1 #ifndef _DEUNIQUEPTR_HPP
2 #define _DEUNIQUEPTR_HPP
3 /*-------------------------------------------------------------------------
4 * drawElements C++ Base Library
5 * -----------------------------
6 *
7 * Copyright 2014 The Android Open Source Project
8 *
9 * Licensed under the Apache License, Version 2.0 (the "License");
10 * you may not use this file except in compliance with the License.
11 * You may obtain a copy of the License at
12 *
13 * http://www.apache.org/licenses/LICENSE-2.0
14 *
15 * Unless required by applicable law or agreed to in writing, software
16 * distributed under the License is distributed on an "AS IS" BASIS,
17 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18 * See the License for the specific language governing permissions and
19 * limitations under the License.
20 *
21 *//*!
22 * \file
23 * \brief Unique pointer.
24 *//*--------------------------------------------------------------------*/
25
26 #include "deDefs.hpp"
27
28 namespace de
29 {
30
31 //! Unique pointer self-test.
32 void UniquePtr_selfTest(void);
33
34 // Hide implementation-private types in a details namespace.
35 namespace details
36 {
37
38 //! Auxiliary struct used to pass references between unique pointers. To
39 //! ensure that managed pointers are deleted exactly once, this type should
40 //! not appear in user code.
41 template <typename T, class D>
42 struct PtrData
43 {
PtrDatade::details::PtrData44 PtrData(T *p, D d) : ptr(p), deleter(d)
45 {
46 }
47
48 template <typename T2, class D2>
PtrDatade::details::PtrData49 PtrData(const PtrData<T2, D2> &d) : ptr(d.ptr)
50 , deleter(d.deleter)
51 {
52 }
53
54 T *ptr;
55 D deleter;
56 };
57
58 template <typename T, class D>
59 class UniqueBase
60 {
61 public:
62 typedef T element_type;
63 typedef D deleter_type;
64
get(void) const65 T *get(void) const throw()
66 {
67 return m_data.ptr;
68 } //!< Get stored pointer.
getDeleter(void) const69 D getDeleter(void) const throw()
70 {
71 return m_data.deleter;
72 }
operator ->(void) const73 T *operator->(void) const throw()
74 {
75 return get();
76 } //!< Get stored pointer.
operator *(void) const77 T &operator*(void) const throw()
78 {
79 return *get();
80 } //!< De-reference stored pointer.
operator bool(void) const81 operator bool(void) const throw()
82 {
83 return !!get();
84 }
85
86 protected:
UniqueBase(T * ptr,D deleter)87 UniqueBase(T *ptr, D deleter) : m_data(ptr, deleter)
88 {
89 }
UniqueBase(PtrData<T,D> data)90 UniqueBase(PtrData<T, D> data) : m_data(data)
91 {
92 }
93 ~UniqueBase(void);
94
95 void reset(void); //!< Delete previous pointer, set to null.
96 PtrData<T, D> releaseData(void) throw(); //!< Relinquish ownership, return pointer data.
97 void assignData(PtrData<T, D> data); //!< Set new pointer, delete previous pointer.
98
99 private:
100 PtrData<T, D> m_data;
101 };
102
103 template <typename T, class D>
~UniqueBase(void)104 UniqueBase<T, D>::~UniqueBase(void)
105 {
106 reset();
107 }
108
109 template <typename T, class D>
reset(void)110 void UniqueBase<T, D>::reset(void)
111 {
112 if (m_data.ptr != DE_NULL)
113 {
114 m_data.deleter(m_data.ptr);
115 m_data.ptr = DE_NULL;
116 }
117 }
118
119 template <typename T, class D>
releaseData(void)120 PtrData<T, D> UniqueBase<T, D>::releaseData(void) throw()
121 {
122 PtrData<T, D> data = m_data;
123 m_data.ptr = DE_NULL;
124 return data;
125 }
126
127 template <typename T, class D>
assignData(PtrData<T,D> data)128 void UniqueBase<T, D>::assignData(PtrData<T, D> data)
129 {
130 if (data.ptr != m_data.ptr)
131 {
132 reset();
133 m_data = data;
134 }
135 }
136
137 /*--------------------------------------------------------------------*//*!
138 * \brief Movable unique pointer
139 *
140 * A MovePtr is smart pointer that retains sole ownership of a pointer and
141 * destroys it when it is destroyed (for example when it goes out of scope).
142 *
143 * A MovePtr can be copied and assigned to. The pointer ownership is moved to
144 * the newly constructer or assigned-to MovePtr. Upon assignment to a
145 * MovePtr, the previously managed pointer is deleted.
146 *
147 *//*--------------------------------------------------------------------*/
148 template <typename T, class Deleter = DefaultDeleter<T>>
149 class MovePtr : public UniqueBase<T, Deleter>
150 {
151 public:
MovePtr(void)152 MovePtr(void) : UniqueBase<T, Deleter>(DE_NULL, Deleter())
153 {
154 }
MovePtr(T * ptr,Deleter deleter=Deleter ())155 explicit MovePtr(T *ptr, Deleter deleter = Deleter()) : UniqueBase<T, Deleter>(ptr, deleter)
156 {
157 }
MovePtr(MovePtr<T,Deleter> & other)158 MovePtr(MovePtr<T, Deleter> &other) : UniqueBase<T, Deleter>(other.releaseData())
159 {
160 }
161
162 MovePtr &operator=(MovePtr<T, Deleter> &other);
163 T *release(void) throw();
clear(void)164 void clear(void)
165 {
166 this->reset();
167 }
168
169 // These implicit by-value conversions to and from a PtrData are used to
170 // allow copying a MovePtr by value when returning from a function. To
171 // ensure that the managed pointer gets deleted exactly once, the PtrData
172 // should only exist as a temporary conversion step between two MovePtrs.
MovePtr(PtrData<T,Deleter> data)173 MovePtr(PtrData<T, Deleter> data) : UniqueBase<T, Deleter>(data)
174 {
175 }
176 MovePtr &operator=(PtrData<T, Deleter> data);
177
178 template <typename U, class Del2>
operator PtrData<U,Del2>(void)179 operator PtrData<U, Del2>(void)
180 {
181 return this->releaseData();
182 }
183 };
184
185 template <typename T, class D>
operator =(PtrData<T,D> data)186 MovePtr<T, D> &MovePtr<T, D>::operator=(PtrData<T, D> data)
187 {
188 this->assignData(data);
189 return *this;
190 }
191
192 template <typename T, class D>
operator =(MovePtr<T,D> & other)193 MovePtr<T, D> &MovePtr<T, D>::operator=(MovePtr<T, D> &other)
194 {
195 return (*this = other.releaseData());
196 }
197
198 //! Steal the managed pointer. The caller is responsible for explicitly
199 //! deleting the returned pointer.
200 template <typename T, class D>
release(void)201 inline T *MovePtr<T, D>::release(void) throw()
202 {
203 return this->releaseData().ptr;
204 }
205
206 //! Construct a MovePtr from a pointer.
207 template <typename T>
movePtr(T * ptr)208 inline MovePtr<T> movePtr(T *ptr)
209 {
210 return MovePtr<T>(ptr);
211 }
212
213 //! Allocate and construct an object and return its address as a MovePtr.
214 template <typename T>
newMovePtr(void)215 inline MovePtr<T> newMovePtr(void)
216 {
217 return MovePtr<T>(new T());
218 }
219 template <typename T, typename P0>
newMovePtr(P0 p0)220 inline MovePtr<T> newMovePtr(P0 p0)
221 {
222 return MovePtr<T>(new T(p0));
223 }
224 template <typename T, typename P0, typename P1>
newMovePtr(P0 p0,P1 p1)225 inline MovePtr<T> newMovePtr(P0 p0, P1 p1)
226 {
227 return MovePtr<T>(new T(p0, p1));
228 }
229 template <typename T, typename P0, typename P1, typename P2>
newMovePtr(P0 p0,P1 p1,P2 p2)230 inline MovePtr<T> newMovePtr(P0 p0, P1 p1, P2 p2)
231 {
232 return MovePtr<T>(new T(p0, p1, p2));
233 }
234
235 /*--------------------------------------------------------------------*//*!
236 * \brief Unique pointer
237 *
238 * UniquePtr is smart pointer that retains sole ownership of a pointer
239 * and destroys it when UniquePtr is destroyed (for example when UniquePtr
240 * goes out of scope).
241 *
242 * UniquePtr is not copyable or assignable. Pointer ownership can be transferred
243 * from a UniquePtr only explicitly with the move() member function.
244 *
245 * A UniquePtr can be constructed from a MovePtr. In this case it assumes
246 * ownership of the pointer from the MovePtr. Because a UniquePtr cannot be
247 * copied, direct initialization syntax must be used, i.e.:
248 *
249 * MovePtr<Foo> createFoo (void);
250 * UniquePtr<Foo> fooPtr(createFoo()); // NOT fooPtr = createFoo();
251 *
252 *//*--------------------------------------------------------------------*/
253 template <typename T, class Deleter = DefaultDeleter<T>>
254 class UniquePtr : public UniqueBase<T, Deleter>
255 {
256 public:
257 explicit UniquePtr(T *ptr, Deleter deleter = Deleter());
258 UniquePtr(PtrData<T, Deleter> data);
259 MovePtr<T, Deleter> move(void);
260
261 private:
262 UniquePtr(const UniquePtr<T> &other); // Not allowed!
263 UniquePtr operator=(const UniquePtr<T> &other); // Not allowed!
264 };
265
266 /*--------------------------------------------------------------------*//*!
267 * \brief Construct unique pointer.
268 * \param ptr Pointer to be managed.
269 *
270 * Pointer ownership is transferred to the UniquePtr.
271 *//*--------------------------------------------------------------------*/
272 template <typename T, class Deleter>
UniquePtr(T * ptr,Deleter deleter)273 inline UniquePtr<T, Deleter>::UniquePtr(T *ptr, Deleter deleter) : UniqueBase<T, Deleter>(ptr, deleter)
274 {
275 }
276
277 template <typename T, class Deleter>
UniquePtr(PtrData<T,Deleter> data)278 inline UniquePtr<T, Deleter>::UniquePtr(PtrData<T, Deleter> data) : UniqueBase<T, Deleter>(data)
279 {
280 }
281
282 /*--------------------------------------------------------------------*//*!
283 * \brief Relinquish ownership of pointer.
284 *
285 * This method returns a MovePtr that now owns the pointer. The pointer in
286 * the UniquePtr is set to null.
287 *//*--------------------------------------------------------------------*/
288 template <typename T, class Deleter>
move(void)289 inline MovePtr<T, Deleter> UniquePtr<T, Deleter>::move(void)
290 {
291 return MovePtr<T, Deleter>(this->releaseData());
292 }
293
294 } // namespace details
295
296 using details::MovePtr;
297 using details::newMovePtr;
298 using details::UniquePtr;
299
300 } // namespace de
301
302 #endif // _DEUNIQUEPTR_HPP
303