1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Driver for Intel client SoC with integrated memory controller using IBECC
4  *
5  * Copyright (C) 2020 Intel Corporation
6  *
7  * The In-Band ECC (IBECC) IP provides ECC protection to all or specific
8  * regions of the physical memory space. It's used for memory controllers
9  * that don't support the out-of-band ECC which often needs an additional
10  * storage device to each channel for storing ECC data.
11  */
12 
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/pci.h>
16 #include <linux/slab.h>
17 #include <linux/irq_work.h>
18 #include <linux/llist.h>
19 #include <linux/genalloc.h>
20 #include <linux/edac.h>
21 #include <linux/bits.h>
22 #include <linux/io.h>
23 #include <asm/mach_traps.h>
24 #include <asm/nmi.h>
25 #include <asm/mce.h>
26 
27 #include "edac_mc.h"
28 #include "edac_module.h"
29 
30 #define IGEN6_REVISION	"v2.5.1"
31 
32 #define EDAC_MOD_STR	"igen6_edac"
33 #define IGEN6_NMI_NAME	"igen6_ibecc"
34 
35 /* Debug macros */
36 #define igen6_printk(level, fmt, arg...)		\
37 	edac_printk(level, "igen6", fmt, ##arg)
38 
39 #define igen6_mc_printk(mci, level, fmt, arg...)	\
40 	edac_mc_chipset_printk(mci, level, "igen6", fmt, ##arg)
41 
42 #define GET_BITFIELD(v, lo, hi) (((v) & GENMASK_ULL(hi, lo)) >> (lo))
43 
44 #define NUM_IMC				2 /* Max memory controllers */
45 #define NUM_CHANNELS			2 /* Max channels */
46 #define NUM_DIMMS			2 /* Max DIMMs per channel */
47 
48 #define _4GB				BIT_ULL(32)
49 
50 /* Size of physical memory */
51 #define TOM_OFFSET			0xa0
52 /* Top of low usable DRAM */
53 #define TOLUD_OFFSET			0xbc
54 /* Capability register C */
55 #define CAPID_C_OFFSET			0xec
56 #define CAPID_C_IBECC			BIT(15)
57 
58 /* Capability register E */
59 #define CAPID_E_OFFSET			0xf0
60 #define CAPID_E_IBECC			BIT(12)
61 #define CAPID_E_IBECC_BIT18		BIT(18)
62 
63 /* Error Status */
64 #define ERRSTS_OFFSET			0xc8
65 #define ERRSTS_CE			BIT_ULL(6)
66 #define ERRSTS_UE			BIT_ULL(7)
67 
68 /* Error Command */
69 #define ERRCMD_OFFSET			0xca
70 #define ERRCMD_CE			BIT_ULL(6)
71 #define ERRCMD_UE			BIT_ULL(7)
72 
73 /* IBECC MMIO base address */
74 #define IBECC_BASE			(res_cfg->ibecc_base)
75 #define IBECC_ACTIVATE_OFFSET		IBECC_BASE
76 #define IBECC_ACTIVATE_EN		BIT(0)
77 
78 /* IBECC error log */
79 #define ECC_ERROR_LOG_OFFSET		(IBECC_BASE + res_cfg->ibecc_error_log_offset)
80 #define ECC_ERROR_LOG_CE		BIT_ULL(62)
81 #define ECC_ERROR_LOG_UE		BIT_ULL(63)
82 #define ECC_ERROR_LOG_ADDR_SHIFT	5
83 #define ECC_ERROR_LOG_ADDR(v)		GET_BITFIELD(v, 5, 38)
84 #define ECC_ERROR_LOG_ADDR45(v)		GET_BITFIELD(v, 5, 45)
85 #define ECC_ERROR_LOG_SYND(v)		GET_BITFIELD(v, 46, 61)
86 
87 /* Host MMIO base address */
88 #define MCHBAR_OFFSET			0x48
89 #define MCHBAR_EN			BIT_ULL(0)
90 #define MCHBAR_BASE(v)			(GET_BITFIELD(v, 16, 38) << 16)
91 #define MCHBAR_SIZE			0x10000
92 
93 /* Parameters for the channel decode stage */
94 #define IMC_BASE			(res_cfg->imc_base)
95 #define MAD_INTER_CHANNEL_OFFSET	IMC_BASE
96 #define MAD_INTER_CHANNEL_DDR_TYPE(v)	GET_BITFIELD(v, 0, 2)
97 #define MAD_INTER_CHANNEL_ECHM(v)	GET_BITFIELD(v, 3, 3)
98 #define MAD_INTER_CHANNEL_CH_L_MAP(v)	GET_BITFIELD(v, 4, 4)
99 #define MAD_INTER_CHANNEL_CH_S_SIZE(v)	((u64)GET_BITFIELD(v, 12, 19) << 29)
100 
101 /* Parameters for DRAM decode stage */
102 #define MAD_INTRA_CH0_OFFSET		(IMC_BASE + 4)
103 #define MAD_INTRA_CH_DIMM_L_MAP(v)	GET_BITFIELD(v, 0, 0)
104 
105 /* DIMM characteristics */
106 #define MAD_DIMM_CH0_OFFSET		(IMC_BASE + 0xc)
107 #define MAD_DIMM_CH_DIMM_L_SIZE(v)	((u64)GET_BITFIELD(v, 0, 6) << 29)
108 #define MAD_DIMM_CH_DLW(v)		GET_BITFIELD(v, 7, 8)
109 #define MAD_DIMM_CH_DIMM_S_SIZE(v)	((u64)GET_BITFIELD(v, 16, 22) << 29)
110 #define MAD_DIMM_CH_DSW(v)		GET_BITFIELD(v, 24, 25)
111 
112 /* Hash for memory controller selection */
113 #define MAD_MC_HASH_OFFSET		(IMC_BASE + 0x1b8)
114 #define MAC_MC_HASH_LSB(v)		GET_BITFIELD(v, 1, 3)
115 
116 /* Hash for channel selection */
117 #define CHANNEL_HASH_OFFSET		(IMC_BASE + 0x24)
118 /* Hash for enhanced channel selection */
119 #define CHANNEL_EHASH_OFFSET		(IMC_BASE + 0x28)
120 #define CHANNEL_HASH_MASK(v)		(GET_BITFIELD(v, 6, 19) << 6)
121 #define CHANNEL_HASH_LSB_MASK_BIT(v)	GET_BITFIELD(v, 24, 26)
122 #define CHANNEL_HASH_MODE(v)		GET_BITFIELD(v, 28, 28)
123 
124 /* Parameters for memory slice decode stage */
125 #define MEM_SLICE_HASH_MASK(v)		(GET_BITFIELD(v, 6, 19) << 6)
126 #define MEM_SLICE_HASH_LSB_MASK_BIT(v)	GET_BITFIELD(v, 24, 26)
127 
128 static struct res_config {
129 	bool machine_check;
130 	int num_imc;
131 	u32 imc_base;
132 	u32 cmf_base;
133 	u32 cmf_size;
134 	u32 ms_hash_offset;
135 	u32 ibecc_base;
136 	u32 ibecc_error_log_offset;
137 	bool (*ibecc_available)(struct pci_dev *pdev);
138 	/* Extract error address logged in IBECC */
139 	u64 (*err_addr)(u64 ecclog);
140 	/* Convert error address logged in IBECC to system physical address */
141 	u64 (*err_addr_to_sys_addr)(u64 eaddr, int mc);
142 	/* Convert error address logged in IBECC to integrated memory controller address */
143 	u64 (*err_addr_to_imc_addr)(u64 eaddr, int mc);
144 } *res_cfg;
145 
146 struct igen6_imc {
147 	int mc;
148 	struct mem_ctl_info *mci;
149 	struct pci_dev *pdev;
150 	struct device dev;
151 	void __iomem *window;
152 	u64 size;
153 	u64 ch_s_size;
154 	int ch_l_map;
155 	u64 dimm_s_size[NUM_CHANNELS];
156 	u64 dimm_l_size[NUM_CHANNELS];
157 	int dimm_l_map[NUM_CHANNELS];
158 };
159 
160 static struct igen6_pvt {
161 	struct igen6_imc imc[NUM_IMC];
162 	u64 ms_hash;
163 	u64 ms_s_size;
164 	int ms_l_map;
165 } *igen6_pvt;
166 
167 /* The top of low usable DRAM */
168 static u32 igen6_tolud;
169 /* The size of physical memory */
170 static u64 igen6_tom;
171 
172 struct decoded_addr {
173 	int mc;
174 	u64 imc_addr;
175 	u64 sys_addr;
176 	int channel_idx;
177 	u64 channel_addr;
178 	int sub_channel_idx;
179 	u64 sub_channel_addr;
180 };
181 
182 struct ecclog_node {
183 	struct llist_node llnode;
184 	int mc;
185 	u64 ecclog;
186 };
187 
188 /*
189  * In the NMI handler, the driver uses the lock-less memory allocator
190  * to allocate memory to store the IBECC error logs and links the logs
191  * to the lock-less list. Delay printk() and the work of error reporting
192  * to EDAC core in a worker.
193  */
194 #define ECCLOG_POOL_SIZE	PAGE_SIZE
195 static LLIST_HEAD(ecclog_llist);
196 static struct gen_pool *ecclog_pool;
197 static char ecclog_buf[ECCLOG_POOL_SIZE];
198 static struct irq_work ecclog_irq_work;
199 static struct work_struct ecclog_work;
200 
201 /* Compute die IDs for Elkhart Lake with IBECC */
202 #define DID_EHL_SKU5	0x4514
203 #define DID_EHL_SKU6	0x4528
204 #define DID_EHL_SKU7	0x452a
205 #define DID_EHL_SKU8	0x4516
206 #define DID_EHL_SKU9	0x452c
207 #define DID_EHL_SKU10	0x452e
208 #define DID_EHL_SKU11	0x4532
209 #define DID_EHL_SKU12	0x4518
210 #define DID_EHL_SKU13	0x451a
211 #define DID_EHL_SKU14	0x4534
212 #define DID_EHL_SKU15	0x4536
213 
214 /* Compute die IDs for ICL-NNPI with IBECC */
215 #define DID_ICL_SKU8	0x4581
216 #define DID_ICL_SKU10	0x4585
217 #define DID_ICL_SKU11	0x4589
218 #define DID_ICL_SKU12	0x458d
219 
220 /* Compute die IDs for Tiger Lake with IBECC */
221 #define DID_TGL_SKU	0x9a14
222 
223 /* Compute die IDs for Alder Lake with IBECC */
224 #define DID_ADL_SKU1	0x4601
225 #define DID_ADL_SKU2	0x4602
226 #define DID_ADL_SKU3	0x4621
227 #define DID_ADL_SKU4	0x4641
228 
229 /* Compute die IDs for Alder Lake-N with IBECC */
230 #define DID_ADL_N_SKU1	0x4614
231 #define DID_ADL_N_SKU2	0x4617
232 #define DID_ADL_N_SKU3	0x461b
233 #define DID_ADL_N_SKU4	0x461c
234 #define DID_ADL_N_SKU5	0x4673
235 #define DID_ADL_N_SKU6	0x4674
236 #define DID_ADL_N_SKU7	0x4675
237 #define DID_ADL_N_SKU8	0x4677
238 #define DID_ADL_N_SKU9	0x4678
239 #define DID_ADL_N_SKU10	0x4679
240 #define DID_ADL_N_SKU11	0x467c
241 #define DID_ADL_N_SKU12	0x4632
242 
243 /* Compute die IDs for Raptor Lake-P with IBECC */
244 #define DID_RPL_P_SKU1	0xa706
245 #define DID_RPL_P_SKU2	0xa707
246 #define DID_RPL_P_SKU3	0xa708
247 #define DID_RPL_P_SKU4	0xa716
248 #define DID_RPL_P_SKU5	0xa718
249 
250 /* Compute die IDs for Meteor Lake-PS with IBECC */
251 #define DID_MTL_PS_SKU1	0x7d21
252 #define DID_MTL_PS_SKU2	0x7d22
253 #define DID_MTL_PS_SKU3	0x7d23
254 #define DID_MTL_PS_SKU4	0x7d24
255 
256 /* Compute die IDs for Meteor Lake-P with IBECC */
257 #define DID_MTL_P_SKU1	0x7d01
258 #define DID_MTL_P_SKU2	0x7d02
259 #define DID_MTL_P_SKU3	0x7d14
260 
261 /* Compute die IDs for Arrow Lake-UH with IBECC */
262 #define DID_ARL_UH_SKU1	0x7d06
263 #define DID_ARL_UH_SKU2	0x7d20
264 #define DID_ARL_UH_SKU3	0x7d30
265 
266 /* Compute die IDs for Panther Lake-H with IBECC */
267 #define DID_PTL_H_SKU1	0xb000
268 #define DID_PTL_H_SKU2	0xb001
269 #define DID_PTL_H_SKU3	0xb002
270 
get_mchbar(struct pci_dev * pdev,u64 * mchbar)271 static int get_mchbar(struct pci_dev *pdev, u64 *mchbar)
272 {
273 	union  {
274 		u64 v;
275 		struct {
276 			u32 v_lo;
277 			u32 v_hi;
278 		};
279 	} u;
280 
281 	if (pci_read_config_dword(pdev, MCHBAR_OFFSET, &u.v_lo)) {
282 		igen6_printk(KERN_ERR, "Failed to read lower MCHBAR\n");
283 		return -ENODEV;
284 	}
285 
286 	if (pci_read_config_dword(pdev, MCHBAR_OFFSET + 4, &u.v_hi)) {
287 		igen6_printk(KERN_ERR, "Failed to read upper MCHBAR\n");
288 		return -ENODEV;
289 	}
290 
291 	if (!(u.v & MCHBAR_EN)) {
292 		igen6_printk(KERN_ERR, "MCHBAR is disabled\n");
293 		return -ENODEV;
294 	}
295 
296 	*mchbar = MCHBAR_BASE(u.v);
297 
298 	return 0;
299 }
300 
ehl_ibecc_available(struct pci_dev * pdev)301 static bool ehl_ibecc_available(struct pci_dev *pdev)
302 {
303 	u32 v;
304 
305 	if (pci_read_config_dword(pdev, CAPID_C_OFFSET, &v))
306 		return false;
307 
308 	return !!(CAPID_C_IBECC & v);
309 }
310 
ehl_err_addr_to_sys_addr(u64 eaddr,int mc)311 static u64 ehl_err_addr_to_sys_addr(u64 eaddr, int mc)
312 {
313 	return eaddr;
314 }
315 
ehl_err_addr_to_imc_addr(u64 eaddr,int mc)316 static u64 ehl_err_addr_to_imc_addr(u64 eaddr, int mc)
317 {
318 	if (eaddr < igen6_tolud)
319 		return eaddr;
320 
321 	if (igen6_tom <= _4GB)
322 		return eaddr + igen6_tolud - _4GB;
323 
324 	if (eaddr >= igen6_tom)
325 		return eaddr + igen6_tolud - igen6_tom;
326 
327 	return eaddr;
328 }
329 
icl_ibecc_available(struct pci_dev * pdev)330 static bool icl_ibecc_available(struct pci_dev *pdev)
331 {
332 	u32 v;
333 
334 	if (pci_read_config_dword(pdev, CAPID_C_OFFSET, &v))
335 		return false;
336 
337 	return !(CAPID_C_IBECC & v) &&
338 		(boot_cpu_data.x86_stepping >= 1);
339 }
340 
tgl_ibecc_available(struct pci_dev * pdev)341 static bool tgl_ibecc_available(struct pci_dev *pdev)
342 {
343 	u32 v;
344 
345 	if (pci_read_config_dword(pdev, CAPID_E_OFFSET, &v))
346 		return false;
347 
348 	return !(CAPID_E_IBECC & v);
349 }
350 
mtl_p_ibecc_available(struct pci_dev * pdev)351 static bool mtl_p_ibecc_available(struct pci_dev *pdev)
352 {
353 	u32 v;
354 
355 	if (pci_read_config_dword(pdev, CAPID_E_OFFSET, &v))
356 		return false;
357 
358 	return !(CAPID_E_IBECC_BIT18 & v);
359 }
360 
mtl_ps_ibecc_available(struct pci_dev * pdev)361 static bool mtl_ps_ibecc_available(struct pci_dev *pdev)
362 {
363 #define MCHBAR_MEMSS_IBECCDIS	0x13c00
364 	void __iomem *window;
365 	u64 mchbar;
366 	u32 val;
367 
368 	if (get_mchbar(pdev, &mchbar))
369 		return false;
370 
371 	window = ioremap(mchbar, MCHBAR_SIZE * 2);
372 	if (!window) {
373 		igen6_printk(KERN_ERR, "Failed to ioremap 0x%llx\n", mchbar);
374 		return false;
375 	}
376 
377 	val = readl(window + MCHBAR_MEMSS_IBECCDIS);
378 	iounmap(window);
379 
380 	/* Bit6: 1 - IBECC is disabled, 0 - IBECC isn't disabled */
381 	return !GET_BITFIELD(val, 6, 6);
382 }
383 
mem_addr_to_sys_addr(u64 maddr)384 static u64 mem_addr_to_sys_addr(u64 maddr)
385 {
386 	if (maddr < igen6_tolud)
387 		return maddr;
388 
389 	if (igen6_tom <= _4GB)
390 		return maddr - igen6_tolud + _4GB;
391 
392 	if (maddr < _4GB)
393 		return maddr - igen6_tolud + igen6_tom;
394 
395 	return maddr;
396 }
397 
mem_slice_hash(u64 addr,u64 mask,u64 hash_init,int intlv_bit)398 static u64 mem_slice_hash(u64 addr, u64 mask, u64 hash_init, int intlv_bit)
399 {
400 	u64 hash_addr = addr & mask, hash = hash_init;
401 	u64 intlv = (addr >> intlv_bit) & 1;
402 	int i;
403 
404 	for (i = 6; i < 20; i++)
405 		hash ^= (hash_addr >> i) & 1;
406 
407 	return hash ^ intlv;
408 }
409 
tgl_err_addr_to_mem_addr(u64 eaddr,int mc)410 static u64 tgl_err_addr_to_mem_addr(u64 eaddr, int mc)
411 {
412 	u64 maddr, hash, mask, ms_s_size;
413 	int intlv_bit;
414 	u32 ms_hash;
415 
416 	ms_s_size = igen6_pvt->ms_s_size;
417 	if (eaddr >= ms_s_size)
418 		return eaddr + ms_s_size;
419 
420 	ms_hash = igen6_pvt->ms_hash;
421 
422 	mask = MEM_SLICE_HASH_MASK(ms_hash);
423 	intlv_bit = MEM_SLICE_HASH_LSB_MASK_BIT(ms_hash) + 6;
424 
425 	maddr = GET_BITFIELD(eaddr, intlv_bit, 63) << (intlv_bit + 1) |
426 		GET_BITFIELD(eaddr, 0, intlv_bit - 1);
427 
428 	hash = mem_slice_hash(maddr, mask, mc, intlv_bit);
429 
430 	return maddr | (hash << intlv_bit);
431 }
432 
tgl_err_addr_to_sys_addr(u64 eaddr,int mc)433 static u64 tgl_err_addr_to_sys_addr(u64 eaddr, int mc)
434 {
435 	u64 maddr = tgl_err_addr_to_mem_addr(eaddr, mc);
436 
437 	return mem_addr_to_sys_addr(maddr);
438 }
439 
tgl_err_addr_to_imc_addr(u64 eaddr,int mc)440 static u64 tgl_err_addr_to_imc_addr(u64 eaddr, int mc)
441 {
442 	return eaddr;
443 }
444 
adl_err_addr_to_sys_addr(u64 eaddr,int mc)445 static u64 adl_err_addr_to_sys_addr(u64 eaddr, int mc)
446 {
447 	return mem_addr_to_sys_addr(eaddr);
448 }
449 
adl_err_addr_to_imc_addr(u64 eaddr,int mc)450 static u64 adl_err_addr_to_imc_addr(u64 eaddr, int mc)
451 {
452 	u64 imc_addr, ms_s_size = igen6_pvt->ms_s_size;
453 	struct igen6_imc *imc = &igen6_pvt->imc[mc];
454 	int intlv_bit;
455 	u32 mc_hash;
456 
457 	if (eaddr >= 2 * ms_s_size)
458 		return eaddr - ms_s_size;
459 
460 	mc_hash = readl(imc->window + MAD_MC_HASH_OFFSET);
461 
462 	intlv_bit = MAC_MC_HASH_LSB(mc_hash) + 6;
463 
464 	imc_addr = GET_BITFIELD(eaddr, intlv_bit + 1, 63) << intlv_bit |
465 		   GET_BITFIELD(eaddr, 0, intlv_bit - 1);
466 
467 	return imc_addr;
468 }
469 
rpl_p_err_addr(u64 ecclog)470 static u64 rpl_p_err_addr(u64 ecclog)
471 {
472 	return ECC_ERROR_LOG_ADDR45(ecclog);
473 }
474 
475 static struct res_config ehl_cfg = {
476 	.num_imc		= 1,
477 	.imc_base		= 0x5000,
478 	.ibecc_base		= 0xdc00,
479 	.ibecc_available	= ehl_ibecc_available,
480 	.ibecc_error_log_offset	= 0x170,
481 	.err_addr_to_sys_addr	= ehl_err_addr_to_sys_addr,
482 	.err_addr_to_imc_addr	= ehl_err_addr_to_imc_addr,
483 };
484 
485 static struct res_config icl_cfg = {
486 	.num_imc		= 1,
487 	.imc_base		= 0x5000,
488 	.ibecc_base		= 0xd800,
489 	.ibecc_error_log_offset	= 0x170,
490 	.ibecc_available	= icl_ibecc_available,
491 	.err_addr_to_sys_addr	= ehl_err_addr_to_sys_addr,
492 	.err_addr_to_imc_addr	= ehl_err_addr_to_imc_addr,
493 };
494 
495 static struct res_config tgl_cfg = {
496 	.machine_check		= true,
497 	.num_imc		= 2,
498 	.imc_base		= 0x5000,
499 	.cmf_base		= 0x11000,
500 	.cmf_size		= 0x800,
501 	.ms_hash_offset		= 0xac,
502 	.ibecc_base		= 0xd400,
503 	.ibecc_error_log_offset	= 0x170,
504 	.ibecc_available	= tgl_ibecc_available,
505 	.err_addr_to_sys_addr	= tgl_err_addr_to_sys_addr,
506 	.err_addr_to_imc_addr	= tgl_err_addr_to_imc_addr,
507 };
508 
509 static struct res_config adl_cfg = {
510 	.machine_check		= true,
511 	.num_imc		= 2,
512 	.imc_base		= 0xd800,
513 	.ibecc_base		= 0xd400,
514 	.ibecc_error_log_offset	= 0x68,
515 	.ibecc_available	= tgl_ibecc_available,
516 	.err_addr_to_sys_addr	= adl_err_addr_to_sys_addr,
517 	.err_addr_to_imc_addr	= adl_err_addr_to_imc_addr,
518 };
519 
520 static struct res_config adl_n_cfg = {
521 	.machine_check		= true,
522 	.num_imc		= 1,
523 	.imc_base		= 0xd800,
524 	.ibecc_base		= 0xd400,
525 	.ibecc_error_log_offset	= 0x68,
526 	.ibecc_available	= tgl_ibecc_available,
527 	.err_addr_to_sys_addr	= adl_err_addr_to_sys_addr,
528 	.err_addr_to_imc_addr	= adl_err_addr_to_imc_addr,
529 };
530 
531 static struct res_config rpl_p_cfg = {
532 	.machine_check		= true,
533 	.num_imc		= 2,
534 	.imc_base		= 0xd800,
535 	.ibecc_base		= 0xd400,
536 	.ibecc_error_log_offset	= 0x68,
537 	.ibecc_available	= tgl_ibecc_available,
538 	.err_addr		= rpl_p_err_addr,
539 	.err_addr_to_sys_addr	= adl_err_addr_to_sys_addr,
540 	.err_addr_to_imc_addr	= adl_err_addr_to_imc_addr,
541 };
542 
543 static struct res_config mtl_ps_cfg = {
544 	.machine_check		= true,
545 	.num_imc		= 2,
546 	.imc_base		= 0xd800,
547 	.ibecc_base		= 0xd400,
548 	.ibecc_error_log_offset	= 0x170,
549 	.ibecc_available	= mtl_ps_ibecc_available,
550 	.err_addr_to_sys_addr	= adl_err_addr_to_sys_addr,
551 	.err_addr_to_imc_addr	= adl_err_addr_to_imc_addr,
552 };
553 
554 static struct res_config mtl_p_cfg = {
555 	.machine_check		= true,
556 	.num_imc		= 2,
557 	.imc_base		= 0xd800,
558 	.ibecc_base		= 0xd400,
559 	.ibecc_error_log_offset	= 0x170,
560 	.ibecc_available	= mtl_p_ibecc_available,
561 	.err_addr_to_sys_addr	= adl_err_addr_to_sys_addr,
562 	.err_addr_to_imc_addr	= adl_err_addr_to_imc_addr,
563 };
564 
565 static const struct pci_device_id igen6_pci_tbl[] = {
566 	{ PCI_VDEVICE(INTEL, DID_EHL_SKU5), (kernel_ulong_t)&ehl_cfg },
567 	{ PCI_VDEVICE(INTEL, DID_EHL_SKU6), (kernel_ulong_t)&ehl_cfg },
568 	{ PCI_VDEVICE(INTEL, DID_EHL_SKU7), (kernel_ulong_t)&ehl_cfg },
569 	{ PCI_VDEVICE(INTEL, DID_EHL_SKU8), (kernel_ulong_t)&ehl_cfg },
570 	{ PCI_VDEVICE(INTEL, DID_EHL_SKU9), (kernel_ulong_t)&ehl_cfg },
571 	{ PCI_VDEVICE(INTEL, DID_EHL_SKU10), (kernel_ulong_t)&ehl_cfg },
572 	{ PCI_VDEVICE(INTEL, DID_EHL_SKU11), (kernel_ulong_t)&ehl_cfg },
573 	{ PCI_VDEVICE(INTEL, DID_EHL_SKU12), (kernel_ulong_t)&ehl_cfg },
574 	{ PCI_VDEVICE(INTEL, DID_EHL_SKU13), (kernel_ulong_t)&ehl_cfg },
575 	{ PCI_VDEVICE(INTEL, DID_EHL_SKU14), (kernel_ulong_t)&ehl_cfg },
576 	{ PCI_VDEVICE(INTEL, DID_EHL_SKU15), (kernel_ulong_t)&ehl_cfg },
577 	{ PCI_VDEVICE(INTEL, DID_ICL_SKU8), (kernel_ulong_t)&icl_cfg },
578 	{ PCI_VDEVICE(INTEL, DID_ICL_SKU10), (kernel_ulong_t)&icl_cfg },
579 	{ PCI_VDEVICE(INTEL, DID_ICL_SKU11), (kernel_ulong_t)&icl_cfg },
580 	{ PCI_VDEVICE(INTEL, DID_ICL_SKU12), (kernel_ulong_t)&icl_cfg },
581 	{ PCI_VDEVICE(INTEL, DID_TGL_SKU), (kernel_ulong_t)&tgl_cfg },
582 	{ PCI_VDEVICE(INTEL, DID_ADL_SKU1), (kernel_ulong_t)&adl_cfg },
583 	{ PCI_VDEVICE(INTEL, DID_ADL_SKU2), (kernel_ulong_t)&adl_cfg },
584 	{ PCI_VDEVICE(INTEL, DID_ADL_SKU3), (kernel_ulong_t)&adl_cfg },
585 	{ PCI_VDEVICE(INTEL, DID_ADL_SKU4), (kernel_ulong_t)&adl_cfg },
586 	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU1), (kernel_ulong_t)&adl_n_cfg },
587 	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU2), (kernel_ulong_t)&adl_n_cfg },
588 	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU3), (kernel_ulong_t)&adl_n_cfg },
589 	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU4), (kernel_ulong_t)&adl_n_cfg },
590 	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU5), (kernel_ulong_t)&adl_n_cfg },
591 	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU6), (kernel_ulong_t)&adl_n_cfg },
592 	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU7), (kernel_ulong_t)&adl_n_cfg },
593 	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU8), (kernel_ulong_t)&adl_n_cfg },
594 	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU9), (kernel_ulong_t)&adl_n_cfg },
595 	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU10), (kernel_ulong_t)&adl_n_cfg },
596 	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU11), (kernel_ulong_t)&adl_n_cfg },
597 	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU12), (kernel_ulong_t)&adl_n_cfg },
598 	{ PCI_VDEVICE(INTEL, DID_RPL_P_SKU1), (kernel_ulong_t)&rpl_p_cfg },
599 	{ PCI_VDEVICE(INTEL, DID_RPL_P_SKU2), (kernel_ulong_t)&rpl_p_cfg },
600 	{ PCI_VDEVICE(INTEL, DID_RPL_P_SKU3), (kernel_ulong_t)&rpl_p_cfg },
601 	{ PCI_VDEVICE(INTEL, DID_RPL_P_SKU4), (kernel_ulong_t)&rpl_p_cfg },
602 	{ PCI_VDEVICE(INTEL, DID_RPL_P_SKU5), (kernel_ulong_t)&rpl_p_cfg },
603 	{ PCI_VDEVICE(INTEL, DID_MTL_PS_SKU1), (kernel_ulong_t)&mtl_ps_cfg },
604 	{ PCI_VDEVICE(INTEL, DID_MTL_PS_SKU2), (kernel_ulong_t)&mtl_ps_cfg },
605 	{ PCI_VDEVICE(INTEL, DID_MTL_PS_SKU3), (kernel_ulong_t)&mtl_ps_cfg },
606 	{ PCI_VDEVICE(INTEL, DID_MTL_PS_SKU4), (kernel_ulong_t)&mtl_ps_cfg },
607 	{ PCI_VDEVICE(INTEL, DID_MTL_P_SKU1), (kernel_ulong_t)&mtl_p_cfg },
608 	{ PCI_VDEVICE(INTEL, DID_MTL_P_SKU2), (kernel_ulong_t)&mtl_p_cfg },
609 	{ PCI_VDEVICE(INTEL, DID_MTL_P_SKU3), (kernel_ulong_t)&mtl_p_cfg },
610 	{ PCI_VDEVICE(INTEL, DID_ARL_UH_SKU1), (kernel_ulong_t)&mtl_p_cfg },
611 	{ PCI_VDEVICE(INTEL, DID_ARL_UH_SKU2), (kernel_ulong_t)&mtl_p_cfg },
612 	{ PCI_VDEVICE(INTEL, DID_ARL_UH_SKU3), (kernel_ulong_t)&mtl_p_cfg },
613 	{ PCI_VDEVICE(INTEL, DID_PTL_H_SKU1), (kernel_ulong_t)&mtl_p_cfg },
614 	{ PCI_VDEVICE(INTEL, DID_PTL_H_SKU2), (kernel_ulong_t)&mtl_p_cfg },
615 	{ PCI_VDEVICE(INTEL, DID_PTL_H_SKU3), (kernel_ulong_t)&mtl_p_cfg },
616 	{ },
617 };
618 MODULE_DEVICE_TABLE(pci, igen6_pci_tbl);
619 
get_width(int dimm_l,u32 mad_dimm)620 static enum dev_type get_width(int dimm_l, u32 mad_dimm)
621 {
622 	u32 w = dimm_l ? MAD_DIMM_CH_DLW(mad_dimm) :
623 			 MAD_DIMM_CH_DSW(mad_dimm);
624 
625 	switch (w) {
626 	case 0:
627 		return DEV_X8;
628 	case 1:
629 		return DEV_X16;
630 	case 2:
631 		return DEV_X32;
632 	default:
633 		return DEV_UNKNOWN;
634 	}
635 }
636 
get_memory_type(u32 mad_inter)637 static enum mem_type get_memory_type(u32 mad_inter)
638 {
639 	u32 t = MAD_INTER_CHANNEL_DDR_TYPE(mad_inter);
640 
641 	switch (t) {
642 	case 0:
643 		return MEM_DDR4;
644 	case 1:
645 		return MEM_DDR3;
646 	case 2:
647 		return MEM_LPDDR3;
648 	case 3:
649 		return MEM_LPDDR4;
650 	case 4:
651 		return MEM_WIO2;
652 	default:
653 		return MEM_UNKNOWN;
654 	}
655 }
656 
decode_chan_idx(u64 addr,u64 mask,int intlv_bit)657 static int decode_chan_idx(u64 addr, u64 mask, int intlv_bit)
658 {
659 	u64 hash_addr = addr & mask, hash = 0;
660 	u64 intlv = (addr >> intlv_bit) & 1;
661 	int i;
662 
663 	for (i = 6; i < 20; i++)
664 		hash ^= (hash_addr >> i) & 1;
665 
666 	return (int)hash ^ intlv;
667 }
668 
decode_channel_addr(u64 addr,int intlv_bit)669 static u64 decode_channel_addr(u64 addr, int intlv_bit)
670 {
671 	u64 channel_addr;
672 
673 	/* Remove the interleave bit and shift upper part down to fill gap */
674 	channel_addr  = GET_BITFIELD(addr, intlv_bit + 1, 63) << intlv_bit;
675 	channel_addr |= GET_BITFIELD(addr, 0, intlv_bit - 1);
676 
677 	return channel_addr;
678 }
679 
decode_addr(u64 addr,u32 hash,u64 s_size,int l_map,int * idx,u64 * sub_addr)680 static void decode_addr(u64 addr, u32 hash, u64 s_size, int l_map,
681 			int *idx, u64 *sub_addr)
682 {
683 	int intlv_bit = CHANNEL_HASH_LSB_MASK_BIT(hash) + 6;
684 
685 	if (addr > 2 * s_size) {
686 		*sub_addr = addr - s_size;
687 		*idx = l_map;
688 		return;
689 	}
690 
691 	if (CHANNEL_HASH_MODE(hash)) {
692 		*sub_addr = decode_channel_addr(addr, intlv_bit);
693 		*idx = decode_chan_idx(addr, CHANNEL_HASH_MASK(hash), intlv_bit);
694 	} else {
695 		*sub_addr = decode_channel_addr(addr, 6);
696 		*idx = GET_BITFIELD(addr, 6, 6);
697 	}
698 }
699 
igen6_decode(struct decoded_addr * res)700 static int igen6_decode(struct decoded_addr *res)
701 {
702 	struct igen6_imc *imc = &igen6_pvt->imc[res->mc];
703 	u64 addr = res->imc_addr, sub_addr, s_size;
704 	int idx, l_map;
705 	u32 hash;
706 
707 	if (addr >= igen6_tom) {
708 		edac_dbg(0, "Address 0x%llx out of range\n", addr);
709 		return -EINVAL;
710 	}
711 
712 	/* Decode channel */
713 	hash   = readl(imc->window + CHANNEL_HASH_OFFSET);
714 	s_size = imc->ch_s_size;
715 	l_map  = imc->ch_l_map;
716 	decode_addr(addr, hash, s_size, l_map, &idx, &sub_addr);
717 	res->channel_idx  = idx;
718 	res->channel_addr = sub_addr;
719 
720 	/* Decode sub-channel/DIMM */
721 	hash   = readl(imc->window + CHANNEL_EHASH_OFFSET);
722 	s_size = imc->dimm_s_size[idx];
723 	l_map  = imc->dimm_l_map[idx];
724 	decode_addr(res->channel_addr, hash, s_size, l_map, &idx, &sub_addr);
725 	res->sub_channel_idx  = idx;
726 	res->sub_channel_addr = sub_addr;
727 
728 	return 0;
729 }
730 
igen6_output_error(struct decoded_addr * res,struct mem_ctl_info * mci,u64 ecclog)731 static void igen6_output_error(struct decoded_addr *res,
732 			       struct mem_ctl_info *mci, u64 ecclog)
733 {
734 	enum hw_event_mc_err_type type = ecclog & ECC_ERROR_LOG_UE ?
735 					 HW_EVENT_ERR_UNCORRECTED :
736 					 HW_EVENT_ERR_CORRECTED;
737 
738 	edac_mc_handle_error(type, mci, 1,
739 			     res->sys_addr >> PAGE_SHIFT,
740 			     res->sys_addr & ~PAGE_MASK,
741 			     ECC_ERROR_LOG_SYND(ecclog),
742 			     res->channel_idx, res->sub_channel_idx,
743 			     -1, "", "");
744 }
745 
ecclog_gen_pool_create(void)746 static struct gen_pool *ecclog_gen_pool_create(void)
747 {
748 	struct gen_pool *pool;
749 
750 	pool = gen_pool_create(ilog2(sizeof(struct ecclog_node)), -1);
751 	if (!pool)
752 		return NULL;
753 
754 	if (gen_pool_add(pool, (unsigned long)ecclog_buf, ECCLOG_POOL_SIZE, -1)) {
755 		gen_pool_destroy(pool);
756 		return NULL;
757 	}
758 
759 	return pool;
760 }
761 
ecclog_gen_pool_add(int mc,u64 ecclog)762 static int ecclog_gen_pool_add(int mc, u64 ecclog)
763 {
764 	struct ecclog_node *node;
765 
766 	node = (void *)gen_pool_alloc(ecclog_pool, sizeof(*node));
767 	if (!node)
768 		return -ENOMEM;
769 
770 	node->mc = mc;
771 	node->ecclog = ecclog;
772 	llist_add(&node->llnode, &ecclog_llist);
773 
774 	return 0;
775 }
776 
777 /*
778  * Either the memory-mapped I/O status register ECC_ERROR_LOG or the PCI
779  * configuration space status register ERRSTS can indicate whether a
780  * correctable error or an uncorrectable error occurred. We only use the
781  * ECC_ERROR_LOG register to check error type, but need to clear both
782  * registers to enable future error events.
783  */
ecclog_read_and_clear(struct igen6_imc * imc)784 static u64 ecclog_read_and_clear(struct igen6_imc *imc)
785 {
786 	u64 ecclog = readq(imc->window + ECC_ERROR_LOG_OFFSET);
787 
788 	/*
789 	 * Quirk: The ECC_ERROR_LOG register of certain SoCs may contain
790 	 *        the invalid value ~0. This will result in a flood of invalid
791 	 *        error reports in polling mode. Skip it.
792 	 */
793 	if (ecclog == ~0)
794 		return 0;
795 
796 	/* Neither a CE nor a UE. Skip it.*/
797 	if (!(ecclog & (ECC_ERROR_LOG_CE | ECC_ERROR_LOG_UE)))
798 		return 0;
799 
800 	/* Clear CE/UE bits by writing 1s */
801 	writeq(ecclog, imc->window + ECC_ERROR_LOG_OFFSET);
802 
803 	return ecclog;
804 }
805 
errsts_clear(struct igen6_imc * imc)806 static void errsts_clear(struct igen6_imc *imc)
807 {
808 	u16 errsts;
809 
810 	if (pci_read_config_word(imc->pdev, ERRSTS_OFFSET, &errsts)) {
811 		igen6_printk(KERN_ERR, "Failed to read ERRSTS\n");
812 		return;
813 	}
814 
815 	/* Clear CE/UE bits by writing 1s */
816 	if (errsts & (ERRSTS_CE | ERRSTS_UE))
817 		pci_write_config_word(imc->pdev, ERRSTS_OFFSET, errsts);
818 }
819 
errcmd_enable_error_reporting(bool enable)820 static int errcmd_enable_error_reporting(bool enable)
821 {
822 	struct igen6_imc *imc = &igen6_pvt->imc[0];
823 	u16 errcmd;
824 	int rc;
825 
826 	rc = pci_read_config_word(imc->pdev, ERRCMD_OFFSET, &errcmd);
827 	if (rc)
828 		return pcibios_err_to_errno(rc);
829 
830 	if (enable)
831 		errcmd |= ERRCMD_CE | ERRSTS_UE;
832 	else
833 		errcmd &= ~(ERRCMD_CE | ERRSTS_UE);
834 
835 	rc = pci_write_config_word(imc->pdev, ERRCMD_OFFSET, errcmd);
836 	if (rc)
837 		return pcibios_err_to_errno(rc);
838 
839 	return 0;
840 }
841 
ecclog_handler(void)842 static int ecclog_handler(void)
843 {
844 	struct igen6_imc *imc;
845 	int i, n = 0;
846 	u64 ecclog;
847 
848 	for (i = 0; i < res_cfg->num_imc; i++) {
849 		imc = &igen6_pvt->imc[i];
850 
851 		/* errsts_clear() isn't NMI-safe. Delay it in the IRQ context */
852 
853 		ecclog = ecclog_read_and_clear(imc);
854 		if (!ecclog)
855 			continue;
856 
857 		if (!ecclog_gen_pool_add(i, ecclog))
858 			irq_work_queue(&ecclog_irq_work);
859 
860 		n++;
861 	}
862 
863 	return n;
864 }
865 
ecclog_work_cb(struct work_struct * work)866 static void ecclog_work_cb(struct work_struct *work)
867 {
868 	struct ecclog_node *node, *tmp;
869 	struct mem_ctl_info *mci;
870 	struct llist_node *head;
871 	struct decoded_addr res;
872 	u64 eaddr;
873 
874 	head = llist_del_all(&ecclog_llist);
875 	if (!head)
876 		return;
877 
878 	llist_for_each_entry_safe(node, tmp, head, llnode) {
879 		memset(&res, 0, sizeof(res));
880 		if (res_cfg->err_addr)
881 			eaddr = res_cfg->err_addr(node->ecclog);
882 		else
883 			eaddr = ECC_ERROR_LOG_ADDR(node->ecclog) <<
884 				ECC_ERROR_LOG_ADDR_SHIFT;
885 		res.mc	     = node->mc;
886 		res.sys_addr = res_cfg->err_addr_to_sys_addr(eaddr, res.mc);
887 		res.imc_addr = res_cfg->err_addr_to_imc_addr(eaddr, res.mc);
888 
889 		mci = igen6_pvt->imc[res.mc].mci;
890 
891 		edac_dbg(2, "MC %d, ecclog = 0x%llx\n", node->mc, node->ecclog);
892 		igen6_mc_printk(mci, KERN_DEBUG, "HANDLING IBECC MEMORY ERROR\n");
893 		igen6_mc_printk(mci, KERN_DEBUG, "ADDR 0x%llx ", res.sys_addr);
894 
895 		if (!igen6_decode(&res))
896 			igen6_output_error(&res, mci, node->ecclog);
897 
898 		gen_pool_free(ecclog_pool, (unsigned long)node, sizeof(*node));
899 	}
900 }
901 
ecclog_irq_work_cb(struct irq_work * irq_work)902 static void ecclog_irq_work_cb(struct irq_work *irq_work)
903 {
904 	int i;
905 
906 	for (i = 0; i < res_cfg->num_imc; i++)
907 		errsts_clear(&igen6_pvt->imc[i]);
908 
909 	if (!llist_empty(&ecclog_llist))
910 		schedule_work(&ecclog_work);
911 }
912 
ecclog_nmi_handler(unsigned int cmd,struct pt_regs * regs)913 static int ecclog_nmi_handler(unsigned int cmd, struct pt_regs *regs)
914 {
915 	unsigned char reason;
916 
917 	if (!ecclog_handler())
918 		return NMI_DONE;
919 
920 	/*
921 	 * Both In-Band ECC correctable error and uncorrectable error are
922 	 * reported by SERR# NMI. The NMI generic code (see pci_serr_error())
923 	 * doesn't clear the bit NMI_REASON_CLEAR_SERR (in port 0x61) to
924 	 * re-enable the SERR# NMI after NMI handling. So clear this bit here
925 	 * to re-enable SERR# NMI for receiving future In-Band ECC errors.
926 	 */
927 	reason  = x86_platform.get_nmi_reason() & NMI_REASON_CLEAR_MASK;
928 	reason |= NMI_REASON_CLEAR_SERR;
929 	outb(reason, NMI_REASON_PORT);
930 	reason &= ~NMI_REASON_CLEAR_SERR;
931 	outb(reason, NMI_REASON_PORT);
932 
933 	return NMI_HANDLED;
934 }
935 
ecclog_mce_handler(struct notifier_block * nb,unsigned long val,void * data)936 static int ecclog_mce_handler(struct notifier_block *nb, unsigned long val,
937 			      void *data)
938 {
939 	struct mce *mce = (struct mce *)data;
940 	char *type;
941 
942 	if (mce->kflags & MCE_HANDLED_CEC)
943 		return NOTIFY_DONE;
944 
945 	/*
946 	 * Ignore unless this is a memory related error.
947 	 * We don't check the bit MCI_STATUS_ADDRV of MCi_STATUS here,
948 	 * since this bit isn't set on some CPU (e.g., Tiger Lake UP3).
949 	 */
950 	if ((mce->status & 0xefff) >> 7 != 1)
951 		return NOTIFY_DONE;
952 
953 	if (mce->mcgstatus & MCG_STATUS_MCIP)
954 		type = "Exception";
955 	else
956 		type = "Event";
957 
958 	edac_dbg(0, "CPU %d: Machine Check %s: 0x%llx Bank %d: 0x%llx\n",
959 		 mce->extcpu, type, mce->mcgstatus,
960 		 mce->bank, mce->status);
961 	edac_dbg(0, "TSC 0x%llx\n", mce->tsc);
962 	edac_dbg(0, "ADDR 0x%llx\n", mce->addr);
963 	edac_dbg(0, "MISC 0x%llx\n", mce->misc);
964 	edac_dbg(0, "PROCESSOR %u:0x%x TIME %llu SOCKET %u APIC 0x%x\n",
965 		 mce->cpuvendor, mce->cpuid, mce->time,
966 		 mce->socketid, mce->apicid);
967 	/*
968 	 * We just use the Machine Check for the memory error notification.
969 	 * Each memory controller is associated with an IBECC instance.
970 	 * Directly read and clear the error information(error address and
971 	 * error type) on all the IBECC instances so that we know on which
972 	 * memory controller the memory error(s) occurred.
973 	 */
974 	if (!ecclog_handler())
975 		return NOTIFY_DONE;
976 
977 	mce->kflags |= MCE_HANDLED_EDAC;
978 
979 	return NOTIFY_DONE;
980 }
981 
982 static struct notifier_block ecclog_mce_dec = {
983 	.notifier_call	= ecclog_mce_handler,
984 	.priority	= MCE_PRIO_EDAC,
985 };
986 
igen6_check_ecc(struct igen6_imc * imc)987 static bool igen6_check_ecc(struct igen6_imc *imc)
988 {
989 	u32 activate = readl(imc->window + IBECC_ACTIVATE_OFFSET);
990 
991 	return !!(activate & IBECC_ACTIVATE_EN);
992 }
993 
igen6_get_dimm_config(struct mem_ctl_info * mci)994 static int igen6_get_dimm_config(struct mem_ctl_info *mci)
995 {
996 	struct igen6_imc *imc = mci->pvt_info;
997 	u32 mad_inter, mad_intra, mad_dimm;
998 	int i, j, ndimms, mc = imc->mc;
999 	struct dimm_info *dimm;
1000 	enum mem_type mtype;
1001 	enum dev_type dtype;
1002 	u64 dsize;
1003 	bool ecc;
1004 
1005 	edac_dbg(2, "\n");
1006 
1007 	mad_inter = readl(imc->window + MAD_INTER_CHANNEL_OFFSET);
1008 	mtype = get_memory_type(mad_inter);
1009 	ecc = igen6_check_ecc(imc);
1010 	imc->ch_s_size = MAD_INTER_CHANNEL_CH_S_SIZE(mad_inter);
1011 	imc->ch_l_map  = MAD_INTER_CHANNEL_CH_L_MAP(mad_inter);
1012 
1013 	for (i = 0; i < NUM_CHANNELS; i++) {
1014 		mad_intra = readl(imc->window + MAD_INTRA_CH0_OFFSET + i * 4);
1015 		mad_dimm  = readl(imc->window + MAD_DIMM_CH0_OFFSET + i * 4);
1016 
1017 		imc->dimm_l_size[i] = MAD_DIMM_CH_DIMM_L_SIZE(mad_dimm);
1018 		imc->dimm_s_size[i] = MAD_DIMM_CH_DIMM_S_SIZE(mad_dimm);
1019 		imc->dimm_l_map[i]  = MAD_INTRA_CH_DIMM_L_MAP(mad_intra);
1020 		imc->size += imc->dimm_s_size[i];
1021 		imc->size += imc->dimm_l_size[i];
1022 		ndimms = 0;
1023 
1024 		for (j = 0; j < NUM_DIMMS; j++) {
1025 			dimm = edac_get_dimm(mci, i, j, 0);
1026 
1027 			if (j ^ imc->dimm_l_map[i]) {
1028 				dtype = get_width(0, mad_dimm);
1029 				dsize = imc->dimm_s_size[i];
1030 			} else {
1031 				dtype = get_width(1, mad_dimm);
1032 				dsize = imc->dimm_l_size[i];
1033 			}
1034 
1035 			if (!dsize)
1036 				continue;
1037 
1038 			dimm->grain = 64;
1039 			dimm->mtype = mtype;
1040 			dimm->dtype = dtype;
1041 			dimm->nr_pages  = MiB_TO_PAGES(dsize >> 20);
1042 			dimm->edac_mode = EDAC_SECDED;
1043 			snprintf(dimm->label, sizeof(dimm->label),
1044 				 "MC#%d_Chan#%d_DIMM#%d", mc, i, j);
1045 			edac_dbg(0, "MC %d, Channel %d, DIMM %d, Size %llu MiB (%u pages)\n",
1046 				 mc, i, j, dsize >> 20, dimm->nr_pages);
1047 
1048 			ndimms++;
1049 		}
1050 
1051 		if (ndimms && !ecc) {
1052 			igen6_printk(KERN_ERR, "MC%d In-Band ECC is disabled\n", mc);
1053 			return -ENODEV;
1054 		}
1055 	}
1056 
1057 	edac_dbg(0, "MC %d, total size %llu MiB\n", mc, imc->size >> 20);
1058 
1059 	return 0;
1060 }
1061 
1062 #ifdef CONFIG_EDAC_DEBUG
1063 /* Top of upper usable DRAM */
1064 static u64 igen6_touud;
1065 #define TOUUD_OFFSET	0xa8
1066 
igen6_reg_dump(struct igen6_imc * imc)1067 static void igen6_reg_dump(struct igen6_imc *imc)
1068 {
1069 	int i;
1070 
1071 	edac_dbg(2, "CHANNEL_HASH     : 0x%x\n",
1072 		 readl(imc->window + CHANNEL_HASH_OFFSET));
1073 	edac_dbg(2, "CHANNEL_EHASH    : 0x%x\n",
1074 		 readl(imc->window + CHANNEL_EHASH_OFFSET));
1075 	edac_dbg(2, "MAD_INTER_CHANNEL: 0x%x\n",
1076 		 readl(imc->window + MAD_INTER_CHANNEL_OFFSET));
1077 	edac_dbg(2, "ECC_ERROR_LOG    : 0x%llx\n",
1078 		 readq(imc->window + ECC_ERROR_LOG_OFFSET));
1079 
1080 	for (i = 0; i < NUM_CHANNELS; i++) {
1081 		edac_dbg(2, "MAD_INTRA_CH%d    : 0x%x\n", i,
1082 			 readl(imc->window + MAD_INTRA_CH0_OFFSET + i * 4));
1083 		edac_dbg(2, "MAD_DIMM_CH%d     : 0x%x\n", i,
1084 			 readl(imc->window + MAD_DIMM_CH0_OFFSET + i * 4));
1085 	}
1086 	edac_dbg(2, "TOLUD            : 0x%x", igen6_tolud);
1087 	edac_dbg(2, "TOUUD            : 0x%llx", igen6_touud);
1088 	edac_dbg(2, "TOM              : 0x%llx", igen6_tom);
1089 }
1090 
1091 static struct dentry *igen6_test;
1092 
debugfs_u64_set(void * data,u64 val)1093 static int debugfs_u64_set(void *data, u64 val)
1094 {
1095 	u64 ecclog;
1096 
1097 	if ((val >= igen6_tolud && val < _4GB) || val >= igen6_touud) {
1098 		edac_dbg(0, "Address 0x%llx out of range\n", val);
1099 		return 0;
1100 	}
1101 
1102 	pr_warn_once("Fake error to 0x%llx injected via debugfs\n", val);
1103 
1104 	val  >>= ECC_ERROR_LOG_ADDR_SHIFT;
1105 	ecclog = (val << ECC_ERROR_LOG_ADDR_SHIFT) | ECC_ERROR_LOG_CE;
1106 
1107 	if (!ecclog_gen_pool_add(0, ecclog))
1108 		irq_work_queue(&ecclog_irq_work);
1109 
1110 	return 0;
1111 }
1112 DEFINE_SIMPLE_ATTRIBUTE(fops_u64_wo, NULL, debugfs_u64_set, "%llu\n");
1113 
igen6_debug_setup(void)1114 static void igen6_debug_setup(void)
1115 {
1116 	igen6_test = edac_debugfs_create_dir("igen6_test");
1117 	if (!igen6_test)
1118 		return;
1119 
1120 	if (!edac_debugfs_create_file("addr", 0200, igen6_test,
1121 				      NULL, &fops_u64_wo)) {
1122 		debugfs_remove(igen6_test);
1123 		igen6_test = NULL;
1124 	}
1125 }
1126 
igen6_debug_teardown(void)1127 static void igen6_debug_teardown(void)
1128 {
1129 	debugfs_remove_recursive(igen6_test);
1130 }
1131 #else
igen6_reg_dump(struct igen6_imc * imc)1132 static void igen6_reg_dump(struct igen6_imc *imc) {}
igen6_debug_setup(void)1133 static void igen6_debug_setup(void) {}
igen6_debug_teardown(void)1134 static void igen6_debug_teardown(void) {}
1135 #endif
1136 
igen6_pci_setup(struct pci_dev * pdev,u64 * mchbar)1137 static int igen6_pci_setup(struct pci_dev *pdev, u64 *mchbar)
1138 {
1139 	union  {
1140 		u64 v;
1141 		struct {
1142 			u32 v_lo;
1143 			u32 v_hi;
1144 		};
1145 	} u;
1146 
1147 	edac_dbg(2, "\n");
1148 
1149 	if (!res_cfg->ibecc_available(pdev)) {
1150 		edac_dbg(2, "No In-Band ECC IP\n");
1151 		goto fail;
1152 	}
1153 
1154 	if (pci_read_config_dword(pdev, TOLUD_OFFSET, &igen6_tolud)) {
1155 		igen6_printk(KERN_ERR, "Failed to read TOLUD\n");
1156 		goto fail;
1157 	}
1158 
1159 	igen6_tolud &= GENMASK(31, 20);
1160 
1161 	if (pci_read_config_dword(pdev, TOM_OFFSET, &u.v_lo)) {
1162 		igen6_printk(KERN_ERR, "Failed to read lower TOM\n");
1163 		goto fail;
1164 	}
1165 
1166 	if (pci_read_config_dword(pdev, TOM_OFFSET + 4, &u.v_hi)) {
1167 		igen6_printk(KERN_ERR, "Failed to read upper TOM\n");
1168 		goto fail;
1169 	}
1170 
1171 	igen6_tom = u.v & GENMASK_ULL(38, 20);
1172 
1173 	if (get_mchbar(pdev, mchbar))
1174 		goto fail;
1175 
1176 #ifdef CONFIG_EDAC_DEBUG
1177 	if (pci_read_config_dword(pdev, TOUUD_OFFSET, &u.v_lo))
1178 		edac_dbg(2, "Failed to read lower TOUUD\n");
1179 	else if (pci_read_config_dword(pdev, TOUUD_OFFSET + 4, &u.v_hi))
1180 		edac_dbg(2, "Failed to read upper TOUUD\n");
1181 	else
1182 		igen6_touud = u.v & GENMASK_ULL(38, 20);
1183 #endif
1184 
1185 	return 0;
1186 fail:
1187 	return -ENODEV;
1188 }
1189 
igen6_check(struct mem_ctl_info * mci)1190 static void igen6_check(struct mem_ctl_info *mci)
1191 {
1192 	struct igen6_imc *imc = mci->pvt_info;
1193 	u64 ecclog;
1194 
1195 	/* errsts_clear() isn't NMI-safe. Delay it in the IRQ context */
1196 	ecclog = ecclog_read_and_clear(imc);
1197 	if (!ecclog)
1198 		return;
1199 
1200 	if (!ecclog_gen_pool_add(imc->mc, ecclog))
1201 		irq_work_queue(&ecclog_irq_work);
1202 }
1203 
igen6_register_mci(int mc,u64 mchbar,struct pci_dev * pdev)1204 static int igen6_register_mci(int mc, u64 mchbar, struct pci_dev *pdev)
1205 {
1206 	struct edac_mc_layer layers[2];
1207 	struct mem_ctl_info *mci;
1208 	struct igen6_imc *imc;
1209 	void __iomem *window;
1210 	int rc;
1211 
1212 	edac_dbg(2, "\n");
1213 
1214 	mchbar += mc * MCHBAR_SIZE;
1215 	window = ioremap(mchbar, MCHBAR_SIZE);
1216 	if (!window) {
1217 		igen6_printk(KERN_ERR, "Failed to ioremap 0x%llx\n", mchbar);
1218 		return -ENODEV;
1219 	}
1220 
1221 	layers[0].type = EDAC_MC_LAYER_CHANNEL;
1222 	layers[0].size = NUM_CHANNELS;
1223 	layers[0].is_virt_csrow = false;
1224 	layers[1].type = EDAC_MC_LAYER_SLOT;
1225 	layers[1].size = NUM_DIMMS;
1226 	layers[1].is_virt_csrow = true;
1227 
1228 	mci = edac_mc_alloc(mc, ARRAY_SIZE(layers), layers, 0);
1229 	if (!mci) {
1230 		rc = -ENOMEM;
1231 		goto fail;
1232 	}
1233 
1234 	mci->ctl_name = kasprintf(GFP_KERNEL, "Intel_client_SoC MC#%d", mc);
1235 	if (!mci->ctl_name) {
1236 		rc = -ENOMEM;
1237 		goto fail2;
1238 	}
1239 
1240 	mci->mtype_cap = MEM_FLAG_LPDDR4 | MEM_FLAG_DDR4;
1241 	mci->edac_ctl_cap = EDAC_FLAG_SECDED;
1242 	mci->edac_cap = EDAC_FLAG_SECDED;
1243 	mci->mod_name = EDAC_MOD_STR;
1244 	mci->dev_name = pci_name(pdev);
1245 	if (edac_op_state == EDAC_OPSTATE_POLL)
1246 		mci->edac_check = igen6_check;
1247 	mci->pvt_info = &igen6_pvt->imc[mc];
1248 
1249 	imc = mci->pvt_info;
1250 	device_initialize(&imc->dev);
1251 	/*
1252 	 * EDAC core uses mci->pdev(pointer of structure device) as
1253 	 * memory controller ID. The client SoCs attach one or more
1254 	 * memory controllers to single pci_dev (single pci_dev->dev
1255 	 * can be for multiple memory controllers).
1256 	 *
1257 	 * To make mci->pdev unique, assign pci_dev->dev to mci->pdev
1258 	 * for the first memory controller and assign a unique imc->dev
1259 	 * to mci->pdev for each non-first memory controller.
1260 	 */
1261 	mci->pdev = mc ? &imc->dev : &pdev->dev;
1262 	imc->mc	= mc;
1263 	imc->pdev = pdev;
1264 	imc->window = window;
1265 
1266 	igen6_reg_dump(imc);
1267 
1268 	rc = igen6_get_dimm_config(mci);
1269 	if (rc)
1270 		goto fail3;
1271 
1272 	rc = edac_mc_add_mc(mci);
1273 	if (rc) {
1274 		igen6_printk(KERN_ERR, "Failed to register mci#%d\n", mc);
1275 		goto fail3;
1276 	}
1277 
1278 	imc->mci = mci;
1279 	return 0;
1280 fail3:
1281 	mci->pvt_info = NULL;
1282 	kfree(mci->ctl_name);
1283 fail2:
1284 	edac_mc_free(mci);
1285 fail:
1286 	iounmap(window);
1287 	return rc;
1288 }
1289 
igen6_unregister_mcis(void)1290 static void igen6_unregister_mcis(void)
1291 {
1292 	struct mem_ctl_info *mci;
1293 	struct igen6_imc *imc;
1294 	int i;
1295 
1296 	edac_dbg(2, "\n");
1297 
1298 	for (i = 0; i < res_cfg->num_imc; i++) {
1299 		imc = &igen6_pvt->imc[i];
1300 		mci = imc->mci;
1301 		if (!mci)
1302 			continue;
1303 
1304 		edac_mc_del_mc(mci->pdev);
1305 		kfree(mci->ctl_name);
1306 		mci->pvt_info = NULL;
1307 		edac_mc_free(mci);
1308 		iounmap(imc->window);
1309 	}
1310 }
1311 
igen6_mem_slice_setup(u64 mchbar)1312 static int igen6_mem_slice_setup(u64 mchbar)
1313 {
1314 	struct igen6_imc *imc = &igen6_pvt->imc[0];
1315 	u64 base = mchbar + res_cfg->cmf_base;
1316 	u32 offset = res_cfg->ms_hash_offset;
1317 	u32 size = res_cfg->cmf_size;
1318 	u64 ms_s_size, ms_hash;
1319 	void __iomem *cmf;
1320 	int ms_l_map;
1321 
1322 	edac_dbg(2, "\n");
1323 
1324 	if (imc[0].size < imc[1].size) {
1325 		ms_s_size = imc[0].size;
1326 		ms_l_map  = 1;
1327 	} else {
1328 		ms_s_size = imc[1].size;
1329 		ms_l_map  = 0;
1330 	}
1331 
1332 	igen6_pvt->ms_s_size = ms_s_size;
1333 	igen6_pvt->ms_l_map  = ms_l_map;
1334 
1335 	edac_dbg(0, "ms_s_size: %llu MiB, ms_l_map %d\n",
1336 		 ms_s_size >> 20, ms_l_map);
1337 
1338 	if (!size)
1339 		return 0;
1340 
1341 	cmf = ioremap(base, size);
1342 	if (!cmf) {
1343 		igen6_printk(KERN_ERR, "Failed to ioremap cmf 0x%llx\n", base);
1344 		return -ENODEV;
1345 	}
1346 
1347 	ms_hash = readq(cmf + offset);
1348 	igen6_pvt->ms_hash = ms_hash;
1349 
1350 	edac_dbg(0, "MEM_SLICE_HASH: 0x%llx\n", ms_hash);
1351 
1352 	iounmap(cmf);
1353 
1354 	return 0;
1355 }
1356 
register_err_handler(void)1357 static int register_err_handler(void)
1358 {
1359 	int rc;
1360 
1361 	if (res_cfg->machine_check) {
1362 		mce_register_decode_chain(&ecclog_mce_dec);
1363 		return 0;
1364 	}
1365 
1366 	rc = register_nmi_handler(NMI_SERR, ecclog_nmi_handler,
1367 				  0, IGEN6_NMI_NAME);
1368 	if (rc) {
1369 		igen6_printk(KERN_ERR, "Failed to register NMI handler\n");
1370 		return rc;
1371 	}
1372 
1373 	return 0;
1374 }
1375 
unregister_err_handler(void)1376 static void unregister_err_handler(void)
1377 {
1378 	if (res_cfg->machine_check) {
1379 		mce_unregister_decode_chain(&ecclog_mce_dec);
1380 		return;
1381 	}
1382 
1383 	unregister_nmi_handler(NMI_SERR, IGEN6_NMI_NAME);
1384 }
1385 
opstate_set(struct res_config * cfg,const struct pci_device_id * ent)1386 static void opstate_set(struct res_config *cfg, const struct pci_device_id *ent)
1387 {
1388 	/*
1389 	 * Quirk: Certain SoCs' error reporting interrupts don't work.
1390 	 *        Force polling mode for them to ensure that memory error
1391 	 *        events can be handled.
1392 	 */
1393 	if (ent->device == DID_ADL_N_SKU4) {
1394 		edac_op_state = EDAC_OPSTATE_POLL;
1395 		return;
1396 	}
1397 
1398 	/* Set the mode according to the configuration data. */
1399 	if (cfg->machine_check)
1400 		edac_op_state = EDAC_OPSTATE_INT;
1401 	else
1402 		edac_op_state = EDAC_OPSTATE_NMI;
1403 }
1404 
igen6_probe(struct pci_dev * pdev,const struct pci_device_id * ent)1405 static int igen6_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1406 {
1407 	u64 mchbar;
1408 	int i, rc;
1409 
1410 	edac_dbg(2, "\n");
1411 
1412 	igen6_pvt = kzalloc(sizeof(*igen6_pvt), GFP_KERNEL);
1413 	if (!igen6_pvt)
1414 		return -ENOMEM;
1415 
1416 	res_cfg = (struct res_config *)ent->driver_data;
1417 
1418 	rc = igen6_pci_setup(pdev, &mchbar);
1419 	if (rc)
1420 		goto fail;
1421 
1422 	opstate_set(res_cfg, ent);
1423 
1424 	for (i = 0; i < res_cfg->num_imc; i++) {
1425 		rc = igen6_register_mci(i, mchbar, pdev);
1426 		if (rc)
1427 			goto fail2;
1428 	}
1429 
1430 	if (res_cfg->num_imc > 1) {
1431 		rc = igen6_mem_slice_setup(mchbar);
1432 		if (rc)
1433 			goto fail2;
1434 	}
1435 
1436 	ecclog_pool = ecclog_gen_pool_create();
1437 	if (!ecclog_pool) {
1438 		rc = -ENOMEM;
1439 		goto fail2;
1440 	}
1441 
1442 	INIT_WORK(&ecclog_work, ecclog_work_cb);
1443 	init_irq_work(&ecclog_irq_work, ecclog_irq_work_cb);
1444 
1445 	rc = register_err_handler();
1446 	if (rc)
1447 		goto fail3;
1448 
1449 	/* Enable error reporting */
1450 	rc = errcmd_enable_error_reporting(true);
1451 	if (rc) {
1452 		igen6_printk(KERN_ERR, "Failed to enable error reporting\n");
1453 		goto fail4;
1454 	}
1455 
1456 	/* Check if any pending errors before/during the registration of the error handler */
1457 	ecclog_handler();
1458 
1459 	igen6_debug_setup();
1460 	return 0;
1461 fail4:
1462 	unregister_nmi_handler(NMI_SERR, IGEN6_NMI_NAME);
1463 fail3:
1464 	gen_pool_destroy(ecclog_pool);
1465 fail2:
1466 	igen6_unregister_mcis();
1467 fail:
1468 	kfree(igen6_pvt);
1469 	return rc;
1470 }
1471 
igen6_remove(struct pci_dev * pdev)1472 static void igen6_remove(struct pci_dev *pdev)
1473 {
1474 	edac_dbg(2, "\n");
1475 
1476 	igen6_debug_teardown();
1477 	errcmd_enable_error_reporting(false);
1478 	unregister_err_handler();
1479 	irq_work_sync(&ecclog_irq_work);
1480 	flush_work(&ecclog_work);
1481 	gen_pool_destroy(ecclog_pool);
1482 	igen6_unregister_mcis();
1483 	kfree(igen6_pvt);
1484 }
1485 
1486 static struct pci_driver igen6_driver = {
1487 	.name     = EDAC_MOD_STR,
1488 	.probe    = igen6_probe,
1489 	.remove   = igen6_remove,
1490 	.id_table = igen6_pci_tbl,
1491 };
1492 
igen6_init(void)1493 static int __init igen6_init(void)
1494 {
1495 	const char *owner;
1496 	int rc;
1497 
1498 	edac_dbg(2, "\n");
1499 
1500 	if (ghes_get_devices())
1501 		return -EBUSY;
1502 
1503 	owner = edac_get_owner();
1504 	if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
1505 		return -EBUSY;
1506 
1507 	rc = pci_register_driver(&igen6_driver);
1508 	if (rc)
1509 		return rc;
1510 
1511 	igen6_printk(KERN_INFO, "%s\n", IGEN6_REVISION);
1512 
1513 	return 0;
1514 }
1515 
igen6_exit(void)1516 static void __exit igen6_exit(void)
1517 {
1518 	edac_dbg(2, "\n");
1519 
1520 	pci_unregister_driver(&igen6_driver);
1521 }
1522 
1523 module_init(igen6_init);
1524 module_exit(igen6_exit);
1525 
1526 MODULE_LICENSE("GPL v2");
1527 MODULE_AUTHOR("Qiuxu Zhuo");
1528 MODULE_DESCRIPTION("MC Driver for Intel client SoC using In-Band ECC");
1529