xref: /aosp_15_r20/external/mesa3d/src/intel/compiler/elk/elk_nir_lower_cs_intrinsics.c (revision 6104692788411f58d303aa86923a9ff6ecaded22)
1 /*
2  * Copyright (c) 2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 
24 #include "elk_nir.h"
25 #include "compiler/nir/nir_builder.h"
26 
27 struct lower_intrinsics_state {
28    nir_shader *nir;
29    nir_function_impl *impl;
30    bool progress;
31    bool hw_generated_local_id;
32    nir_builder builder;
33 };
34 
35 static void
compute_local_index_id(nir_builder * b,nir_shader * nir,nir_def ** local_index,nir_def ** local_id)36 compute_local_index_id(nir_builder *b,
37                        nir_shader *nir,
38                        nir_def **local_index,
39                        nir_def **local_id)
40 {
41    nir_def *subgroup_id = nir_load_subgroup_id(b);
42 
43    nir_def *thread_local_id =
44       nir_imul(b, subgroup_id, nir_load_simd_width_intel(b));
45    nir_def *channel = nir_load_subgroup_invocation(b);
46    nir_def *linear = nir_iadd(b, channel, thread_local_id);
47 
48    nir_def *size_x;
49    nir_def *size_y;
50    if (nir->info.workgroup_size_variable) {
51       nir_def *size_xyz = nir_load_workgroup_size(b);
52       size_x = nir_channel(b, size_xyz, 0);
53       size_y = nir_channel(b, size_xyz, 1);
54    } else {
55       size_x = nir_imm_int(b, nir->info.workgroup_size[0]);
56       size_y = nir_imm_int(b, nir->info.workgroup_size[1]);
57    }
58    nir_def *size_xy = nir_imul(b, size_x, size_y);
59 
60    /* The local invocation index and ID must respect the following
61     *
62     *    gl_LocalInvocationID.x =
63     *       gl_LocalInvocationIndex % gl_WorkGroupSize.x;
64     *    gl_LocalInvocationID.y =
65     *       (gl_LocalInvocationIndex / gl_WorkGroupSize.x) %
66     *       gl_WorkGroupSize.y;
67     *    gl_LocalInvocationID.z =
68     *       (gl_LocalInvocationIndex /
69     *        (gl_WorkGroupSize.x * gl_WorkGroupSize.y)) %
70     *       gl_WorkGroupSize.z;
71     *
72     * However, the final % gl_WorkGroupSize.z does nothing unless we
73     * accidentally end up with a gl_LocalInvocationIndex that is too
74     * large so it can safely be omitted.
75     */
76 
77    nir_def *id_x, *id_y, *id_z;
78    switch (nir->info.derivative_group) {
79    case DERIVATIVE_GROUP_NONE:
80       if (nir->info.num_images == 0 &&
81           nir->info.num_textures == 0) {
82          /* X-major lid order. Optimal for linear accesses only,
83           * which are usually buffers. X,Y ordering will look like:
84           * (0,0) (1,0) (2,0) ... (size_x-1,0) (0,1) (1,1) ...
85           */
86          id_x = nir_umod(b, linear, size_x);
87          id_y = nir_umod(b, nir_udiv(b, linear, size_x), size_y);
88          *local_index = linear;
89       } else if (!nir->info.workgroup_size_variable &&
90                  nir->info.workgroup_size[1] % 4 == 0) {
91          /* 1x4 block X-major lid order. Same as X-major except increments in
92           * blocks of width=1 height=4. Always optimal for tileY and usually
93           * optimal for linear accesses.
94           *   x = (linear / 4) % size_x
95           *   y = ((linear % 4) + (linear / 4 / size_x) * 4) % size_y
96           * X,Y ordering will look like: (0,0) (0,1) (0,2) (0,3) (1,0) (1,1)
97           * (1,2) (1,3) (2,0) ... (size_x-1,3) (0,4) (0,5) (0,6) (0,7) (1,4) ...
98           */
99          const unsigned height = 4;
100          nir_def *block = nir_udiv_imm(b, linear, height);
101          id_x = nir_umod(b, block, size_x);
102          id_y = nir_umod(b,
103                          nir_iadd(b,
104                                   nir_umod_imm(b, linear, height),
105                                   nir_imul_imm(b,
106                                                nir_udiv(b, block, size_x),
107                                                height)),
108                          size_y);
109       } else {
110          /* Y-major lid order. Optimal for tileY accesses only,
111           * which are usually images. X,Y ordering will look like:
112           * (0,0) (0,1) (0,2) ... (0,size_y-1) (1,0) (1,1) ...
113           */
114          id_y = nir_umod(b, linear, size_y);
115          id_x = nir_umod(b, nir_udiv(b, linear, size_y), size_x);
116       }
117 
118       id_z = nir_udiv(b, linear, size_xy);
119       *local_id = nir_vec3(b, id_x, id_y, id_z);
120       if (!*local_index) {
121          *local_index = nir_iadd(b, nir_iadd(b, id_x,
122                                                 nir_imul(b, id_y, size_x)),
123                                                 nir_imul(b, id_z, size_xy));
124       }
125       break;
126    case DERIVATIVE_GROUP_LINEAR:
127       /* For linear, just set the local invocation index linearly,
128        * and calculate local invocation ID from that.
129        */
130       id_x = nir_umod(b, linear, size_x);
131       id_y = nir_umod(b, nir_udiv(b, linear, size_x), size_y);
132       id_z = nir_udiv(b, linear, size_xy);
133       *local_id = nir_vec3(b, id_x, id_y, id_z);
134       *local_index = linear;
135       break;
136    case DERIVATIVE_GROUP_QUADS: {
137       /* For quads, first we figure out the 2x2 grid the invocation
138        * belongs to -- treating extra Z layers as just more rows.
139        * Then map that into local invocation ID (trivial) and local
140        * invocation index.  Skipping Z simplify index calculation.
141        */
142 
143       nir_def *one = nir_imm_int(b, 1);
144       nir_def *double_size_x = nir_ishl(b, size_x, one);
145 
146       /* ID within a pair of rows, where each group of 4 is 2x2 quad. */
147       nir_def *row_pair_id = nir_umod(b, linear, double_size_x);
148       nir_def *y_row_pairs = nir_udiv(b, linear, double_size_x);
149 
150       nir_def *x =
151          nir_ior(b,
152                  nir_iand(b, row_pair_id, one),
153                  nir_iand(b, nir_ishr(b, row_pair_id, one),
154                           nir_imm_int(b, 0xfffffffe)));
155       nir_def *y =
156          nir_ior(b,
157                  nir_ishl(b, y_row_pairs, one),
158                  nir_iand(b, nir_ishr(b, row_pair_id, one), one));
159 
160       *local_id = nir_vec3(b, x,
161                            nir_umod(b, y, size_y),
162                            nir_udiv(b, y, size_y));
163       *local_index = nir_iadd(b, x, nir_imul(b, y, size_x));
164       break;
165    }
166    default:
167       unreachable("invalid derivative group");
168    }
169 }
170 
171 static bool
lower_cs_intrinsics_convert_block(struct lower_intrinsics_state * state,nir_block * block)172 lower_cs_intrinsics_convert_block(struct lower_intrinsics_state *state,
173                                   nir_block *block)
174 {
175    bool progress = false;
176    nir_builder *b = &state->builder;
177    nir_shader *nir = state->nir;
178 
179    /* Reuse calculated values inside the block. */
180    nir_def *local_index = NULL;
181    nir_def *local_id = NULL;
182 
183    nir_foreach_instr_safe(instr, block) {
184       if (instr->type != nir_instr_type_intrinsic)
185          continue;
186 
187       nir_intrinsic_instr *intrinsic = nir_instr_as_intrinsic(instr);
188 
189       b->cursor = nir_after_instr(&intrinsic->instr);
190 
191       nir_def *sysval;
192       switch (intrinsic->intrinsic) {
193       case nir_intrinsic_load_local_invocation_id:
194          if (state->hw_generated_local_id)
195             continue;
196 
197          FALLTHROUGH;
198       case nir_intrinsic_load_local_invocation_index: {
199          if (!local_index && !nir->info.workgroup_size_variable) {
200             const uint16_t *ws = nir->info.workgroup_size;
201             if (ws[0] * ws[1] * ws[2] == 1) {
202                nir_def *zero = nir_imm_int(b, 0);
203                local_index = zero;
204                local_id = nir_replicate(b, zero, 3);
205             }
206          }
207 
208          if (!local_index) {
209             if (nir->info.stage == MESA_SHADER_TASK ||
210                 nir->info.stage == MESA_SHADER_MESH) {
211                /* Will be lowered by nir_emit_task_mesh_intrinsic() using
212                 * information from the payload.
213                 */
214                continue;
215             }
216 
217             if (state->hw_generated_local_id) {
218                nir_def *local_id_vec = nir_load_local_invocation_id(b);
219                nir_def *local_id[3] = { nir_channel(b, local_id_vec, 0),
220                                         nir_channel(b, local_id_vec, 1),
221                                         nir_channel(b, local_id_vec, 2) };
222                nir_def *size_x = nir_imm_int(b, nir->info.workgroup_size[0]);
223                nir_def *size_y = nir_imm_int(b, nir->info.workgroup_size[1]);
224 
225                sysval = nir_imul(b, local_id[2], nir_imul(b, size_x, size_y));
226                sysval = nir_iadd(b, sysval, nir_imul(b, local_id[1], size_x));
227                sysval = nir_iadd(b, sysval, local_id[0]);
228                local_index = sysval;
229                break;
230             }
231 
232             /* First time we are using those, so let's calculate them. */
233             assert(!local_id);
234             compute_local_index_id(b, nir, &local_index, &local_id);
235          }
236 
237          assert(local_id);
238          assert(local_index);
239          if (intrinsic->intrinsic == nir_intrinsic_load_local_invocation_id)
240             sysval = local_id;
241          else
242             sysval = local_index;
243          break;
244       }
245 
246       case nir_intrinsic_load_num_subgroups: {
247          nir_def *size;
248          if (state->nir->info.workgroup_size_variable) {
249             nir_def *size_xyz = nir_load_workgroup_size(b);
250             nir_def *size_x = nir_channel(b, size_xyz, 0);
251             nir_def *size_y = nir_channel(b, size_xyz, 1);
252             nir_def *size_z = nir_channel(b, size_xyz, 2);
253             size = nir_imul(b, nir_imul(b, size_x, size_y), size_z);
254          } else {
255             size = nir_imm_int(b, nir->info.workgroup_size[0] *
256                                   nir->info.workgroup_size[1] *
257                                   nir->info.workgroup_size[2]);
258          }
259 
260          /* Calculate the equivalent of DIV_ROUND_UP. */
261          nir_def *simd_width = nir_load_simd_width_intel(b);
262          sysval =
263             nir_udiv(b, nir_iadd_imm(b, nir_iadd(b, size, simd_width), -1),
264                         simd_width);
265          break;
266       }
267 
268       default:
269          continue;
270       }
271 
272       if (intrinsic->def.bit_size == 64)
273          sysval = nir_u2u64(b, sysval);
274 
275       nir_def_replace(&intrinsic->def, sysval);
276 
277       state->progress = true;
278    }
279 
280    return progress;
281 }
282 
283 static void
lower_cs_intrinsics_convert_impl(struct lower_intrinsics_state * state)284 lower_cs_intrinsics_convert_impl(struct lower_intrinsics_state *state)
285 {
286    state->builder = nir_builder_create(state->impl);
287 
288    nir_foreach_block(block, state->impl) {
289       lower_cs_intrinsics_convert_block(state, block);
290    }
291 
292    nir_metadata_preserve(state->impl,
293                          nir_metadata_control_flow);
294 }
295 
296 bool
elk_nir_lower_cs_intrinsics(nir_shader * nir,const struct intel_device_info * devinfo,struct elk_cs_prog_data * prog_data)297 elk_nir_lower_cs_intrinsics(nir_shader *nir,
298                             const struct intel_device_info *devinfo,
299                             struct elk_cs_prog_data *prog_data)
300 {
301    assert(gl_shader_stage_uses_workgroup(nir->info.stage));
302 
303    struct lower_intrinsics_state state = {
304       .nir = nir,
305       .hw_generated_local_id = false,
306    };
307 
308    /* Constraints from NV_compute_shader_derivatives. */
309    if (gl_shader_stage_is_compute(nir->info.stage) &&
310        !nir->info.workgroup_size_variable) {
311       if (nir->info.derivative_group == DERIVATIVE_GROUP_QUADS) {
312          assert(nir->info.workgroup_size[0] % 2 == 0);
313          assert(nir->info.workgroup_size[1] % 2 == 0);
314       } else if (nir->info.derivative_group == DERIVATIVE_GROUP_LINEAR) {
315          ASSERTED unsigned workgroup_size =
316             nir->info.workgroup_size[0] *
317             nir->info.workgroup_size[1] *
318             nir->info.workgroup_size[2];
319          assert(workgroup_size % 4 == 0);
320       }
321    }
322 
323    nir_foreach_function_impl(impl, nir) {
324       state.impl = impl;
325       lower_cs_intrinsics_convert_impl(&state);
326    }
327 
328    return state.progress;
329 }
330