, const ITensor *bn_beta, const ITensor *bn_gamma, float epsilon, const Window &window);
128 
129 #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && defined(ENABLE_FP16_KERNELS)
130 template void fused_batch_normalization_conv<float16_t>(const ITensor *conv_weights, const ITensor *conv_bias, ITensor *fused_weights, ITensor *fused_bias,
131                                                         const ITensor *bn_mean, const ITensor *bn_var, const ITensor *bn_beta, const ITensor *bn_gamma, float epsilon, const Window &window);
132 #endif /* defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && defined(ENABLE_FP16_KERNELS) */
133 
134 } // namespace cpu
135 } // namespace arm_compute
136