xref: /aosp_15_r20/external/ComputeLibrary/src/core/NEON/kernels/arm_conv/depthwise/depthwise_depthfirst.hpp (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2021-2022 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 
25 #pragma once
26 
27 #include "src/core/NEON/kernels/arm_conv/addressing.hpp"
28 #include "depthwise_strategies_common.hpp"
29 #include "working_space.hpp"
30 
31 #ifdef CYCLE_PROFILING
32 #include "profiler.hpp"
33 #endif
34 
35 #include <limits>
36 
37 namespace arm_conv {
38 namespace depthwise {
39 
40 template <typename TInput, typename TWeight, typename TOutput, typename TAccum,
41           typename OutputStage>
42 class DepthwiseDepthfirstStrategyCommon
43   : public DepthfirstStrategy<TInput, TWeight, TOutput, TAccum, OutputStage>
44 {
45   protected:
46   unsigned int m_output_rows, m_output_cols;
47   unsigned int m_kernel_rows, m_kernel_cols;
48   unsigned int m_stride_rows, m_stride_cols;
49 
50   public:
DepthwiseDepthfirstStrategyCommon(unsigned int output_rows,unsigned int output_cols,unsigned int kernel_rows,unsigned int kernel_cols,unsigned int stride_rows=1,unsigned int stride_cols=1)51   DepthwiseDepthfirstStrategyCommon(
52     unsigned int output_rows, unsigned int output_cols,
53     unsigned int kernel_rows, unsigned int kernel_cols,
54     unsigned int stride_rows=1, unsigned int stride_cols=1
55   ) : m_output_rows(output_rows), m_output_cols(output_cols),
56       m_kernel_rows(kernel_rows), m_kernel_cols(kernel_cols),
57       m_stride_rows(stride_rows), m_stride_cols(stride_cols)
58   {
59   }
60 
DepthwiseDepthfirstStrategyCommon(unsigned int output_size,unsigned int kernel_size,unsigned int stride=1)61   DepthwiseDepthfirstStrategyCommon(unsigned int output_size, unsigned int kernel_size, unsigned int stride=1)
62   : DepthwiseDepthfirstStrategyCommon(output_size, output_size, kernel_size, kernel_size, stride, stride)
63   {
64   }
65 
~DepthwiseDepthfirstStrategyCommon()66   virtual ~DepthwiseDepthfirstStrategyCommon() {}
67 
get_output_rows() const68   unsigned int get_output_rows() const override { return m_output_rows; }
get_output_cols() const69   unsigned int get_output_cols() const override { return m_output_cols; }
70 
get_kernel_rows() const71   unsigned int get_kernel_rows() const override { return m_kernel_rows; }
get_kernel_cols() const72   unsigned int get_kernel_cols() const override { return m_kernel_cols; }
73 
get_stride_rows() const74   unsigned int get_stride_rows() const override { return m_stride_rows; }
get_stride_cols() const75   unsigned int get_stride_cols() const override { return m_stride_cols; }
76 };
77 
78 template <typename TInput, typename TWeight, typename TOutput, typename TAccum, typename OutputStage=typename DefaultOutputStage<TOutput>::Type>
79 class DepthwiseDepthfirstStrategy : public DepthwiseDepthfirstStrategyCommon<TInput, TWeight, TOutput, TAccum, OutputStage>
80 {
81   using Parent = DepthwiseDepthfirstStrategyCommon<TInput, TWeight, TOutput, TAccum, OutputStage>;
82 
83   public:
84   using Parent::Parent;
85 
86   typedef void (*IndirectKernelType)(
87     const TInput *const *input_ptrs,
88     TOutput *const *output_ptrs,
89     const void *params,
90     unsigned int n_channels,
91     const TAccum activation_min,
92     const TAccum activation_max
93   );
94   virtual IndirectKernelType get_indirect_kernel(void) const = 0;
95 
96   typedef void (*DirectKernelType)(
97     const unsigned int n_tile_rows, const unsigned int n_tile_cols,
98     const TInput *inptr_base, int64_t ld_input_row, int64_t ld_input_col,
99     TOutput *outptr_base, int64_t ld_output_row, int64_t ld_output_col,
100     const void *params, unsigned int n_channels,
101     const TAccum activation_min,
102     const TAccum activation_max
103   );
104   virtual DirectKernelType get_direct_kernel(void) const = 0;
105 };
106 
107 template <typename TInput, typename TWeight, typename TOutput>
108 class DepthwiseDepthfirstStrategy<TInput, TWeight, TOutput, int32_t>
109 : public DepthwiseDepthfirstStrategyCommon<TInput, TWeight, TOutput, int32_t, arm_gemm::Requantize32>
110 {
111   using Parent = DepthwiseDepthfirstStrategyCommon<TInput, TWeight, TOutput, int32_t, arm_gemm::Requantize32>;
112 
113   protected:
get_packing_args(void) const114   interleaves::PackingArguments get_packing_args(void) const
115   {
116     return interleaves::PackingArguments(
117       this->get_kernel_rows(), this->get_kernel_cols(), sizeof(TWeight),
118       false, sizeof(int32_t),  // Don't pack the bias
119       this->get_vl_type(), sizeof(int32_t), this->get_accumulator_depth_vl(),
120       [this] (unsigned int idx, unsigned int &x, unsigned int &y) -> bool
121       { return this->get_kernel_packing_point(idx, x, y); }
122     );
123   }
124 
125   public:
126   using Parent::Parent;
127 
128   typedef void (*KernelType)(
129     unsigned int,  //  n_channels,
130     const TInput *const *,  // inptrs
131     const TWeight *,  // weights
132     const int32_t *,  //  bias,
133     const arm_gemm::Requantize32 &,
134     const int32_t *, const int32_t *,  //  requant_muls and requant_shifts
135     TOutput *const *  // outptrs
136   );
137   virtual KernelType get_kernel() const = 0;
138 
get_storage_size(const DepthwiseArgs & args) const139   size_t get_storage_size(const DepthwiseArgs &args) const override
140   {
141     return interleaves::get_storage_size_generic(get_packing_args(), args);
142   }
143 
pack_parameters(const DepthwiseArgs & args,void * buffer,const void * biases,const arm_gemm::Requantize32 &,const void * weights,size_t ld_weight_col,size_t ld_weight_row) const144   void pack_parameters(
145     const DepthwiseArgs &args, void *buffer,
146     const void *biases, const arm_gemm::Requantize32 &,
147     const void *weights, size_t ld_weight_col, size_t ld_weight_row
148   ) const override
149   {
150     interleaves::pack_parameters_generic(
151       get_packing_args(), args, buffer, biases, weights, ld_weight_col, ld_weight_row);
152   }
153 };
154 
155 template <typename TInput, typename TWeight, typename TOutput, typename TAccum, typename OutputStage>
156 class DepthwiseDepthfirstCommon : public DepthfirstDriver<TInput, TWeight, TOutput>
157 {
158   using StratType = DepthwiseDepthfirstStrategyCommon<TInput, TWeight, TOutput, TAccum, OutputStage>;
159   OutputStage m_os;
160 
161   protected:
get_output_stage(void)162   inline OutputStage &get_output_stage(void) { return m_os; }
get_output_stage(void) const163   inline const OutputStage &get_output_stage(void) const { return m_os; }
164 
165   public:
DepthwiseDepthfirstCommon(StratType * const strat,const DepthwiseArgs & args,const OutputStage & os)166   DepthwiseDepthfirstCommon(StratType *const strat, const DepthwiseArgs &args, const OutputStage &os)
167   : DepthfirstDriver<TInput, TWeight, TOutput>(strat, args), m_os(os)
168   {
169   }
170 
171   DepthwiseDepthfirstCommon(DepthwiseDepthfirstCommon &) = delete;
172   DepthwiseDepthfirstCommon &operator=(DepthwiseDepthfirstCommon &) = delete;
173 
get_storage_size(void) const174   size_t get_storage_size(void) const override
175   {
176     return reinterpret_cast<const StratType *>(this->m_strat.get())->
177       get_storage_size(this->m_args);
178   }
179 
pack_parameters(void * buffer,const void * biases,const void * weights,size_t ld_weight_col,size_t ld_weight_row)180   void pack_parameters(void *buffer, const void *biases, const void *weights, size_t ld_weight_col, size_t ld_weight_row) override
181   {
182     reinterpret_cast<const StratType *>(this->m_strat.get())->
183       pack_parameters(this->m_args, buffer, biases, m_os, weights, ld_weight_col, ld_weight_row);
184   }
185 };
186 
187 namespace depthwise_depthfirst {
188 
189 /* Workspace Element for an array of input pointers as consumed by the
190  * specialised depthwise kernels.
191  */
192 template <typename T>
193 class InputArrayElement
194 {
195   public:
196   struct Workspace
197   {
198     const T **inptr_array;
199   };
200 
201   template <class OutputStage>
get_element_size(const WorkspaceArgs<IDepthfirstStrategy,OutputStage> & args)202   static size_t get_element_size(const WorkspaceArgs<IDepthfirstStrategy, OutputStage> &args)
203   {
204     return sizeof(T **) * args.strategy->get_input_rows() * args.strategy->get_input_cols();
205   }
206 
207   template <class WorkspaceType, class OutputStage>
initialise(WorkspaceType * ws,void * buffer,const WorkspaceArgs<IDepthfirstStrategy,OutputStage> & args)208   static void *initialise(WorkspaceType *ws, void *buffer, const WorkspaceArgs<IDepthfirstStrategy, OutputStage> &args)
209   {
210     ws->inptr_array = reinterpret_cast<const T**>(buffer);
211     return reinterpret_cast<char *>(buffer) + get_element_size(args);
212   }
213 };
214 
215 template <typename TAccum, typename OutputStage, bool IsDot=false>
216 struct WorkspaceFinalElement
217 {
218   using Element = ActivationsElement<TAccum, OutputStage>;
219 };
220 
221 template <>
222 struct WorkspaceFinalElement<int32_t, arm_gemm::Requantize32, false>
223 {
224   using Element = RequantizationParametersElement;
225 };
226 
227 template <typename TInput, typename TWeight, typename TOutput, typename TAccum, typename OutputStage>
228 struct Invoke
229 {
230   constexpr static bool supports_direct_kernel = true;
231 
232   template <typename Strat, typename Workspace>
indirectarm_conv::depthwise::depthwise_depthfirst::Invoke233   static inline void indirect(const Strat *strat, const Workspace *ws, const OutputStage &, const void *params, const TAccum *, unsigned int n_channels)
234   {
235     strat->get_indirect_kernel()(
236       ws->inptr_array,
237       ws->outptr_array,
238       params, n_channels,
239       ws->activation_min, ws->activation_max
240     );
241   }
242 
243   template <typename Strat, typename Workspace>
directarm_conv::depthwise::depthwise_depthfirst::Invoke244   static void direct(
245     const Strat *strat, const Workspace *ws, const OutputStage &,
246     unsigned int n_tile_rows, unsigned int n_tile_cols,
247     const TInput *inptr, size_t ld_in_row, size_t ld_in_col,
248     TOutput *outptr, size_t ld_out_row, size_t ld_out_col,
249     const void *params, unsigned int n_channels
250   )
251   {
252     strat->get_direct_kernel()(
253       n_tile_rows, n_tile_cols,
254       inptr, ld_in_row, ld_in_col,
255       outptr, ld_out_row, ld_out_col,
256       params, n_channels, ws->activation_min, ws->activation_max
257     );
258   }
259 };
260 
261 template <typename TInput, typename TWeight, typename TOutput, typename TAccum>
262 struct Invoke<TInput, TWeight, TOutput, TAccum, arm_gemm::Requantize32>
263 {
264   constexpr static bool supports_direct_kernel = false;
265 
266   template <typename Strat, typename Workspace>
indirectarm_conv::depthwise::depthwise_depthfirst::Invoke267   static inline void indirect(const Strat *strat, const Workspace *ws, const arm_gemm::Requantize32 &qp, const void *params, const TAccum *, unsigned int n_channels)
268   {
269     strat->get_kernel()(
270       n_channels, ws->inptr_array,
271       reinterpret_cast<const TWeight *>(params), ws->bias,
272       qp, ws->requant_muls, ws->requant_shifts,
273       ws->outptr_array
274     );
275   }
276 
277   template <typename Strat, typename Workspace>
directarm_conv::depthwise::depthwise_depthfirst::Invoke278   static inline void direct(
279     const Strat *, const Workspace *, const arm_gemm::Requantize32 &,
280     unsigned int, unsigned int,  // n_tile_rows, n_tile_cols
281     const TInput *, size_t, size_t,  // Input pointer, row stride, column stride
282     TOutput *, size_t, size_t,  // Output pointer, row stride, column stride
283     const void *, unsigned int  // Parameters, number of channels
284   )
285   {
286     // Do nothing - this should never be reached because entry to it is guarded
287     // by an `if` on a `constexpr static bool`.
288   }
289 };
290 
291 namespace
292 {
293 
294 template <typename OutputStage>
stash_bias(OutputStage &,const void *)295 inline void stash_bias(OutputStage &, const void *) {}
296 
297 template <>
298 inline void stash_bias(arm_gemm::Requantize32 &qp, const void *bias) __attribute__ ((unused));
299 
300 template <>
stash_bias(arm_gemm::Requantize32 & qp,const void * bias)301 inline void stash_bias(arm_gemm::Requantize32 &qp, const void *bias)
302 {
303   qp.bias = reinterpret_cast<const int32_t *>(bias);
304 }
305 
306 }
307 
308 }  // namespace depthwise_depthfirst
309 
310 template <typename TInput,
311           typename TWeight=TInput,
312           typename TOutput=TInput,
313           typename TAccum=typename DefaultTAccum<TInput>::Type,
314           typename OutputStage=typename DefaultOutputStage<TOutput>::Type>
315 class DepthwiseDepthfirst
316 : public DepthwiseDepthfirstCommon<TInput, TWeight, TOutput, TAccum, OutputStage>
317 {
318   using StratType = DepthwiseDepthfirstStrategy<TInput, TWeight, TOutput, TAccum>;
319   using Parent = DepthwiseDepthfirstCommon<TInput, TWeight, TOutput, TAccum, OutputStage>;
320   using WorkspaceManager = Workspace<
321     OutputArrayElement<TOutput>,
322     depthwise_depthfirst::InputArrayElement<TInput>,
323     InputBufferElement<TInput>,
324     typename depthwise_depthfirst::WorkspaceFinalElement<TAccum, OutputStage>::Element
325   >;
326   using WorkingSpace = typename WorkspaceManager::WorkspaceType;
327 
328   // We keep a copy of the bias and output stage
329   const TAccum *m_bias;
330 
331   public:
DepthwiseDepthfirst(StratType * const strat,const DepthwiseArgs & args,const OutputStage & os={})332   DepthwiseDepthfirst(StratType *const strat, const DepthwiseArgs &args, const OutputStage &os = {})
333   : Parent(strat, args, os), m_bias(nullptr)
334   {
335   }
336 
337   DepthwiseDepthfirst(DepthwiseDepthfirst &) = delete;
338   DepthwiseDepthfirst &operator=(DepthwiseDepthfirst &) = delete;
339 
pack_parameters(void * buffer,const void * biases,const void * weights,size_t ld_weight_col,size_t ld_weight_row)340   void pack_parameters(void *buffer, const void *biases, const void *weights, size_t ld_weight_col, size_t ld_weight_row) override
341   {
342     reinterpret_cast<const StratType *>(this->m_strat.get())->pack_parameters(
343       this->m_args, buffer, biases, this->get_output_stage(),
344       weights, ld_weight_col, ld_weight_row
345     );
346     m_bias = reinterpret_cast<const TAccum *>(biases);
347     depthwise_depthfirst::stash_bias(this->get_output_stage(), biases);
348   }
349 
get_working_size_per_thread(const unsigned int n_input_channels) const350   size_t get_working_size_per_thread(const unsigned int n_input_channels) const override
351   {
352     DepthwiseArgs args(this->m_args);
353     args.input_channels = n_input_channels;
354     return WorkspaceManager::get_sizeof_workspace(
355       WorkspaceArgs<IDepthfirstStrategy, OutputStage>(this->m_strat.get(), args, this->get_output_stage())
356     );
357   }
358 
initialise_working_space(void * buffer,unsigned int n_input_channels) const359   void initialise_working_space(void *buffer, unsigned int n_input_channels) const override
360   {
361     DepthwiseArgs args(this->m_args);
362     args.input_channels = n_input_channels;
363     WorkspaceManager::initialise(
364       buffer, WorkspaceArgs<IDepthfirstStrategy, OutputStage>(this->m_strat.get(), args, this->get_output_stage())
365     );
366   }
367 
368   protected:
compute_tile_padded(unsigned int output_i,unsigned int output_j,unsigned int output_channel_start,unsigned int output_channel_end,const TensorSpec<const TInput * > & input,const TensorSpec<TOutput * > & output,const void * parameters,void * working_space_raw) const369   void compute_tile_padded(
370     unsigned int output_i, unsigned int output_j,
371     unsigned int output_channel_start, unsigned int output_channel_end,
372     const TensorSpec<const TInput *> &input,
373     const TensorSpec<TOutput *> &output,
374     const void *parameters,
375     void *working_space_raw
376   ) const override
377   {
378     // Get the working space
379     auto ws = reinterpret_cast<WorkingSpace *>(working_space_raw);
380 
381     // Compute the input pointer array
382     const auto input_channel_start = output_channel_start / this->m_args.channel_multiplier;
383 
384     const int ii = static_cast<int>(output_i * this->m_args.stride_rows) - this->m_args.padding.top;
385     const auto input_pad_top = static_cast<unsigned int>(ii < 0 ? -ii : 0);
386     const auto input_i = static_cast<unsigned int>(ii < 0 ? 0 : ii);
387 
388     const int ij = static_cast<int>(output_j * this->m_args.stride_cols) - this->m_args.padding.left;
389     const auto input_pad_left = static_cast<unsigned int>(ij < 0 ? -ij : 0);
390     const auto input_j = static_cast<unsigned int>(ij < 0 ? 0 : ij);
391 
392     fill_pointer_array<const TInput>(
393       ws->inptr_array, this->m_strat->get_input_rows(), this->m_strat->get_input_cols(),
394       input.base + input_i*input.ld_row + input_j*input.ld_col + input_channel_start,
395       input.ld_row, input.ld_col,
396       ws->input_buffer,
397       input_pad_top, this->m_args.input_rows - input_i,
398       input_pad_left, this->m_args.input_cols - input_j
399     );
400 
401     // Compute the output pointer array
402     fill_pointer_array(
403       ws->outptr_array, this->m_strat->get_output_rows(), this->m_strat->get_output_cols(),
404       output.base + output_i*output.ld_row + output_j*output.ld_col + output_channel_start,
405       output.ld_row, output.ld_col,
406       ws->output_buffer,
407       0, this->m_args.output_rows - output_i, // Top padding, # valid rows
408       0, this->m_args.output_cols - output_j  // Left padding, # valid columns
409     );
410 
411     // Execute the kernel
412     depthwise_depthfirst::Invoke<TInput, TWeight, TOutput, TAccum, OutputStage>::indirect(
413       reinterpret_cast<const StratType *>(this->m_strat.get()),
414       ws, this->get_output_stage(), parameters, m_bias, output_channel_end - output_channel_start
415     );
416   }
417 
compute_row_padded_tile_row(const unsigned int output_i,unsigned int output_j,unsigned int n_tile_cols,const unsigned int output_channel_start,const unsigned int output_channel_end,const TensorSpec<const TInput * > & input,const TensorSpec<TOutput * > & output,const void * parameters,void * working_space) const418   void compute_row_padded_tile_row(
419     const unsigned int output_i, unsigned int output_j, unsigned int n_tile_cols,
420     const unsigned int output_channel_start, const unsigned int output_channel_end,
421     const TensorSpec<const TInput *> &input,
422     const TensorSpec<TOutput *> &output,
423     const void *parameters,
424     void *working_space
425   ) const override
426   {
427     using Invoker = depthwise_depthfirst::Invoke<TInput, TWeight, TOutput, TAccum, OutputStage>;
428     auto ws = reinterpret_cast<WorkingSpace *>(working_space);
429     const auto strat = reinterpret_cast<const StratType *>(this->m_strat.get());
430     const auto os = this->get_output_stage();
431 
432     // Compute top and bottom padding; hence fill in the initial pointer arrays.
433     const auto input_channel_start = output_channel_start / this->m_args.channel_multiplier;
434     const int ii = static_cast<int>(output_i * this->m_args.stride_rows) - this->m_args.padding.top;
435     const auto input_pad_top = static_cast<unsigned int>(ii < 0 ? -ii : 0);
436 
437     const auto input_i = static_cast<unsigned int>(ii < 0 ? 0 : ii);
438     const auto input_j = output_j * this->m_args.stride_cols - this->m_args.padding.left;
439 
440     // Valid input rows is the smallest of the input rows that aren't padding for this tile, and the number of rows
441     // available.
442     const auto valid_input_rows = std::min(strat->get_input_rows() - input_pad_top, this->m_args.input_rows - input_i);
443     const auto valid_output_rows = std::min(strat->get_output_rows(), this->m_args.output_rows - output_i);
444 
445     const auto input_point_stride = input.ld_col * this->m_strat->get_output_cols() * this->m_args.stride_cols;
446     const auto output_point_stride = output.ld_col * this->m_strat->get_output_cols();
447 
448     fill_pointer_array<const TInput>(
449       ws->inptr_array, this->m_strat->get_input_rows(), this->m_strat->get_input_cols(),
450       input.base + input_i*input.ld_row + input_j*input.ld_col + input_channel_start,
451       input.ld_row, input.ld_col,
452       ws->input_buffer,
453       input_pad_top, this->m_args.input_rows - input_i,
454       0, this->m_args.input_cols - input_j  // No left padding
455     );
456 
457     fill_pointer_array(
458       ws->outptr_array, this->m_strat->get_output_rows(), this->m_strat->get_output_cols(),
459       output.base + output_i*output.ld_row + output_j*output.ld_col + output_channel_start,
460       output.ld_row, output.ld_col,
461       ws->output_buffer,
462       0, this->m_args.output_rows - output_i,  // Top padding, # valid rows
463       0, this->m_args.output_cols - output_j  // Left padding, # valid columns
464     );
465 
466     for (; n_tile_cols; n_tile_cols--)
467     {
468       // Execute the kernel
469       Invoker::indirect(
470         strat, ws, os, parameters, m_bias, output_channel_end - output_channel_start
471       );
472 
473       // Update all unpadded pointers
474       {
475         auto ptr = ws->inptr_array + strat->get_input_cols() * input_pad_top;
476         for (auto n = input_pad_top; n < (valid_input_rows + input_pad_top); n++)
477         {
478           for (auto m = 0u; m < strat->get_input_cols(); m++)
479           {
480             *(ptr++) += input_point_stride;
481           }
482         }
483       }
484       {
485         auto ptr = ws->outptr_array;
486         for (auto n = 0u; n < valid_output_rows * strat->get_output_cols(); n++)
487         {
488           *(ptr++) += output_point_stride;
489         }
490       }
491     }
492   }
493 
compute_tiles_unpadded(unsigned int output_i,const unsigned int output_j,unsigned int n_tile_rows,unsigned int n_tile_cols,unsigned int output_channel_start,unsigned int output_channel_end,const TensorSpec<const TInput * > & input,const TensorSpec<TOutput * > & output,const void * parameters,void * working_space_raw) const494   void compute_tiles_unpadded(
495     unsigned int output_i, const unsigned int output_j,
496     unsigned int n_tile_rows, unsigned int n_tile_cols,
497     unsigned int output_channel_start, unsigned int output_channel_end,
498     const TensorSpec<const TInput *> &input,
499     const TensorSpec<TOutput *> &output,
500     const void *parameters,
501     void *working_space_raw
502   ) const override
503   {
504     using Invoker = depthwise_depthfirst::Invoke<TInput, TWeight, TOutput, TAccum, OutputStage>;
505     auto ws = reinterpret_cast<WorkingSpace *>(working_space_raw);
506     const auto strat = reinterpret_cast<const StratType *>(this->m_strat.get());
507     const auto os = this->get_output_stage();
508 
509     if (Invoker::supports_direct_kernel)
510     {
511       // If the direct kernel is supported, then use it.
512       // Compute the base pointers we'll use in the tile.
513       auto outptr = output.base + output_channel_start + output_i * output.ld_row + output_j * output.ld_col;
514       const int start_input_i = output_i * this->m_args.stride_rows - this->m_args.padding.top;
515       const int start_input_j = output_j * this->m_args.stride_cols - this->m_args.padding.left;
516       auto inptr = input.base + output_channel_start + start_input_i * input.ld_row + start_input_j * input.ld_col;
517 
518       // Execute the kernel
519       Invoker::direct(
520         strat, ws, os,
521         n_tile_rows, n_tile_cols,
522         inptr, input.ld_row, input.ld_col,
523         outptr, output.ld_row, output.ld_col,
524         parameters, output_channel_end - output_channel_start
525       );
526     }
527     else
528     {
529       // Otherwise, we repeatedly call the padded kernel but use our knowledge
530       // of the tensor structure to avoid recomputing the pointer array.
531       const auto input_channel_start = output_channel_start / this->m_args.channel_multiplier;
532 
533       const auto n_input_pointers = this->m_strat->get_input_rows() * this->m_strat->get_input_cols();
534       const auto input_point_stride = input.ld_col * this->m_strat->get_output_cols() * this->m_args.stride_cols;
535       const auto n_output_pointers = this->m_strat->get_output_rows() * this->m_strat->get_output_cols();
536       const auto output_point_stride = output.ld_col * this->m_strat->get_output_cols();
537 
538       // For each tile row, initialise the input and output pointer arrays. For
539       // each subsequent tile we simply update the pointers.
540       for (unsigned int tile_i = 0; tile_i < n_tile_rows; tile_i++)
541       {
542         const int input_i = static_cast<int>(output_i * this->m_args.stride_rows) - this->m_args.padding.top;
543         const int input_j = static_cast<int>(output_j * this->m_args.stride_cols) - this->m_args.padding.left;
544 
545         fill_pointer_array<const TInput>(
546           ws->inptr_array, this->m_strat->get_input_rows(), this->m_strat->get_input_cols(),
547           input.base + input_i*input.ld_row + input_j*input.ld_col + input_channel_start,
548           input.ld_row, input.ld_col,
549           ws->input_buffer,
550           0, this->m_args.input_rows,
551           0, this->m_args.input_cols
552         );
553 
554         // Compute the output pointer array
555         fill_pointer_array(
556           ws->outptr_array, this->m_strat->get_output_rows(), this->m_strat->get_output_cols(),
557           output.base + output_i*output.ld_row + output_j*output.ld_col + output_channel_start,
558           output.ld_row, output.ld_col,
559           ws->output_buffer,
560           0, this->m_args.output_rows,
561           0, this->m_args.output_cols
562         );
563 
564         for (unsigned int tile_j = 0; tile_j < n_tile_cols; tile_j++)
565         {
566           // Invoke the indirect kernel for this tile
567           depthwise_depthfirst::Invoke<TInput, TWeight, TOutput, TAccum, OutputStage>::indirect(
568             strat, ws, os, parameters, m_bias, output_channel_end - output_channel_start
569           );
570 
571           // Progress the pointers
572           for (auto i = 0u; i < n_input_pointers; i++)
573           {
574             ws->inptr_array[i] += input_point_stride;
575           }
576           for (auto i = 0u; i < n_output_pointers; i++)
577           {
578             ws->outptr_array[i] += output_point_stride;
579           }
580         }
581 
582         output_i += this->m_strat->get_output_rows();
583       }
584     }
585   }
586 };
587 
588 }  // namespace depthwise
589 }  // namespace arm_conv
590