xref: /aosp_15_r20/external/bcc/docs/reference_guide.md (revision 387f9dfdfa2baef462e92476d413c7bc2470293e)
1# bcc Reference Guide
2
3Intended for search (Ctrl-F) and reference. For tutorials, start with [tutorial.md](tutorial.md).
4
5This guide is incomplete. If something feels missing, check the bcc and kernel source. And if you confirm we're missing something, please send a pull request to fix it, and help out everyone.
6
7## Contents
8
9- [BPF C](#bpf-c)
10    - [Events & Arguments](#events--arguments)
11        - [1. kprobes](#1-kprobes)
12        - [2. kretprobes](#2-kretprobes)
13        - [3. Tracepoints](#3-tracepoints)
14        - [4. uprobes](#4-uprobes)
15        - [5. uretprobes](#5-uretprobes)
16        - [6. USDT probes](#6-usdt-probes)
17        - [7. Raw Tracepoints](#7-raw-tracepoints)
18        - [8. system call tracepoints](#8-system-call-tracepoints)
19        - [9. kfuncs](#9-kfuncs)
20        - [10. kretfuncs](#10-kretfuncs)
21        - [11. lsm probes](#11-lsm-probes)
22        - [12. bpf iterators](#12-bpf-iterators)
23    - [Data](#data)
24        - [1. bpf_probe_read_kernel()](#1-bpf_probe_read_kernel)
25        - [2. bpf_probe_read_kernel_str()](#2-bpf_probe_read_kernel_str)
26        - [3. bpf_ktime_get_ns()](#3-bpf_ktime_get_ns)
27        - [4. bpf_get_current_pid_tgid()](#4-bpf_get_current_pid_tgid)
28        - [5. bpf_get_current_uid_gid()](#5-bpf_get_current_uid_gid)
29        - [6. bpf_get_current_comm()](#6-bpf_get_current_comm)
30        - [7. bpf_get_current_task()](#7-bpf_get_current_task)
31        - [8. bpf_log2l()](#8-bpf_log2l)
32        - [9. bpf_get_prandom_u32()](#9-bpf_get_prandom_u32)
33        - [10. bpf_probe_read_user()](#10-bpf_probe_read_user)
34        - [11. bpf_probe_read_user_str()](#11-bpf_probe_read_user_str)
35        - [12. bpf_get_ns_current_pid_tgid()](#12-bpf_get_ns_current_pid_tgid)
36    - [Debugging](#debugging)
37        - [1. bpf_override_return()](#1-bpf_override_return)
38    - [Output](#output)
39        - [1. bpf_trace_printk()](#1-bpf_trace_printk)
40        - [2. BPF_PERF_OUTPUT](#2-bpf_perf_output)
41        - [3. perf_submit()](#3-perf_submit)
42        - [4. perf_submit_skb()](#4-perf_submit_skb)
43        - [5. BPF_RINGBUF_OUTPUT](#5-bpf_ringbuf_output)
44        - [6. ringbuf_output()](#6-ringbuf_output)
45        - [7. ringbuf_reserve()](#7-ringbuf_reserve)
46        - [8. ringbuf_submit()](#8-ringbuf_submit)
47        - [9. ringbuf_discard()](#9-ringbuf_discard)
48    - [Maps](#maps)
49        - [1. BPF_TABLE](#1-bpf_table)
50        - [2. BPF_HASH](#2-bpf_hash)
51        - [3. BPF_ARRAY](#3-bpf_array)
52        - [4. BPF_HISTOGRAM](#4-bpf_histogram)
53        - [5. BPF_STACK_TRACE](#5-bpf_stack_trace)
54        - [6. BPF_PERF_ARRAY](#6-bpf_perf_array)
55        - [7. BPF_PERCPU_HASH](#7-bpf_percpu_hash)
56        - [8. BPF_PERCPU_ARRAY](#8-bpf_percpu_array)
57        - [9. BPF_LPM_TRIE](#9-bpf_lpm_trie)
58        - [10. BPF_PROG_ARRAY](#10-bpf_prog_array)
59        - [11. BPF_DEVMAP](#11-bpf_devmap)
60        - [12. BPF_CPUMAP](#12-bpf_cpumap)
61        - [13. BPF_XSKMAP](#13-bpf_xskmap)
62        - [14. BPF_ARRAY_OF_MAPS](#14-bpf_array_of_maps)
63        - [15. BPF_HASH_OF_MAPS](#15-bpf_hash_of_maps)
64        - [16. BPF_STACK](#16-bpf_stack)
65        - [17. BPF_QUEUE](#17-bpf_queue)
66        - [18. BPF_SOCKHASH](#18-bpf_sockhash)
67        - [19. map.lookup()](#19-maplookup)
68        - [20. map.lookup_or_try_init()](#20-maplookup_or_try_init)
69        - [21. map.delete()](#21-mapdelete)
70        - [22. map.update()](#22-mapupdate)
71        - [23. map.insert()](#23-mapinsert)
72        - [24. map.increment()](#24-mapincrement)
73        - [25. map.get_stackid()](#25-mapget_stackid)
74        - [26. map.perf_read()](#26-mapperf_read)
75        - [27. map.call()](#27-mapcall)
76        - [28. map.redirect_map()](#28-mapredirect_map)
77        - [29. map.push()](#29-mappush)
78        - [30. map.pop()](#30-mappop)
79        - [31. map.peek()](#31-mappeek)
80        - [32. map.sock_hash_update()](#32-mapsock_hash_update)
81        - [33. map.msg_redirect_hash()](#33-mapmsg_redirect_hash)
82        - [34. map.sk_redirect_hash()](#34-mapsk_redirect_hash)
83    - [Licensing](#licensing)
84    - [Rewriter](#rewriter)
85
86- [bcc Python](#bcc-python)
87    - [Initialization](#initialization)
88        - [1. BPF](#1-bpf)
89        - [2. USDT](#2-usdt)
90    - [Events](#events)
91        - [1. attach_kprobe()](#1-attach_kprobe)
92        - [2. attach_kretprobe()](#2-attach_kretprobe)
93        - [3. attach_tracepoint()](#3-attach_tracepoint)
94        - [4. attach_uprobe()](#4-attach_uprobe)
95        - [5. attach_uretprobe()](#5-attach_uretprobe)
96        - [6. USDT.enable_probe()](#6-usdtenable_probe)
97        - [7. attach_raw_tracepoint()](#7-attach_raw_tracepoint)
98        - [8. attach_raw_socket()](#8-attach_raw_socket)
99        - [9. attach_xdp()](#9-attach_xdp)
100        - [10. attach_func()](#10-attach_func)
101        - [11. detach_func()](#11-detach_func)
102        - [12. detach_kprobe()](#12-detach_kprobe)
103        - [13. detach_kretprobe()](#13-detach_kretprobe)
104    - [Debug Output](#debug-output)
105        - [1. trace_print()](#1-trace_print)
106        - [2. trace_fields()](#2-trace_fields)
107    - [Output APIs](#output-apis)
108        - [1. perf_buffer_poll()](#1-perf_buffer_poll)
109        - [2. ring_buffer_poll()](#2-ring_buffer_poll)
110        - [3. ring_buffer_consume()](#3-ring_buffer_consume)
111    - [Map APIs](#map-apis)
112        - [1. get_table()](#1-get_table)
113        - [2. open_perf_buffer()](#2-open_perf_buffer)
114        - [3. items()](#3-items)
115        - [4. values()](#4-values)
116        - [5. clear()](#5-clear)
117        - [6. items_lookup_and_delete_batch()](#6-items_lookup_and_delete_batch)
118        - [7. items_lookup_batch()](#7-items_lookup_batch)
119        - [8. items_delete_batch()](#8-items_delete_batch)
120        - [9. items_update_batch()](#9-items_update_batch)
121        - [10. print_log2_hist()](#10-print_log2_hist)
122        - [11. print_linear_hist()](#11-print_linear_hist)
123        - [12. open_ring_buffer()](#12-open_ring_buffer)
124        - [13. push()](#13-push)
125        - [14. pop()](#14-pop)
126        - [15. peek()](#15-peek)
127    - [Helpers](#helpers)
128        - [1. ksym()](#1-ksym)
129        - [2. ksymname()](#2-ksymname)
130        - [3. sym()](#3-sym)
131        - [4. num_open_kprobes()](#4-num_open_kprobes)
132        - [5. get_syscall_fnname()](#5-get_syscall_fnname)
133
134- [BPF Errors](#bpf-errors)
135    - [1. Invalid mem access](#1-invalid-mem-access)
136    - [2. Cannot call GPL only function from proprietary program](#2-cannot-call-gpl-only-function-from-proprietary-program)
137
138- [Environment Variables](#Environment-Variables)
139    - [1. kernel source directory](#1-kernel-source-directory)
140    - [2. kernel version overriding](#2-kernel-version-overriding)
141
142# BPF C
143
144This section describes the C part of a bcc program.
145
146## Events & Arguments
147
148### 1. kprobes
149
150Syntax: kprobe__*kernel_function_name*
151
152```kprobe__``` is a special prefix that creates a kprobe (dynamic tracing of a kernel function call) for the kernel function name provided as the remainder. You can also use kprobes by declaring a normal C function, then using the Python ```BPF.attach_kprobe()``` (covered later) to associate it with a kernel function.
153
154Arguments are specified on the function declaration: kprobe__*kernel_function_name*(struct pt_regs *ctx [, *argument1* ...])
155
156For example:
157
158```C
159int kprobe__tcp_v4_connect(struct pt_regs *ctx, struct sock *sk) {
160    [...]
161}
162```
163
164This instruments the tcp_v4_connect() kernel function using a kprobe, with the following arguments:
165
166- ```struct pt_regs *ctx```: Registers and BPF context.
167- ```struct sock *sk```: First argument to tcp_v4_connect().
168
169The first argument is always ```struct pt_regs *```, the remainder are the arguments to the function (they don't need to be specified, if you don't intend to use them).
170
171Examples in situ:
172[code](https://github.com/iovisor/bcc/blob/4afa96a71c5dbfc4c507c3355e20baa6c184a3a8/examples/tracing/tcpv4connect.py#L28) ([output](https://github.com/iovisor/bcc/blob/5bd0eb21fd148927b078deb8ac29fff2fb044b66/examples/tracing/tcpv4connect_example.txt#L8)),
173[code](https://github.com/iovisor/bcc/commit/310ab53710cfd46095c1f6b3e44f1dbc8d1a41d8#diff-8cd1822359ffee26e7469f991ce0ef00R26) ([output](https://github.com/iovisor/bcc/blob/3b9679a3bd9b922c736f6061dc65cb56de7e0250/examples/tracing/bitehist_example.txt#L6))
174<!--- I can't add search links here, since github currently cannot handle partial-word searches needed for "kprobe__" --->
175
176### 2. kretprobes
177
178Syntax: kretprobe__*kernel_function_name*
179
180```kretprobe__``` is a special prefix that creates a kretprobe (dynamic tracing of a kernel function return) for the kernel function name provided as the remainder. You can also use kretprobes by declaring a normal C function, then using the Python ```BPF.attach_kretprobe()``` (covered later) to associate it with a kernel function.
181
182Return value is available as ```PT_REGS_RC(ctx)```, given a function declaration of: kretprobe__*kernel_function_name*(struct pt_regs *ctx)
183
184For example:
185
186```C
187int kretprobe__tcp_v4_connect(struct pt_regs *ctx)
188{
189    int ret = PT_REGS_RC(ctx);
190    [...]
191}
192```
193
194This instruments the return of the tcp_v4_connect() kernel function using a kretprobe, and stores the return value in ```ret```.
195
196Examples in situ:
197[code](https://github.com/iovisor/bcc/blob/4afa96a71c5dbfc4c507c3355e20baa6c184a3a8/examples/tracing/tcpv4connect.py#L38) ([output](https://github.com/iovisor/bcc/blob/5bd0eb21fd148927b078deb8ac29fff2fb044b66/examples/tracing/tcpv4connect_example.txt#L8))
198
199### 3. Tracepoints
200
201Syntax: TRACEPOINT_PROBE(*category*, *event*)
202
203This is a macro that instruments the tracepoint defined by *category*:*event*.
204
205The tracepoint name is `<category>:<event>`.
206The probe function name is `tracepoint__<category>__<event>`.
207
208Arguments are available in an ```args``` struct, which are the tracepoint arguments. One way to list these is to cat the relevant format file under /sys/kernel/debug/tracing/events/*category*/*event*/format.
209
210The ```args``` struct can be used in place of ``ctx`` in each functions requiring a context as an argument. This includes notably [perf_submit()](#3-perf_submit).
211
212For example:
213
214```C
215TRACEPOINT_PROBE(random, urandom_read) {
216    // args is from /sys/kernel/debug/tracing/events/random/urandom_read/format
217    bpf_trace_printk("%d\\n", args->got_bits);
218    return 0;
219}
220```
221
222This instruments the tracepoint `random:urandom_read tracepoint`, and prints the tracepoint argument ```got_bits```.
223When using Python API, this probe is automatically attached to the right tracepoint target.
224For C++, this tracepoint probe can be attached by specifying the tracepoint target and function name explicitly:
225`BPF::attach_tracepoint("random:urandom_read", "tracepoint__random__urandom_read")`
226Note the name of the probe function defined above is `tracepoint__random__urandom_read`.
227
228Examples in situ:
229[code](https://github.com/iovisor/bcc/blob/a4159da8c4ea8a05a3c6e402451f530d6e5a8b41/examples/tracing/urandomread.py#L19) ([output](https://github.com/iovisor/bcc/commit/e422f5e50ecefb96579b6391a2ada7f6367b83c4#diff-41e5ecfae4a3b38de5f4e0887ed160e5R10)),
230[search /examples](https://github.com/iovisor/bcc/search?q=TRACEPOINT_PROBE+path%3Aexamples&type=Code),
231[search /tools](https://github.com/iovisor/bcc/search?q=TRACEPOINT_PROBE+path%3Atools&type=Code)
232
233### 4. uprobes
234
235These are instrumented by declaring a normal function in C, then associating it as a uprobe probe in Python via ```BPF.attach_uprobe()``` (covered later).
236
237Arguments can be examined using ```PT_REGS_PARM``` macros.
238
239For example:
240
241```C
242int count(struct pt_regs *ctx) {
243    char buf[64];
244    bpf_probe_read_user(&buf, sizeof(buf), (void *)PT_REGS_PARM1(ctx));
245    bpf_trace_printk("%s %d", buf, PT_REGS_PARM2(ctx));
246    return(0);
247}
248```
249
250This reads the first argument as a string, and then prints it with the second argument as an integer.
251
252Examples in situ:
253[code](https://github.com/iovisor/bcc/blob/4afa96a71c5dbfc4c507c3355e20baa6c184a3a8/examples/tracing/strlen_count.py#L26)
254
255### 5. uretprobes
256
257These are instrumented by declaring a normal function in C, then associating it as a uretprobe probe in Python via ```BPF.attach_uretprobe()``` (covered later).
258
259Return value is available as ```PT_REGS_RC(ctx)```, given a function declaration of: *function_name*(struct pt_regs *ctx)
260
261For example:
262
263```C
264BPF_HISTOGRAM(dist);
265int count(struct pt_regs *ctx) {
266    dist.increment(PT_REGS_RC(ctx));
267    return 0;
268}
269```
270
271This increments the bucket in the ```dist``` histogram that is indexed by the return value.
272
273Examples in situ:
274[code](https://github.com/iovisor/bcc/blob/4afa96a71c5dbfc4c507c3355e20baa6c184a3a8/examples/tracing/strlen_hist.py#L39) ([output](https://github.com/iovisor/bcc/blob/4afa96a71c5dbfc4c507c3355e20baa6c184a3a8/examples/tracing/strlen_hist.py#L15)),
275[code](https://github.com/iovisor/bcc/blob/4afa96a71c5dbfc4c507c3355e20baa6c184a3a8/tools/bashreadline.py) ([output](https://github.com/iovisor/bcc/commit/aa87997d21e5c1a6a20e2c96dd25eb92adc8e85d#diff-2fd162f9e594206f789246ce97d62cf0R7))
276
277### 6. USDT probes
278
279These are User Statically-Defined Tracing (USDT) probes, which may be placed in some applications or libraries to provide a user-level equivalent of tracepoints. The primary BPF method provided for USDT support method is ```enable_probe()```. USDT probes are instrumented by declaring a normal function in C, then associating it as a USDT probe in Python via ```USDT.enable_probe()```.
280
281Arguments can be read via: bpf_usdt_readarg(*index*, ctx, &addr)
282
283For example:
284
285```C
286int do_trace(struct pt_regs *ctx) {
287    uint64_t addr;
288    char path[128];
289    bpf_usdt_readarg(6, ctx, &addr);
290    bpf_probe_read_user(&path, sizeof(path), (void *)addr);
291    bpf_trace_printk("path:%s\\n", path);
292    return 0;
293};
294```
295
296This reads the sixth USDT argument, and then pulls it in as a string to ```path```.
297
298When initializing USDTs via the third argument of ```BPF::init``` in the C API, if any USDT fails to ```init```, entire ```BPF::init``` will fail. If you're OK with some USDTs failing to ```init```, use ```BPF::init_usdt``` before calling ```BPF::init```.
299
300Examples in situ:
301[code](https://github.com/iovisor/bcc/commit/4f88a9401357d7b75e917abd994aa6ea97dda4d3#diff-04a7cad583be5646080970344c48c1f4R24),
302[search /examples](https://github.com/iovisor/bcc/search?q=bpf_usdt_readarg+path%3Aexamples&type=Code),
303[search /tools](https://github.com/iovisor/bcc/search?q=bpf_usdt_readarg+path%3Atools&type=Code)
304
305### 7. Raw Tracepoints
306
307Syntax: RAW_TRACEPOINT_PROBE(*event*)
308
309This is a macro that instruments the raw tracepoint defined by *event*.
310
311The argument is a pointer to struct ```bpf_raw_tracepoint_args```, which is defined in [bpf.h](https://github.com/iovisor/bcc/blob/master/src/cc/compat/linux/virtual_bpf.h).  The struct field ```args``` contains all parameters of the raw tracepoint where you can found at linux tree [include/trace/events](https://github.com/torvalds/linux/tree/master/include/trace/events)
312directory.
313
314For example:
315```C
316RAW_TRACEPOINT_PROBE(sched_switch)
317{
318    // TP_PROTO(bool preempt, struct task_struct *prev, struct task_struct *next)
319    struct task_struct *prev = (struct task_struct *)ctx->args[1];
320    struct task_struct *next= (struct task_struct *)ctx->args[2];
321    s32 prev_tgid, next_tgid;
322
323    bpf_probe_read_kernel(&prev_tgid, sizeof(prev->tgid), &prev->tgid);
324    bpf_probe_read_kernel(&next_tgid, sizeof(next->tgid), &next->tgid);
325    bpf_trace_printk("%d -> %d\\n", prev_tgid, next_tgid);
326}
327```
328
329This instruments the sched:sched_switch tracepoint, and prints the prev and next tgid.
330
331Examples in situ:
332[search /tools](https://github.com/iovisor/bcc/search?q=RAW_TRACEPOINT_PROBE+path%3Atools&type=Code)
333
334### 8. system call tracepoints
335
336Syntax: ```syscall__SYSCALLNAME```
337
338```syscall__``` is a special prefix that creates a kprobe for the system call name provided as the remainder. You can use it by declaring a normal C function, then using the Python ```BPF.get_syscall_fnname(SYSCALLNAME)``` and ```BPF.attach_kprobe()``` to associate it.
339
340Arguments are specified on the function declaration: ```syscall__SYSCALLNAME(struct pt_regs *ctx, [, argument1 ...])```.
341
342For example:
343```C
344int syscall__execve(struct pt_regs *ctx,
345    const char __user *filename,
346    const char __user *const __user *__argv,
347    const char __user *const __user *__envp)
348{
349    [...]
350}
351```
352
353This instruments the execve system call.
354
355The first argument is always ```struct pt_regs *```, the remainder are the arguments to the function (they don't need to be specified, if you don't intend to use them).
356
357Corresponding Python code:
358```Python
359b = BPF(text=bpf_text)
360execve_fnname = b.get_syscall_fnname("execve")
361b.attach_kprobe(event=execve_fnname, fn_name="syscall__execve")
362```
363
364Examples in situ:
365[code](https://github.com/iovisor/bcc/blob/552658edda09298afdccc8a4b5e17311a2d8a771/tools/execsnoop.py#L101) ([output](https://github.com/iovisor/bcc/blob/552658edda09298afdccc8a4b5e17311a2d8a771/tools/execsnoop_example.txt#L8))
366
367### 9. kfuncs
368
369Syntax: KFUNC_PROBE(*function*, typeof(arg1) arg1, typeof(arg2) arge ...)
370        MODULE_KFUNC_PROBE(*module*, *function*, typeof(arg1) arg1, typeof(arg2) arge ...)
371
372This is a macro that instruments the kernel function via trampoline
373*before* the function is executed. It's defined by *function* name and
374the function arguments defined as *argX*.
375
376For example:
377```C
378KFUNC_PROBE(do_sys_open, int dfd, const char *filename, int flags, int mode)
379{
380    ...
381```
382
383This instruments the do_sys_open kernel function and make its arguments
384accessible as standard argument values.
385
386Examples in situ:
387[search /tools](https://github.com/iovisor/bcc/search?q=KFUNC_PROBE+path%3Atools&type=Code)
388
389### 10. kretfuncs
390
391Syntax: KRETFUNC_PROBE(*event*, typeof(arg1) arg1, typeof(arg2) arge ..., int ret)
392        MODULE_KRETFUNC_PROBE(*module*, *function*, typeof(arg1) arg1, typeof(arg2) arge ...)
393
394This is a macro that instruments the kernel function via trampoline
395*after* the function is executed. It's defined by *function* name and
396the function arguments defined as *argX*.
397
398The last argument of the probe is the return value of the instrumented function.
399
400For example:
401```C
402KRETFUNC_PROBE(do_sys_open, int dfd, const char *filename, int flags, int mode, int ret)
403{
404    ...
405```
406
407This instruments the do_sys_open kernel function and make its arguments
408accessible as standard argument values together with its return value.
409
410Examples in situ:
411[search /tools](https://github.com/iovisor/bcc/search?q=KRETFUNC_PROBE+path%3Atools&type=Code)
412
413
414### 11. LSM Probes
415
416Syntax: LSM_PROBE(*hook*, typeof(arg1) arg1, typeof(arg2) arg2 ...)
417
418This is a macro that instruments an LSM hook as a BPF program. It can be
419used to audit security events and implement MAC security policies in BPF.
420It is defined by specifying the hook name followed by its arguments.
421
422Hook names can be found in
423[include/linux/security.h](https://github.com/torvalds/linux/blob/v5.15/include/linux/security.h#L260)
424by taking functions like `security_hookname` and taking just the `hookname` part.
425For example, `security_bpf` would simply become `bpf`.
426
427Unlike other BPF program types, the return value specified in an LSM probe
428matters. A return value of 0 allows the hook to succeed, whereas
429any non-zero return value will cause the hook to fail and deny the
430security operation.
431
432The following example instruments a hook that denies all future BPF operations:
433```C
434LSM_PROBE(bpf, int cmd, union bpf_attr *attr, unsigned int size)
435{
436    return -EPERM;
437}
438```
439
440This instruments the `security_bpf` hook and causes it to return `-EPERM`.
441Changing `return -EPERM` to `return 0` would cause the BPF program
442to allow the operation instead.
443
444LSM probes require at least a 5.7+ kernel with the following configuation options set:
445- `CONFIG_BPF_LSM=y`
446- `CONFIG_LSM` comma separated string must contain "bpf" (for example,
447  `CONFIG_LSM="lockdown,yama,bpf"`)
448
449Examples in situ:
450[search /tests](https://github.com/iovisor/bcc/search?q=LSM_PROBE+path%3Atests&type=Code)
451
452### 12. BPF ITERATORS
453
454Syntax: BPF_ITER(target)
455
456This is a macro to define a program signature for a bpf iterator program. The argument *target* specifies what to iterate for the program.
457
458Currently, kernel does not have interface to discover what targets are supported. A good place to find what is supported is in [tools/testing/selftests/bpf/prog_test/bpf_iter.c](https://github.com/torvalds/linux/blob/master/tools/testing/selftests/bpf/prog_tests/bpf_iter.c) and some sample bpf iter programs are in [tools/testing/selftests/bpf/progs](https://github.com/torvalds/linux/tree/master/tools/testing/selftests/bpf/progs) with file name prefix *bpf_iter*.
459
460The following example defines a program for target *task*, which traverses all tasks in the kernel.
461```C
462BPF_ITER(task)
463{
464  struct seq_file *seq = ctx->meta->seq;
465  struct task_struct *task = ctx->task;
466
467  if (task == (void *)0)
468    return 0;
469
470  ... task->pid, task->tgid, task->comm, ...
471  return 0;
472}
473```
474
475BPF iterators are introduced in 5.8 kernel for task, task_file, bpf_map, netlink_sock and ipv6_route . In 5.9, support is added to tcp/udp sockets and bpf map element (hashmap, arraymap and sk_local_storage_map) traversal.
476
477## Data
478
479### 1. bpf_probe_read_kernel()
480
481Syntax: ```int bpf_probe_read_kernel(void *dst, int size, const void *src)```
482
483Return: 0 on success
484
485This copies size bytes from kernel address space to the BPF stack, so that BPF can later operate on it. For safety, all kernel memory reads must pass through bpf_probe_read_kernel(). This happens automatically in some cases, such as dereferencing kernel variables, as bcc will rewrite the BPF program to include the necessary bpf_probe_read_kernel().
486
487Examples in situ:
488[search /examples](https://github.com/iovisor/bcc/search?q=bpf_probe_read_kernel+path%3Aexamples&type=Code),
489[search /tools](https://github.com/iovisor/bcc/search?q=bpf_probe_read_kernel+path%3Atools&type=Code)
490
491### 2. bpf_probe_read_kernel_str()
492
493Syntax: ```int bpf_probe_read_kernel_str(void *dst, int size, const void *src)```
494
495Return:
496  - \> 0 length of the string including the trailing NULL on success
497  - \< 0 error
498
499This copies a `NULL` terminated string from kernel address space to the BPF stack, so that BPF can later operate on it. In case the string length is smaller than size, the target is not padded with further `NULL` bytes. In case the string length is larger than size, just `size - 1` bytes are copied and the last byte is set to `NULL`.
500
501Examples in situ:
502[search /examples](https://github.com/iovisor/bcc/search?q=bpf_probe_read_kernel_str+path%3Aexamples&type=Code),
503[search /tools](https://github.com/iovisor/bcc/search?q=bpf_probe_read_kernel_str+path%3Atools&type=Code)
504
505### 3. bpf_ktime_get_ns()
506
507Syntax: ```u64 bpf_ktime_get_ns(void)```
508
509Return: u64 number of nanoseconds. Starts at system boot time but stops during suspend.
510
511Examples in situ:
512[search /examples](https://github.com/iovisor/bcc/search?q=bpf_ktime_get_ns+path%3Aexamples&type=Code),
513[search /tools](https://github.com/iovisor/bcc/search?q=bpf_ktime_get_ns+path%3Atools&type=Code)
514
515### 4. bpf_get_current_pid_tgid()
516
517Syntax: ```u64 bpf_get_current_pid_tgid(void)```
518
519Return: ```current->tgid << 32 | current->pid```
520
521Returns the process ID in the lower 32 bits (kernel's view of the PID, which in user space is usually presented as the thread ID), and the thread group ID in the upper 32 bits (what user space often thinks of as the PID). By directly setting this to a u32, we discard the upper 32 bits.
522
523Examples in situ:
524[search /examples](https://github.com/iovisor/bcc/search?q=bpf_get_current_pid_tgid+path%3Aexamples&type=Code),
525[search /tools](https://github.com/iovisor/bcc/search?q=bpf_get_current_pid_tgid+path%3Atools&type=Code)
526
527### 5. bpf_get_current_uid_gid()
528
529Syntax: ```u64 bpf_get_current_uid_gid(void)```
530
531Return: ```current_gid << 32 | current_uid```
532
533Returns the user ID and group IDs.
534
535Examples in situ:
536[search /examples](https://github.com/iovisor/bcc/search?q=bpf_get_current_uid_gid+path%3Aexamples&type=Code),
537[search /tools](https://github.com/iovisor/bcc/search?q=bpf_get_current_uid_gid+path%3Atools&type=Code)
538
539### 6. bpf_get_current_comm()
540
541Syntax: ```bpf_get_current_comm(char *buf, int size_of_buf)```
542
543Return: 0 on success
544
545Populates the first argument address with the current process name. It should be a pointer to a char array of at least size TASK_COMM_LEN, which is defined in linux/sched.h. For example:
546
547```C
548#include <linux/sched.h>
549
550int do_trace(struct pt_regs *ctx) {
551    char comm[TASK_COMM_LEN];
552    bpf_get_current_comm(&comm, sizeof(comm));
553[...]
554```
555
556Examples in situ:
557[search /examples](https://github.com/iovisor/bcc/search?q=bpf_get_current_comm+path%3Aexamples&type=Code),
558[search /tools](https://github.com/iovisor/bcc/search?q=bpf_get_current_comm+path%3Atools&type=Code)
559
560### 7. bpf_get_current_task()
561
562Syntax: ```bpf_get_current_task()```
563
564Return: current task as a pointer to struct task_struct.
565
566Returns a pointer to the current task's task_struct object. This helper can be used to compute the on-CPU time for a process, identify kernel threads, get the current CPU's run queue, or retrieve many other pieces of information.
567
568With Linux 4.13, due to issues with field randomization, you may need two #define directives before the includes:
569```C
570#define randomized_struct_fields_start  struct {
571#define randomized_struct_fields_end    };
572#include <linux/sched.h>
573
574int do_trace(void *ctx) {
575    struct task_struct *t = (struct task_struct *)bpf_get_current_task();
576[...]
577```
578
579Examples in situ:
580[search /examples](https://github.com/iovisor/bcc/search?q=bpf_get_current_task+path%3Aexamples&type=Code),
581[search /tools](https://github.com/iovisor/bcc/search?q=bpf_get_current_task+path%3Atools&type=Code)
582
583### 8. bpf_log2l()
584
585Syntax: ```unsigned int bpf_log2l(unsigned long v)```
586
587Returns the log-2 of the provided value. This is often used to create indexes for histograms, to construct power-of-2 histograms.
588
589Examples in situ:
590[search /examples](https://github.com/iovisor/bcc/search?q=bpf_log2l+path%3Aexamples&type=Code),
591[search /tools](https://github.com/iovisor/bcc/search?q=bpf_log2l+path%3Atools&type=Code)
592
593### 9. bpf_get_prandom_u32()
594
595Syntax: ```u32 bpf_get_prandom_u32()```
596
597Returns a pseudo-random u32.
598
599Example in situ:
600[search /examples](https://github.com/iovisor/bcc/search?q=bpf_get_prandom_u32+path%3Aexamples&type=Code),
601[search /tools](https://github.com/iovisor/bcc/search?q=bpf_get_prandom_u32+path%3Atools&type=Code)
602
603### 10. bpf_probe_read_user()
604
605Syntax: ```int bpf_probe_read_user(void *dst, int size, const void *src)```
606
607Return: 0 on success
608
609This attempts to safely read size bytes from user address space to the BPF stack, so that BPF can later operate on it. For safety, all user address space memory reads must pass through bpf_probe_read_user().
610
611Examples in situ:
612[search /examples](https://github.com/iovisor/bcc/search?q=bpf_probe_read_user+path%3Aexamples&type=Code),
613[search /tools](https://github.com/iovisor/bcc/search?q=bpf_probe_read_user+path%3Atools&type=Code)
614
615### 11. bpf_probe_read_user_str()
616
617Syntax: ```int bpf_probe_read_user_str(void *dst, int size, const void *src)```
618
619Return:
620  - \> 0 length of the string including the trailing NULL on success
621  - \< 0 error
622
623This copies a `NULL` terminated string from user address space to the BPF stack, so that BPF can later operate on it. In case the string length is smaller than size, the target is not padded with further `NULL` bytes. In case the string length is larger than size, just `size - 1` bytes are copied and the last byte is set to `NULL`.
624
625Examples in situ:
626[search /examples](https://github.com/iovisor/bcc/search?q=bpf_probe_read_user_str+path%3Aexamples&type=Code),
627[search /tools](https://github.com/iovisor/bcc/search?q=bpf_probe_read_user_str+path%3Atools&type=Code)
628
629
630### 12. bpf_get_ns_current_pid_tgid()
631
632Syntax: ```u32 bpf_get_ns_current_pid_tgid(u64 dev, u64 ino, struct bpf_pidns_info* nsdata, u32 size)```
633
634Values for *pid* and *tgid* as seen from the current *namespace* will be returned in *nsdata*.
635
636Return 0 on success, or one of the following in case of failure:
637
638- **-EINVAL** if dev and inum supplied don't match dev_t and inode number with nsfs of current task, or if dev conversion to dev_t lost high bits.
639
640- **-ENOENT** if pidns does not exists for the current task.
641
642Examples in situ:
643[search /examples](https://github.com/iovisor/bcc/search?q=bpf_get_ns_current_pid_tgid+path%3Aexamples&type=Code),
644[search /tools](https://github.com/iovisor/bcc/search?q=bpf_get_ns_current_pid_tgid+path%3Atools&type=Code)
645
646
647## Debugging
648
649### 1. bpf_override_return()
650
651Syntax: ```int bpf_override_return(struct pt_regs *, unsigned long rc)```
652
653Return: 0 on success
654
655When used in a program attached to a function entry kprobe, causes the
656execution of the function to be skipped, immediately returning `rc` instead.
657This is used for targeted error injection.
658
659bpf_override_return will only work when the kprobed function is whitelisted to
660allow error injections. Whitelisting entails tagging a function with
661`ALLOW_ERROR_INJECTION()` in the kernel source tree; see `io_ctl_init` for
662an example. If the kprobed function is not whitelisted, the bpf program will
663fail to attach with ` ioctl(PERF_EVENT_IOC_SET_BPF): Invalid argument`
664
665
666```C
667int kprobe__io_ctl_init(void *ctx) {
668	bpf_override_return(ctx, -ENOMEM);
669	return 0;
670}
671```
672
673## Output
674
675### 1. bpf_trace_printk()
676
677Syntax: ```int bpf_trace_printk(const char *fmt, ...)```
678
679Return: 0 on success
680
681A simple kernel facility for printf() to the common trace_pipe (/sys/kernel/debug/tracing/trace_pipe). This is ok for some quick examples, but has limitations: 3 args max, 1 %s only, and trace_pipe is globally shared, so concurrent programs will have clashing output. A better interface is via BPF_PERF_OUTPUT(). Note that calling this helper is made simpler than the original kernel version, which has ```fmt_size``` as the second parameter.
682
683Examples in situ:
684[search /examples](https://github.com/iovisor/bcc/search?q=bpf_trace_printk+path%3Aexamples&type=Code),
685[search /tools](https://github.com/iovisor/bcc/search?q=bpf_trace_printk+path%3Atools&type=Code)
686
687### 2. BPF_PERF_OUTPUT
688
689Syntax: ```BPF_PERF_OUTPUT(name)```
690
691Creates a BPF table for pushing out custom event data to user space via a perf ring buffer. This is the preferred method for pushing per-event data to user space.
692
693For example:
694
695```C
696struct data_t {
697    u32 pid;
698    u64 ts;
699    char comm[TASK_COMM_LEN];
700};
701BPF_PERF_OUTPUT(events);
702
703int hello(struct pt_regs *ctx) {
704    struct data_t data = {};
705
706    data.pid = bpf_get_current_pid_tgid();
707    data.ts = bpf_ktime_get_ns();
708    bpf_get_current_comm(&data.comm, sizeof(data.comm));
709
710    events.perf_submit(ctx, &data, sizeof(data));
711
712    return 0;
713}
714```
715
716The output table is named ```events```, and data is pushed to it via ```events.perf_submit()```.
717
718Examples in situ:
719[search /examples](https://github.com/iovisor/bcc/search?q=BPF_PERF_OUTPUT+path%3Aexamples&type=Code),
720[search /tools](https://github.com/iovisor/bcc/search?q=BPF_PERF_OUTPUT+path%3Atools&type=Code)
721
722### 3. perf_submit()
723
724Syntax: ```int perf_submit((void *)ctx, (void *)data, u32 data_size)```
725
726Return: 0 on success
727
728A method of a BPF_PERF_OUTPUT table, for submitting custom event data to user space. See the BPF_PERF_OUTPUT entry. (This ultimately calls bpf_perf_event_output().)
729
730The ```ctx``` parameter is provided in [kprobes](#1-kprobes) or [kretprobes](#2-kretprobes). For ```SCHED_CLS``` or ```SOCKET_FILTER``` programs, the ```struct __sk_buff *skb``` must be used instead.
731
732Examples in situ:
733[search /examples](https://github.com/iovisor/bcc/search?q=perf_submit+path%3Aexamples&type=Code),
734[search /tools](https://github.com/iovisor/bcc/search?q=perf_submit+path%3Atools&type=Code)
735
736### 4. perf_submit_skb()
737
738Syntax: ```int perf_submit_skb((void *)ctx, u32 packet_size, (void *)data, u32 data_size)```
739
740Return: 0 on success
741
742A method of a BPF_PERF_OUTPUT table available in networking program types, for submitting custom event data to user space, along with the first ```packet_size``` bytes of the packet buffer. See the BPF_PERF_OUTPUT entry. (This ultimately calls bpf_perf_event_output().)
743
744Examples in situ:
745[search /examples](https://github.com/iovisor/bcc/search?q=perf_submit_skb+path%3Aexamples&type=Code),
746[search /tools](https://github.com/iovisor/bcc/search?q=perf_submit_skb+path%3Atools&type=Code)
747
748### 5. BPF_RINGBUF_OUTPUT
749
750Syntax: ```BPF_RINGBUF_OUTPUT(name, page_cnt)```
751
752Creates a BPF table for pushing out custom event data to user space via a ringbuf ring buffer.
753```BPF_RINGBUF_OUTPUT``` has several advantages over ```BPF_PERF_OUTPUT```, summarized as follows:
754
755- Buffer is shared across all CPUs, meaning no per-CPU allocation
756- Supports two APIs for BPF programs
757    - ```map.ringbuf_output()``` works like ```map.perf_submit()``` (covered in [ringbuf_output](#6-ringbuf_output))
758    - ```map.ringbuf_reserve()```/```map.ringbuf_submit()```/```map.ringbuf_discard()```
759      split the process of reserving buffer space and submitting events into two steps
760      (covered in [ringbuf_reserve](#7-ringbuf_reserve), [ringbuf_submit](#8-ringbuf_submit), [ringbuf_discard](#9-ringbuf_discard))
761- BPF APIs do not require access to a CPU ctx argument
762- Superior performance and latency in userspace thanks to a shared ring buffer manager
763- Supports two ways of consuming data in userspace
764
765Starting in Linux 5.8, this should be the preferred method for pushing per-event data to user space.
766
767Example of both APIs:
768
769```C
770struct data_t {
771    u32 pid;
772    u64 ts;
773    char comm[TASK_COMM_LEN];
774};
775
776// Creates a ringbuf called events with 8 pages of space, shared across all CPUs
777BPF_RINGBUF_OUTPUT(events, 8);
778
779int first_api_example(struct pt_regs *ctx) {
780    struct data_t data = {};
781
782    data.pid = bpf_get_current_pid_tgid();
783    data.ts = bpf_ktime_get_ns();
784    bpf_get_current_comm(&data.comm, sizeof(data.comm));
785
786    events.ringbuf_output(&data, sizeof(data), 0 /* flags */);
787
788    return 0;
789}
790
791int second_api_example(struct pt_regs *ctx) {
792    struct data_t *data = events.ringbuf_reserve(sizeof(struct data_t));
793    if (!data) { // Failed to reserve space
794        return 1;
795    }
796
797    data->pid = bpf_get_current_pid_tgid();
798    data->ts = bpf_ktime_get_ns();
799    bpf_get_current_comm(&data->comm, sizeof(data->comm));
800
801    events.ringbuf_submit(data, 0 /* flags */);
802
803    return 0;
804}
805```
806
807The output table is named ```events```. Data is allocated via ```events.ringbuf_reserve()``` and pushed to it via ```events.ringbuf_submit()```.
808
809Examples in situ: <!-- TODO -->
810[search /examples](https://github.com/iovisor/bcc/search?q=BPF_RINGBUF_OUTPUT+path%3Aexamples&type=Code),
811
812### 6. ringbuf_output()
813
814Syntax: ```int ringbuf_output((void *)data, u64 data_size, u64 flags)```
815
816Return: 0 on success
817
818Flags:
819 - ```BPF_RB_NO_WAKEUP```: Do not sent notification of new data availability
820 - ```BPF_RB_FORCE_WAKEUP```: Send notification of new data availability unconditionally
821
822A method of the BPF_RINGBUF_OUTPUT table, for submitting custom event data to user space. This method works like ```perf_submit()```,
823although it does not require a ctx argument.
824
825Examples in situ: <!-- TODO -->
826[search /examples](https://github.com/iovisor/bcc/search?q=ringbuf_output+path%3Aexamples&type=Code),
827
828### 7. ringbuf_reserve()
829
830Syntax: ```void* ringbuf_reserve(u64 data_size)```
831
832Return: Pointer to data struct on success, NULL on failure
833
834A method of the BPF_RINGBUF_OUTPUT table, for reserving space in the ring buffer and simultaenously
835allocating a data struct for output. Must be used with one of ```ringbuf_submit``` or ```ringbuf_discard```.
836
837Examples in situ: <!-- TODO -->
838[search /examples](https://github.com/iovisor/bcc/search?q=ringbuf_reserve+path%3Aexamples&type=Code),
839
840### 8. ringbuf_submit()
841
842Syntax: ```void ringbuf_submit((void *)data, u64 flags)```
843
844Return: Nothing, always succeeds
845
846Flags:
847 - ```BPF_RB_NO_WAKEUP```: Do not sent notification of new data availability
848 - ```BPF_RB_FORCE_WAKEUP```: Send notification of new data availability unconditionally
849
850A method of the BPF_RINGBUF_OUTPUT table, for submitting custom event data to user space. Must be preceded by a call to
851```ringbuf_reserve()``` to reserve space for the data.
852
853Examples in situ: <!-- TODO -->
854[search /examples](https://github.com/iovisor/bcc/search?q=ringbuf_submit+path%3Aexamples&type=Code),
855
856### 9. ringbuf_discard()
857
858Syntax: ```void ringbuf_discard((void *)data, u64 flags)```
859
860Return: Nothing, always succeeds
861
862Flags:
863 - ```BPF_RB_NO_WAKEUP```: Do not sent notification of new data availability
864 - ```BPF_RB_FORCE_WAKEUP```: Send notification of new data availability unconditionally
865
866A method of the BPF_RINGBUF_OUTPUT table, for discarding custom event data; userspace
867ignores the data associated with the discarded event. Must be preceded by a call to
868```ringbuf_reserve()``` to reserve space for the data.
869
870Examples in situ: <!-- TODO -->
871[search /examples](https://github.com/iovisor/bcc/search?q=ringbuf_submit+path%3Aexamples&type=Code),
872
873### 10. ringbuf_query()
874
875Syntax: ```u64 ringbuf_query(u64 flags)```
876
877Return: Requested value, or 0, if flags are not recognized
878
879Flags:
880 - ```BPF_RB_AVAIL_DATA```: Amount of data not yet consumed
881 - ```BPF_RB_RING_SIZE```: The size of ring buffer
882 - ```BPF_RB_CONS_POS```: Consumer position
883 - ```BPF_RB_PROD_POS```: Producer(s) position
884
885A method of the BPF_RINGBUF_OUTPUT table, for getting various properties of ring buffer. Returned values are momentarily snapshots of ring buffer state and could be off by the time helper returns, so this should be used only for debugging/reporting reasons or for implementing various heuristics, that take into account highly-changeable nature of some of those characteristics.
886
887Examples in situ: <!-- TODO -->
888[search /examples](https://github.com/iovisor/bcc/search?q=ringbuf_query+path%3Aexamples&type=Code),
889
890## Maps
891
892Maps are BPF data stores, and are the basis for higher level object types including tables, hashes, and histograms.
893
894### 1. BPF_TABLE
895
896Syntax: ```BPF_TABLE(_table_type, _key_type, _leaf_type, _name, _max_entries)```
897
898Creates a map named ```_name```. Most of the time this will be used via higher-level macros, like BPF_HASH, BPF_ARRAY, BPF_HISTOGRAM, etc.
899
900`BPF_F_TABLE` is a variant that takes a flag in the last parameter. `BPF_TABLE(...)` is actually a wrapper to `BPF_F_TABLE(..., 0 /* flag */)`.
901
902Methods (covered later): map.lookup(), map.lookup_or_try_init(), map.delete(), map.update(), map.insert(), map.increment().
903
904Examples in situ:
905[search /examples](https://github.com/iovisor/bcc/search?q=BPF_TABLE+path%3Aexamples&type=Code),
906[search /tools](https://github.com/iovisor/bcc/search?q=BPF_TABLE+path%3Atools&type=Code)
907
908#### Pinned Maps
909
910Syntax: ```BPF_TABLE_PINNED(_table_type, _key_type, _leaf_type, _name, _max_entries, "/sys/fs/bpf/xyz")```
911
912Create a new map if it doesn't exist and pin it to the bpffs as a FILE, otherwise use the map that was pinned to the bpffs. The type information is not enforced and the actual map type depends on the map that got pinned to the location.
913
914For example:
915
916```C
917BPF_TABLE_PINNED("hash", u64, u64, ids, 1024, "/sys/fs/bpf/ids");
918```
919
920### 2. BPF_HASH
921
922Syntax: ```BPF_HASH(name [, key_type [, leaf_type [, size]]])```
923
924Creates a hash map (associative array) named ```name```, with optional parameters.
925
926Defaults: ```BPF_HASH(name, key_type=u64, leaf_type=u64, size=10240)```
927
928For example:
929
930```C
931BPF_HASH(start, struct request *);
932```
933
934This creates a hash named ```start``` where the key is a ```struct request *```, and the value defaults to u64. This hash is used by the disksnoop.py example for saving timestamps for each I/O request, where the key is the pointer to struct request, and the value is the timestamp.
935
936This is a wrapper macro for `BPF_TABLE("hash", ...)`.
937
938Methods (covered later): map.lookup(), map.lookup_or_try_init(), map.delete(), map.update(), map.insert(), map.increment().
939
940Examples in situ:
941[search /examples](https://github.com/iovisor/bcc/search?q=BPF_HASH+path%3Aexamples&type=Code),
942[search /tools](https://github.com/iovisor/bcc/search?q=BPF_HASH+path%3Atools&type=Code)
943
944### 3. BPF_ARRAY
945
946Syntax: ```BPF_ARRAY(name [, leaf_type [, size]])```
947
948Creates an int-indexed array which is optimized for fastest lookup and update, named ```name```, with optional parameters.
949
950Defaults: ```BPF_ARRAY(name, leaf_type=u64, size=10240)```
951
952For example:
953
954```C
955BPF_ARRAY(counts, u64, 32);
956```
957
958This creates an array named ```counts``` where with 32 buckets and 64-bit integer values. This array is used by the funccount.py example for saving call count of each function.
959
960This is a wrapper macro for `BPF_TABLE("array", ...)`.
961
962Methods (covered later): map.lookup(), map.update(), map.increment(). Note that all array elements are pre-allocated with zero values and can not be deleted.
963
964Examples in situ:
965[search /examples](https://github.com/iovisor/bcc/search?q=BPF_ARRAY+path%3Aexamples&type=Code),
966[search /tools](https://github.com/iovisor/bcc/search?q=BPF_ARRAY+path%3Atools&type=Code)
967
968### 4. BPF_HISTOGRAM
969
970Syntax: ```BPF_HISTOGRAM(name [, key_type [, size ]])```
971
972Creates a histogram map named ```name```, with optional parameters.
973
974Defaults: ```BPF_HISTOGRAM(name, key_type=int, size=64)```
975
976For example:
977
978```C
979BPF_HISTOGRAM(dist);
980```
981
982This creates a histogram named ```dist```, which defaults to 64 buckets indexed by keys of type int.
983
984This is a wrapper macro for `BPF_TABLE("histgram", ...)`.
985
986Methods (covered later): map.increment().
987
988Examples in situ:
989[search /examples](https://github.com/iovisor/bcc/search?q=BPF_HISTOGRAM+path%3Aexamples&type=Code),
990[search /tools](https://github.com/iovisor/bcc/search?q=BPF_HISTOGRAM+path%3Atools&type=Code)
991
992### 5. BPF_STACK_TRACE
993
994Syntax: ```BPF_STACK_TRACE(name, max_entries)```
995
996Creates stack trace map named ```name```, with a maximum entry count provided. These maps are used to store stack traces.
997
998For example:
999
1000```C
1001BPF_STACK_TRACE(stack_traces, 1024);
1002```
1003
1004This creates stack trace map named ```stack_traces```, with a maximum number of stack trace entries of 1024.
1005
1006This is a wrapper macro for `BPF_TABLE("stacktrace", ...)`.
1007
1008Methods (covered later): map.get_stackid().
1009
1010Examples in situ:
1011[search /examples](https://github.com/iovisor/bcc/search?q=BPF_STACK_TRACE+path%3Aexamples&type=Code),
1012[search /tools](https://github.com/iovisor/bcc/search?q=BPF_STACK_TRACE+path%3Atools&type=Code)
1013
1014### 6. BPF_PERF_ARRAY
1015
1016Syntax: ```BPF_PERF_ARRAY(name, max_entries)```
1017
1018Creates perf array named ```name```, with a maximum entry count provided, which must be equal to the number of system cpus. These maps are used to fetch hardware performance counters.
1019
1020For example:
1021
1022```C
1023text="""
1024BPF_PERF_ARRAY(cpu_cycles, NUM_CPUS);
1025"""
1026b = bcc.BPF(text=text, cflags=["-DNUM_CPUS=%d" % multiprocessing.cpu_count()])
1027b["cpu_cycles"].open_perf_event(b["cpu_cycles"].HW_CPU_CYCLES)
1028```
1029
1030This creates a perf array named ```cpu_cycles```, with number of entries equal to the number of cpus/cores. The array is configured so that later calling map.perf_read() will return a hardware-calculated counter of the number of cycles elapsed from some point in the past. Only one type of hardware counter may be configured per table at a time.
1031
1032Methods (covered later): map.perf_read().
1033
1034Examples in situ:
1035[search /tests](https://github.com/iovisor/bcc/search?q=BPF_PERF_ARRAY+path%3Atests&type=Code)
1036
1037### 7. BPF_PERCPU_HASH
1038
1039Syntax: ```BPF_PERCPU_HASH(name [, key_type [, leaf_type [, size]]])```
1040
1041Creates NUM_CPU int-indexed hash maps (associative arrays) named ```name```, with optional parameters. Each CPU will have a separate copy of this array. The copies are not kept synchronized in any way.
1042
1043Note that due to limits defined in the kernel (in linux/mm/percpu.c), the ```leaf_type``` cannot have a size of more than 32KB.
1044In other words, ```BPF_PERCPU_HASH``` elements cannot be larger than 32KB in size.
1045
1046
1047Defaults: ```BPF_PERCPU_HASH(name, key_type=u64, leaf_type=u64, size=10240)```
1048
1049For example:
1050
1051```C
1052BPF_PERCPU_HASH(start, struct request *);
1053```
1054
1055This creates NUM_CPU hashes named ```start``` where the key is a ```struct request *```, and the value defaults to u64.
1056
1057This is a wrapper macro for `BPF_TABLE("percpu_hash", ...)`.
1058
1059Methods (covered later): map.lookup(), map.lookup_or_try_init(), map.delete(), map.update(), map.insert(), map.increment().
1060
1061Examples in situ:
1062[search /examples](https://github.com/iovisor/bcc/search?q=BPF_PERCPU_HASH+path%3Aexamples&type=Code),
1063[search /tools](https://github.com/iovisor/bcc/search?q=BPF_PERCPU_HASH+path%3Atools&type=Code)
1064
1065
1066### 8. BPF_PERCPU_ARRAY
1067
1068Syntax: ```BPF_PERCPU_ARRAY(name [, leaf_type [, size]])```
1069
1070Creates NUM_CPU int-indexed arrays which are optimized for fastest lookup and update, named ```name```, with optional parameters. Each CPU will have a separate copy of this array. The copies are not kept synchronized in any way.
1071
1072Note that due to limits defined in the kernel (in linux/mm/percpu.c), the ```leaf_type``` cannot have a size of more than 32KB.
1073In other words, ```BPF_PERCPU_ARRAY``` elements cannot be larger than 32KB in size.
1074
1075
1076Defaults: ```BPF_PERCPU_ARRAY(name, leaf_type=u64, size=10240)```
1077
1078For example:
1079
1080```C
1081BPF_PERCPU_ARRAY(counts, u64, 32);
1082```
1083
1084This creates NUM_CPU arrays named ```counts``` where with 32 buckets and 64-bit integer values.
1085
1086This is a wrapper macro for `BPF_TABLE("percpu_array", ...)`.
1087
1088Methods (covered later): map.lookup(), map.update(), map.increment(). Note that all array elements are pre-allocated with zero values and can not be deleted.
1089
1090Examples in situ:
1091[search /examples](https://github.com/iovisor/bcc/search?q=BPF_PERCPU_ARRAY+path%3Aexamples&type=Code),
1092[search /tools](https://github.com/iovisor/bcc/search?q=BPF_PERCPU_ARRAY+path%3Atools&type=Code)
1093
1094### 9. BPF_LPM_TRIE
1095
1096Syntax: `BPF_LPM_TRIE(name [, key_type [, leaf_type [, size]]])`
1097
1098Creates a longest prefix match trie map named `name`, with optional parameters.
1099
1100Defaults: `BPF_LPM_TRIE(name, key_type=u64, leaf_type=u64, size=10240)`
1101
1102For example:
1103
1104```c
1105BPF_LPM_TRIE(trie, struct key_v6);
1106```
1107
1108This creates an LPM trie map named `trie` where the key is a `struct key_v6`, and the value defaults to u64.
1109
1110This is a wrapper macro to `BPF_F_TABLE("lpm_trie", ..., BPF_F_NO_PREALLOC)`.
1111
1112Methods (covered later): map.lookup(), map.lookup_or_try_init(), map.delete(), map.update(), map.insert(), map.increment().
1113
1114Examples in situ:
1115[search /examples](https://github.com/iovisor/bcc/search?q=BPF_LPM_TRIE+path%3Aexamples&type=Code),
1116[search /tools](https://github.com/iovisor/bcc/search?q=BPF_LPM_TRIE+path%3Atools&type=Code)
1117
1118### 10. BPF_PROG_ARRAY
1119
1120Syntax: ```BPF_PROG_ARRAY(name, size)```
1121
1122This creates a program array named ```name``` with ```size``` entries. Each entry of the array is either a file descriptor to a bpf program or ```NULL```. The array acts as a jump table so that bpf programs can "tail-call" other bpf programs.
1123
1124This is a wrapper macro for `BPF_TABLE("prog", ...)`.
1125
1126Methods (covered later): map.call().
1127
1128Examples in situ:
1129[search /examples](https://github.com/iovisor/bcc/search?q=BPF_PROG_ARRAY+path%3Aexamples&type=Code),
1130[search /tests](https://github.com/iovisor/bcc/search?q=BPF_PROG_ARRAY+path%3Atests&type=Code),
1131[assign fd](https://github.com/iovisor/bcc/blob/master/examples/networking/tunnel_monitor/monitor.py#L24-L26)
1132
1133### 11. BPF_DEVMAP
1134
1135Syntax: ```BPF_DEVMAP(name, size)```
1136
1137This creates a device map named ```name``` with ```size``` entries. Each entry of the map is an `ifindex` to a network interface. This map is only used in XDP.
1138
1139For example:
1140```C
1141BPF_DEVMAP(devmap, 10);
1142```
1143
1144Methods (covered later): map.redirect_map().
1145
1146Examples in situ:
1147[search /examples](https://github.com/iovisor/bcc/search?q=BPF_DEVMAP+path%3Aexamples&type=Code),
1148
1149### 12. BPF_CPUMAP
1150
1151Syntax: ```BPF_CPUMAP(name, size)```
1152
1153This creates a cpu map named ```name``` with ```size``` entries. The index of the map represents the CPU id and each entry is the size of the ring buffer allocated for the CPU. This map is only used in XDP.
1154
1155For example:
1156```C
1157BPF_CPUMAP(cpumap, 16);
1158```
1159
1160Methods (covered later): map.redirect_map().
1161
1162Examples in situ:
1163[search /examples](https://github.com/iovisor/bcc/search?q=BPF_CPUMAP+path%3Aexamples&type=Code),
1164
1165### 13. BPF_XSKMAP
1166
1167Syntax: ```BPF_XSKMAP(name, size [, "/sys/fs/bpf/xyz"])```
1168
1169This creates a xsk map named ```name``` with ```size``` entries and pin it to the bpffs as a FILE. Each entry represents one NIC's queue id. This map is only used in XDP to redirect packet to an AF_XDP socket. If the AF_XDP socket is binded to a queue which is different than the current packet's queue id, the packet will be dropped. For kernel v5.3 and latter, `lookup` method is available and can be used to check whether and AF_XDP socket is available for the current packet's queue id. More details at [AF_XDP](https://www.kernel.org/doc/html/latest/networking/af_xdp.html).
1170
1171For example:
1172```C
1173BPF_XSKMAP(xsks_map, 8);
1174```
1175
1176Methods (covered later): map.redirect_map(). map.lookup()
1177
1178Examples in situ:
1179[search /examples](https://github.com/iovisor/bcc/search?q=BPF_XSKMAP+path%3Aexamples&type=Code),
1180
1181### 14. BPF_ARRAY_OF_MAPS
1182
1183Syntax: ```BPF_ARRAY_OF_MAPS(name, inner_map_name, size)```
1184
1185This creates an array map with a map-in-map type (BPF_MAP_TYPE_HASH_OF_MAPS) map named ```name``` with ```size``` entries. The inner map meta data is provided by map ```inner_map_name``` and can be most of array or hash maps except ```BPF_MAP_TYPE_PROG_ARRAY```, ```BPF_MAP_TYPE_CGROUP_STORAGE``` and ```BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE```.
1186
1187For example:
1188```C
1189BPF_TABLE("hash", int, int, ex1, 1024);
1190BPF_TABLE("hash", int, int, ex2, 1024);
1191BPF_ARRAY_OF_MAPS(maps_array, "ex1", 10);
1192```
1193
1194### 15. BPF_HASH_OF_MAPS
1195
1196Syntax: ```BPF_HASH_OF_MAPS(name, key_type, inner_map_name, size)```
1197
1198This creates a hash map with a map-in-map type (BPF_MAP_TYPE_HASH_OF_MAPS) map named ```name``` with ```size``` entries. The inner map meta data is provided by map ```inner_map_name``` and can be most of array or hash maps except ```BPF_MAP_TYPE_PROG_ARRAY```, ```BPF_MAP_TYPE_CGROUP_STORAGE``` and ```BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE```.
1199
1200For example:
1201```C
1202BPF_ARRAY(ex1, int, 1024);
1203BPF_ARRAY(ex2, int, 1024);
1204BPF_HASH_OF_MAPS(maps_hash, struct custom_key, "ex1", 10);
1205```
1206
1207### 16. BPF_STACK
1208
1209Syntax: ```BPF_STACK(name, leaf_type, max_entries[, flags])```
1210
1211Creates a stack named ```name``` with value type ```leaf_type``` and max entries ```max_entries```.
1212Stack and Queue maps are only available from Linux 4.20+.
1213
1214For example:
1215
1216```C
1217BPF_STACK(stack, struct event, 10240);
1218```
1219
1220This creates a stack named ```stack``` where the value type is ```struct event```, that holds up to 10240 entries.
1221
1222Methods (covered later): map.push(), map.pop(), map.peek().
1223
1224Examples in situ:
1225[search /tests](https://github.com/iovisor/bcc/search?q=BPF_STACK+path%3Atests&type=Code),
1226
1227### 17. BPF_QUEUE
1228
1229Syntax: ```BPF_QUEUE(name, leaf_type, max_entries[, flags])```
1230
1231Creates a queue named ```name``` with value type ```leaf_type``` and max entries ```max_entries```.
1232Stack and Queue maps are only available from Linux 4.20+.
1233
1234For example:
1235
1236```C
1237BPF_QUEUE(queue, struct event, 10240);
1238```
1239
1240This creates a queue named ```queue``` where the value type is ```struct event```, that holds up to 10240 entries.
1241
1242Methods (covered later): map.push(), map.pop(), map.peek().
1243
1244Examples in situ:
1245[search /tests](https://github.com/iovisor/bcc/search?q=BPF_QUEUE+path%3Atests&type=Code),
1246
1247### 18. BPF_SOCKHASH
1248
1249Syntax: ```BPF_SOCKHASH(name[, key_type [, max_entries)```
1250
1251Creates a hash named ```name```, with optional parameters. sockhash is only available from Linux 4.18+.
1252
1253Default: ```BPF_SOCKHASH(name, key_type=u32, max_entries=10240)```
1254
1255For example:
1256
1257```C
1258struct sock_key {
1259  u32 remote_ip4;
1260  u32 local_ip4;
1261  u32 remote_port;
1262  u32 local_port;
1263};
1264BPF_HASH(skh, struct sock_key, 65535);
1265```
1266
1267This creates a hash named ```skh``` where the key is a ```struct sock_key```.
1268
1269A sockhash is a BPF map type that holds references to sock structs. Then with a new sk/msg redirect bpf helper BPF programs can use the map to redirect skbs/msgs between sockets (```map.sk_redirect_hash()/map.msg_redirect_hash()```).
1270
1271The difference between ```BPF_SOCKHASH``` and ```BPF_SOCKMAP``` is that ```BPF_SOCKMAP``` is implemented based on an array, and enforces keys to be four bytes. While ```BPF_SOCKHASH``` is implemented based on hash table, and the type of key can be specified freely.
1272
1273Methods (covered later): map.sock_hash_update(), map.msg_redirect_hash(), map.sk_redirect_hash().
1274
1275[search /tests](https://github.com/iovisor/bcc/search?q=BPF_SOCKHASH+path%3Atests&type=Code)
1276
1277### 19. map.lookup()
1278
1279Syntax: ```*val map.lookup(&key)```
1280
1281Lookup the key in the map, and return a pointer to its value if it exists, else NULL. We pass the key in as an address to a pointer.
1282
1283Examples in situ:
1284[search /examples](https://github.com/iovisor/bcc/search?q=lookup+path%3Aexamples&type=Code),
1285[search /tools](https://github.com/iovisor/bcc/search?q=lookup+path%3Atools&type=Code)
1286
1287### 20. map.lookup_or_try_init()
1288
1289Syntax: ```*val map.lookup_or_try_init(&key, &zero)```
1290
1291Lookup the key in the map, and return a pointer to its value if it exists, else initialize the key's value to the second argument. This is often used to initialize values to zero. If the key cannot be inserted (e.g. the map is full) then NULL is returned.
1292
1293Examples in situ:
1294[search /examples](https://github.com/iovisor/bcc/search?q=lookup_or_try_init+path%3Aexamples&type=Code),
1295[search /tools](https://github.com/iovisor/bcc/search?q=lookup_or_try_init+path%3Atools&type=Code)
1296
1297Note: The old map.lookup_or_init() may cause return from the function, so lookup_or_try_init() is recommended as it
1298does not have this side effect.
1299
1300### 21. map.delete()
1301
1302Syntax: ```map.delete(&key)```
1303
1304Delete the key from the hash.
1305
1306Examples in situ:
1307[search /examples](https://github.com/iovisor/bcc/search?q=delete+path%3Aexamples&type=Code),
1308[search /tools](https://github.com/iovisor/bcc/search?q=delete+path%3Atools&type=Code)
1309
1310### 22. map.update()
1311
1312Syntax: ```map.update(&key, &val)```
1313
1314Associate the value in the second argument to the key, overwriting any previous value.
1315
1316Examples in situ:
1317[search /examples](https://github.com/iovisor/bcc/search?q=update+path%3Aexamples&type=Code),
1318[search /tools](https://github.com/iovisor/bcc/search?q=update+path%3Atools&type=Code)
1319
1320### 23. map.insert()
1321
1322Syntax: ```map.insert(&key, &val)```
1323
1324Associate the value in the second argument to the key, only if there was no previous value.
1325
1326Examples in situ:
1327[search /examples](https://github.com/iovisor/bcc/search?q=insert+path%3Aexamples&type=Code),
1328[search /tools](https://github.com/iovisor/bcc/search?q=insert+path%3Atools&type=Code)
1329
1330### 24. map.increment()
1331
1332Syntax: ```map.increment(key[, increment_amount])```
1333
1334Increments the key's value by `increment_amount`, which defaults to 1. Used for histograms.
1335
1336```map.increment()``` are not atomic. In the concurrency case. If you want more accurate results, use ```map.atomic_increment()``` instead of ```map.increment()```. The overhead of ```map.increment()``` and ```map.atomic_increment()``` is similar.
1337
1338Note. When using ```map.atomic_increment()``` to operate on a BPF map of type ```BPF_MAP_TYPE_HASH```, ```map.atomic_increment()``` does not guarantee the atomicity of the operation when the specified key does not exist.
1339
1340Examples in situ:
1341[search /examples](https://github.com/iovisor/bcc/search?q=increment+path%3Aexamples&type=Code),
1342[search /tools](https://github.com/iovisor/bcc/search?q=increment+path%3Atools&type=Code)
1343
1344### 25. map.get_stackid()
1345
1346Syntax: ```int map.get_stackid(void *ctx, u64 flags)```
1347
1348This walks the stack found via the struct pt_regs in ```ctx```, saves it in the stack trace map, and returns a unique ID for the stack trace.
1349
1350Examples in situ:
1351[search /examples](https://github.com/iovisor/bcc/search?q=get_stackid+path%3Aexamples&type=Code),
1352[search /tools](https://github.com/iovisor/bcc/search?q=get_stackid+path%3Atools&type=Code)
1353
1354### 26. map.perf_read()
1355
1356Syntax: ```u64 map.perf_read(u32 cpu)```
1357
1358This returns the hardware performance counter as configured in [5. BPF_PERF_ARRAY](#5-bpf_perf_array)
1359
1360Examples in situ:
1361[search /tests](https://github.com/iovisor/bcc/search?q=perf_read+path%3Atests&type=Code)
1362
1363### 27. map.call()
1364
1365Syntax: ```void map.call(void *ctx, int index)```
1366
1367This invokes ```bpf_tail_call()``` to tail-call the bpf program which the ```index``` entry in [BPF_PROG_ARRAY](#10-bpf_prog_array) points to. A tail-call is different from the normal call. It reuses the current stack frame after jumping to another bpf program and never goes back. If the ```index``` entry is empty, it won't jump anywhere and the program execution continues as normal.
1368
1369For example:
1370
1371```C
1372BPF_PROG_ARRAY(prog_array, 10);
1373
1374int tail_call(void *ctx) {
1375    bpf_trace_printk("Tail-call\n");
1376    return 0;
1377}
1378
1379int do_tail_call(void *ctx) {
1380    bpf_trace_printk("Original program\n");
1381    prog_array.call(ctx, 2);
1382    return 0;
1383}
1384```
1385
1386```Python
1387b = BPF(src_file="example.c")
1388tail_fn = b.load_func("tail_call", BPF.KPROBE)
1389prog_array = b.get_table("prog_array")
1390prog_array[c_int(2)] = c_int(tail_fn.fd)
1391b.attach_kprobe(event="some_kprobe_event", fn_name="do_tail_call")
1392```
1393
1394This assigns ```tail_call()``` to ```prog_array[2]```. In the end of ```do_tail_call()```, ```prog_array.call(ctx, 2)``` tail-calls ```tail_call()``` and executes it.
1395
1396**NOTE:** To prevent infinite loop, the maximum number of tail-calls is 32 ([```MAX_TAIL_CALL_CNT```](https://github.com/torvalds/linux/search?l=C&q=MAX_TAIL_CALL_CNT+path%3Ainclude%2Flinux&type=Code)).
1397
1398Examples in situ:
1399[search /examples](https://github.com/iovisor/bcc/search?l=C&q=call+path%3Aexamples&type=Code),
1400[search /tests](https://github.com/iovisor/bcc/search?l=C&q=call+path%3Atests&type=Code)
1401
1402### 28. map.redirect_map()
1403
1404Syntax: ```int map.redirect_map(int index, int flags)```
1405
1406This redirects the incoming packets based on the ```index``` entry. If the map is [BPF_DEVMAP](#11-bpf_devmap), the packet will be sent to the transmit queue of the network interface that the entry points to. If the map is [BPF_CPUMAP](#12-bpf_cpumap), the packet will be sent to the ring buffer of the ```index``` CPU and be processed by the CPU later. If the map is [BPF_XSKMAP](#13-bpf_xskmap), the packet will be sent to the AF_XDP socket attached to the queue.
1407
1408If the packet is redirected successfully, the function will return XDP_REDIRECT. Otherwise, it will return XDP_ABORTED to discard the packet.
1409
1410For example:
1411```C
1412BPF_DEVMAP(devmap, 1);
1413
1414int redirect_example(struct xdp_md *ctx) {
1415    return devmap.redirect_map(0, 0);
1416}
1417int xdp_dummy(struct xdp_md *ctx) {
1418    return XDP_PASS;
1419}
1420```
1421
1422```Python
1423ip = pyroute2.IPRoute()
1424idx = ip.link_lookup(ifname="eth1")[0]
1425
1426b = bcc.BPF(src_file="example.c")
1427
1428devmap = b.get_table("devmap")
1429devmap[c_uint32(0)] = c_int(idx)
1430
1431in_fn = b.load_func("redirect_example", BPF.XDP)
1432out_fn = b.load_func("xdp_dummy", BPF.XDP)
1433b.attach_xdp("eth0", in_fn, 0)
1434b.attach_xdp("eth1", out_fn, 0)
1435```
1436
1437Examples in situ:
1438[search /examples](https://github.com/iovisor/bcc/search?l=C&q=redirect_map+path%3Aexamples&type=Code),
1439
1440### 29. map.push()
1441
1442Syntax: ```int map.push(&val, int flags)```
1443
1444Push an element onto a Stack or Queue table.
1445Passing BPF_EXIST as a flag causes the Queue or Stack to discard the oldest element if it is full.
1446Returns 0 on success, negative error on failure.
1447
1448Examples in situ:
1449[search /tests](https://github.com/iovisor/bcc/search?q=push+path%3Atests&type=Code),
1450
1451### 30. map.pop()
1452
1453Syntax: ```int map.pop(&val)```
1454
1455Pop an element from a Stack or Queue table. ```*val``` is populated with the result.
1456Unlike peeking, popping removes the element.
1457Returns 0 on success, negative error on failure.
1458
1459Examples in situ:
1460[search /tests](https://github.com/iovisor/bcc/search?q=pop+path%3Atests&type=Code),
1461
1462### 31. map.peek()
1463
1464Syntax: ```int map.peek(&val)```
1465
1466Peek an element at the head of a Stack or Queue table. ```*val``` is populated with the result.
1467Unlike popping, peeking does not remove the element.
1468Returns 0 on success, negative error on failure.
1469
1470Examples in situ:
1471[search /tests](https://github.com/iovisor/bcc/search?q=peek+path%3Atests&type=Code),
1472
1473### 32. map.sock_hash_update()
1474
1475Syntax: ```int map.sock_hash_update(struct bpf_sock_ops *skops, &key, int flags)```
1476
1477Add an entry to, or update a sockhash map referencing sockets. The skops is used as a new value for the entry associated to key. flags is one of:
1478
1479```
1480BPF_NOEXIST: The entry for key must not exist in the map.
1481BPF_EXIST: The entry for key must already exist in the map.
1482BPF_ANY: No condition on the existence of the entry for key.
1483```
1484
1485If the map has eBPF programs (parser and verdict), those will be inherited by the socket being added. If the socket is already attached to eBPF programs, this results in an error.
1486
1487Return 0 on success, or a negative error in case of failure.
1488
1489Examples in situ:
1490[search /tests](https://github.com/iovisor/bcc/search?q=sock_hash_update+path%3Atests&type=Code),
1491
1492### 33. map.msg_redirect_hash()
1493
1494Syntax: ```int map.msg_redirect_hash(struct sk_msg_buff *msg, void *key, u64 flags)```
1495
1496This helper is used in programs implementing policies at the socket level. If the message msg is allowed to pass (i.e. if the verdict eBPF program returns SK_PASS), redirect it to the socket referenced by map (of type BPF_MAP_TYPE_SOCKHASH) using hash key. Both ingress and egress interfaces can be used for redirection. The BPF_F_INGRESS value in flags is used to make the distinction (ingress path is selected if the flag is present, egress path otherwise). This is the only flag supported for now.
1497
1498Return SK_PASS on success, or SK_DROP on error.
1499
1500Examples in situ:
1501[search /tests](https://github.com/iovisor/bcc/search?q=msg_redirect_hash+path%3Atests&type=Code),
1502
1503### 34. map.sk_redirect_hash()
1504
1505Syntax: ```int map.sk_redirect_hash(struct sk_buff *skb, void *key, u64 flags)```
1506
1507This helper is used in programs implementing policies at the skb socket level. If the sk_buff skb is allowed to pass (i.e. if the verdict eBPF program returns SK_PASS), redirect it to the socket referenced by map (of  type  BPF_MAP_TYPE_SOCKHASH) using hash key. Both ingress and egress interfaces can be used for redirection. The BPF_F_INGRESS value in flags is used to make the distinction (ingress path is selected if the flag is present, egress otherwise). This is the only flag supported for now.
1508
1509Return SK_PASS on success, or SK_DROP on error.
1510
1511Examples in situ:
1512[search /tests](https://github.com/iovisor/bcc/search?q=sk_redirect_hash+path%3Atests&type=Code),
1513
1514## Licensing
1515
1516Depending on which [BPF helpers](kernel-versions.md#helpers) are used, a GPL-compatible license is required.
1517
1518The special BCC macro `BPF_LICENSE` specifies the license of the BPF program. You can set the license as a comment in your source code, but the kernel has a special interface to specify it programmatically. If you need to use GPL-only helpers, it is recommended to specify the macro in your C code so that the kernel can understand it:
1519
1520```C
1521// SPDX-License-Identifier: GPL-2.0+
1522#define BPF_LICENSE GPL
1523```
1524
1525Otherwise, the kernel may reject loading your program (see the [error description](#2-cannot-call-gpl-only-function-from-proprietary-program) below). Note that it supports multiple words and quotes are not necessary:
1526
1527```C
1528// SPDX-License-Identifier: GPL-2.0+ OR BSD-2-Clause
1529#define BPF_LICENSE Dual BSD/GPL
1530```
1531
1532Check the [BPF helpers reference](kernel-versions.md#helpers) to see which helpers are GPL-only and what the kernel understands as GPL-compatible.
1533
1534**If the macro is not specified, BCC will automatically define the license of the program as GPL.**
1535
1536## Rewriter
1537
1538One of jobs for rewriter is to turn implicit memory accesses to explicit ones using kernel helpers. Recent kernel introduced a config option ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE which will be set for architectures who user address space and kernel address are disjoint. x86 and arm has this config option set while s390 does not. If ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE is not set, the bpf old helper `bpf_probe_read()` will not be available. Some existing users may have implicit memory accesses to access user memory, so using `bpf_probe_read_kernel()` will cause their application to fail. Therefore, for non-s390, the rewriter will use `bpf_probe_read()` for these implicit memory accesses. For s390, `bpf_probe_read_kernel()` is used as default and users should use `bpf_probe_read_user()` explicitly when accessing user memories.
1539
1540# bcc Python
1541
1542## Initialization
1543
1544Constructors.
1545
1546### 1. BPF
1547
1548Syntax: ```BPF({text=BPF_program | src_file=filename} [, usdt_contexts=[USDT_object, ...]] [, cflags=[arg1, ...]] [, debug=int])```
1549
1550Creates a BPF object. This is the main object for defining a BPF program, and interacting with its output.
1551
1552Exactly one of `text` or `src_file` must be supplied (not both).
1553
1554The `cflags` specifies additional arguments to be passed to the compiler, for example `-DMACRO_NAME=value` or `-I/include/path`.  The arguments are passed as an array, with each element being an additional argument.  Note that strings are not split on whitespace, so each argument must be a different element of the array, e.g. `["-include", "header.h"]`.
1555
1556The `debug` flags control debug output, and can be or'ed together:
1557- `DEBUG_LLVM_IR = 0x1` compiled LLVM IR
1558- `DEBUG_BPF = 0x2` loaded BPF bytecode and register state on branches
1559- `DEBUG_PREPROCESSOR = 0x4` pre-processor result
1560- `DEBUG_SOURCE = 0x8` ASM instructions embedded with source
1561- `DEBUG_BPF_REGISTER_STATE = 0x10` register state on all instructions in addition to DEBUG_BPF
1562- `DEBUG_BTF = 0x20` print the messages from the `libbpf` library.
1563
1564Examples:
1565
1566```Python
1567# define entire BPF program in one line:
1568BPF(text='int do_trace(void *ctx) { bpf_trace_printk("hit!\\n"); return 0; }');
1569
1570# define program as a variable:
1571prog = """
1572int hello(void *ctx) {
1573    bpf_trace_printk("Hello, World!\\n");
1574    return 0;
1575}
1576"""
1577b = BPF(text=prog)
1578
1579# source a file:
1580b = BPF(src_file = "vfsreadlat.c")
1581
1582# include a USDT object:
1583u = USDT(pid=int(pid))
1584[...]
1585b = BPF(text=bpf_text, usdt_contexts=[u])
1586
1587# add include paths:
1588u = BPF(text=prog, cflags=["-I/path/to/include"])
1589```
1590
1591Examples in situ:
1592[search /examples](https://github.com/iovisor/bcc/search?q=BPF+path%3Aexamples+language%3Apython&type=Code),
1593[search /tools](https://github.com/iovisor/bcc/search?q=BPF+path%3Atools+language%3Apython&type=Code)
1594
1595### 2. USDT
1596
1597Syntax: ```USDT({pid=pid | path=path})```
1598
1599Creates an object to instrument User Statically-Defined Tracing (USDT) probes. Its primary method is ```enable_probe()```.
1600
1601Arguments:
1602
1603- pid: attach to this process ID.
1604- path: instrument USDT probes from this binary path.
1605
1606Examples:
1607
1608```Python
1609# include a USDT object:
1610u = USDT(pid=int(pid))
1611[...]
1612b = BPF(text=bpf_text, usdt_contexts=[u])
1613```
1614
1615Examples in situ:
1616[search /examples](https://github.com/iovisor/bcc/search?q=USDT+path%3Aexamples+language%3Apython&type=Code),
1617[search /tools](https://github.com/iovisor/bcc/search?q=USDT+path%3Atools+language%3Apython&type=Code)
1618
1619## Events
1620
1621### 1. attach_kprobe()
1622
1623Syntax: ```BPF.attach_kprobe(event="event", fn_name="name")```
1624
1625Instruments the kernel function ```event()``` using kernel dynamic tracing of the function entry, and attaches our C defined function ```name()``` to be called when the kernel function is called.
1626
1627For example:
1628
1629```Python
1630b.attach_kprobe(event="sys_clone", fn_name="do_trace")
1631```
1632
1633This will instrument the kernel ```sys_clone()``` function, which will then run our BPF defined ```do_trace()``` function each time it is called.
1634
1635You can call attach_kprobe() more than once, and attach your BPF function to multiple kernel functions.
1636You can also call attach_kprobe() more than once to attach multiple BPF functions to the same kernel function.
1637
1638See the previous kprobes section for how to instrument arguments from BPF.
1639
1640Examples in situ:
1641[search /examples](https://github.com/iovisor/bcc/search?q=attach_kprobe+path%3Aexamples+language%3Apython&type=Code),
1642[search /tools](https://github.com/iovisor/bcc/search?q=attach_kprobe+path%3Atools+language%3Apython&type=Code)
1643
1644### 2. attach_kretprobe()
1645
1646Syntax: ```BPF.attach_kretprobe(event="event", fn_name="name" [, maxactive=int])```
1647
1648Instruments the return of the kernel function ```event()``` using kernel dynamic tracing of the function return, and attaches our C defined function ```name()``` to be called when the kernel function returns.
1649
1650For example:
1651
1652```Python
1653b.attach_kretprobe(event="vfs_read", fn_name="do_return")
1654```
1655
1656This will instrument the kernel ```vfs_read()``` function, which will then run our BPF defined ```do_return()``` function each time it is called.
1657
1658You can call attach_kretprobe() more than once, and attach your BPF function to multiple kernel function returns.
1659You can also call attach_kretprobe() more than once to attach multiple BPF functions to the same kernel function return.
1660
1661When a kretprobe is installed on a kernel function, there is a limit on how many parallel calls it can catch. You can change that limit with ```maxactive```. See the kprobes documentation for its default value.
1662
1663See the previous kretprobes section for how to instrument the return value from BPF.
1664
1665Examples in situ:
1666[search /examples](https://github.com/iovisor/bcc/search?q=attach_kretprobe+path%3Aexamples+language%3Apython&type=Code),
1667[search /tools](https://github.com/iovisor/bcc/search?q=attach_kretprobe+path%3Atools+language%3Apython&type=Code)
1668
1669### 3. attach_tracepoint()
1670
1671Syntax: ```BPF.attach_tracepoint(tp="tracepoint", fn_name="name")```
1672
1673Instruments the kernel tracepoint described by ```tracepoint```, and when hit, runs the BPF function ```name()```.
1674
1675This is an explicit way to instrument tracepoints. The ```TRACEPOINT_PROBE``` syntax, covered in the earlier tracepoints section, is an alternate method with the advantage of auto-declaring an ```args``` struct containing the tracepoint arguments. With ```attach_tracepoint()```, the tracepoint arguments need to be declared in the BPF program.
1676
1677For example:
1678
1679```Python
1680# define BPF program
1681bpf_text = """
1682#include <uapi/linux/ptrace.h>
1683
1684struct urandom_read_args {
1685    // from /sys/kernel/debug/tracing/events/random/urandom_read/format
1686    u64 __unused__;
1687    u32 got_bits;
1688    u32 pool_left;
1689    u32 input_left;
1690};
1691
1692int printarg(struct urandom_read_args *args) {
1693    bpf_trace_printk("%d\\n", args->got_bits);
1694    return 0;
1695};
1696"""
1697
1698# load BPF program
1699b = BPF(text=bpf_text)
1700b.attach_tracepoint("random:urandom_read", "printarg")
1701```
1702
1703Notice how the first argument to ```printarg()``` is now our defined struct.
1704
1705Examples in situ:
1706[code](https://github.com/iovisor/bcc/blob/a4159da8c4ea8a05a3c6e402451f530d6e5a8b41/examples/tracing/urandomread-explicit.py#L41),
1707[search /examples](https://github.com/iovisor/bcc/search?q=attach_tracepoint+path%3Aexamples+language%3Apython&type=Code),
1708[search /tools](https://github.com/iovisor/bcc/search?q=attach_tracepoint+path%3Atools+language%3Apython&type=Code)
1709
1710### 4. attach_uprobe()
1711
1712Syntax: ```BPF.attach_uprobe(name="location", sym="symbol", fn_name="name" [, sym_off=int])```, ```BPF.attach_uprobe(name="location", sym_re="regex", fn_name="name")```, ```BPF.attach_uprobe(name="location", addr=int, fn_name="name")```
1713
1714
1715Instruments the user-level function ```symbol()``` from either the library or binary named by ```location``` using user-level dynamic tracing of the function entry, and attach our C defined function ```name()``` to be called whenever the user-level function is called. If ```sym_off``` is given, the function is attached to the offset within the symbol.
1716
1717The real address ```addr``` may be supplied in place of ```sym```, in which case ```sym``` must be set to its default value. If the file is a non-PIE executable, ```addr``` must be a virtual address, otherwise it must be an offset relative to the file load address.
1718
1719Instead of a symbol name, a regular expression can be provided in ```sym_re```. The uprobe will then attach to symbols that match the provided regular expression.
1720
1721Libraries can be given in the name argument without the lib prefix, or with the full path (/usr/lib/...). Binaries can be given only with the full path (/bin/sh).
1722
1723For example:
1724
1725```Python
1726b.attach_uprobe(name="c", sym="strlen", fn_name="count")
1727```
1728
1729This will instrument ```strlen()``` function from libc, and call our BPF function ```count()``` when it is called. Note how the "lib" in "libc" is not necessary to specify.
1730
1731Other examples:
1732
1733```Python
1734b.attach_uprobe(name="c", sym="getaddrinfo", fn_name="do_entry")
1735b.attach_uprobe(name="/usr/bin/python", sym="main", fn_name="do_main")
1736```
1737
1738You can call attach_uprobe() more than once, and attach your BPF function to multiple user-level functions.
1739
1740See the previous uprobes section for how to instrument arguments from BPF.
1741
1742Examples in situ:
1743[search /examples](https://github.com/iovisor/bcc/search?q=attach_uprobe+path%3Aexamples+language%3Apython&type=Code),
1744[search /tools](https://github.com/iovisor/bcc/search?q=attach_uprobe+path%3Atools+language%3Apython&type=Code)
1745
1746### 5. attach_uretprobe()
1747
1748Syntax: ```BPF.attach_uretprobe(name="location", sym="symbol", fn_name="name")```
1749
1750Instruments the return of the user-level function ```symbol()``` from either the library or binary named by ```location``` using user-level dynamic tracing of the function return, and attach our C defined function ```name()``` to be called whenever the user-level function returns.
1751
1752For example:
1753
1754```Python
1755b.attach_uretprobe(name="c", sym="strlen", fn_name="count")
1756```
1757
1758This will instrument ```strlen()``` function from libc, and call our BPF function ```count()``` when it returns.
1759
1760Other examples:
1761
1762```Python
1763b.attach_uretprobe(name="c", sym="getaddrinfo", fn_name="do_return")
1764b.attach_uretprobe(name="/usr/bin/python", sym="main", fn_name="do_main")
1765```
1766
1767You can call attach_uretprobe() more than once, and attach your BPF function to multiple user-level functions.
1768
1769See the previous uretprobes section for how to instrument the return value from BPF.
1770
1771Examples in situ:
1772[search /examples](https://github.com/iovisor/bcc/search?q=attach_uretprobe+path%3Aexamples+language%3Apython&type=Code),
1773[search /tools](https://github.com/iovisor/bcc/search?q=attach_uretprobe+path%3Atools+language%3Apython&type=Code)
1774
1775### 6. USDT.enable_probe()
1776
1777Syntax: ```USDT.enable_probe(probe=probe, fn_name=name)```
1778
1779Attaches a BPF C function ```name``` to the USDT probe ```probe```.
1780
1781Example:
1782
1783```Python
1784# enable USDT probe from given PID
1785u = USDT(pid=int(pid))
1786u.enable_probe(probe="http__server__request", fn_name="do_trace")
1787```
1788
1789To check if your binary has USDT probes, and what they are, you can run ```readelf -n binary``` and check the stap debug section.
1790
1791Examples in situ:
1792[search /examples](https://github.com/iovisor/bcc/search?q=enable_probe+path%3Aexamples+language%3Apython&type=Code),
1793[search /tools](https://github.com/iovisor/bcc/search?q=enable_probe+path%3Atools+language%3Apython&type=Code)
1794
1795### 7. attach_raw_tracepoint()
1796
1797Syntax: ```BPF.attach_raw_tracepoint(tp="tracepoint", fn_name="name")```
1798
1799Instruments the kernel raw tracepoint described by ```tracepoint``` (```event``` only, no ```category```), and when hit, runs the BPF function ```name()```.
1800
1801This is an explicit way to instrument tracepoints. The ```RAW_TRACEPOINT_PROBE``` syntax, covered in the earlier raw tracepoints section, is an alternate method.
1802
1803For example:
1804
1805```Python
1806b.attach_raw_tracepoint("sched_switch", "do_trace")
1807```
1808
1809Examples in situ:
1810[search /tools](https://github.com/iovisor/bcc/search?q=attach_raw_tracepoint+path%3Atools+language%3Apython&type=Code)
1811
1812### 8. attach_raw_socket()
1813
1814Syntax: ```BPF.attach_raw_socket(fn, dev)```
1815
1816Attaches a BPF function to the specified network interface.
1817
1818The ```fn``` must be the type of ```BPF.function``` and the bpf_prog type needs to be ```BPF_PROG_TYPE_SOCKET_FILTER```  (```fn=BPF.load_func(func_name, BPF.SOCKET_FILTER)```)
1819
1820```fn.sock``` is a non-blocking raw socket that was created and bound to ```dev```.
1821
1822All network packets processed by ```dev``` are copied to the ```recv-q``` of ```fn.sock``` after being processed by bpf_prog. Try to recv packet form ```fn.sock``` with rev/recvfrom/recvmsg. Note that if the ```recv-q``` is not read in time after the ```recv-q``` is full, the copied packets will be discarded.
1823
1824We can use this feature to capture network packets just like ```tcpdump```.
1825
1826We can use ```ss --bpf --packet -p``` to observe ```fn.sock```.
1827
1828Example:
1829
1830```Python
1831BPF.attach_raw_socket(bpf_func, ifname)
1832```
1833
1834Examples in situ:
1835[search /examples](https://github.com/iovisor/bcc/search?q=attach_raw_socket+path%3Aexamples+language%3Apython&type=Code)
1836### 9. attach_xdp()
1837Syntax: ```BPF.attach_xdp(dev="device", fn=b.load_func("fn_name",BPF.XDP), flags)```
1838
1839Instruments the network driver described by ```dev``` , and then receives the packet, run the BPF function ```fn_name()``` with flags.
1840
1841Here is a list of optional flags.
1842
1843```Python
1844# from xdp_flags uapi/linux/if_link.h
1845XDP_FLAGS_UPDATE_IF_NOEXIST = (1 << 0)
1846XDP_FLAGS_SKB_MODE = (1 << 1)
1847XDP_FLAGS_DRV_MODE = (1 << 2)
1848XDP_FLAGS_HW_MODE = (1 << 3)
1849XDP_FLAGS_REPLACE = (1 << 4)
1850```
1851
1852You can use flags like this ```BPF.attach_xdp(dev="device", fn=b.load_func("fn_name",BPF.XDP), flags=BPF.XDP_FLAGS_UPDATE_IF_NOEXIST)```
1853
1854The default value of flags is 0. This means if there is no xdp program with `device`, the fn will run with that device. If there is an xdp program running with device, the old program will be replaced with new fn program.
1855
1856Currently, bcc does not support XDP_FLAGS_REPLACE flag. The following are the descriptions of other flags.
1857
1858#### 1. XDP_FLAGS_UPDATE_IF_NOEXIST
1859If an XDP program is already attached to the specified driver, attaching the XDP program again will fail.
1860
1861#### 2. XDP_FLAGS_SKB_MODE
1862Driver doesn’t have support for XDP, but the kernel fakes it.
1863XDP program works, but there’s no real performance benefit because packets are handed to kernel stack anyways which then emulates XDP – this is usually supported with generic network drivers used in home computers, laptops, and virtualized HW.
1864
1865#### 3. XDP_FLAGS_DRV_MODE
1866A driver has XDP support and can hand then to XDP without kernel stack interaction – Few drivers can support it and those are usually for enterprise HW.
1867
1868#### 4. XDP_FLAGS_HW_MODE
1869XDP can be loaded and executed directly on the NIC – just a handful of NICs can do that.
1870
1871
1872For example:
1873
1874```Python
1875b.attach_xdp(dev="ens1", fn=b.load_func("do_xdp", BPF.XDP))
1876```
1877
1878This will instrument the network device ```ens1``` , which will then run our BPF defined ```do_xdp()``` function each time it receives packets.
1879
1880Don't forget to call ```b.remove_xdp("ens1")``` at the end!
1881
1882Examples in situ:
1883[search /examples](https://github.com/iovisor/bcc/search?q=attach_xdp+path%3Aexamples+language%3Apython&type=Code),
1884[search /tools](https://github.com/iovisor/bcc/search?q=attach_xdp+path%3Atools+language%3Apython&type=Code)
1885
1886### 10. attach_func()
1887
1888Syntax: ```BPF.attach_func(fn, attachable_fd, attach_type [, flags])```
1889
1890Attaches a BPF function of the specified type to a particular ```attachable_fd```. if the ```attach_type``` is ```BPF_FLOW_DISSECTOR```, the function is expected to attach to current net namespace and ```attachable_fd``` must be 0.
1891
1892For example:
1893
1894```Python
1895b.attach_func(fn, cgroup_fd, BPFAttachType.CGROUP_SOCK_OPS)
1896b.attach_func(fn, map_fd, BPFAttachType.SK_MSG_VERDICT)
1897```
1898
1899Note. When attached to "global" hooks (xdp, tc, lwt, cgroup). If the "BPF function" is no longer needed after the program terminates, be sure to call `detach_func` when the program exits.
1900
1901Examples in situ:
1902
1903[search /examples](https://github.com/iovisor/bcc/search?q=attach_func+path%3Aexamples+language%3Apython&type=Code),
1904
1905### 11. detach_func()
1906
1907Syntax: ```BPF.detach_func(fn, attachable_fd, attach_type)```
1908
1909Detaches a BPF function of the specified type.
1910
1911For example:
1912
1913```Python
1914b.detach_func(fn, cgroup_fd, BPFAttachType.CGROUP_SOCK_OPS)
1915b.detach_func(fn, map_fd, BPFAttachType.SK_MSG_VERDICT)
1916```
1917
1918Examples in situ:
1919
1920[search /examples](https://github.com/iovisor/bcc/search?q=detach_func+path%3Aexamples+language%3Apython&type=Code),
1921
1922### 12. detach_kprobe()
1923
1924Syntax: ```BPF.detach_kprobe(event="event", fn_name="name")```
1925
1926Detach a kprobe handler function of the specified event.
1927
1928For example:
1929
1930```Python
1931b.detach_kprobe(event="__page_cache_alloc", fn_name="trace_func_entry")
1932```
1933
1934### 13. detach_kretprobe()
1935
1936Syntax: ```BPF.detach_kretprobe(event="event", fn_name="name")```
1937
1938Detach a kretprobe handler function of the specified event.
1939
1940For example:
1941
1942```Python
1943b.detach_kretprobe(event="__page_cache_alloc", fn_name="trace_func_return")
1944```
1945
1946## Debug Output
1947
1948### 1. trace_print()
1949
1950Syntax: ```BPF.trace_print(fmt="fields")```
1951
1952This method continually reads the globally shared /sys/kernel/debug/tracing/trace_pipe file and prints its contents. This file can be written to via BPF and the bpf_trace_printk() function, however, that method has limitations, including a lack of concurrent tracing support. The BPF_PERF_OUTPUT mechanism, covered earlier, is preferred.
1953
1954Arguments:
1955
1956- ```fmt```: optional, and can contain a field formatting string. It defaults to ```None```.
1957
1958Examples:
1959
1960```Python
1961# print trace_pipe output as-is:
1962b.trace_print()
1963
1964# print PID and message:
1965b.trace_print(fmt="{1} {5}")
1966```
1967
1968Examples in situ:
1969[search /examples](https://github.com/iovisor/bcc/search?q=trace_print+path%3Aexamples+language%3Apython&type=Code),
1970[search /tools](https://github.com/iovisor/bcc/search?q=trace_print+path%3Atools+language%3Apython&type=Code)
1971
1972### 2. trace_fields()
1973
1974Syntax: ```BPF.trace_fields(nonblocking=False)```
1975
1976This method reads one line from the globally shared /sys/kernel/debug/tracing/trace_pipe file and returns it as fields. This file can be written to via BPF and the bpf_trace_printk() function, however, that method has limitations, including a lack of concurrent tracing support. The BPF_PERF_OUTPUT mechanism, covered earlier, is preferred.
1977
1978Arguments:
1979
1980- ```nonblocking```: optional, defaults to ```False```. When set to ```True```, the program will not block waiting for input.
1981
1982Examples:
1983
1984```Python
1985while 1:
1986    try:
1987        (task, pid, cpu, flags, ts, msg) = b.trace_fields()
1988    except ValueError:
1989        continue
1990    [...]
1991```
1992
1993Examples in situ:
1994[search /examples](https://github.com/iovisor/bcc/search?q=trace_fields+path%3Aexamples+language%3Apython&type=Code),
1995[search /tools](https://github.com/iovisor/bcc/search?q=trace_fields+path%3Atools+language%3Apython&type=Code)
1996
1997## Output APIs
1998
1999Normal output from a BPF program is either:
2000
2001- per-event: using PERF_EVENT_OUTPUT, open_perf_buffer(), and perf_buffer_poll().
2002- map summary: using items(), or print_log2_hist(), covered in the Maps section.
2003
2004### 1. perf_buffer_poll()
2005
2006Syntax: ```BPF.perf_buffer_poll(timeout=T)```
2007
2008This polls from all open perf ring buffers, calling the callback function that was provided when calling open_perf_buffer for each entry.
2009
2010The timeout parameter is optional and measured in milliseconds. In its absence, polling continues indefinitely.
2011
2012Example:
2013
2014```Python
2015# loop with callback to print_event
2016b["events"].open_perf_buffer(print_event)
2017while 1:
2018    try:
2019        b.perf_buffer_poll()
2020    except KeyboardInterrupt:
2021        exit();
2022```
2023
2024Examples in situ:
2025[code](https://github.com/iovisor/bcc/blob/v0.9.0/examples/tracing/hello_perf_output.py#L55),
2026[search /examples](https://github.com/iovisor/bcc/search?q=perf_buffer_poll+path%3Aexamples+language%3Apython&type=Code),
2027[search /tools](https://github.com/iovisor/bcc/search?q=perf_buffer_poll+path%3Atools+language%3Apython&type=Code)
2028
2029### 2. ring_buffer_poll()
2030
2031Syntax: ```BPF.ring_buffer_poll(timeout=T)```
2032
2033This polls from all open ringbuf ring buffers, calling the callback function that was provided when calling open_ring_buffer for each entry.
2034
2035The timeout parameter is optional and measured in milliseconds. In its absence, polling continues until
2036there is no more data or the callback returns a negative value.
2037
2038Example:
2039
2040```Python
2041# loop with callback to print_event
2042b["events"].open_ring_buffer(print_event)
2043while 1:
2044    try:
2045        b.ring_buffer_poll(30)
2046    except KeyboardInterrupt:
2047        exit();
2048```
2049
2050Examples in situ:
2051[search /examples](https://github.com/iovisor/bcc/search?q=ring_buffer_poll+path%3Aexamples+language%3Apython&type=Code),
2052
2053### 3. ring_buffer_consume()
2054
2055Syntax: ```BPF.ring_buffer_consume()```
2056
2057This consumes from all open ringbuf ring buffers, calling the callback function that was provided when calling open_ring_buffer for each entry.
2058
2059Unlike ```ring_buffer_poll```, this method **does not poll for data** before attempting to consume.
2060This reduces latency at the expense of higher CPU consumption. If you are unsure which to use,
2061use ```ring_buffer_poll```.
2062
2063Example:
2064
2065```Python
2066# loop with callback to print_event
2067b["events"].open_ring_buffer(print_event)
2068while 1:
2069    try:
2070        b.ring_buffer_consume()
2071    except KeyboardInterrupt:
2072        exit();
2073```
2074
2075Examples in situ:
2076[search /examples](https://github.com/iovisor/bcc/search?q=ring_buffer_consume+path%3Aexamples+language%3Apython&type=Code),
2077
2078## Map APIs
2079
2080Maps are BPF data stores, and are used in bcc to implement a table, and then higher level objects on top of tables, including hashes and histograms.
2081
2082### 1. get_table()
2083
2084Syntax: ```BPF.get_table(name)```
2085
2086Returns a table object. This is no longer used, as tables can now be read as items from BPF. Eg: ```BPF[name]```.
2087
2088Examples:
2089
2090```Python
2091counts = b.get_table("counts")
2092
2093counts = b["counts"]
2094```
2095
2096These are equivalent.
2097
2098### 2. open_perf_buffer()
2099
2100Syntax: ```table.open_perf_buffers(callback, page_cnt=N, lost_cb=None)```
2101
2102This operates on a table as defined in BPF as BPF_PERF_OUTPUT(), and associates the callback Python function ```callback``` to be called when data is available in the perf ring buffer. This is part of the recommended mechanism for transferring per-event data from kernel to user space. The size of the perf ring buffer can be specified via the ```page_cnt``` parameter, which must be a power of two number of pages and defaults to 8. If the callback is not processing data fast enough, some submitted data may be lost. ```lost_cb``` will be called to log / monitor the lost count. If ```lost_cb``` is the default ```None``` value, it will just print a line of message to ```stderr```.
2103
2104Example:
2105
2106```Python
2107# process event
2108def print_event(cpu, data, size):
2109    event = ct.cast(data, ct.POINTER(Data)).contents
2110    [...]
2111
2112# loop with callback to print_event
2113b["events"].open_perf_buffer(print_event)
2114while 1:
2115    try:
2116        b.perf_buffer_poll()
2117    except KeyboardInterrupt:
2118        exit()
2119```
2120
2121Note that the data structure transferred will need to be declared in C in the BPF program. For example:
2122
2123```C
2124// define output data structure in C
2125struct data_t {
2126    u32 pid;
2127    u64 ts;
2128    char comm[TASK_COMM_LEN];
2129};
2130BPF_PERF_OUTPUT(events);
2131[...]
2132```
2133
2134In Python, you can either let bcc generate the data structure from C declaration automatically (recommended):
2135
2136```Python
2137def print_event(cpu, data, size):
2138    event = b["events"].event(data)
2139[...]
2140```
2141
2142or define it manually:
2143
2144```Python
2145# define output data structure in Python
2146TASK_COMM_LEN = 16    # linux/sched.h
2147class Data(ct.Structure):
2148    _fields_ = [("pid", ct.c_ulonglong),
2149                ("ts", ct.c_ulonglong),
2150                ("comm", ct.c_char * TASK_COMM_LEN)]
2151
2152def print_event(cpu, data, size):
2153    event = ct.cast(data, ct.POINTER(Data)).contents
2154[...]
2155```
2156
2157Examples in situ:
2158[code](https://github.com/iovisor/bcc/blob/v0.9.0/examples/tracing/hello_perf_output.py#L52),
2159[search /examples](https://github.com/iovisor/bcc/search?q=open_perf_buffer+path%3Aexamples+language%3Apython&type=Code),
2160[search /tools](https://github.com/iovisor/bcc/search?q=open_perf_buffer+path%3Atools+language%3Apython&type=Code)
2161
2162### 3. items()
2163
2164Syntax: ```table.items()```
2165
2166Returns an array of the keys in a table. This can be used with BPF_HASH maps to fetch, and iterate, over the keys.
2167
2168Example:
2169
2170```Python
2171# print output
2172print("%10s %s" % ("COUNT", "STRING"))
2173counts = b.get_table("counts")
2174for k, v in sorted(counts.items(), key=lambda counts: counts[1].value):
2175    print("%10d \"%s\"" % (v.value, k.c.encode('string-escape')))
2176```
2177
2178This example also uses the ```sorted()``` method to sort by value.
2179
2180Examples in situ:
2181[search /examples](https://github.com/iovisor/bcc/search?q=items+path%3Aexamples+language%3Apython&type=Code),
2182[search /tools](https://github.com/iovisor/bcc/search?q=items+path%3Atools+language%3Apython&type=Code)
2183
2184### 4. values()
2185
2186Syntax: ```table.values()```
2187
2188Returns an array of the values in a table.
2189
2190### 5. clear()
2191
2192Syntax: ```table.clear()```
2193
2194Clears the table: deletes all entries.
2195
2196Example:
2197
2198```Python
2199# print map summary every second:
2200while True:
2201    time.sleep(1)
2202    print("%-8s\n" % time.strftime("%H:%M:%S"), end="")
2203    dist.print_log2_hist(sym + " return:")
2204    dist.clear()
2205```
2206
2207Examples in situ:
2208[search /examples](https://github.com/iovisor/bcc/search?q=clear+path%3Aexamples+language%3Apython&type=Code),
2209[search /tools](https://github.com/iovisor/bcc/search?q=clear+path%3Atools+language%3Apython&type=Code)
2210
2211### 6. items_lookup_and_delete_batch()
2212
2213Syntax: ```table.items_lookup_and_delete_batch()```
2214
2215Returns an array of the keys in a table with a single call to BPF syscall. This can be used with BPF_HASH maps to fetch, and iterate, over the keys. It also clears the table: deletes all entries.
2216You should rather use table.items_lookup_and_delete_batch() than table.items() followed by table.clear(). It requires kernel v5.6.
2217
2218Example:
2219
2220```Python
2221# print call rate per second:
2222print("%9s-%9s-%8s-%9s" % ("PID", "COMM", "fname", "counter"))
2223while True:
2224    for k, v in sorted(b['map'].items_lookup_and_delete_batch(), key=lambda kv: (kv[0]).pid):
2225        print("%9s-%9s-%8s-%9d" % (k.pid, k.comm, k.fname, v.counter))
2226    sleep(1)
2227```
2228
2229### 7. items_lookup_batch()
2230
2231Syntax: ```table.items_lookup_batch()```
2232
2233Returns an array of the keys in a table with a single call to BPF syscall. This can be used with BPF_HASH maps to fetch, and iterate, over the keys.
2234You should rather use table.items_lookup_batch() than table.items(). It requires kernel v5.6.
2235
2236Example:
2237
2238```Python
2239# print current value of map:
2240print("%9s-%9s-%8s-%9s" % ("PID", "COMM", "fname", "counter"))
2241while True:
2242    for k, v in sorted(b['map'].items_lookup_batch(), key=lambda kv: (kv[0]).pid):
2243        print("%9s-%9s-%8s-%9d" % (k.pid, k.comm, k.fname, v.counter))
2244```
2245
2246### 8. items_delete_batch()
2247
2248Syntax: ```table.items_delete_batch(keys)```
2249
2250It clears all entries of a BPF_HASH map when keys is None. It is more efficient than table.clear() since it generates only one system call. You can delete a subset of a map by giving an array of keys as parameter. Those keys and their associated values will be deleted. It requires kernel v5.6.
2251
2252Arguments:
2253
2254- keys is optional and by default is None.
2255
2256
2257
2258### 9. items_update_batch()
2259
2260Syntax: ```table.items_update_batch(keys, values)```
2261
2262Update all the provided keys with new values. The two arguments must be the same length and within the map limits (between 1 and the maximum entries). It requires kernel v5.6.
2263
2264Arguments:
2265
2266- keys is the list of keys to be updated
2267- values is the list containing the new values.
2268
2269
2270### 10. print_log2_hist()
2271
2272Syntax: ```table.print_log2_hist(val_type="value", section_header="Bucket ptr", section_print_fn=None)```
2273
2274Prints a table as a log2 histogram in ASCII. The table must be stored as log2, which can be done using the BPF function ```bpf_log2l()```.
2275
2276Arguments:
2277
2278- val_type: optional, column header.
2279- section_header: if the histogram has a secondary key, multiple tables will print and section_header can be used as a header description for each.
2280- section_print_fn: if section_print_fn is not None, it will be passed the bucket value.
2281
2282Example:
2283
2284```Python
2285b = BPF(text="""
2286BPF_HISTOGRAM(dist);
2287
2288int kprobe__blk_account_io_done(struct pt_regs *ctx, struct request *req)
2289{
2290	dist.increment(bpf_log2l(req->__data_len / 1024));
2291	return 0;
2292}
2293""")
2294[...]
2295
2296b["dist"].print_log2_hist("kbytes")
2297```
2298
2299Output:
2300
2301```
2302     kbytes          : count     distribution
2303       0 -> 1        : 3        |                                      |
2304       2 -> 3        : 0        |                                      |
2305       4 -> 7        : 211      |**********                            |
2306       8 -> 15       : 0        |                                      |
2307      16 -> 31       : 0        |                                      |
2308      32 -> 63       : 0        |                                      |
2309      64 -> 127      : 1        |                                      |
2310     128 -> 255      : 800      |**************************************|
2311```
2312
2313This output shows a multi-modal distribution, with the largest mode of 128->255 kbytes and a count of 800.
2314
2315This is an efficient way to summarize data, as the summarization is performed in-kernel, and only the count column is passed to user space.
2316
2317Examples in situ:
2318[search /examples](https://github.com/iovisor/bcc/search?q=print_log2_hist+path%3Aexamples+language%3Apython&type=Code),
2319[search /tools](https://github.com/iovisor/bcc/search?q=print_log2_hist+path%3Atools+language%3Apython&type=Code)
2320
2321### 11. print_linear_hist()
2322
2323Syntax: ```table.print_linear_hist(val_type="value", section_header="Bucket ptr", section_print_fn=None)```
2324
2325Prints a table as a linear histogram in ASCII. This is intended to visualize small integer ranges, eg, 0 to 100.
2326
2327Arguments:
2328
2329- val_type: optional, column header.
2330- section_header: if the histogram has a secondary key, multiple tables will print and section_header can be used as a header description for each.
2331- section_print_fn: if section_print_fn is not None, it will be passed the bucket value.
2332
2333Example:
2334
2335```Python
2336b = BPF(text="""
2337BPF_HISTOGRAM(dist);
2338
2339int kprobe__blk_account_io_done(struct pt_regs *ctx, struct request *req)
2340{
2341	dist.increment(req->__data_len / 1024);
2342	return 0;
2343}
2344""")
2345[...]
2346
2347b["dist"].print_linear_hist("kbytes")
2348```
2349
2350Output:
2351
2352```
2353     kbytes        : count     distribution
2354        0          : 3        |******                                  |
2355        1          : 0        |                                        |
2356        2          : 0        |                                        |
2357        3          : 0        |                                        |
2358        4          : 19       |****************************************|
2359        5          : 0        |                                        |
2360        6          : 0        |                                        |
2361        7          : 0        |                                        |
2362        8          : 4        |********                                |
2363        9          : 0        |                                        |
2364        10         : 0        |                                        |
2365        11         : 0        |                                        |
2366        12         : 0        |                                        |
2367        13         : 0        |                                        |
2368        14         : 0        |                                        |
2369        15         : 0        |                                        |
2370        16         : 2        |****                                    |
2371[...]
2372```
2373
2374This is an efficient way to summarize data, as the summarization is performed in-kernel, and only the values in the count column are passed to user space.
2375
2376Examples in situ:
2377[search /examples](https://github.com/iovisor/bcc/search?q=print_linear_hist+path%3Aexamples+language%3Apython&type=Code),
2378[search /tools](https://github.com/iovisor/bcc/search?q=print_linear_hist+path%3Atools+language%3Apython&type=Code)
2379
2380### 12. open_ring_buffer()
2381
2382Syntax: ```table.open_ring_buffer(callback, ctx=None)```
2383
2384This operates on a table as defined in BPF as BPF_RINGBUF_OUTPUT(), and associates the callback Python function ```callback``` to be called when data is available in the ringbuf ring buffer. This is part of the new (Linux 5.8+) recommended mechanism for transferring per-event data from kernel to user space. Unlike perf buffers, ringbuf sizes are specified within the BPF program, as part of the ```BPF_RINGBUF_OUTPUT``` macro. If the callback is not processing data fast enough, some submitted data may be lost. In this case, the events should be polled more frequently and/or the size of the ring buffer should be increased.
2385
2386Example:
2387
2388```Python
2389# process event
2390def print_event(ctx, data, size):
2391    event = ct.cast(data, ct.POINTER(Data)).contents
2392    [...]
2393
2394# loop with callback to print_event
2395b["events"].open_ring_buffer(print_event)
2396while 1:
2397    try:
2398        b.ring_buffer_poll()
2399    except KeyboardInterrupt:
2400        exit()
2401```
2402
2403Note that the data structure transferred will need to be declared in C in the BPF program. For example:
2404
2405```C
2406// define output data structure in C
2407struct data_t {
2408    u32 pid;
2409    u64 ts;
2410    char comm[TASK_COMM_LEN];
2411};
2412BPF_RINGBUF_OUTPUT(events, 8);
2413[...]
2414```
2415
2416In Python, you can either let bcc generate the data structure from C declaration automatically (recommended):
2417
2418```Python
2419def print_event(ctx, data, size):
2420    event = b["events"].event(data)
2421[...]
2422```
2423
2424or define it manually:
2425
2426```Python
2427# define output data structure in Python
2428TASK_COMM_LEN = 16    # linux/sched.h
2429class Data(ct.Structure):
2430    _fields_ = [("pid", ct.c_ulonglong),
2431                ("ts", ct.c_ulonglong),
2432                ("comm", ct.c_char * TASK_COMM_LEN)]
2433
2434def print_event(ctx, data, size):
2435    event = ct.cast(data, ct.POINTER(Data)).contents
2436[...]
2437```
2438
2439Examples in situ:
2440[search /examples](https://github.com/iovisor/bcc/search?q=open_ring_buffer+path%3Aexamples+language%3Apython&type=Code),
2441
2442### 13. push()
2443
2444Syntax: ```table.push(leaf, flags=0)```
2445
2446Push an element onto a Stack or Queue table. Raises an exception if the operation does not succeed.
2447Passing QueueStack.BPF_EXIST as a flag causes the Queue or Stack to discard the oldest element if it is full.
2448
2449Examples in situ:
2450[search /tests](https://github.com/iovisor/bcc/search?q=push+path%3Atests+language%3Apython&type=Code),
2451
2452### 14. pop()
2453
2454Syntax: ```leaf = table.pop()```
2455
2456Pop an element from a Stack or Queue table. Unlike ```peek()```, ```pop()```
2457removes the element from the table before returning it.
2458Raises a KeyError exception if the operation does not succeed.
2459
2460Examples in situ:
2461[search /tests](https://github.com/iovisor/bcc/search?q=pop+path%3Atests+language%3Apython&type=Code),
2462
2463### 15. peek()
2464
2465Syntax: ```leaf = table.peek()```
2466
2467Peek the element at the head of a Stack or Queue table. Unlike ```pop()```, ```peek()```
2468does not remove the element from the table. Raises an exception if the operation does not succeed.
2469
2470Examples in situ:
2471[search /tests](https://github.com/iovisor/bcc/search?q=peek+path%3Atests+language%3Apython&type=Code),
2472
2473## Helpers
2474
2475Some helper methods provided by bcc. Note that since we're in Python, we can import any Python library and their methods, including, for example, the libraries: argparse, collections, ctypes, datetime, re, socket, struct, subprocess, sys, and time.
2476
2477### 1. ksym()
2478
2479Syntax: ```BPF.ksym(addr)```
2480
2481Translate a kernel memory address into a kernel function name, which is returned.
2482
2483Example:
2484
2485```Python
2486print("kernel function: " + b.ksym(addr))
2487```
2488
2489Examples in situ:
2490[search /examples](https://github.com/iovisor/bcc/search?q=ksym+path%3Aexamples+language%3Apython&type=Code),
2491[search /tools](https://github.com/iovisor/bcc/search?q=ksym+path%3Atools+language%3Apython&type=Code)
2492
2493### 2. ksymname()
2494
2495Syntax: ```BPF.ksymname(name)```
2496
2497Translate a kernel name into an address. This is the reverse of ksym. Returns -1 when the function name is unknown.
2498
2499Example:
2500
2501```Python
2502print("kernel address: %x" % b.ksymname("vfs_read"))
2503```
2504
2505Examples in situ:
2506[search /examples](https://github.com/iovisor/bcc/search?q=ksymname+path%3Aexamples+language%3Apython&type=Code),
2507[search /tools](https://github.com/iovisor/bcc/search?q=ksymname+path%3Atools+language%3Apython&type=Code)
2508
2509### 3. sym()
2510
2511Syntax: ```BPF.sym(addr, pid, show_module=False, show_offset=False)```
2512
2513Translate a memory address into a function name for a pid, which is returned. A pid of less than zero will access the kernel symbol cache. The `show_module` and `show_offset` parameters control whether the module in which the symbol lies should be displayed, and whether the instruction offset from the beginning of the symbol should be displayed. These extra parameters default to `False`.
2514
2515Example:
2516
2517```Python
2518print("function: " + b.sym(addr, pid))
2519```
2520
2521Examples in situ:
2522[search /examples](https://github.com/iovisor/bcc/search?q=sym+path%3Aexamples+language%3Apython&type=Code),
2523[search /tools](https://github.com/iovisor/bcc/search?q=sym+path%3Atools+language%3Apython&type=Code)
2524
2525### 4. num_open_kprobes()
2526
2527Syntax: ```BPF.num_open_kprobes()```
2528
2529Returns the number of open k[ret]probes. Can be useful for scenarios where event_re is used while attaching and detaching probes. Excludes perf_events readers.
2530
2531Example:
2532
2533```Python
2534b.attach_kprobe(event_re=pattern, fn_name="trace_count")
2535matched = b.num_open_kprobes()
2536if matched == 0:
2537    print("0 functions matched by \"%s\". Exiting." % args.pattern)
2538    exit()
2539```
2540
2541Examples in situ:
2542[search /examples](https://github.com/iovisor/bcc/search?q=num_open_kprobes+path%3Aexamples+language%3Apython&type=Code),
2543[search /tools](https://github.com/iovisor/bcc/search?q=num_open_kprobes+path%3Atools+language%3Apython&type=Code)
2544
2545### 5. get_syscall_fnname()
2546
2547Syntax: ```BPF.get_syscall_fnname(name : str)```
2548
2549Return the corresponding kernel function name of the syscall. This helper function will try different prefixes and use the right one to concatenate with the syscall name. Note that the return value may vary in different versions of linux kernel and sometimes it will causing trouble. (see [#2590](https://github.com/iovisor/bcc/issues/2590))
2550
2551Example:
2552
2553```Python
2554print("The function name of %s in kernel is %s" % ("clone", b.get_syscall_fnname("clone")))
2555# sys_clone or __x64_sys_clone or ...
2556```
2557
2558Examples in situ:
2559[search /examples](https://github.com/iovisor/bcc/search?q=get_syscall_fnname+path%3Aexamples+language%3Apython&type=Code),
2560[search /tools](https://github.com/iovisor/bcc/search?q=get_syscall_fnname+path%3Atools+language%3Apython&type=Code)
2561
2562# BPF Errors
2563
2564See the "Understanding eBPF verifier messages" section in the kernel source under Documentation/networking/filter.txt.
2565
2566## 1. Invalid mem access
2567
2568This can be due to trying to read memory directly, instead of operating on memory on the BPF stack. All kernel memory reads must be passed via bpf_probe_read_kernel() to copy kernel memory into the BPF stack, which can be automatic by the bcc rewriter in some cases of simple dereferencing. bpf_probe_read_kernel() does all the required checks.
2569
2570Example:
2571
2572```
2573bpf: Permission denied
25740: (bf) r6 = r1
25751: (79) r7 = *(u64 *)(r6 +80)
25762: (85) call 14
25773: (bf) r8 = r0
2578[...]
257923: (69) r1 = *(u16 *)(r7 +16)
2580R7 invalid mem access 'inv'
2581
2582Traceback (most recent call last):
2583  File "./tcpaccept", line 179, in <module>
2584    b = BPF(text=bpf_text)
2585  File "/usr/lib/python2.7/dist-packages/bcc/__init__.py", line 172, in __init__
2586    self._trace_autoload()
2587  File "/usr/lib/python2.7/dist-packages/bcc/__init__.py", line 612, in _trace_autoload
2588    fn = self.load_func(func_name, BPF.KPROBE)
2589  File "/usr/lib/python2.7/dist-packages/bcc/__init__.py", line 212, in load_func
2590    raise Exception("Failed to load BPF program %s" % func_name)
2591Exception: Failed to load BPF program kretprobe__inet_csk_accept
2592```
2593
2594## 2. Cannot call GPL only function from proprietary program
2595
2596This error happens when a GPL-only helper is called from a non-GPL BPF program. To fix this error, do not use GPL-only helpers from a proprietary BPF program, or relicense the BPF program under a GPL-compatible license. Check which [BPF helpers](https://github.com/iovisor/bcc/blob/master/docs/kernel-versions.md#helpers) are GPL-only, and what licenses are considered GPL-compatible.
2597
2598Example calling `bpf_get_stackid()`, a GPL-only BPF helper, from a proprietary program (`#define BPF_LICENSE Proprietary`):
2599
2600```
2601bpf: Failed to load program: Invalid argument
2602[...]
26038: (85) call bpf_get_stackid#27
2604cannot call GPL only function from proprietary program
2605```
2606
2607# Environment Variables
2608
2609## 1. Kernel source directory
2610
2611eBPF program compilation needs kernel sources or kernel headers with headers
2612compiled. In case your kernel sources are at a non-standard location where BCC
2613cannot find then, its possible to provide BCC the absolute path of the location
2614by setting `BCC_KERNEL_SOURCE` to it.
2615
2616## 2. Kernel version overriding
2617
2618By default, BCC stores the `LINUX_VERSION_CODE` in the generated eBPF object
2619which is then passed along to the kernel when the eBPF program is loaded.
2620Sometimes this is quite inconvenient especially when the kernel is slightly
2621updated such as an LTS kernel release. Its extremely unlikely the slight
2622mismatch would cause any issues with the loaded eBPF program. By setting
2623`BCC_LINUX_VERSION_CODE` to the version of the kernel that's running, the check
2624for verifying the kernel version can be bypassed. This is needed for programs
2625that use kprobes. This needs to be encoded in the format: `(VERSION * 65536) +
2626(PATCHLEVEL * 256) + SUBLEVEL`. For example, if the running kernel is `4.9.10`,
2627then can set `export BCC_LINUX_VERSION_CODE=264458` to override the kernel
2628version check successfully.
2629