xref: /aosp_15_r20/external/mesa3d/src/intel/compiler/elk/elk_fs_reg_allocate.cpp (revision 6104692788411f58d303aa86923a9ff6ecaded22)
1 /*
2  * Copyright © 2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <[email protected]>
25  *
26  */
27 
28 #include "elk_eu.h"
29 #include "elk_fs.h"
30 #include "elk_fs_builder.h"
31 #include "elk_cfg.h"
32 #include "util/set.h"
33 #include "util/register_allocate.h"
34 
35 using namespace elk;
36 
37 static void
assign_reg(const struct intel_device_info * devinfo,unsigned * reg_hw_locations,elk_fs_reg * reg)38 assign_reg(const struct intel_device_info *devinfo,
39            unsigned *reg_hw_locations, elk_fs_reg *reg)
40 {
41    if (reg->file == VGRF) {
42       reg->nr = reg_unit(devinfo) * reg_hw_locations[reg->nr] + reg->offset / REG_SIZE;
43       reg->offset %= REG_SIZE;
44    }
45 }
46 
47 void
assign_regs_trivial()48 elk_fs_visitor::assign_regs_trivial()
49 {
50    unsigned hw_reg_mapping[this->alloc.count + 1];
51    unsigned i;
52    int reg_width = dispatch_width / 8;
53 
54    /* Note that compressed instructions require alignment to 2 registers. */
55    hw_reg_mapping[0] = ALIGN(this->first_non_payload_grf, reg_width);
56    for (i = 1; i <= this->alloc.count; i++) {
57       hw_reg_mapping[i] = (hw_reg_mapping[i - 1] +
58                            DIV_ROUND_UP(this->alloc.sizes[i - 1],
59                                         reg_unit(devinfo)));
60    }
61    this->grf_used = hw_reg_mapping[this->alloc.count];
62 
63    foreach_block_and_inst(block, elk_fs_inst, inst, cfg) {
64       assign_reg(devinfo, hw_reg_mapping, &inst->dst);
65       for (i = 0; i < inst->sources; i++) {
66          assign_reg(devinfo, hw_reg_mapping, &inst->src[i]);
67       }
68    }
69 
70    if (this->grf_used >= max_grf) {
71       fail("Ran out of regs on trivial allocator (%d/%d)\n",
72 	   this->grf_used, max_grf);
73    } else {
74       this->alloc.count = this->grf_used;
75    }
76 
77 }
78 
79 /**
80  * Size of a register from the aligned_bary_class register class.
81  */
82 static unsigned
aligned_bary_size(unsigned dispatch_width)83 aligned_bary_size(unsigned dispatch_width)
84 {
85    return (dispatch_width == 8 ? 2 : 4);
86 }
87 
88 static void
elk_alloc_reg_set(struct elk_compiler * compiler,int dispatch_width)89 elk_alloc_reg_set(struct elk_compiler *compiler, int dispatch_width)
90 {
91    const struct intel_device_info *devinfo = compiler->devinfo;
92    int base_reg_count = ELK_MAX_GRF;
93    const int index = util_logbase2(dispatch_width / 8);
94 
95    if (dispatch_width > 8 && devinfo->ver >= 7) {
96       /* For IVB+, we don't need the PLN hacks or the even-reg alignment in
97        * SIMD16.  Therefore, we can use the exact same register sets for
98        * SIMD16 as we do for SIMD8 and we don't need to recalculate them.
99        */
100       compiler->fs_reg_sets[index] = compiler->fs_reg_sets[0];
101       return;
102    }
103 
104    /* The registers used to make up almost all values handled in the compiler
105     * are a scalar value occupying a single register (or 2 registers in the
106     * case of SIMD16, which is handled by dividing base_reg_count by 2 and
107     * multiplying allocated register numbers by 2).  Things that were
108     * aggregates of scalar values at the GLSL level were split to scalar
109     * values by split_virtual_grfs().
110     *
111     * However, texture SEND messages return a series of contiguous registers
112     * to write into.  We currently always ask for 4 registers, but we may
113     * convert that to use less some day.
114     *
115     * Additionally, on gfx5 we need aligned pairs of registers for the PLN
116     * instruction, and on gfx4 we need 8 contiguous regs for workaround simd16
117     * texturing.
118     */
119    assert(REG_CLASS_COUNT == MAX_VGRF_SIZE(devinfo) / reg_unit(devinfo));
120    int class_sizes[REG_CLASS_COUNT];
121    for (unsigned i = 0; i < REG_CLASS_COUNT; i++)
122       class_sizes[i] = i + 1;
123 
124    struct ra_regs *regs = ra_alloc_reg_set(compiler, ELK_MAX_GRF, false);
125    if (devinfo->ver >= 6)
126       ra_set_allocate_round_robin(regs);
127    struct ra_class **classes = ralloc_array(compiler, struct ra_class *,
128                                             REG_CLASS_COUNT);
129    struct ra_class *aligned_bary_class = NULL;
130 
131    /* Now, make the register classes for each size of contiguous register
132     * allocation we might need to make.
133     */
134    for (int i = 0; i < REG_CLASS_COUNT; i++) {
135       classes[i] = ra_alloc_contig_reg_class(regs, class_sizes[i]);
136 
137       if (devinfo->ver <= 5 && dispatch_width >= 16) {
138          /* From the G45 PRM:
139           *
140           * In order to reduce the hardware complexity, the following
141           * rules and restrictions apply to the compressed instruction:
142           * ...
143           * * Operand Alignment Rule: With the exceptions listed below, a
144           *   source/destination operand in general should be aligned to
145           *   even 256-bit physical register with a region size equal to
146           *   two 256-bit physical register
147           */
148          for (int reg = 0; reg <= base_reg_count - class_sizes[i]; reg += 2)
149             ra_class_add_reg(classes[i], reg);
150       } else {
151          for (int reg = 0; reg <= base_reg_count - class_sizes[i]; reg++)
152             ra_class_add_reg(classes[i], reg);
153       }
154    }
155 
156    /* Add a special class for aligned barycentrics, which we'll put the
157     * first source of LINTERP on so that we can do PLN on Gen <= 6.
158     */
159    if (devinfo->has_pln && (devinfo->ver == 6 ||
160                             (dispatch_width == 8 && devinfo->ver <= 5))) {
161       int contig_len = aligned_bary_size(dispatch_width);
162       aligned_bary_class = ra_alloc_contig_reg_class(regs, contig_len);
163 
164       for (int i = 0; i <= base_reg_count - contig_len; i += 2)
165          ra_class_add_reg(aligned_bary_class, i);
166    }
167 
168    ra_set_finalize(regs, NULL);
169 
170    compiler->fs_reg_sets[index].regs = regs;
171    for (unsigned i = 0; i < ARRAY_SIZE(compiler->fs_reg_sets[index].classes); i++)
172       compiler->fs_reg_sets[index].classes[i] = NULL;
173    for (int i = 0; i < REG_CLASS_COUNT; i++)
174       compiler->fs_reg_sets[index].classes[class_sizes[i] - 1] = classes[i];
175    compiler->fs_reg_sets[index].aligned_bary_class = aligned_bary_class;
176 }
177 
178 void
elk_fs_alloc_reg_sets(struct elk_compiler * compiler)179 elk_fs_alloc_reg_sets(struct elk_compiler *compiler)
180 {
181    elk_alloc_reg_set(compiler, 8);
182    elk_alloc_reg_set(compiler, 16);
183    elk_alloc_reg_set(compiler, 32);
184 }
185 
186 static int
count_to_loop_end(const elk_bblock_t * block)187 count_to_loop_end(const elk_bblock_t *block)
188 {
189    if (block->end()->opcode == ELK_OPCODE_WHILE)
190       return block->end_ip;
191 
192    int depth = 1;
193    /* Skip the first block, since we don't want to count the do the calling
194     * function found.
195     */
196    for (block = block->next();
197         depth > 0;
198         block = block->next()) {
199       if (block->start()->opcode == ELK_OPCODE_DO)
200          depth++;
201       if (block->end()->opcode == ELK_OPCODE_WHILE) {
202          depth--;
203          if (depth == 0)
204             return block->end_ip;
205       }
206    }
207    unreachable("not reached");
208 }
209 
calculate_payload_ranges(unsigned payload_node_count,int * payload_last_use_ip) const210 void elk_fs_visitor::calculate_payload_ranges(unsigned payload_node_count,
211                                           int *payload_last_use_ip) const
212 {
213    int loop_depth = 0;
214    int loop_end_ip = 0;
215 
216    for (unsigned i = 0; i < payload_node_count; i++)
217       payload_last_use_ip[i] = -1;
218 
219    int ip = 0;
220    foreach_block_and_inst(block, elk_fs_inst, inst, cfg) {
221       switch (inst->opcode) {
222       case ELK_OPCODE_DO:
223          loop_depth++;
224 
225          /* Since payload regs are deffed only at the start of the shader
226           * execution, any uses of the payload within a loop mean the live
227           * interval extends to the end of the outermost loop.  Find the ip of
228           * the end now.
229           */
230          if (loop_depth == 1)
231             loop_end_ip = count_to_loop_end(block);
232          break;
233       case ELK_OPCODE_WHILE:
234          loop_depth--;
235          break;
236       default:
237          break;
238       }
239 
240       int use_ip;
241       if (loop_depth > 0)
242          use_ip = loop_end_ip;
243       else
244          use_ip = ip;
245 
246       /* Note that UNIFORM args have been turned into FIXED_GRF by
247        * assign_curbe_setup(), and interpolation uses fixed hardware regs from
248        * the start (see interp_reg()).
249        */
250       for (int i = 0; i < inst->sources; i++) {
251          if (inst->src[i].file == FIXED_GRF) {
252             unsigned reg_nr = inst->src[i].nr;
253             if (reg_nr / reg_unit(devinfo) >= payload_node_count)
254                continue;
255 
256             for (unsigned j = reg_nr / reg_unit(devinfo);
257                  j < DIV_ROUND_UP(reg_nr + regs_read(inst, i),
258                                   reg_unit(devinfo));
259                  j++) {
260                payload_last_use_ip[j] = use_ip;
261                assert(j < payload_node_count);
262             }
263          }
264       }
265 
266       if (inst->dst.file == FIXED_GRF) {
267          unsigned reg_nr = inst->dst.nr;
268          if (reg_nr / reg_unit(devinfo) < payload_node_count) {
269             for (unsigned j = reg_nr / reg_unit(devinfo);
270                  j < DIV_ROUND_UP(reg_nr + regs_written(inst),
271                                   reg_unit(devinfo));
272                  j++) {
273                payload_last_use_ip[j] = use_ip;
274                assert(j < payload_node_count);
275             }
276          }
277       }
278 
279       /* Special case instructions which have extra implied registers used. */
280       switch (inst->opcode) {
281       case ELK_CS_OPCODE_CS_TERMINATE:
282          payload_last_use_ip[0] = use_ip;
283          break;
284 
285       default:
286          if (inst->eot) {
287             /* We could omit this for the !inst->header_present case, except
288              * that the simulator apparently incorrectly reads from g0/g1
289              * instead of sideband.  It also really freaks out driver
290              * developers to see g0 used in unusual places, so just always
291              * reserve it.
292              */
293             payload_last_use_ip[0] = use_ip;
294             payload_last_use_ip[1] = use_ip;
295          }
296          break;
297       }
298 
299       ip++;
300    }
301 }
302 
303 class elk_fs_reg_alloc {
304 public:
elk_fs_reg_alloc(elk_fs_visitor * fs)305    elk_fs_reg_alloc(elk_fs_visitor *fs):
306       fs(fs), devinfo(fs->devinfo), compiler(fs->compiler),
307       live(fs->live_analysis.require()), g(NULL),
308       have_spill_costs(false)
309    {
310       mem_ctx = ralloc_context(NULL);
311 
312       /* Stash the number of instructions so we can sanity check that our
313        * counts still match liveness.
314        */
315       live_instr_count = fs->cfg->last_block()->end_ip + 1;
316 
317       spill_insts = _mesa_pointer_set_create(mem_ctx);
318 
319       /* Most of this allocation was written for a reg_width of 1
320        * (dispatch_width == 8).  In extending to SIMD16, the code was
321        * left in place and it was converted to have the hardware
322        * registers it's allocating be contiguous physical pairs of regs
323        * for reg_width == 2.
324        */
325       int reg_width = fs->dispatch_width / 8;
326       rsi = util_logbase2(reg_width);
327       payload_node_count = ALIGN(fs->first_non_payload_grf, reg_width);
328 
329       /* Get payload IP information */
330       payload_last_use_ip = ralloc_array(mem_ctx, int, payload_node_count);
331 
332       node_count = 0;
333       first_payload_node = 0;
334       first_mrf_hack_node = 0;
335       grf127_send_hack_node = 0;
336       first_vgrf_node = 0;
337       last_vgrf_node = 0;
338       first_spill_node = 0;
339 
340       spill_vgrf_ip = NULL;
341       spill_vgrf_ip_alloc = 0;
342       spill_node_count = 0;
343    }
344 
345    elk_fs_reg_alloc(const elk_fs_reg_alloc &) = delete;
346    elk_fs_reg_alloc & operator=(const elk_fs_reg_alloc &) = delete;
347 
~elk_fs_reg_alloc()348    ~elk_fs_reg_alloc()
349    {
350       ralloc_free(mem_ctx);
351    }
352 
353    bool assign_regs(bool allow_spilling, bool spill_all);
354 
355 private:
356    void setup_live_interference(unsigned node,
357                                 int node_start_ip, int node_end_ip);
358    void setup_inst_interference(const elk_fs_inst *inst);
359 
360    void build_interference_graph(bool allow_spilling);
361    void discard_interference_graph();
362 
363    elk_fs_reg build_lane_offsets(const fs_builder &bld,
364                              uint32_t spill_offset, int ip);
365    elk_fs_reg build_single_offset(const fs_builder &bld,
366                               uint32_t spill_offset, int ip);
367 
368    void emit_unspill(const fs_builder &bld, struct shader_stats *stats,
369                      elk_fs_reg dst, uint32_t spill_offset, unsigned count, int ip);
370    void emit_spill(const fs_builder &bld, struct shader_stats *stats,
371                    elk_fs_reg src, uint32_t spill_offset, unsigned count, int ip);
372 
373    void set_spill_costs();
374    int choose_spill_reg();
375    elk_fs_reg alloc_spill_reg(unsigned size, int ip);
376    void spill_reg(unsigned spill_reg);
377 
378    void *mem_ctx;
379    elk_fs_visitor *fs;
380    const intel_device_info *devinfo;
381    const elk_compiler *compiler;
382    const fs_live_variables &live;
383    int live_instr_count;
384 
385    set *spill_insts;
386 
387    /* Which compiler->fs_reg_sets[] to use */
388    int rsi;
389 
390    ra_graph *g;
391    bool have_spill_costs;
392 
393    int payload_node_count;
394    int *payload_last_use_ip;
395 
396    int node_count;
397    int first_payload_node;
398    int first_mrf_hack_node;
399    int grf127_send_hack_node;
400    int first_vgrf_node;
401    int last_vgrf_node;
402    int first_spill_node;
403 
404    int *spill_vgrf_ip;
405    int spill_vgrf_ip_alloc;
406    int spill_node_count;
407 
408    elk_fs_reg scratch_header;
409 };
410 
411 /**
412  * Sets the mrf_used array to indicate which MRFs are used by the shader IR
413  *
414  * This is used in assign_regs() to decide which of the GRFs that we use as
415  * MRFs on gfx7 get normally register allocated, and in register spilling to
416  * see if we can actually use MRFs to do spills without overwriting normal MRF
417  * contents.
418  */
419 static void
get_used_mrfs(const elk_fs_visitor * v,bool * mrf_used)420 get_used_mrfs(const elk_fs_visitor *v, bool *mrf_used)
421 {
422    int reg_width = v->dispatch_width / 8;
423 
424    memset(mrf_used, 0, ELK_MAX_MRF(v->devinfo->ver) * sizeof(bool));
425 
426    foreach_block_and_inst(block, elk_fs_inst, inst, v->cfg) {
427       if (inst->dst.file == MRF) {
428          int reg = inst->dst.nr & ~ELK_MRF_COMPR4;
429          mrf_used[reg] = true;
430          if (reg_width == 2) {
431             if (inst->dst.nr & ELK_MRF_COMPR4) {
432                mrf_used[reg + 4] = true;
433             } else {
434                mrf_used[reg + 1] = true;
435             }
436          }
437       }
438 
439       if (inst->mlen > 0) {
440 	 for (unsigned i = 0; i < inst->implied_mrf_writes(); i++) {
441             mrf_used[inst->base_mrf + i] = true;
442          }
443       }
444    }
445 }
446 
447 namespace {
448    /**
449     * Maximum spill block size we expect to encounter in 32B units.
450     *
451     * This is somewhat arbitrary and doesn't necessarily limit the maximum
452     * variable size that can be spilled -- A higher value will allow a
453     * variable of a given size to be spilled more efficiently with a smaller
454     * number of scratch messages, but will increase the likelihood of a
455     * collision between the MRFs reserved for spilling and other MRFs used by
456     * the program (and possibly increase GRF register pressure on platforms
457     * without hardware MRFs), what could cause register allocation to fail.
458     *
459     * For the moment reserve just enough space so a register of 32 bit
460     * component type and natural region width can be spilled without splitting
461     * into multiple (force_writemask_all) scratch messages.
462     */
463    unsigned
spill_max_size(const elk_backend_shader * s)464    spill_max_size(const elk_backend_shader *s)
465    {
466       /* LSC is limited to SIMD16 sends */
467       assert(!s->devinfo->has_lsc);
468 
469       /* FINISHME - On Gfx7+ it should be possible to avoid this limit
470        *            altogether by spilling directly from the temporary GRF
471        *            allocated to hold the result of the instruction (and the
472        *            scratch write header).
473        */
474       /* FINISHME - The shader's dispatch width probably belongs in
475        *            elk_backend_shader (or some nonexistent fs_shader class?)
476        *            rather than in the visitor class.
477        */
478       return static_cast<const elk_fs_visitor *>(s)->dispatch_width / 8;
479    }
480 
481    /**
482     * First MRF register available for spilling.
483     */
484    unsigned
spill_base_mrf(const elk_backend_shader * s)485    spill_base_mrf(const elk_backend_shader *s)
486    {
487       return ELK_MAX_MRF(s->devinfo->ver) - spill_max_size(s) - 1;
488    }
489 }
490 
491 void
setup_live_interference(unsigned node,int node_start_ip,int node_end_ip)492 elk_fs_reg_alloc::setup_live_interference(unsigned node,
493                                       int node_start_ip, int node_end_ip)
494 {
495    /* Mark any virtual grf that is live between the start of the program and
496     * the last use of a payload node interfering with that payload node.
497     */
498    for (int i = 0; i < payload_node_count; i++) {
499       if (payload_last_use_ip[i] == -1)
500          continue;
501 
502       /* Note that we use a <= comparison, unlike vgrfs_interfere(),
503        * in order to not have to worry about the uniform issue described in
504        * calculate_live_intervals().
505        */
506       if (node_start_ip <= payload_last_use_ip[i])
507          ra_add_node_interference(g, node, first_payload_node + i);
508    }
509 
510    /* If we have the MRF hack enabled, mark this node as interfering with all
511     * MRF registers.
512     */
513    if (first_mrf_hack_node >= 0) {
514       for (int i = spill_base_mrf(fs); i < ELK_MAX_MRF(devinfo->ver); i++)
515          ra_add_node_interference(g, node, first_mrf_hack_node + i);
516    }
517 
518    /* Add interference with every vgrf whose live range intersects this
519     * node's.  We only need to look at nodes below this one as the reflexivity
520     * of interference will take care of the rest.
521     */
522    for (unsigned n2 = first_vgrf_node;
523         n2 <= (unsigned)last_vgrf_node && n2 < node; n2++) {
524       unsigned vgrf = n2 - first_vgrf_node;
525       if (!(node_end_ip <= live.vgrf_start[vgrf] ||
526             live.vgrf_end[vgrf] <= node_start_ip))
527          ra_add_node_interference(g, node, n2);
528    }
529 }
530 
531 void
setup_inst_interference(const elk_fs_inst * inst)532 elk_fs_reg_alloc::setup_inst_interference(const elk_fs_inst *inst)
533 {
534    /* Certain instructions can't safely use the same register for their
535     * sources and destination.  Add interference.
536     */
537    if (inst->dst.file == VGRF && inst->has_source_and_destination_hazard()) {
538       for (unsigned i = 0; i < inst->sources; i++) {
539          if (inst->src[i].file == VGRF) {
540             ra_add_node_interference(g, first_vgrf_node + inst->dst.nr,
541                                         first_vgrf_node + inst->src[i].nr);
542          }
543       }
544    }
545 
546    /* A compressed instruction is actually two instructions executed
547     * simultaneously.  On most platforms, it ok to have the source and
548     * destination registers be the same.  In this case, each instruction
549     * over-writes its own source and there's no problem.  The real problem
550     * here is if the source and destination registers are off by one.  Then
551     * you can end up in a scenario where the first instruction over-writes the
552     * source of the second instruction.  Since the compiler doesn't know about
553     * this level of granularity, we simply make the source and destination
554     * interfere.
555     */
556    if (inst->dst.component_size(inst->exec_size) > REG_SIZE &&
557        inst->dst.file == VGRF) {
558       for (int i = 0; i < inst->sources; ++i) {
559          if (inst->src[i].file == VGRF) {
560             ra_add_node_interference(g, first_vgrf_node + inst->dst.nr,
561                                         first_vgrf_node + inst->src[i].nr);
562          }
563       }
564    }
565 
566    if (grf127_send_hack_node >= 0) {
567       /* At Intel Broadwell PRM, vol 07, section "Instruction Set Reference",
568        * subsection "EUISA Instructions", Send Message (page 990):
569        *
570        * "r127 must not be used for return address when there is a src and
571        * dest overlap in send instruction."
572        *
573        * We are avoiding using grf127 as part of the destination of send
574        * messages adding a node interference to the grf127_send_hack_node.
575        * This node has a fixed assignment to grf127.
576        *
577        * We don't apply it to SIMD16 instructions because previous code avoids
578        * any register overlap between sources and destination.
579        */
580       if (inst->exec_size < 16 && inst->is_send_from_grf() &&
581           inst->dst.file == VGRF)
582          ra_add_node_interference(g, first_vgrf_node + inst->dst.nr,
583                                      grf127_send_hack_node);
584 
585       /* Spilling instruction are generated as SEND messages from MRF but as
586        * Gfx7+ supports sending from GRF the driver will maps assingn these
587        * MRF registers to a GRF. Implementations reuses the dest of the send
588        * message as source. So as we will have an overlap for sure, we create
589        * an interference between destination and grf127.
590        */
591       if ((inst->opcode == ELK_SHADER_OPCODE_GFX7_SCRATCH_READ ||
592            inst->opcode == ELK_SHADER_OPCODE_GFX4_SCRATCH_READ) &&
593           inst->dst.file == VGRF)
594          ra_add_node_interference(g, first_vgrf_node + inst->dst.nr,
595                                      grf127_send_hack_node);
596    }
597 
598    /* When we do send-from-GRF for FB writes, we need to ensure that the last
599     * write instruction sends from a high register.  This is because the
600     * vertex fetcher wants to start filling the low payload registers while
601     * the pixel data port is still working on writing out the memory.  If we
602     * don't do this, we get rendering artifacts.
603     *
604     * We could just do "something high".  Instead, we just pick the highest
605     * register that works.
606     */
607    if (inst->eot) {
608       const int vgrf = inst->opcode == ELK_SHADER_OPCODE_SEND ?
609                        inst->src[1].nr : inst->src[0].nr;
610       const int size = DIV_ROUND_UP(fs->alloc.sizes[vgrf], reg_unit(devinfo));
611       int reg = ELK_MAX_GRF - size;
612 
613       if (first_mrf_hack_node >= 0) {
614          /* If something happened to spill, we want to push the EOT send
615           * register early enough in the register file that we don't
616           * conflict with any used MRF hack registers.
617           */
618          reg -= ELK_MAX_MRF(devinfo->ver) - spill_base_mrf(fs);
619       } else if (grf127_send_hack_node >= 0) {
620          /* Avoid r127 which might be unusable if the node was previously
621           * written by a SIMD8 SEND message with source/destination overlap.
622           */
623          reg--;
624       }
625 
626       ra_set_node_reg(g, first_vgrf_node + vgrf, reg);
627    }
628 }
629 
630 void
build_interference_graph(bool allow_spilling)631 elk_fs_reg_alloc::build_interference_graph(bool allow_spilling)
632 {
633    /* Compute the RA node layout */
634    node_count = 0;
635    first_payload_node = node_count;
636    node_count += payload_node_count;
637    if (devinfo->ver >= 7 && allow_spilling) {
638       first_mrf_hack_node = node_count;
639       node_count += ELK_MAX_GRF - GFX7_MRF_HACK_START;
640    } else {
641       first_mrf_hack_node = -1;
642    }
643    if (devinfo->ver >= 8) {
644       grf127_send_hack_node = node_count;
645       node_count ++;
646    } else {
647       grf127_send_hack_node = -1;
648    }
649    first_vgrf_node = node_count;
650    node_count += fs->alloc.count;
651    last_vgrf_node = node_count - 1;
652    first_spill_node = node_count;
653 
654    fs->calculate_payload_ranges(payload_node_count,
655                                 payload_last_use_ip);
656 
657    assert(g == NULL);
658    g = ra_alloc_interference_graph(compiler->fs_reg_sets[rsi].regs, node_count);
659    ralloc_steal(mem_ctx, g);
660 
661    /* Set up the payload nodes */
662    for (int i = 0; i < payload_node_count; i++)
663       ra_set_node_reg(g, first_payload_node + i, i);
664 
665    if (first_mrf_hack_node >= 0) {
666       /* Mark each MRF reg node as being allocated to its physical
667        * register.
668        *
669        * The alternative would be to have per-physical-register classes,
670        * which would just be silly.
671        */
672       for (int i = 0; i < ELK_MAX_MRF(devinfo->ver); i++) {
673          ra_set_node_reg(g, first_mrf_hack_node + i,
674                             GFX7_MRF_HACK_START + i);
675       }
676    }
677 
678    if (grf127_send_hack_node >= 0)
679       ra_set_node_reg(g, grf127_send_hack_node, 127);
680 
681    /* Specify the classes of each virtual register. */
682    for (unsigned i = 0; i < fs->alloc.count; i++) {
683       unsigned size = DIV_ROUND_UP(fs->alloc.sizes[i], reg_unit(devinfo));
684 
685       assert(size <= ARRAY_SIZE(compiler->fs_reg_sets[rsi].classes) &&
686              "Register allocation relies on split_virtual_grfs()");
687 
688       ra_set_node_class(g, first_vgrf_node + i,
689                         compiler->fs_reg_sets[rsi].classes[size - 1]);
690    }
691 
692    /* Special case: on pre-Gfx7 hardware that supports PLN, the second operand
693     * of a PLN instruction needs to be an even-numbered register, so we have a
694     * special register class aligned_bary_class to handle this case.
695     */
696    if (compiler->fs_reg_sets[rsi].aligned_bary_class) {
697       foreach_block_and_inst(block, elk_fs_inst, inst, fs->cfg) {
698          if (inst->opcode == ELK_FS_OPCODE_LINTERP && inst->src[0].file == VGRF &&
699              fs->alloc.sizes[inst->src[0].nr] ==
700                aligned_bary_size(fs->dispatch_width)) {
701             ra_set_node_class(g, first_vgrf_node + inst->src[0].nr,
702                               compiler->fs_reg_sets[rsi].aligned_bary_class);
703          }
704       }
705    }
706 
707    /* Add interference based on the live range of the register */
708    for (unsigned i = 0; i < fs->alloc.count; i++) {
709       setup_live_interference(first_vgrf_node + i,
710                               live.vgrf_start[i],
711                               live.vgrf_end[i]);
712    }
713 
714    /* Add interference based on the instructions in which a register is used.
715     */
716    foreach_block_and_inst(block, elk_fs_inst, inst, fs->cfg)
717       setup_inst_interference(inst);
718 }
719 
720 void
discard_interference_graph()721 elk_fs_reg_alloc::discard_interference_graph()
722 {
723    ralloc_free(g);
724    g = NULL;
725    have_spill_costs = false;
726 }
727 
728 elk_fs_reg
build_single_offset(const fs_builder & bld,uint32_t spill_offset,int ip)729 elk_fs_reg_alloc::build_single_offset(const fs_builder &bld, uint32_t spill_offset, int ip)
730 {
731    elk_fs_reg offset = retype(alloc_spill_reg(1, ip), ELK_REGISTER_TYPE_UD);
732    elk_fs_inst *inst = bld.MOV(offset, elk_imm_ud(spill_offset));
733    _mesa_set_add(spill_insts, inst);
734    return offset;
735 }
736 
737 elk_fs_reg
build_lane_offsets(const fs_builder & bld,uint32_t spill_offset,int ip)738 elk_fs_reg_alloc::build_lane_offsets(const fs_builder &bld, uint32_t spill_offset, int ip)
739 {
740    /* LSC messages are limited to SIMD16 */
741    assert(bld.dispatch_width() <= 16);
742 
743    const fs_builder ubld = bld.exec_all();
744    const unsigned reg_count = ubld.dispatch_width() / 8;
745 
746    elk_fs_reg offset = retype(alloc_spill_reg(reg_count, ip), ELK_REGISTER_TYPE_UD);
747    elk_fs_inst *inst;
748 
749    /* Build an offset per lane in SIMD8 */
750    inst = ubld.group(8, 0).MOV(retype(offset, ELK_REGISTER_TYPE_UW),
751                                elk_imm_uv(0x76543210));
752    _mesa_set_add(spill_insts, inst);
753    inst = ubld.group(8, 0).MOV(offset, retype(offset, ELK_REGISTER_TYPE_UW));
754    _mesa_set_add(spill_insts, inst);
755 
756    /* Build offsets in the upper 8 lanes of SIMD16 */
757    if (ubld.dispatch_width() > 8) {
758       inst = ubld.group(8, 0).ADD(
759          byte_offset(offset, REG_SIZE),
760          byte_offset(offset, 0),
761          elk_imm_ud(8));
762       _mesa_set_add(spill_insts, inst);
763    }
764 
765    /* Make the offset a dword */
766    inst = ubld.SHL(offset, offset, elk_imm_ud(2));
767    _mesa_set_add(spill_insts, inst);
768 
769    /* Add the base offset */
770    inst = ubld.ADD(offset, offset, elk_imm_ud(spill_offset));
771    _mesa_set_add(spill_insts, inst);
772 
773    return offset;
774 }
775 
776 void
emit_unspill(const fs_builder & bld,struct shader_stats * stats,elk_fs_reg dst,uint32_t spill_offset,unsigned count,int ip)777 elk_fs_reg_alloc::emit_unspill(const fs_builder &bld,
778                            struct shader_stats *stats,
779                            elk_fs_reg dst,
780                            uint32_t spill_offset, unsigned count, int ip)
781 {
782    const intel_device_info *devinfo = bld.shader->devinfo;
783    const unsigned reg_size = dst.component_size(bld.dispatch_width()) /
784                              REG_SIZE;
785    assert(count % reg_size == 0);
786 
787    for (unsigned i = 0; i < count / reg_size; i++) {
788       ++stats->fill_count;
789 
790       elk_fs_inst *unspill_inst;
791       if (devinfo->ver >= 7 && spill_offset < (1 << 12) * REG_SIZE) {
792          /* The Gfx7 descriptor-based offset is 12 bits of HWORD units.
793           * Because the Gfx7-style scratch block read is hardwired to BTI 255,
794           * on Gfx9+ it would cause the DC to do an IA-coherent read, what
795           * largely outweighs the slight advantage from not having to provide
796           * the address as part of the message header, so we're better off
797           * using plain old oword block reads.
798           */
799          unspill_inst = bld.emit(ELK_SHADER_OPCODE_GFX7_SCRATCH_READ, dst);
800          unspill_inst->offset = spill_offset;
801       } else {
802          unspill_inst = bld.emit(ELK_SHADER_OPCODE_GFX4_SCRATCH_READ, dst);
803          unspill_inst->offset = spill_offset;
804          unspill_inst->base_mrf = spill_base_mrf(bld.shader);
805          unspill_inst->mlen = 1; /* header contains offset */
806       }
807       _mesa_set_add(spill_insts, unspill_inst);
808 
809       dst.offset += reg_size * REG_SIZE;
810       spill_offset += reg_size * REG_SIZE;
811    }
812 }
813 
814 void
emit_spill(const fs_builder & bld,struct shader_stats * stats,elk_fs_reg src,uint32_t spill_offset,unsigned count,int ip)815 elk_fs_reg_alloc::emit_spill(const fs_builder &bld,
816                          struct shader_stats *stats,
817                          elk_fs_reg src,
818                          uint32_t spill_offset, unsigned count, int ip)
819 {
820    const unsigned reg_size = src.component_size(bld.dispatch_width()) /
821                              REG_SIZE;
822    assert(count % reg_size == 0);
823 
824    for (unsigned i = 0; i < count / reg_size; i++) {
825       ++stats->spill_count;
826 
827       elk_fs_inst *spill_inst = bld.emit(ELK_SHADER_OPCODE_GFX4_SCRATCH_WRITE,
828                                          bld.null_reg_f(), src);
829       spill_inst->offset = spill_offset;
830       spill_inst->mlen = 1 + reg_size; /* header, value */
831       spill_inst->base_mrf = spill_base_mrf(bld.shader);
832       _mesa_set_add(spill_insts, spill_inst);
833 
834       src.offset += reg_size * REG_SIZE;
835       spill_offset += reg_size * REG_SIZE;
836    }
837 }
838 
839 void
set_spill_costs()840 elk_fs_reg_alloc::set_spill_costs()
841 {
842    float block_scale = 1.0;
843    float spill_costs[fs->alloc.count];
844    bool no_spill[fs->alloc.count];
845 
846    for (unsigned i = 0; i < fs->alloc.count; i++) {
847       spill_costs[i] = 0.0;
848       no_spill[i] = false;
849    }
850 
851    /* Calculate costs for spilling nodes.  Call it a cost of 1 per
852     * spill/unspill we'll have to do, and guess that the insides of
853     * loops run 10 times.
854     */
855    foreach_block_and_inst(block, elk_fs_inst, inst, fs->cfg) {
856       for (unsigned int i = 0; i < inst->sources; i++) {
857 	 if (inst->src[i].file == VGRF)
858             spill_costs[inst->src[i].nr] += regs_read(inst, i) * block_scale;
859       }
860 
861       if (inst->dst.file == VGRF)
862          spill_costs[inst->dst.nr] += regs_written(inst) * block_scale;
863 
864       /* Don't spill anything we generated while spilling */
865       if (_mesa_set_search(spill_insts, inst)) {
866          for (unsigned int i = 0; i < inst->sources; i++) {
867 	    if (inst->src[i].file == VGRF)
868                no_spill[inst->src[i].nr] = true;
869          }
870 	 if (inst->dst.file == VGRF)
871             no_spill[inst->dst.nr] = true;
872       }
873 
874       switch (inst->opcode) {
875 
876       case ELK_OPCODE_DO:
877 	 block_scale *= 10;
878 	 break;
879 
880       case ELK_OPCODE_WHILE:
881 	 block_scale /= 10;
882 	 break;
883 
884       case ELK_OPCODE_IF:
885       case ELK_OPCODE_IFF:
886          block_scale *= 0.5;
887          break;
888 
889       case ELK_OPCODE_ENDIF:
890          block_scale /= 0.5;
891          break;
892 
893       default:
894 	 break;
895       }
896    }
897 
898    for (unsigned i = 0; i < fs->alloc.count; i++) {
899       /* Do the no_spill check first.  Registers that are used as spill
900        * temporaries may have been allocated after we calculated liveness so
901        * we shouldn't look their liveness up.  Fortunately, they're always
902        * used in SCRATCH_READ/WRITE instructions so they'll always be flagged
903        * no_spill.
904        */
905       if (no_spill[i])
906          continue;
907 
908       int live_length = live.vgrf_end[i] - live.vgrf_start[i];
909       if (live_length <= 0)
910          continue;
911 
912       /* Divide the cost (in number of spills/fills) by the log of the length
913        * of the live range of the register.  This will encourage spill logic
914        * to spill long-living things before spilling short-lived things where
915        * spilling is less likely to actually do us any good.  We use the log
916        * of the length because it will fall off very quickly and not cause us
917        * to spill medium length registers with more uses.
918        */
919       float adjusted_cost = spill_costs[i] / logf(live_length);
920       ra_set_node_spill_cost(g, first_vgrf_node + i, adjusted_cost);
921    }
922 
923    have_spill_costs = true;
924 }
925 
926 int
choose_spill_reg()927 elk_fs_reg_alloc::choose_spill_reg()
928 {
929    if (!have_spill_costs)
930       set_spill_costs();
931 
932    int node = ra_get_best_spill_node(g);
933    if (node < 0)
934       return -1;
935 
936    assert(node >= first_vgrf_node);
937    return node - first_vgrf_node;
938 }
939 
940 elk_fs_reg
alloc_spill_reg(unsigned size,int ip)941 elk_fs_reg_alloc::alloc_spill_reg(unsigned size, int ip)
942 {
943    int vgrf = fs->alloc.allocate(ALIGN(size, reg_unit(devinfo)));
944    int class_idx = DIV_ROUND_UP(size, reg_unit(devinfo)) - 1;
945    int n = ra_add_node(g, compiler->fs_reg_sets[rsi].classes[class_idx]);
946    assert(n == first_vgrf_node + vgrf);
947    assert(n == first_spill_node + spill_node_count);
948 
949    setup_live_interference(n, ip - 1, ip + 1);
950 
951    /* Add interference between this spill node and any other spill nodes for
952     * the same instruction.
953     */
954    for (int s = 0; s < spill_node_count; s++) {
955       if (spill_vgrf_ip[s] == ip)
956          ra_add_node_interference(g, n, first_spill_node + s);
957    }
958 
959    /* Add this spill node to the list for next time */
960    if (spill_node_count >= spill_vgrf_ip_alloc) {
961       if (spill_vgrf_ip_alloc == 0)
962          spill_vgrf_ip_alloc = 16;
963       else
964          spill_vgrf_ip_alloc *= 2;
965       spill_vgrf_ip = reralloc(mem_ctx, spill_vgrf_ip, int,
966                                spill_vgrf_ip_alloc);
967    }
968    spill_vgrf_ip[spill_node_count++] = ip;
969 
970    return elk_fs_reg(VGRF, vgrf);
971 }
972 
973 void
spill_reg(unsigned spill_reg)974 elk_fs_reg_alloc::spill_reg(unsigned spill_reg)
975 {
976    int size = fs->alloc.sizes[spill_reg];
977    unsigned int spill_offset = fs->last_scratch;
978    assert(ALIGN(spill_offset, 16) == spill_offset); /* oword read/write req. */
979 
980    /* Spills may use MRFs 13-15 in the SIMD16 case.  Our texturing is done
981     * using up to 11 MRFs starting from either m1 or m2, and fb writes can use
982     * up to m13 (gfx6+ simd16: 2 header + 8 color + 2 src0alpha + 2 omask) or
983     * m15 (gfx4-5 simd16: 2 header + 8 color + 1 aads + 2 src depth + 2 dst
984     * depth), starting from m1.  In summary: We may not be able to spill in
985     * SIMD16 mode, because we'd stomp the FB writes.
986     */
987    if (!fs->spilled_any_registers) {
988       bool mrf_used[ELK_MAX_MRF(devinfo->ver)];
989       get_used_mrfs(fs, mrf_used);
990 
991       for (int i = spill_base_mrf(fs); i < ELK_MAX_MRF(devinfo->ver); i++) {
992          if (mrf_used[i]) {
993             fs->fail("Register spilling not supported with m%d used", i);
994           return;
995          }
996       }
997 
998       fs->spilled_any_registers = true;
999    }
1000 
1001    fs->last_scratch += size * REG_SIZE;
1002 
1003    /* We're about to replace all uses of this register.  It no longer
1004     * conflicts with anything so we can get rid of its interference.
1005     */
1006    ra_set_node_spill_cost(g, first_vgrf_node + spill_reg, 0);
1007    ra_reset_node_interference(g, first_vgrf_node + spill_reg);
1008 
1009    /* Generate spill/unspill instructions for the objects being
1010     * spilled.  Right now, we spill or unspill the whole thing to a
1011     * virtual grf of the same size.  For most instructions, though, we
1012     * could just spill/unspill the GRF being accessed.
1013     */
1014    int ip = 0;
1015    foreach_block_and_inst (block, elk_fs_inst, inst, fs->cfg) {
1016       const fs_builder ibld = fs_builder(fs, block, inst);
1017       exec_node *before = inst->prev;
1018       exec_node *after = inst->next;
1019 
1020       for (unsigned int i = 0; i < inst->sources; i++) {
1021 	 if (inst->src[i].file == VGRF &&
1022              inst->src[i].nr == spill_reg) {
1023             int count = regs_read(inst, i);
1024             int subset_spill_offset = spill_offset +
1025                ROUND_DOWN_TO(inst->src[i].offset, REG_SIZE);
1026             elk_fs_reg unspill_dst = alloc_spill_reg(count, ip);
1027 
1028             inst->src[i].nr = unspill_dst.nr;
1029             inst->src[i].offset %= REG_SIZE;
1030 
1031             /* We read the largest power-of-two divisor of the register count
1032              * (because only POT scratch read blocks are allowed by the
1033              * hardware) up to the maximum supported block size.
1034              */
1035             const unsigned width =
1036                MIN2(32, 1u << (ffs(MAX2(1, count) * 8) - 1));
1037 
1038             /* Set exec_all() on unspill messages under the (rather
1039              * pessimistic) assumption that there is no one-to-one
1040              * correspondence between channels of the spilled variable in
1041              * scratch space and the scratch read message, which operates on
1042              * 32 bit channels.  It shouldn't hurt in any case because the
1043              * unspill destination is a block-local temporary.
1044              */
1045             emit_unspill(ibld.exec_all().group(width, 0), &fs->shader_stats,
1046                          unspill_dst, subset_spill_offset, count, ip);
1047 	 }
1048       }
1049 
1050       if (inst->dst.file == VGRF &&
1051           inst->dst.nr == spill_reg &&
1052           inst->opcode != ELK_SHADER_OPCODE_UNDEF) {
1053          int subset_spill_offset = spill_offset +
1054             ROUND_DOWN_TO(inst->dst.offset, REG_SIZE);
1055          elk_fs_reg spill_src = alloc_spill_reg(regs_written(inst), ip);
1056 
1057          inst->dst.nr = spill_src.nr;
1058          inst->dst.offset %= REG_SIZE;
1059 
1060          /* If we're immediately spilling the register, we should not use
1061           * destination dependency hints.  Doing so will cause the GPU do
1062           * try to read and write the register at the same time and may
1063           * hang the GPU.
1064           */
1065          inst->no_dd_clear = false;
1066          inst->no_dd_check = false;
1067 
1068          /* Calculate the execution width of the scratch messages (which work
1069           * in terms of 32 bit components so we have a fixed number of eight
1070           * channels per spilled register).  We attempt to write one
1071           * exec_size-wide component of the variable at a time without
1072           * exceeding the maximum number of (fake) MRF registers reserved for
1073           * spills.
1074           */
1075          const unsigned width = 8 * reg_unit(devinfo) *
1076             DIV_ROUND_UP(MIN2(inst->dst.component_size(inst->exec_size),
1077                               spill_max_size(fs) * REG_SIZE),
1078                          reg_unit(devinfo) * REG_SIZE);
1079 
1080          /* Spills should only write data initialized by the instruction for
1081           * whichever channels are enabled in the execution mask.  If that's
1082           * not possible we'll have to emit a matching unspill before the
1083           * instruction and set force_writemask_all on the spill.
1084           */
1085          const bool per_channel =
1086             inst->dst.is_contiguous() && type_sz(inst->dst.type) == 4 &&
1087             inst->exec_size == width;
1088 
1089          /* Builder used to emit the scratch messages. */
1090          const fs_builder ubld = ibld.exec_all(!per_channel).group(width, 0);
1091 
1092 	 /* If our write is going to affect just part of the
1093           * regs_written(inst), then we need to unspill the destination since
1094           * we write back out all of the regs_written().  If the original
1095           * instruction had force_writemask_all set and is not a partial
1096           * write, there should be no need for the unspill since the
1097           * instruction will be overwriting the whole destination in any case.
1098 	  */
1099          if (inst->is_partial_write() ||
1100              (!inst->force_writemask_all && !per_channel))
1101             emit_unspill(ubld, &fs->shader_stats, spill_src,
1102                          subset_spill_offset, regs_written(inst), ip);
1103 
1104          emit_spill(ubld.at(block, inst->next), &fs->shader_stats, spill_src,
1105                     subset_spill_offset, regs_written(inst), ip);
1106       }
1107 
1108       for (elk_fs_inst *inst = (elk_fs_inst *)before->next;
1109            inst != after; inst = (elk_fs_inst *)inst->next)
1110          setup_inst_interference(inst);
1111 
1112       /* We don't advance the ip for scratch read/write instructions
1113        * because we consider them to have the same ip as instruction we're
1114        * spilling around for the purposes of interference.  Also, we're
1115        * inserting spill instructions without re-running liveness analysis
1116        * and we don't want to mess up our IPs.
1117        */
1118       if (!_mesa_set_search(spill_insts, inst))
1119          ip++;
1120    }
1121 
1122    assert(ip == live_instr_count);
1123 }
1124 
1125 bool
assign_regs(bool allow_spilling,bool spill_all)1126 elk_fs_reg_alloc::assign_regs(bool allow_spilling, bool spill_all)
1127 {
1128    build_interference_graph(fs->spilled_any_registers || spill_all);
1129 
1130    unsigned spilled = 0;
1131    while (1) {
1132       /* Debug of register spilling: Go spill everything. */
1133       if (unlikely(spill_all)) {
1134          int reg = choose_spill_reg();
1135          if (reg != -1) {
1136             spill_reg(reg);
1137             continue;
1138          }
1139       }
1140 
1141       if (ra_allocate(g))
1142          break;
1143 
1144       if (!allow_spilling)
1145          return false;
1146 
1147       /* Failed to allocate registers.  Spill some regs, and the caller will
1148        * loop back into here to try again.
1149        */
1150       unsigned nr_spills = 1;
1151       if (compiler->spilling_rate)
1152          nr_spills = MAX2(1, spilled / compiler->spilling_rate);
1153 
1154       for (unsigned j = 0; j < nr_spills; j++) {
1155          int reg = choose_spill_reg();
1156          if (reg == -1) {
1157             if (j == 0)
1158                return false; /* Nothing to spill */
1159             break;
1160          }
1161 
1162          /* If we're going to spill but we've never spilled before, we need
1163           * to re-build the interference graph with MRFs enabled to allow
1164           * spilling.
1165           */
1166          if (!fs->spilled_any_registers) {
1167             discard_interference_graph();
1168             build_interference_graph(true);
1169          }
1170 
1171          spill_reg(reg);
1172          spilled++;
1173       }
1174    }
1175 
1176    if (spilled)
1177       fs->invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
1178 
1179    /* Get the chosen virtual registers for each node, and map virtual
1180     * regs in the register classes back down to real hardware reg
1181     * numbers.
1182     */
1183    unsigned hw_reg_mapping[fs->alloc.count];
1184    fs->grf_used = fs->first_non_payload_grf;
1185    for (unsigned i = 0; i < fs->alloc.count; i++) {
1186       int reg = ra_get_node_reg(g, first_vgrf_node + i);
1187 
1188       hw_reg_mapping[i] = reg;
1189       fs->grf_used = MAX2(fs->grf_used,
1190 			  hw_reg_mapping[i] + DIV_ROUND_UP(fs->alloc.sizes[i],
1191                                                            reg_unit(devinfo)));
1192    }
1193 
1194    foreach_block_and_inst(block, elk_fs_inst, inst, fs->cfg) {
1195       assign_reg(devinfo, hw_reg_mapping, &inst->dst);
1196       for (int i = 0; i < inst->sources; i++) {
1197          assign_reg(devinfo, hw_reg_mapping, &inst->src[i]);
1198       }
1199    }
1200 
1201    fs->alloc.count = fs->grf_used;
1202 
1203    return true;
1204 }
1205 
1206 bool
assign_regs(bool allow_spilling,bool spill_all)1207 elk_fs_visitor::assign_regs(bool allow_spilling, bool spill_all)
1208 {
1209    elk_fs_reg_alloc alloc(this);
1210    bool success = alloc.assign_regs(allow_spilling, spill_all);
1211    if (!success && allow_spilling) {
1212       fail("no register to spill:\n");
1213       dump_instructions(NULL);
1214    }
1215    return success;
1216 }
1217